embedding.rs

  1use anyhow::{anyhow, Result};
  2use async_trait::async_trait;
  3use futures::AsyncReadExt;
  4use gpui::executor::Background;
  5use gpui::serde_json;
  6use isahc::http::StatusCode;
  7use isahc::prelude::Configurable;
  8use isahc::{AsyncBody, Response};
  9use lazy_static::lazy_static;
 10use ordered_float::OrderedFloat;
 11use parking_lot::Mutex;
 12use parse_duration::parse;
 13use postage::watch;
 14use rusqlite::types::{FromSql, FromSqlResult, ToSqlOutput, ValueRef};
 15use rusqlite::ToSql;
 16use serde::{Deserialize, Serialize};
 17use std::env;
 18use std::ops::Add;
 19use std::sync::Arc;
 20use std::time::{Duration, Instant};
 21use tiktoken_rs::{cl100k_base, CoreBPE};
 22use util::http::{HttpClient, Request};
 23
 24lazy_static! {
 25    static ref OPENAI_API_KEY: Option<String> = env::var("OPENAI_API_KEY").ok();
 26    static ref OPENAI_BPE_TOKENIZER: CoreBPE = cl100k_base().unwrap();
 27}
 28
 29#[derive(Debug, PartialEq, Clone)]
 30pub struct Embedding(pub Vec<f32>);
 31
 32// This is needed for semantic index functionality
 33// Unfortunately it has to live wherever the "Embedding" struct is created.
 34// Keeping this in here though, introduces a 'rusqlite' dependency into AI
 35// which is less than ideal
 36impl FromSql for Embedding {
 37    fn column_result(value: ValueRef) -> FromSqlResult<Self> {
 38        let bytes = value.as_blob()?;
 39        let embedding: Result<Vec<f32>, Box<bincode::ErrorKind>> = bincode::deserialize(bytes);
 40        if embedding.is_err() {
 41            return Err(rusqlite::types::FromSqlError::Other(embedding.unwrap_err()));
 42        }
 43        Ok(Embedding(embedding.unwrap()))
 44    }
 45}
 46
 47impl ToSql for Embedding {
 48    fn to_sql(&self) -> rusqlite::Result<ToSqlOutput> {
 49        let bytes = bincode::serialize(&self.0)
 50            .map_err(|err| rusqlite::Error::ToSqlConversionFailure(Box::new(err)))?;
 51        Ok(ToSqlOutput::Owned(rusqlite::types::Value::Blob(bytes)))
 52    }
 53}
 54impl From<Vec<f32>> for Embedding {
 55    fn from(value: Vec<f32>) -> Self {
 56        Embedding(value)
 57    }
 58}
 59
 60impl Embedding {
 61    pub fn similarity(&self, other: &Self) -> OrderedFloat<f32> {
 62        let len = self.0.len();
 63        assert_eq!(len, other.0.len());
 64
 65        let mut result = 0.0;
 66        unsafe {
 67            matrixmultiply::sgemm(
 68                1,
 69                len,
 70                1,
 71                1.0,
 72                self.0.as_ptr(),
 73                len as isize,
 74                1,
 75                other.0.as_ptr(),
 76                1,
 77                len as isize,
 78                0.0,
 79                &mut result as *mut f32,
 80                1,
 81                1,
 82            );
 83        }
 84        OrderedFloat(result)
 85    }
 86}
 87
 88#[derive(Clone)]
 89pub struct OpenAIEmbeddings {
 90    pub client: Arc<dyn HttpClient>,
 91    pub executor: Arc<Background>,
 92    rate_limit_count_rx: watch::Receiver<Option<Instant>>,
 93    rate_limit_count_tx: Arc<Mutex<watch::Sender<Option<Instant>>>>,
 94}
 95
 96#[derive(Serialize)]
 97struct OpenAIEmbeddingRequest<'a> {
 98    model: &'static str,
 99    input: Vec<&'a str>,
100}
101
102#[derive(Deserialize)]
103struct OpenAIEmbeddingResponse {
104    data: Vec<OpenAIEmbedding>,
105    usage: OpenAIEmbeddingUsage,
106}
107
108#[derive(Debug, Deserialize)]
109struct OpenAIEmbedding {
110    embedding: Vec<f32>,
111    index: usize,
112    object: String,
113}
114
115#[derive(Deserialize)]
116struct OpenAIEmbeddingUsage {
117    prompt_tokens: usize,
118    total_tokens: usize,
119}
120
121#[async_trait]
122pub trait EmbeddingProvider: Sync + Send {
123    fn is_authenticated(&self) -> bool;
124    async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Embedding>>;
125    fn max_tokens_per_batch(&self) -> usize;
126    fn truncate(&self, span: &str) -> (String, usize);
127    fn rate_limit_expiration(&self) -> Option<Instant>;
128}
129
130pub struct DummyEmbeddings {}
131
132#[async_trait]
133impl EmbeddingProvider for DummyEmbeddings {
134    fn is_authenticated(&self) -> bool {
135        true
136    }
137    fn rate_limit_expiration(&self) -> Option<Instant> {
138        None
139    }
140    async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Embedding>> {
141        // 1024 is the OpenAI Embeddings size for ada models.
142        // the model we will likely be starting with.
143        let dummy_vec = Embedding::from(vec![0.32 as f32; 1536]);
144        return Ok(vec![dummy_vec; spans.len()]);
145    }
146
147    fn max_tokens_per_batch(&self) -> usize {
148        OPENAI_INPUT_LIMIT
149    }
150
151    fn truncate(&self, span: &str) -> (String, usize) {
152        let mut tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span);
153        let token_count = tokens.len();
154        let output = if token_count > OPENAI_INPUT_LIMIT {
155            tokens.truncate(OPENAI_INPUT_LIMIT);
156            let new_input = OPENAI_BPE_TOKENIZER.decode(tokens.clone());
157            new_input.ok().unwrap_or_else(|| span.to_string())
158        } else {
159            span.to_string()
160        };
161
162        (output, tokens.len())
163    }
164}
165
166const OPENAI_INPUT_LIMIT: usize = 8190;
167
168impl OpenAIEmbeddings {
169    pub fn new(client: Arc<dyn HttpClient>, executor: Arc<Background>) -> Self {
170        let (rate_limit_count_tx, rate_limit_count_rx) = watch::channel_with(None);
171        let rate_limit_count_tx = Arc::new(Mutex::new(rate_limit_count_tx));
172
173        OpenAIEmbeddings {
174            client,
175            executor,
176            rate_limit_count_rx,
177            rate_limit_count_tx,
178        }
179    }
180
181    fn resolve_rate_limit(&self) {
182        let reset_time = *self.rate_limit_count_tx.lock().borrow();
183
184        if let Some(reset_time) = reset_time {
185            if Instant::now() >= reset_time {
186                *self.rate_limit_count_tx.lock().borrow_mut() = None
187            }
188        }
189
190        log::trace!(
191            "resolving reset time: {:?}",
192            *self.rate_limit_count_tx.lock().borrow()
193        );
194    }
195
196    fn update_reset_time(&self, reset_time: Instant) {
197        let original_time = *self.rate_limit_count_tx.lock().borrow();
198
199        let updated_time = if let Some(original_time) = original_time {
200            if reset_time < original_time {
201                Some(reset_time)
202            } else {
203                Some(original_time)
204            }
205        } else {
206            Some(reset_time)
207        };
208
209        log::trace!("updating rate limit time: {:?}", updated_time);
210
211        *self.rate_limit_count_tx.lock().borrow_mut() = updated_time;
212    }
213    async fn send_request(
214        &self,
215        api_key: &str,
216        spans: Vec<&str>,
217        request_timeout: u64,
218    ) -> Result<Response<AsyncBody>> {
219        let request = Request::post("https://api.openai.com/v1/embeddings")
220            .redirect_policy(isahc::config::RedirectPolicy::Follow)
221            .timeout(Duration::from_secs(request_timeout))
222            .header("Content-Type", "application/json")
223            .header("Authorization", format!("Bearer {}", api_key))
224            .body(
225                serde_json::to_string(&OpenAIEmbeddingRequest {
226                    input: spans.clone(),
227                    model: "text-embedding-ada-002",
228                })
229                .unwrap()
230                .into(),
231            )?;
232
233        Ok(self.client.send(request).await?)
234    }
235}
236
237#[async_trait]
238impl EmbeddingProvider for OpenAIEmbeddings {
239    fn is_authenticated(&self) -> bool {
240        OPENAI_API_KEY.as_ref().is_some()
241    }
242    fn max_tokens_per_batch(&self) -> usize {
243        50000
244    }
245
246    fn rate_limit_expiration(&self) -> Option<Instant> {
247        *self.rate_limit_count_rx.borrow()
248    }
249    fn truncate(&self, span: &str) -> (String, usize) {
250        let mut tokens = OPENAI_BPE_TOKENIZER.encode_with_special_tokens(span);
251        let output = if tokens.len() > OPENAI_INPUT_LIMIT {
252            tokens.truncate(OPENAI_INPUT_LIMIT);
253            OPENAI_BPE_TOKENIZER
254                .decode(tokens.clone())
255                .ok()
256                .unwrap_or_else(|| span.to_string())
257        } else {
258            span.to_string()
259        };
260
261        (output, tokens.len())
262    }
263
264    async fn embed_batch(&self, spans: Vec<String>) -> Result<Vec<Embedding>> {
265        const BACKOFF_SECONDS: [usize; 4] = [3, 5, 15, 45];
266        const MAX_RETRIES: usize = 4;
267
268        let api_key = OPENAI_API_KEY
269            .as_ref()
270            .ok_or_else(|| anyhow!("no api key"))?;
271
272        let mut request_number = 0;
273        let mut rate_limiting = false;
274        let mut request_timeout: u64 = 15;
275        let mut response: Response<AsyncBody>;
276        while request_number < MAX_RETRIES {
277            response = self
278                .send_request(
279                    api_key,
280                    spans.iter().map(|x| &**x).collect(),
281                    request_timeout,
282                )
283                .await?;
284
285            request_number += 1;
286
287            match response.status() {
288                StatusCode::REQUEST_TIMEOUT => {
289                    request_timeout += 5;
290                }
291                StatusCode::OK => {
292                    let mut body = String::new();
293                    response.body_mut().read_to_string(&mut body).await?;
294                    let response: OpenAIEmbeddingResponse = serde_json::from_str(&body)?;
295
296                    log::trace!(
297                        "openai embedding completed. tokens: {:?}",
298                        response.usage.total_tokens
299                    );
300
301                    // If we complete a request successfully that was previously rate_limited
302                    // resolve the rate limit
303                    if rate_limiting {
304                        self.resolve_rate_limit()
305                    }
306
307                    return Ok(response
308                        .data
309                        .into_iter()
310                        .map(|embedding| Embedding::from(embedding.embedding))
311                        .collect());
312                }
313                StatusCode::TOO_MANY_REQUESTS => {
314                    rate_limiting = true;
315                    let mut body = String::new();
316                    response.body_mut().read_to_string(&mut body).await?;
317
318                    let delay_duration = {
319                        let delay = Duration::from_secs(BACKOFF_SECONDS[request_number - 1] as u64);
320                        if let Some(time_to_reset) =
321                            response.headers().get("x-ratelimit-reset-tokens")
322                        {
323                            if let Ok(time_str) = time_to_reset.to_str() {
324                                parse(time_str).unwrap_or(delay)
325                            } else {
326                                delay
327                            }
328                        } else {
329                            delay
330                        }
331                    };
332
333                    // If we've previously rate limited, increment the duration but not the count
334                    let reset_time = Instant::now().add(delay_duration);
335                    self.update_reset_time(reset_time);
336
337                    log::trace!(
338                        "openai rate limiting: waiting {:?} until lifted",
339                        &delay_duration
340                    );
341
342                    self.executor.timer(delay_duration).await;
343                }
344                _ => {
345                    let mut body = String::new();
346                    response.body_mut().read_to_string(&mut body).await?;
347                    return Err(anyhow!(
348                        "open ai bad request: {:?} {:?}",
349                        &response.status(),
350                        body
351                    ));
352                }
353            }
354        }
355        Err(anyhow!("openai max retries"))
356    }
357}
358
359#[cfg(test)]
360mod tests {
361    use super::*;
362    use rand::prelude::*;
363
364    #[gpui::test]
365    fn test_similarity(mut rng: StdRng) {
366        assert_eq!(
367            Embedding::from(vec![1., 0., 0., 0., 0.])
368                .similarity(&Embedding::from(vec![0., 1., 0., 0., 0.])),
369            0.
370        );
371        assert_eq!(
372            Embedding::from(vec![2., 0., 0., 0., 0.])
373                .similarity(&Embedding::from(vec![3., 1., 0., 0., 0.])),
374            6.
375        );
376
377        for _ in 0..100 {
378            let size = 1536;
379            let mut a = vec![0.; size];
380            let mut b = vec![0.; size];
381            for (a, b) in a.iter_mut().zip(b.iter_mut()) {
382                *a = rng.gen();
383                *b = rng.gen();
384            }
385            let a = Embedding::from(a);
386            let b = Embedding::from(b);
387
388            assert_eq!(
389                round_to_decimals(a.similarity(&b), 1),
390                round_to_decimals(reference_dot(&a.0, &b.0), 1)
391            );
392        }
393
394        fn round_to_decimals(n: OrderedFloat<f32>, decimal_places: i32) -> f32 {
395            let factor = (10.0 as f32).powi(decimal_places);
396            (n * factor).round() / factor
397        }
398
399        fn reference_dot(a: &[f32], b: &[f32]) -> OrderedFloat<f32> {
400            OrderedFloat(a.iter().zip(b.iter()).map(|(a, b)| a * b).sum())
401        }
402    }
403}