open_ai.rs

  1use anyhow::{Result, anyhow};
  2use collections::{BTreeMap, HashMap};
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future, future::BoxFuture};
  5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
  6use http_client::HttpClient;
  7use language_model::{
  8    AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
  9    LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
 10    LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
 11    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 12    RateLimiter, Role, StopReason, TokenUsage,
 13};
 14use menu;
 15use open_ai::{
 16    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent, stream_completion,
 17};
 18use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
 19use std::pin::Pin;
 20use std::str::FromStr as _;
 21use std::sync::{Arc, LazyLock};
 22use strum::IntoEnumIterator;
 23use ui::{List, prelude::*};
 24use ui_input::InputField;
 25use util::ResultExt;
 26use zed_env_vars::{EnvVar, env_var};
 27
 28use crate::ui::ConfiguredApiCard;
 29use crate::{api_key::ApiKeyState, ui::InstructionListItem};
 30
 31const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
 32const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
 33
 34const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
 35static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
 36
 37#[derive(Default, Clone, Debug, PartialEq)]
 38pub struct OpenAiSettings {
 39    pub api_url: String,
 40    pub available_models: Vec<AvailableModel>,
 41}
 42
 43pub struct OpenAiLanguageModelProvider {
 44    http_client: Arc<dyn HttpClient>,
 45    state: Entity<State>,
 46}
 47
 48pub struct State {
 49    api_key_state: ApiKeyState,
 50}
 51
 52impl State {
 53    fn is_authenticated(&self) -> bool {
 54        self.api_key_state.has_key()
 55    }
 56
 57    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
 58        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 59        self.api_key_state
 60            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
 61    }
 62
 63    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 64        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 65        self.api_key_state.load_if_needed(
 66            api_url,
 67            &API_KEY_ENV_VAR,
 68            |this| &mut this.api_key_state,
 69            cx,
 70        )
 71    }
 72}
 73
 74impl OpenAiLanguageModelProvider {
 75    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
 76        let state = cx.new(|cx| {
 77            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
 78                let api_url = Self::api_url(cx);
 79                this.api_key_state.handle_url_change(
 80                    api_url,
 81                    &API_KEY_ENV_VAR,
 82                    |this| &mut this.api_key_state,
 83                    cx,
 84                );
 85                cx.notify();
 86            })
 87            .detach();
 88            State {
 89                api_key_state: ApiKeyState::new(Self::api_url(cx)),
 90            }
 91        });
 92
 93        Self { http_client, state }
 94    }
 95
 96    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
 97        Arc::new(OpenAiLanguageModel {
 98            id: LanguageModelId::from(model.id().to_string()),
 99            model,
100            state: self.state.clone(),
101            http_client: self.http_client.clone(),
102            request_limiter: RateLimiter::new(4),
103        })
104    }
105
106    fn settings(cx: &App) -> &OpenAiSettings {
107        &crate::AllLanguageModelSettings::get_global(cx).openai
108    }
109
110    fn api_url(cx: &App) -> SharedString {
111        let api_url = &Self::settings(cx).api_url;
112        if api_url.is_empty() {
113            open_ai::OPEN_AI_API_URL.into()
114        } else {
115            SharedString::new(api_url.as_str())
116        }
117    }
118}
119
120impl LanguageModelProviderState for OpenAiLanguageModelProvider {
121    type ObservableEntity = State;
122
123    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
124        Some(self.state.clone())
125    }
126}
127
128impl LanguageModelProvider for OpenAiLanguageModelProvider {
129    fn id(&self) -> LanguageModelProviderId {
130        PROVIDER_ID
131    }
132
133    fn name(&self) -> LanguageModelProviderName {
134        PROVIDER_NAME
135    }
136
137    fn icon(&self) -> IconName {
138        IconName::AiOpenAi
139    }
140
141    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
142        Some(self.create_language_model(open_ai::Model::default()))
143    }
144
145    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
146        Some(self.create_language_model(open_ai::Model::default_fast()))
147    }
148
149    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
150        let mut models = BTreeMap::default();
151
152        // Add base models from open_ai::Model::iter()
153        for model in open_ai::Model::iter() {
154            if !matches!(model, open_ai::Model::Custom { .. }) {
155                models.insert(model.id().to_string(), model);
156            }
157        }
158
159        // Override with available models from settings
160        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
161            models.insert(
162                model.name.clone(),
163                open_ai::Model::Custom {
164                    name: model.name.clone(),
165                    display_name: model.display_name.clone(),
166                    max_tokens: model.max_tokens,
167                    max_output_tokens: model.max_output_tokens,
168                    max_completion_tokens: model.max_completion_tokens,
169                    reasoning_effort: model.reasoning_effort.clone(),
170                },
171            );
172        }
173
174        models
175            .into_values()
176            .map(|model| self.create_language_model(model))
177            .collect()
178    }
179
180    fn is_authenticated(&self, cx: &App) -> bool {
181        self.state.read(cx).is_authenticated()
182    }
183
184    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
185        self.state.update(cx, |state, cx| state.authenticate(cx))
186    }
187
188    fn configuration_view(
189        &self,
190        _target_agent: language_model::ConfigurationViewTargetAgent,
191        window: &mut Window,
192        cx: &mut App,
193    ) -> AnyView {
194        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
195            .into()
196    }
197
198    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
199        self.state
200            .update(cx, |state, cx| state.set_api_key(None, cx))
201    }
202}
203
204pub struct OpenAiLanguageModel {
205    id: LanguageModelId,
206    model: open_ai::Model,
207    state: Entity<State>,
208    http_client: Arc<dyn HttpClient>,
209    request_limiter: RateLimiter,
210}
211
212impl OpenAiLanguageModel {
213    fn stream_completion(
214        &self,
215        request: open_ai::Request,
216        cx: &AsyncApp,
217    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
218    {
219        let http_client = self.http_client.clone();
220
221        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
222            let api_url = OpenAiLanguageModelProvider::api_url(cx);
223            (state.api_key_state.key(&api_url), api_url)
224        }) else {
225            return future::ready(Err(anyhow!("App state dropped"))).boxed();
226        };
227
228        let future = self.request_limiter.stream(async move {
229            let provider = PROVIDER_NAME;
230            let Some(api_key) = api_key else {
231                return Err(LanguageModelCompletionError::NoApiKey { provider });
232            };
233            let request = stream_completion(
234                http_client.as_ref(),
235                provider.0.as_str(),
236                &api_url,
237                &api_key,
238                request,
239            );
240            let response = request.await?;
241            Ok(response)
242        });
243
244        async move { Ok(future.await?.boxed()) }.boxed()
245    }
246}
247
248impl LanguageModel for OpenAiLanguageModel {
249    fn id(&self) -> LanguageModelId {
250        self.id.clone()
251    }
252
253    fn name(&self) -> LanguageModelName {
254        LanguageModelName::from(self.model.display_name().to_string())
255    }
256
257    fn provider_id(&self) -> LanguageModelProviderId {
258        PROVIDER_ID
259    }
260
261    fn provider_name(&self) -> LanguageModelProviderName {
262        PROVIDER_NAME
263    }
264
265    fn supports_tools(&self) -> bool {
266        true
267    }
268
269    fn supports_images(&self) -> bool {
270        use open_ai::Model;
271        match &self.model {
272            Model::FourOmni
273            | Model::FourOmniMini
274            | Model::FourPointOne
275            | Model::FourPointOneMini
276            | Model::FourPointOneNano
277            | Model::Five
278            | Model::FiveMini
279            | Model::FiveNano
280            | Model::FivePointOne
281            | Model::O1
282            | Model::O3
283            | Model::O4Mini => true,
284            Model::ThreePointFiveTurbo
285            | Model::Four
286            | Model::FourTurbo
287            | Model::O3Mini
288            | Model::Custom { .. } => false,
289        }
290    }
291
292    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
293        match choice {
294            LanguageModelToolChoice::Auto => true,
295            LanguageModelToolChoice::Any => true,
296            LanguageModelToolChoice::None => true,
297        }
298    }
299
300    fn telemetry_id(&self) -> String {
301        format!("openai/{}", self.model.id())
302    }
303
304    fn max_token_count(&self) -> u64 {
305        self.model.max_token_count()
306    }
307
308    fn max_output_tokens(&self) -> Option<u64> {
309        self.model.max_output_tokens()
310    }
311
312    fn count_tokens(
313        &self,
314        request: LanguageModelRequest,
315        cx: &App,
316    ) -> BoxFuture<'static, Result<u64>> {
317        count_open_ai_tokens(request, self.model.clone(), cx)
318    }
319
320    fn stream_completion(
321        &self,
322        request: LanguageModelRequest,
323        cx: &AsyncApp,
324    ) -> BoxFuture<
325        'static,
326        Result<
327            futures::stream::BoxStream<
328                'static,
329                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
330            >,
331            LanguageModelCompletionError,
332        >,
333    > {
334        let request = into_open_ai(
335            request,
336            self.model.id(),
337            self.model.supports_parallel_tool_calls(),
338            self.model.supports_prompt_cache_key(),
339            self.max_output_tokens(),
340            self.model.reasoning_effort(),
341        );
342        let completions = self.stream_completion(request, cx);
343        async move {
344            let mapper = OpenAiEventMapper::new();
345            Ok(mapper.map_stream(completions.await?).boxed())
346        }
347        .boxed()
348    }
349}
350
351pub fn into_open_ai(
352    request: LanguageModelRequest,
353    model_id: &str,
354    supports_parallel_tool_calls: bool,
355    supports_prompt_cache_key: bool,
356    max_output_tokens: Option<u64>,
357    reasoning_effort: Option<ReasoningEffort>,
358) -> open_ai::Request {
359    let stream = !model_id.starts_with("o1-");
360
361    let mut messages = Vec::new();
362    for message in request.messages {
363        for content in message.content {
364            match content {
365                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
366                    if !text.trim().is_empty() {
367                        add_message_content_part(
368                            open_ai::MessagePart::Text { text },
369                            message.role,
370                            &mut messages,
371                        );
372                    }
373                }
374                MessageContent::RedactedThinking(_) => {}
375                MessageContent::Image(image) => {
376                    add_message_content_part(
377                        open_ai::MessagePart::Image {
378                            image_url: ImageUrl {
379                                url: image.to_base64_url(),
380                                detail: None,
381                            },
382                        },
383                        message.role,
384                        &mut messages,
385                    );
386                }
387                MessageContent::ToolUse(tool_use) => {
388                    let tool_call = open_ai::ToolCall {
389                        id: tool_use.id.to_string(),
390                        content: open_ai::ToolCallContent::Function {
391                            function: open_ai::FunctionContent {
392                                name: tool_use.name.to_string(),
393                                arguments: serde_json::to_string(&tool_use.input)
394                                    .unwrap_or_default(),
395                            },
396                        },
397                    };
398
399                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
400                        messages.last_mut()
401                    {
402                        tool_calls.push(tool_call);
403                    } else {
404                        messages.push(open_ai::RequestMessage::Assistant {
405                            content: None,
406                            tool_calls: vec![tool_call],
407                        });
408                    }
409                }
410                MessageContent::ToolResult(tool_result) => {
411                    let content = match &tool_result.content {
412                        LanguageModelToolResultContent::Text(text) => {
413                            vec![open_ai::MessagePart::Text {
414                                text: text.to_string(),
415                            }]
416                        }
417                        LanguageModelToolResultContent::Image(image) => {
418                            vec![open_ai::MessagePart::Image {
419                                image_url: ImageUrl {
420                                    url: image.to_base64_url(),
421                                    detail: None,
422                                },
423                            }]
424                        }
425                    };
426
427                    messages.push(open_ai::RequestMessage::Tool {
428                        content: content.into(),
429                        tool_call_id: tool_result.tool_use_id.to_string(),
430                    });
431                }
432            }
433        }
434    }
435
436    open_ai::Request {
437        model: model_id.into(),
438        messages,
439        stream,
440        stop: request.stop,
441        temperature: request.temperature.unwrap_or(1.0),
442        max_completion_tokens: max_output_tokens,
443        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
444            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
445            Some(false)
446        } else {
447            None
448        },
449        prompt_cache_key: if supports_prompt_cache_key {
450            request.thread_id
451        } else {
452            None
453        },
454        tools: request
455            .tools
456            .into_iter()
457            .map(|tool| open_ai::ToolDefinition::Function {
458                function: open_ai::FunctionDefinition {
459                    name: tool.name,
460                    description: Some(tool.description),
461                    parameters: Some(tool.input_schema),
462                },
463            })
464            .collect(),
465        tool_choice: request.tool_choice.map(|choice| match choice {
466            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
467            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
468            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
469        }),
470        reasoning_effort,
471    }
472}
473
474fn add_message_content_part(
475    new_part: open_ai::MessagePart,
476    role: Role,
477    messages: &mut Vec<open_ai::RequestMessage>,
478) {
479    match (role, messages.last_mut()) {
480        (Role::User, Some(open_ai::RequestMessage::User { content }))
481        | (
482            Role::Assistant,
483            Some(open_ai::RequestMessage::Assistant {
484                content: Some(content),
485                ..
486            }),
487        )
488        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
489            content.push_part(new_part);
490        }
491        _ => {
492            messages.push(match role {
493                Role::User => open_ai::RequestMessage::User {
494                    content: open_ai::MessageContent::from(vec![new_part]),
495                },
496                Role::Assistant => open_ai::RequestMessage::Assistant {
497                    content: Some(open_ai::MessageContent::from(vec![new_part])),
498                    tool_calls: Vec::new(),
499                },
500                Role::System => open_ai::RequestMessage::System {
501                    content: open_ai::MessageContent::from(vec![new_part]),
502                },
503            });
504        }
505    }
506}
507
508pub struct OpenAiEventMapper {
509    tool_calls_by_index: HashMap<usize, RawToolCall>,
510}
511
512impl OpenAiEventMapper {
513    pub fn new() -> Self {
514        Self {
515            tool_calls_by_index: HashMap::default(),
516        }
517    }
518
519    pub fn map_stream(
520        mut self,
521        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
522    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
523    {
524        events.flat_map(move |event| {
525            futures::stream::iter(match event {
526                Ok(event) => self.map_event(event),
527                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
528            })
529        })
530    }
531
532    pub fn map_event(
533        &mut self,
534        event: ResponseStreamEvent,
535    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
536        let mut events = Vec::new();
537        if let Some(usage) = event.usage {
538            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
539                input_tokens: usage.prompt_tokens,
540                output_tokens: usage.completion_tokens,
541                cache_creation_input_tokens: 0,
542                cache_read_input_tokens: 0,
543            })));
544        }
545
546        let Some(choice) = event.choices.first() else {
547            return events;
548        };
549
550        if let Some(delta) = choice.delta.as_ref() {
551            if let Some(content) = delta.content.clone() {
552                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
553            }
554
555            if let Some(tool_calls) = delta.tool_calls.as_ref() {
556                for tool_call in tool_calls {
557                    let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
558
559                    if let Some(tool_id) = tool_call.id.clone() {
560                        entry.id = tool_id;
561                    }
562
563                    if let Some(function) = tool_call.function.as_ref() {
564                        if let Some(name) = function.name.clone() {
565                            entry.name = name;
566                        }
567
568                        if let Some(arguments) = function.arguments.clone() {
569                            entry.arguments.push_str(&arguments);
570                        }
571                    }
572                }
573            }
574        }
575
576        match choice.finish_reason.as_deref() {
577            Some("stop") => {
578                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
579            }
580            Some("tool_calls") => {
581                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
582                    match serde_json::Value::from_str(&tool_call.arguments) {
583                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
584                            LanguageModelToolUse {
585                                id: tool_call.id.clone().into(),
586                                name: tool_call.name.as_str().into(),
587                                is_input_complete: true,
588                                input,
589                                raw_input: tool_call.arguments.clone(),
590                                thought_signature: None,
591                            },
592                        )),
593                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
594                            id: tool_call.id.into(),
595                            tool_name: tool_call.name.into(),
596                            raw_input: tool_call.arguments.clone().into(),
597                            json_parse_error: error.to_string(),
598                        }),
599                    }
600                }));
601
602                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
603            }
604            Some(stop_reason) => {
605                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
606                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
607            }
608            None => {}
609        }
610
611        events
612    }
613}
614
615#[derive(Default)]
616struct RawToolCall {
617    id: String,
618    name: String,
619    arguments: String,
620}
621
622pub(crate) fn collect_tiktoken_messages(
623    request: LanguageModelRequest,
624) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
625    request
626        .messages
627        .into_iter()
628        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
629            role: match message.role {
630                Role::User => "user".into(),
631                Role::Assistant => "assistant".into(),
632                Role::System => "system".into(),
633            },
634            content: Some(message.string_contents()),
635            name: None,
636            function_call: None,
637        })
638        .collect::<Vec<_>>()
639}
640
641pub fn count_open_ai_tokens(
642    request: LanguageModelRequest,
643    model: Model,
644    cx: &App,
645) -> BoxFuture<'static, Result<u64>> {
646    cx.background_spawn(async move {
647        let messages = collect_tiktoken_messages(request);
648        match model {
649            Model::Custom { max_tokens, .. } => {
650                let model = if max_tokens >= 100_000 {
651                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
652                    "gpt-4o"
653                } else {
654                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
655                    // supported with this tiktoken method
656                    "gpt-4"
657                };
658                tiktoken_rs::num_tokens_from_messages(model, &messages)
659            }
660            // Currently supported by tiktoken_rs
661            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
662            // arm with an override. We enumerate all supported models here so that we can check if new
663            // models are supported yet or not.
664            Model::ThreePointFiveTurbo
665            | Model::Four
666            | Model::FourTurbo
667            | Model::FourOmni
668            | Model::FourOmniMini
669            | Model::FourPointOne
670            | Model::FourPointOneMini
671            | Model::FourPointOneNano
672            | Model::O1
673            | Model::O3
674            | Model::O3Mini
675            | Model::O4Mini
676            | Model::Five
677            | Model::FiveMini
678            | Model::FiveNano => tiktoken_rs::num_tokens_from_messages(model.id(), &messages), // GPT-5.1 doesn't have tiktoken support yet; fall back on gpt-4o tokenizer
679            Model::FivePointOne => tiktoken_rs::num_tokens_from_messages("gpt-5", &messages),
680        }
681        .map(|tokens| tokens as u64)
682    })
683    .boxed()
684}
685
686struct ConfigurationView {
687    api_key_editor: Entity<InputField>,
688    state: Entity<State>,
689    load_credentials_task: Option<Task<()>>,
690}
691
692impl ConfigurationView {
693    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
694        let api_key_editor = cx.new(|cx| {
695            InputField::new(
696                window,
697                cx,
698                "sk-000000000000000000000000000000000000000000000000",
699            )
700        });
701
702        cx.observe(&state, |_, _, cx| {
703            cx.notify();
704        })
705        .detach();
706
707        let load_credentials_task = Some(cx.spawn_in(window, {
708            let state = state.clone();
709            async move |this, cx| {
710                if let Some(task) = state
711                    .update(cx, |state, cx| state.authenticate(cx))
712                    .log_err()
713                {
714                    // We don't log an error, because "not signed in" is also an error.
715                    let _ = task.await;
716                }
717                this.update(cx, |this, cx| {
718                    this.load_credentials_task = None;
719                    cx.notify();
720                })
721                .log_err();
722            }
723        }));
724
725        Self {
726            api_key_editor,
727            state,
728            load_credentials_task,
729        }
730    }
731
732    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
733        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
734        if api_key.is_empty() {
735            return;
736        }
737
738        // url changes can cause the editor to be displayed again
739        self.api_key_editor
740            .update(cx, |editor, cx| editor.set_text("", window, cx));
741
742        let state = self.state.clone();
743        cx.spawn_in(window, async move |_, cx| {
744            state
745                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
746                .await
747        })
748        .detach_and_log_err(cx);
749    }
750
751    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
752        self.api_key_editor
753            .update(cx, |input, cx| input.set_text("", window, cx));
754
755        let state = self.state.clone();
756        cx.spawn_in(window, async move |_, cx| {
757            state
758                .update(cx, |state, cx| state.set_api_key(None, cx))?
759                .await
760        })
761        .detach_and_log_err(cx);
762    }
763
764    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
765        !self.state.read(cx).is_authenticated()
766    }
767}
768
769impl Render for ConfigurationView {
770    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
771        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
772        let configured_card_label = if env_var_set {
773            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
774        } else {
775            let api_url = OpenAiLanguageModelProvider::api_url(cx);
776            if api_url == OPEN_AI_API_URL {
777                "API key configured".to_string()
778            } else {
779                format!("API key configured for {}", api_url)
780            }
781        };
782
783        let api_key_section = if self.should_render_editor(cx) {
784            v_flex()
785                .on_action(cx.listener(Self::save_api_key))
786                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
787                .child(
788                    List::new()
789                        .child(InstructionListItem::new(
790                            "Create one by visiting",
791                            Some("OpenAI's console"),
792                            Some("https://platform.openai.com/api-keys"),
793                        ))
794                        .child(InstructionListItem::text_only(
795                            "Ensure your OpenAI account has credits",
796                        ))
797                        .child(InstructionListItem::text_only(
798                            "Paste your API key below and hit enter to start using the assistant",
799                        )),
800                )
801                .child(self.api_key_editor.clone())
802                .child(
803                    Label::new(format!(
804                        "You can also assign the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
805                    ))
806                    .size(LabelSize::Small)
807                    .color(Color::Muted),
808                )
809                .child(
810                    Label::new(
811                        "Note that having a subscription for another service like GitHub Copilot won't work.",
812                    )
813                    .size(LabelSize::Small).color(Color::Muted),
814                )
815                .into_any_element()
816        } else {
817            ConfiguredApiCard::new(configured_card_label)
818                .disabled(env_var_set)
819                .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx)))
820                .when(env_var_set, |this| {
821                    this.tooltip_label(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable."))
822                })
823                .into_any_element()
824        };
825
826        let compatible_api_section = h_flex()
827            .mt_1p5()
828            .gap_0p5()
829            .flex_wrap()
830            .when(self.should_render_editor(cx), |this| {
831                this.pt_1p5()
832                    .border_t_1()
833                    .border_color(cx.theme().colors().border_variant)
834            })
835            .child(
836                h_flex()
837                    .gap_2()
838                    .child(
839                        Icon::new(IconName::Info)
840                            .size(IconSize::XSmall)
841                            .color(Color::Muted),
842                    )
843                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
844            )
845            .child(
846                Button::new("docs", "Learn More")
847                    .icon(IconName::ArrowUpRight)
848                    .icon_size(IconSize::Small)
849                    .icon_color(Color::Muted)
850                    .on_click(move |_, _window, cx| {
851                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
852                    }),
853            );
854
855        if self.load_credentials_task.is_some() {
856            div().child(Label::new("Loading credentials…")).into_any()
857        } else {
858            v_flex()
859                .size_full()
860                .child(api_key_section)
861                .child(compatible_api_section)
862                .into_any()
863        }
864    }
865}
866
867#[cfg(test)]
868mod tests {
869    use gpui::TestAppContext;
870    use language_model::LanguageModelRequestMessage;
871
872    use super::*;
873
874    #[gpui::test]
875    fn tiktoken_rs_support(cx: &TestAppContext) {
876        let request = LanguageModelRequest {
877            thread_id: None,
878            prompt_id: None,
879            intent: None,
880            mode: None,
881            messages: vec![LanguageModelRequestMessage {
882                role: Role::User,
883                content: vec![MessageContent::Text("message".into())],
884                cache: false,
885                reasoning_details: None,
886            }],
887            tools: vec![],
888            tool_choice: None,
889            stop: vec![],
890            temperature: None,
891            thinking_allowed: true,
892        };
893
894        // Validate that all models are supported by tiktoken-rs
895        for model in Model::iter() {
896            let count = cx
897                .executor()
898                .block(count_open_ai_tokens(
899                    request.clone(),
900                    model,
901                    &cx.app.borrow(),
902                ))
903                .unwrap();
904            assert!(count > 0);
905        }
906    }
907}