cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME,
   9    ListModelsResponse, Plan, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  10    ZED_VERSION_HEADER_NAME,
  11};
  12use feature_flags::{CloudThinkingToggleFeatureFlag, FeatureFlagAppExt as _};
  13use futures::{
  14    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  15};
  16use google_ai::GoogleModelMode;
  17use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  18use http_client::http::{HeaderMap, HeaderValue};
  19use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  20use language_model::{
  21    AuthenticateError, IconOrSvg, LanguageModel, LanguageModelCacheConfiguration,
  22    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  23    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  24    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  25    LanguageModelToolSchemaFormat, LlmApiToken, PaymentRequiredError, RateLimiter,
  26    RefreshLlmTokenListener,
  27};
  28use release_channel::AppVersion;
  29use schemars::JsonSchema;
  30use semver::Version;
  31use serde::{Deserialize, Serialize, de::DeserializeOwned};
  32use settings::SettingsStore;
  33pub use settings::ZedDotDevAvailableModel as AvailableModel;
  34pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  35use smol::io::{AsyncReadExt, BufReader};
  36use std::pin::Pin;
  37use std::sync::Arc;
  38use std::time::Duration;
  39use thiserror::Error;
  40use ui::{TintColor, prelude::*};
  41use util::{ResultExt as _, maybe};
  42
  43use crate::provider::anthropic::{
  44    AnthropicEventMapper, count_anthropic_tokens_with_tiktoken, into_anthropic,
  45};
  46use crate::provider::google::{GoogleEventMapper, into_google};
  47use crate::provider::open_ai::{
  48    OpenAiEventMapper, OpenAiResponseEventMapper, count_open_ai_tokens, into_open_ai,
  49    into_open_ai_response,
  50};
  51use crate::provider::x_ai::count_xai_tokens;
  52
  53const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  54const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  55
  56#[derive(Default, Clone, Debug, PartialEq)]
  57pub struct ZedDotDevSettings {
  58    pub available_models: Vec<AvailableModel>,
  59}
  60#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  61#[serde(tag = "type", rename_all = "lowercase")]
  62pub enum ModelMode {
  63    #[default]
  64    Default,
  65    Thinking {
  66        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  67        budget_tokens: Option<u32>,
  68    },
  69}
  70
  71impl From<ModelMode> for AnthropicModelMode {
  72    fn from(value: ModelMode) -> Self {
  73        match value {
  74            ModelMode::Default => AnthropicModelMode::Default,
  75            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  76        }
  77    }
  78}
  79
  80pub struct CloudLanguageModelProvider {
  81    client: Arc<Client>,
  82    state: Entity<State>,
  83    _maintain_client_status: Task<()>,
  84}
  85
  86pub struct State {
  87    client: Arc<Client>,
  88    llm_api_token: LlmApiToken,
  89    user_store: Entity<UserStore>,
  90    status: client::Status,
  91    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  93    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  94    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  95    _fetch_models_task: Task<()>,
  96    _settings_subscription: Subscription,
  97    _llm_token_subscription: Subscription,
  98}
  99
 100impl State {
 101    fn new(
 102        client: Arc<Client>,
 103        user_store: Entity<UserStore>,
 104        status: client::Status,
 105        cx: &mut Context<Self>,
 106    ) -> Self {
 107        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 108        let mut current_user = user_store.read(cx).watch_current_user();
 109        Self {
 110            client: client.clone(),
 111            llm_api_token: LlmApiToken::default(),
 112            user_store,
 113            status,
 114            models: Vec::new(),
 115            default_model: None,
 116            default_fast_model: None,
 117            recommended_models: Vec::new(),
 118            _fetch_models_task: cx.spawn(async move |this, cx| {
 119                maybe!(async move {
 120                    let (client, llm_api_token) = this
 121                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 122
 123                    while current_user.borrow().is_none() {
 124                        current_user.next().await;
 125                    }
 126
 127                    let response =
 128                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 129                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 130                    anyhow::Ok(())
 131                })
 132                .await
 133                .context("failed to fetch Zed models")
 134                .log_err();
 135            }),
 136            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 137                cx.notify();
 138            }),
 139            _llm_token_subscription: cx.subscribe(
 140                &refresh_llm_token_listener,
 141                move |this, _listener, _event, cx| {
 142                    let client = this.client.clone();
 143                    let llm_api_token = this.llm_api_token.clone();
 144                    cx.spawn(async move |this, cx| {
 145                        llm_api_token.refresh(&client).await?;
 146                        let response = Self::fetch_models(client, llm_api_token).await?;
 147                        this.update(cx, |this, cx| {
 148                            this.update_models(response, cx);
 149                        })
 150                    })
 151                    .detach_and_log_err(cx);
 152                },
 153            ),
 154        }
 155    }
 156
 157    fn is_signed_out(&self, cx: &App) -> bool {
 158        self.user_store.read(cx).current_user().is_none()
 159    }
 160
 161    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 162        let client = self.client.clone();
 163        cx.spawn(async move |state, cx| {
 164            client.sign_in_with_optional_connect(true, cx).await?;
 165            state.update(cx, |_, cx| cx.notify())
 166        })
 167    }
 168
 169    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 170        let is_thinking_toggle_enabled = cx.has_flag::<CloudThinkingToggleFeatureFlag>();
 171
 172        let mut models = Vec::new();
 173
 174        for model in response.models {
 175            models.push(Arc::new(model.clone()));
 176
 177            if !is_thinking_toggle_enabled {
 178                // Right now we represent thinking variants of models as separate models on the client,
 179                // so we need to insert variants for any model that supports thinking.
 180                if model.supports_thinking {
 181                    models.push(Arc::new(cloud_llm_client::LanguageModel {
 182                        id: cloud_llm_client::LanguageModelId(
 183                            format!("{}-thinking", model.id).into(),
 184                        ),
 185                        display_name: format!("{} Thinking", model.display_name),
 186                        ..model
 187                    }));
 188                }
 189            }
 190        }
 191
 192        self.default_model = models
 193            .iter()
 194            .find(|model| {
 195                response
 196                    .default_model
 197                    .as_ref()
 198                    .is_some_and(|default_model_id| &model.id == default_model_id)
 199            })
 200            .cloned();
 201        self.default_fast_model = models
 202            .iter()
 203            .find(|model| {
 204                response
 205                    .default_fast_model
 206                    .as_ref()
 207                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 208            })
 209            .cloned();
 210        self.recommended_models = response
 211            .recommended_models
 212            .iter()
 213            .filter_map(|id| models.iter().find(|model| &model.id == id))
 214            .cloned()
 215            .collect();
 216        self.models = models;
 217        cx.notify();
 218    }
 219
 220    async fn fetch_models(
 221        client: Arc<Client>,
 222        llm_api_token: LlmApiToken,
 223    ) -> Result<ListModelsResponse> {
 224        let http_client = &client.http_client();
 225        let token = llm_api_token.acquire(&client).await?;
 226
 227        let request = http_client::Request::builder()
 228            .method(Method::GET)
 229            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 230            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 231            .header("Authorization", format!("Bearer {token}"))
 232            .body(AsyncBody::empty())?;
 233        let mut response = http_client
 234            .send(request)
 235            .await
 236            .context("failed to send list models request")?;
 237
 238        if response.status().is_success() {
 239            let mut body = String::new();
 240            response.body_mut().read_to_string(&mut body).await?;
 241            Ok(serde_json::from_str(&body)?)
 242        } else {
 243            let mut body = String::new();
 244            response.body_mut().read_to_string(&mut body).await?;
 245            anyhow::bail!(
 246                "error listing models.\nStatus: {:?}\nBody: {body}",
 247                response.status(),
 248            );
 249        }
 250    }
 251}
 252
 253impl CloudLanguageModelProvider {
 254    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 255        let mut status_rx = client.status();
 256        let status = *status_rx.borrow();
 257
 258        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 259
 260        let state_ref = state.downgrade();
 261        let maintain_client_status = cx.spawn(async move |cx| {
 262            while let Some(status) = status_rx.next().await {
 263                if let Some(this) = state_ref.upgrade() {
 264                    _ = this.update(cx, |this, cx| {
 265                        if this.status != status {
 266                            this.status = status;
 267                            cx.notify();
 268                        }
 269                    });
 270                } else {
 271                    break;
 272                }
 273            }
 274        });
 275
 276        Self {
 277            client,
 278            state,
 279            _maintain_client_status: maintain_client_status,
 280        }
 281    }
 282
 283    fn create_language_model(
 284        &self,
 285        model: Arc<cloud_llm_client::LanguageModel>,
 286        llm_api_token: LlmApiToken,
 287    ) -> Arc<dyn LanguageModel> {
 288        Arc::new(CloudLanguageModel {
 289            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 290            model,
 291            llm_api_token,
 292            client: self.client.clone(),
 293            request_limiter: RateLimiter::new(4),
 294        })
 295    }
 296}
 297
 298impl LanguageModelProviderState for CloudLanguageModelProvider {
 299    type ObservableEntity = State;
 300
 301    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 302        Some(self.state.clone())
 303    }
 304}
 305
 306impl LanguageModelProvider for CloudLanguageModelProvider {
 307    fn id(&self) -> LanguageModelProviderId {
 308        PROVIDER_ID
 309    }
 310
 311    fn name(&self) -> LanguageModelProviderName {
 312        PROVIDER_NAME
 313    }
 314
 315    fn icon(&self) -> IconOrSvg {
 316        IconOrSvg::Icon(IconName::AiZed)
 317    }
 318
 319    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 320        let default_model = self.state.read(cx).default_model.clone()?;
 321        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 322        Some(self.create_language_model(default_model, llm_api_token))
 323    }
 324
 325    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 326        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 327        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 328        Some(self.create_language_model(default_fast_model, llm_api_token))
 329    }
 330
 331    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 332        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 333        self.state
 334            .read(cx)
 335            .recommended_models
 336            .iter()
 337            .cloned()
 338            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 339            .collect()
 340    }
 341
 342    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 343        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 344        self.state
 345            .read(cx)
 346            .models
 347            .iter()
 348            .cloned()
 349            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 350            .collect()
 351    }
 352
 353    fn is_authenticated(&self, cx: &App) -> bool {
 354        let state = self.state.read(cx);
 355        !state.is_signed_out(cx)
 356    }
 357
 358    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 359        Task::ready(Ok(()))
 360    }
 361
 362    fn configuration_view(
 363        &self,
 364        _target_agent: language_model::ConfigurationViewTargetAgent,
 365        _: &mut Window,
 366        cx: &mut App,
 367    ) -> AnyView {
 368        cx.new(|_| ConfigurationView::new(self.state.clone()))
 369            .into()
 370    }
 371
 372    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 373        Task::ready(Ok(()))
 374    }
 375}
 376
 377pub struct CloudLanguageModel {
 378    id: LanguageModelId,
 379    model: Arc<cloud_llm_client::LanguageModel>,
 380    llm_api_token: LlmApiToken,
 381    client: Arc<Client>,
 382    request_limiter: RateLimiter,
 383}
 384
 385struct PerformLlmCompletionResponse {
 386    response: Response<AsyncBody>,
 387    includes_status_messages: bool,
 388}
 389
 390impl CloudLanguageModel {
 391    async fn perform_llm_completion(
 392        client: Arc<Client>,
 393        llm_api_token: LlmApiToken,
 394        app_version: Option<Version>,
 395        body: CompletionBody,
 396    ) -> Result<PerformLlmCompletionResponse> {
 397        let http_client = &client.http_client();
 398
 399        let mut token = llm_api_token.acquire(&client).await?;
 400        let mut refreshed_token = false;
 401
 402        loop {
 403            let request = http_client::Request::builder()
 404                .method(Method::POST)
 405                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 406                .when_some(app_version.as_ref(), |builder, app_version| {
 407                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 408                })
 409                .header("Content-Type", "application/json")
 410                .header("Authorization", format!("Bearer {token}"))
 411                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 412                .body(serde_json::to_string(&body)?.into())?;
 413
 414            let mut response = http_client.send(request).await?;
 415            let status = response.status();
 416            if status.is_success() {
 417                let includes_status_messages = response
 418                    .headers()
 419                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 420                    .is_some();
 421
 422                return Ok(PerformLlmCompletionResponse {
 423                    response,
 424                    includes_status_messages,
 425                });
 426            }
 427
 428            if !refreshed_token
 429                && response
 430                    .headers()
 431                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 432                    .is_some()
 433            {
 434                token = llm_api_token.refresh(&client).await?;
 435                refreshed_token = true;
 436                continue;
 437            }
 438
 439            if status == StatusCode::PAYMENT_REQUIRED {
 440                return Err(anyhow!(PaymentRequiredError));
 441            }
 442
 443            let mut body = String::new();
 444            let headers = response.headers().clone();
 445            response.body_mut().read_to_string(&mut body).await?;
 446            return Err(anyhow!(ApiError {
 447                status,
 448                body,
 449                headers
 450            }));
 451        }
 452    }
 453}
 454
 455#[derive(Debug, Error)]
 456#[error("cloud language model request failed with status {status}: {body}")]
 457struct ApiError {
 458    status: StatusCode,
 459    body: String,
 460    headers: HeaderMap<HeaderValue>,
 461}
 462
 463/// Represents error responses from Zed's cloud API.
 464///
 465/// Example JSON for an upstream HTTP error:
 466/// ```json
 467/// {
 468///   "code": "upstream_http_error",
 469///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 470///   "upstream_status": 503
 471/// }
 472/// ```
 473#[derive(Debug, serde::Deserialize)]
 474struct CloudApiError {
 475    code: String,
 476    message: String,
 477    #[serde(default)]
 478    #[serde(deserialize_with = "deserialize_optional_status_code")]
 479    upstream_status: Option<StatusCode>,
 480    #[serde(default)]
 481    retry_after: Option<f64>,
 482}
 483
 484fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 485where
 486    D: serde::Deserializer<'de>,
 487{
 488    let opt: Option<u16> = Option::deserialize(deserializer)?;
 489    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 490}
 491
 492impl From<ApiError> for LanguageModelCompletionError {
 493    fn from(error: ApiError) -> Self {
 494        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 495            if cloud_error.code.starts_with("upstream_http_") {
 496                let status = if let Some(status) = cloud_error.upstream_status {
 497                    status
 498                } else if cloud_error.code.ends_with("_error") {
 499                    error.status
 500                } else {
 501                    // If there's a status code in the code string (e.g. "upstream_http_429")
 502                    // then use that; otherwise, see if the JSON contains a status code.
 503                    cloud_error
 504                        .code
 505                        .strip_prefix("upstream_http_")
 506                        .and_then(|code_str| code_str.parse::<u16>().ok())
 507                        .and_then(|code| StatusCode::from_u16(code).ok())
 508                        .unwrap_or(error.status)
 509                };
 510
 511                return LanguageModelCompletionError::UpstreamProviderError {
 512                    message: cloud_error.message,
 513                    status,
 514                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 515                };
 516            }
 517
 518            return LanguageModelCompletionError::from_http_status(
 519                PROVIDER_NAME,
 520                error.status,
 521                cloud_error.message,
 522                None,
 523            );
 524        }
 525
 526        let retry_after = None;
 527        LanguageModelCompletionError::from_http_status(
 528            PROVIDER_NAME,
 529            error.status,
 530            error.body,
 531            retry_after,
 532        )
 533    }
 534}
 535
 536impl LanguageModel for CloudLanguageModel {
 537    fn id(&self) -> LanguageModelId {
 538        self.id.clone()
 539    }
 540
 541    fn name(&self) -> LanguageModelName {
 542        LanguageModelName::from(self.model.display_name.clone())
 543    }
 544
 545    fn provider_id(&self) -> LanguageModelProviderId {
 546        PROVIDER_ID
 547    }
 548
 549    fn provider_name(&self) -> LanguageModelProviderName {
 550        PROVIDER_NAME
 551    }
 552
 553    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 554        use cloud_llm_client::LanguageModelProvider::*;
 555        match self.model.provider {
 556            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 557            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 558            Google => language_model::GOOGLE_PROVIDER_ID,
 559            XAi => language_model::X_AI_PROVIDER_ID,
 560        }
 561    }
 562
 563    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 564        use cloud_llm_client::LanguageModelProvider::*;
 565        match self.model.provider {
 566            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 567            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 568            Google => language_model::GOOGLE_PROVIDER_NAME,
 569            XAi => language_model::X_AI_PROVIDER_NAME,
 570        }
 571    }
 572
 573    fn supports_tools(&self) -> bool {
 574        self.model.supports_tools
 575    }
 576
 577    fn supports_images(&self) -> bool {
 578        self.model.supports_images
 579    }
 580
 581    fn supports_thinking(&self) -> bool {
 582        self.model.supports_thinking
 583    }
 584
 585    fn supports_streaming_tools(&self) -> bool {
 586        self.model.supports_streaming_tools
 587    }
 588
 589    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 590        match choice {
 591            LanguageModelToolChoice::Auto
 592            | LanguageModelToolChoice::Any
 593            | LanguageModelToolChoice::None => true,
 594        }
 595    }
 596
 597    fn supports_split_token_display(&self) -> bool {
 598        use cloud_llm_client::LanguageModelProvider::*;
 599        matches!(self.model.provider, OpenAi)
 600    }
 601
 602    fn telemetry_id(&self) -> String {
 603        format!("zed.dev/{}", self.model.id)
 604    }
 605
 606    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 607        match self.model.provider {
 608            cloud_llm_client::LanguageModelProvider::Anthropic
 609            | cloud_llm_client::LanguageModelProvider::OpenAi
 610            | cloud_llm_client::LanguageModelProvider::XAi => {
 611                LanguageModelToolSchemaFormat::JsonSchema
 612            }
 613            cloud_llm_client::LanguageModelProvider::Google => {
 614                LanguageModelToolSchemaFormat::JsonSchemaSubset
 615            }
 616        }
 617    }
 618
 619    fn max_token_count(&self) -> u64 {
 620        self.model.max_token_count as u64
 621    }
 622
 623    fn max_output_tokens(&self) -> Option<u64> {
 624        Some(self.model.max_output_tokens as u64)
 625    }
 626
 627    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 628        match &self.model.provider {
 629            cloud_llm_client::LanguageModelProvider::Anthropic => {
 630                Some(LanguageModelCacheConfiguration {
 631                    min_total_token: 2_048,
 632                    should_speculate: true,
 633                    max_cache_anchors: 4,
 634                })
 635            }
 636            cloud_llm_client::LanguageModelProvider::OpenAi
 637            | cloud_llm_client::LanguageModelProvider::XAi
 638            | cloud_llm_client::LanguageModelProvider::Google => None,
 639        }
 640    }
 641
 642    fn count_tokens(
 643        &self,
 644        request: LanguageModelRequest,
 645        cx: &App,
 646    ) -> BoxFuture<'static, Result<u64>> {
 647        match self.model.provider {
 648            cloud_llm_client::LanguageModelProvider::Anthropic => cx
 649                .background_spawn(async move { count_anthropic_tokens_with_tiktoken(request) })
 650                .boxed(),
 651            cloud_llm_client::LanguageModelProvider::OpenAi => {
 652                let model = match open_ai::Model::from_id(&self.model.id.0) {
 653                    Ok(model) => model,
 654                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 655                };
 656                count_open_ai_tokens(request, model, cx)
 657            }
 658            cloud_llm_client::LanguageModelProvider::XAi => {
 659                let model = match x_ai::Model::from_id(&self.model.id.0) {
 660                    Ok(model) => model,
 661                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 662                };
 663                count_xai_tokens(request, model, cx)
 664            }
 665            cloud_llm_client::LanguageModelProvider::Google => {
 666                let client = self.client.clone();
 667                let llm_api_token = self.llm_api_token.clone();
 668                let model_id = self.model.id.to_string();
 669                let generate_content_request =
 670                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 671                async move {
 672                    let http_client = &client.http_client();
 673                    let token = llm_api_token.acquire(&client).await?;
 674
 675                    let request_body = CountTokensBody {
 676                        provider: cloud_llm_client::LanguageModelProvider::Google,
 677                        model: model_id,
 678                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 679                            generate_content_request,
 680                        })?,
 681                    };
 682                    let request = http_client::Request::builder()
 683                        .method(Method::POST)
 684                        .uri(
 685                            http_client
 686                                .build_zed_llm_url("/count_tokens", &[])?
 687                                .as_ref(),
 688                        )
 689                        .header("Content-Type", "application/json")
 690                        .header("Authorization", format!("Bearer {token}"))
 691                        .body(serde_json::to_string(&request_body)?.into())?;
 692                    let mut response = http_client.send(request).await?;
 693                    let status = response.status();
 694                    let headers = response.headers().clone();
 695                    let mut response_body = String::new();
 696                    response
 697                        .body_mut()
 698                        .read_to_string(&mut response_body)
 699                        .await?;
 700
 701                    if status.is_success() {
 702                        let response_body: CountTokensResponse =
 703                            serde_json::from_str(&response_body)?;
 704
 705                        Ok(response_body.tokens as u64)
 706                    } else {
 707                        Err(anyhow!(ApiError {
 708                            status,
 709                            body: response_body,
 710                            headers
 711                        }))
 712                    }
 713                }
 714                .boxed()
 715            }
 716        }
 717    }
 718
 719    fn stream_completion(
 720        &self,
 721        request: LanguageModelRequest,
 722        cx: &AsyncApp,
 723    ) -> BoxFuture<
 724        'static,
 725        Result<
 726            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 727            LanguageModelCompletionError,
 728        >,
 729    > {
 730        let thread_id = request.thread_id.clone();
 731        let prompt_id = request.prompt_id.clone();
 732        let intent = request.intent;
 733        let bypass_rate_limit = request.bypass_rate_limit;
 734        let app_version = Some(cx.update(|cx| AppVersion::global(cx)));
 735        let thinking_allowed = request.thinking_allowed;
 736        let is_thinking_toggle_enabled =
 737            cx.update(|cx| cx.has_flag::<CloudThinkingToggleFeatureFlag>());
 738        let enable_thinking = if is_thinking_toggle_enabled {
 739            thinking_allowed && self.model.supports_thinking
 740        } else {
 741            thinking_allowed && self.model.id.0.ends_with("-thinking")
 742        };
 743        let provider_name = provider_name(&self.model.provider);
 744        match self.model.provider {
 745            cloud_llm_client::LanguageModelProvider::Anthropic => {
 746                let request = into_anthropic(
 747                    request,
 748                    self.model.id.to_string(),
 749                    1.0,
 750                    self.model.max_output_tokens as u64,
 751                    if enable_thinking {
 752                        AnthropicModelMode::Thinking {
 753                            budget_tokens: Some(4_096),
 754                        }
 755                    } else {
 756                        AnthropicModelMode::Default
 757                    },
 758                );
 759                let client = self.client.clone();
 760                let llm_api_token = self.llm_api_token.clone();
 761                let future = self.request_limiter.stream_with_bypass(
 762                    async move {
 763                        let PerformLlmCompletionResponse {
 764                            response,
 765                            includes_status_messages,
 766                        } = Self::perform_llm_completion(
 767                            client.clone(),
 768                            llm_api_token,
 769                            app_version,
 770                            CompletionBody {
 771                                thread_id,
 772                                prompt_id,
 773                                intent,
 774                                provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 775                                model: request.model.clone(),
 776                                provider_request: serde_json::to_value(&request)
 777                                    .map_err(|e| anyhow!(e))?,
 778                            },
 779                        )
 780                        .await
 781                        .map_err(|err| {
 782                            match err.downcast::<ApiError>() {
 783                                Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 784                                Err(err) => anyhow!(err),
 785                            }
 786                        })?;
 787
 788                        let mut mapper = AnthropicEventMapper::new();
 789                        Ok(map_cloud_completion_events(
 790                            Box::pin(response_lines(response, includes_status_messages)),
 791                            &provider_name,
 792                            move |event| mapper.map_event(event),
 793                        ))
 794                    },
 795                    bypass_rate_limit,
 796                );
 797                async move { Ok(future.await?.boxed()) }.boxed()
 798            }
 799            cloud_llm_client::LanguageModelProvider::OpenAi => {
 800                let client = self.client.clone();
 801                let llm_api_token = self.llm_api_token.clone();
 802
 803                let request = into_open_ai_response(
 804                    request,
 805                    &self.model.id.0,
 806                    self.model.supports_parallel_tool_calls,
 807                    true,
 808                    None,
 809                    None,
 810                );
 811                let future = self.request_limiter.stream_with_bypass(
 812                    async move {
 813                        let PerformLlmCompletionResponse {
 814                            response,
 815                            includes_status_messages,
 816                        } = Self::perform_llm_completion(
 817                            client.clone(),
 818                            llm_api_token,
 819                            app_version,
 820                            CompletionBody {
 821                                thread_id,
 822                                prompt_id,
 823                                intent,
 824                                provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 825                                model: request.model.clone(),
 826                                provider_request: serde_json::to_value(&request)
 827                                    .map_err(|e| anyhow!(e))?,
 828                            },
 829                        )
 830                        .await?;
 831
 832                        let mut mapper = OpenAiResponseEventMapper::new();
 833                        Ok(map_cloud_completion_events(
 834                            Box::pin(response_lines(response, includes_status_messages)),
 835                            &provider_name,
 836                            move |event| mapper.map_event(event),
 837                        ))
 838                    },
 839                    bypass_rate_limit,
 840                );
 841                async move { Ok(future.await?.boxed()) }.boxed()
 842            }
 843            cloud_llm_client::LanguageModelProvider::XAi => {
 844                let client = self.client.clone();
 845                let request = into_open_ai(
 846                    request,
 847                    &self.model.id.0,
 848                    self.model.supports_parallel_tool_calls,
 849                    false,
 850                    None,
 851                    None,
 852                );
 853                let llm_api_token = self.llm_api_token.clone();
 854                let future = self.request_limiter.stream_with_bypass(
 855                    async move {
 856                        let PerformLlmCompletionResponse {
 857                            response,
 858                            includes_status_messages,
 859                        } = Self::perform_llm_completion(
 860                            client.clone(),
 861                            llm_api_token,
 862                            app_version,
 863                            CompletionBody {
 864                                thread_id,
 865                                prompt_id,
 866                                intent,
 867                                provider: cloud_llm_client::LanguageModelProvider::XAi,
 868                                model: request.model.clone(),
 869                                provider_request: serde_json::to_value(&request)
 870                                    .map_err(|e| anyhow!(e))?,
 871                            },
 872                        )
 873                        .await?;
 874
 875                        let mut mapper = OpenAiEventMapper::new();
 876                        Ok(map_cloud_completion_events(
 877                            Box::pin(response_lines(response, includes_status_messages)),
 878                            &provider_name,
 879                            move |event| mapper.map_event(event),
 880                        ))
 881                    },
 882                    bypass_rate_limit,
 883                );
 884                async move { Ok(future.await?.boxed()) }.boxed()
 885            }
 886            cloud_llm_client::LanguageModelProvider::Google => {
 887                let client = self.client.clone();
 888                let request =
 889                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 890                let llm_api_token = self.llm_api_token.clone();
 891                let future = self.request_limiter.stream_with_bypass(
 892                    async move {
 893                        let PerformLlmCompletionResponse {
 894                            response,
 895                            includes_status_messages,
 896                        } = Self::perform_llm_completion(
 897                            client.clone(),
 898                            llm_api_token,
 899                            app_version,
 900                            CompletionBody {
 901                                thread_id,
 902                                prompt_id,
 903                                intent,
 904                                provider: cloud_llm_client::LanguageModelProvider::Google,
 905                                model: request.model.model_id.clone(),
 906                                provider_request: serde_json::to_value(&request)
 907                                    .map_err(|e| anyhow!(e))?,
 908                            },
 909                        )
 910                        .await?;
 911
 912                        let mut mapper = GoogleEventMapper::new();
 913                        Ok(map_cloud_completion_events(
 914                            Box::pin(response_lines(response, includes_status_messages)),
 915                            &provider_name,
 916                            move |event| mapper.map_event(event),
 917                        ))
 918                    },
 919                    bypass_rate_limit,
 920                );
 921                async move { Ok(future.await?.boxed()) }.boxed()
 922            }
 923        }
 924    }
 925}
 926
 927fn map_cloud_completion_events<T, F>(
 928    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 929    provider: &LanguageModelProviderName,
 930    mut map_callback: F,
 931) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 932where
 933    T: DeserializeOwned + 'static,
 934    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 935        + Send
 936        + 'static,
 937{
 938    let provider = provider.clone();
 939    stream
 940        .flat_map(move |event| {
 941            futures::stream::iter(match event {
 942                Err(error) => {
 943                    vec![Err(LanguageModelCompletionError::from(error))]
 944                }
 945                Ok(CompletionEvent::Status(event)) => {
 946                    vec![
 947                        LanguageModelCompletionEvent::from_completion_request_status(
 948                            event,
 949                            provider.clone(),
 950                        ),
 951                    ]
 952                }
 953                Ok(CompletionEvent::Event(event)) => map_callback(event),
 954            })
 955        })
 956        .boxed()
 957}
 958
 959fn provider_name(provider: &cloud_llm_client::LanguageModelProvider) -> LanguageModelProviderName {
 960    match provider {
 961        cloud_llm_client::LanguageModelProvider::Anthropic => {
 962            language_model::ANTHROPIC_PROVIDER_NAME
 963        }
 964        cloud_llm_client::LanguageModelProvider::OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 965        cloud_llm_client::LanguageModelProvider::Google => language_model::GOOGLE_PROVIDER_NAME,
 966        cloud_llm_client::LanguageModelProvider::XAi => language_model::X_AI_PROVIDER_NAME,
 967    }
 968}
 969
 970fn response_lines<T: DeserializeOwned>(
 971    response: Response<AsyncBody>,
 972    includes_status_messages: bool,
 973) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 974    futures::stream::try_unfold(
 975        (String::new(), BufReader::new(response.into_body())),
 976        move |(mut line, mut body)| async move {
 977            match body.read_line(&mut line).await {
 978                Ok(0) => Ok(None),
 979                Ok(_) => {
 980                    let event = if includes_status_messages {
 981                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 982                    } else {
 983                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 984                    };
 985
 986                    line.clear();
 987                    Ok(Some((event, (line, body))))
 988                }
 989                Err(e) => Err(e.into()),
 990            }
 991        },
 992    )
 993}
 994
 995#[derive(IntoElement, RegisterComponent)]
 996struct ZedAiConfiguration {
 997    is_connected: bool,
 998    plan: Option<Plan>,
 999    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
1000    eligible_for_trial: bool,
1001    account_too_young: bool,
1002    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1003}
1004
1005impl RenderOnce for ZedAiConfiguration {
1006    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
1007        let is_pro = self
1008            .plan
1009            .is_some_and(|plan| plan == Plan::V2(PlanV2::ZedPro));
1010        let subscription_text = match (self.plan, self.subscription_period) {
1011            (Some(Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1012                "You have access to Zed's hosted models through your Pro subscription."
1013            }
1014            (Some(Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1015                "You have access to Zed's hosted models through your Pro trial."
1016            }
1017            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1018                if self.eligible_for_trial {
1019                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1020                } else {
1021                    "Subscribe for access to Zed's hosted models."
1022                }
1023            }
1024            _ => {
1025                if self.eligible_for_trial {
1026                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1027                } else {
1028                    "Subscribe for access to Zed's hosted models."
1029                }
1030            }
1031        };
1032
1033        let manage_subscription_buttons = if is_pro {
1034            Button::new("manage_settings", "Manage Subscription")
1035                .full_width()
1036                .style(ButtonStyle::Tinted(TintColor::Accent))
1037                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1038                .into_any_element()
1039        } else if self.plan.is_none() || self.eligible_for_trial {
1040            Button::new("start_trial", "Start 14-day Free Pro Trial")
1041                .full_width()
1042                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1043                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1044                .into_any_element()
1045        } else {
1046            Button::new("upgrade", "Upgrade to Pro")
1047                .full_width()
1048                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1049                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1050                .into_any_element()
1051        };
1052
1053        if !self.is_connected {
1054            return v_flex()
1055                .gap_2()
1056                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1057                .child(
1058                    Button::new("sign_in", "Sign In to use Zed AI")
1059                        .icon_color(Color::Muted)
1060                        .icon(IconName::Github)
1061                        .icon_size(IconSize::Small)
1062                        .icon_position(IconPosition::Start)
1063                        .full_width()
1064                        .on_click({
1065                            let callback = self.sign_in_callback.clone();
1066                            move |_, window, cx| (callback)(window, cx)
1067                        }),
1068                );
1069        }
1070
1071        v_flex().gap_2().w_full().map(|this| {
1072            if self.account_too_young {
1073                this.child(YoungAccountBanner).child(
1074                    Button::new("upgrade", "Upgrade to Pro")
1075                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1076                        .full_width()
1077                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1078                )
1079            } else {
1080                this.text_sm()
1081                    .child(subscription_text)
1082                    .child(manage_subscription_buttons)
1083            }
1084        })
1085    }
1086}
1087
1088struct ConfigurationView {
1089    state: Entity<State>,
1090    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1091}
1092
1093impl ConfigurationView {
1094    fn new(state: Entity<State>) -> Self {
1095        let sign_in_callback = Arc::new({
1096            let state = state.clone();
1097            move |_window: &mut Window, cx: &mut App| {
1098                state.update(cx, |state, cx| {
1099                    state.authenticate(cx).detach_and_log_err(cx);
1100                });
1101            }
1102        });
1103
1104        Self {
1105            state,
1106            sign_in_callback,
1107        }
1108    }
1109}
1110
1111impl Render for ConfigurationView {
1112    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1113        let state = self.state.read(cx);
1114        let user_store = state.user_store.read(cx);
1115
1116        ZedAiConfiguration {
1117            is_connected: !state.is_signed_out(cx),
1118            plan: user_store.plan(),
1119            subscription_period: user_store.subscription_period(),
1120            eligible_for_trial: user_store.trial_started_at().is_none(),
1121            account_too_young: user_store.account_too_young(),
1122            sign_in_callback: self.sign_in_callback.clone(),
1123        }
1124    }
1125}
1126
1127impl Component for ZedAiConfiguration {
1128    fn name() -> &'static str {
1129        "AI Configuration Content"
1130    }
1131
1132    fn sort_name() -> &'static str {
1133        "AI Configuration Content"
1134    }
1135
1136    fn scope() -> ComponentScope {
1137        ComponentScope::Onboarding
1138    }
1139
1140    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1141        fn configuration(
1142            is_connected: bool,
1143            plan: Option<Plan>,
1144            eligible_for_trial: bool,
1145            account_too_young: bool,
1146        ) -> AnyElement {
1147            ZedAiConfiguration {
1148                is_connected,
1149                plan,
1150                subscription_period: plan
1151                    .is_some()
1152                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1153                eligible_for_trial,
1154                account_too_young,
1155                sign_in_callback: Arc::new(|_, _| {}),
1156            }
1157            .into_any_element()
1158        }
1159
1160        Some(
1161            v_flex()
1162                .p_4()
1163                .gap_4()
1164                .children(vec![
1165                    single_example("Not connected", configuration(false, None, false, false)),
1166                    single_example(
1167                        "Accept Terms of Service",
1168                        configuration(true, None, true, false),
1169                    ),
1170                    single_example(
1171                        "No Plan - Not eligible for trial",
1172                        configuration(true, None, false, false),
1173                    ),
1174                    single_example(
1175                        "No Plan - Eligible for trial",
1176                        configuration(true, None, true, false),
1177                    ),
1178                    single_example(
1179                        "Free Plan",
1180                        configuration(true, Some(Plan::V2(PlanV2::ZedFree)), true, false),
1181                    ),
1182                    single_example(
1183                        "Zed Pro Trial Plan",
1184                        configuration(true, Some(Plan::V2(PlanV2::ZedProTrial)), true, false),
1185                    ),
1186                    single_example(
1187                        "Zed Pro Plan",
1188                        configuration(true, Some(Plan::V2(PlanV2::ZedPro)), true, false),
1189                    ),
1190                ])
1191                .into_any_element(),
1192        )
1193    }
1194}
1195
1196#[cfg(test)]
1197mod tests {
1198    use super::*;
1199    use http_client::http::{HeaderMap, StatusCode};
1200    use language_model::LanguageModelCompletionError;
1201
1202    #[test]
1203    fn test_api_error_conversion_with_upstream_http_error() {
1204        // upstream_http_error with 503 status should become ServerOverloaded
1205        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1206
1207        let api_error = ApiError {
1208            status: StatusCode::INTERNAL_SERVER_ERROR,
1209            body: error_body.to_string(),
1210            headers: HeaderMap::new(),
1211        };
1212
1213        let completion_error: LanguageModelCompletionError = api_error.into();
1214
1215        match completion_error {
1216            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1217                assert_eq!(
1218                    message,
1219                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1220                );
1221            }
1222            _ => panic!(
1223                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1224                completion_error
1225            ),
1226        }
1227
1228        // upstream_http_error with 500 status should become ApiInternalServerError
1229        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1230
1231        let api_error = ApiError {
1232            status: StatusCode::INTERNAL_SERVER_ERROR,
1233            body: error_body.to_string(),
1234            headers: HeaderMap::new(),
1235        };
1236
1237        let completion_error: LanguageModelCompletionError = api_error.into();
1238
1239        match completion_error {
1240            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1241                assert_eq!(
1242                    message,
1243                    "Received an error from the OpenAI API: internal server error"
1244                );
1245            }
1246            _ => panic!(
1247                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1248                completion_error
1249            ),
1250        }
1251
1252        // upstream_http_error with 429 status should become RateLimitExceeded
1253        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1254
1255        let api_error = ApiError {
1256            status: StatusCode::INTERNAL_SERVER_ERROR,
1257            body: error_body.to_string(),
1258            headers: HeaderMap::new(),
1259        };
1260
1261        let completion_error: LanguageModelCompletionError = api_error.into();
1262
1263        match completion_error {
1264            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1265                assert_eq!(
1266                    message,
1267                    "Received an error from the Google API: rate limit exceeded"
1268                );
1269            }
1270            _ => panic!(
1271                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1272                completion_error
1273            ),
1274        }
1275
1276        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1277        let error_body = "Regular internal server error";
1278
1279        let api_error = ApiError {
1280            status: StatusCode::INTERNAL_SERVER_ERROR,
1281            body: error_body.to_string(),
1282            headers: HeaderMap::new(),
1283        };
1284
1285        let completion_error: LanguageModelCompletionError = api_error.into();
1286
1287        match completion_error {
1288            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1289                assert_eq!(provider, PROVIDER_NAME);
1290                assert_eq!(message, "Regular internal server error");
1291            }
1292            _ => panic!(
1293                "Expected ApiInternalServerError for regular 500, got: {:?}",
1294                completion_error
1295            ),
1296        }
1297
1298        // upstream_http_429 format should be converted to UpstreamProviderError
1299        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1300
1301        let api_error = ApiError {
1302            status: StatusCode::INTERNAL_SERVER_ERROR,
1303            body: error_body.to_string(),
1304            headers: HeaderMap::new(),
1305        };
1306
1307        let completion_error: LanguageModelCompletionError = api_error.into();
1308
1309        match completion_error {
1310            LanguageModelCompletionError::UpstreamProviderError {
1311                message,
1312                status,
1313                retry_after,
1314            } => {
1315                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1316                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1317                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1318            }
1319            _ => panic!(
1320                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1321                completion_error
1322            ),
1323        }
1324
1325        // Invalid JSON in error body should fall back to regular error handling
1326        let error_body = "Not JSON at all";
1327
1328        let api_error = ApiError {
1329            status: StatusCode::INTERNAL_SERVER_ERROR,
1330            body: error_body.to_string(),
1331            headers: HeaderMap::new(),
1332        };
1333
1334        let completion_error: LanguageModelCompletionError = api_error.into();
1335
1336        match completion_error {
1337            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1338                assert_eq!(provider, PROVIDER_NAME);
1339            }
1340            _ => panic!(
1341                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1342                completion_error
1343            ),
1344        }
1345    }
1346}