open_ai.rs

  1use anyhow::{Result, anyhow};
  2use collections::{BTreeMap, HashMap};
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future, future::BoxFuture};
  5use gpui::{AnyView, App, AsyncApp, Context, Entity, SharedString, Task, Window};
  6use http_client::HttpClient;
  7use language_model::{
  8    AuthenticateError, LanguageModel, LanguageModelCompletionError, LanguageModelCompletionEvent,
  9    LanguageModelId, LanguageModelName, LanguageModelProvider, LanguageModelProviderId,
 10    LanguageModelProviderName, LanguageModelProviderState, LanguageModelRequest,
 11    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 12    RateLimiter, Role, StopReason, TokenUsage,
 13};
 14use menu;
 15use open_ai::{
 16    ImageUrl, Model, OPEN_AI_API_URL, ReasoningEffort, ResponseStreamEvent, stream_completion,
 17};
 18use settings::{OpenAiAvailableModel as AvailableModel, Settings, SettingsStore};
 19use std::pin::Pin;
 20use std::str::FromStr as _;
 21use std::sync::{Arc, LazyLock};
 22use strum::IntoEnumIterator;
 23use ui::{ElevationIndex, List, Tooltip, prelude::*};
 24use ui_input::InputField;
 25use util::{ResultExt, truncate_and_trailoff};
 26use zed_env_vars::{EnvVar, env_var};
 27
 28use crate::{api_key::ApiKeyState, ui::InstructionListItem};
 29
 30const PROVIDER_ID: LanguageModelProviderId = language_model::OPEN_AI_PROVIDER_ID;
 31const PROVIDER_NAME: LanguageModelProviderName = language_model::OPEN_AI_PROVIDER_NAME;
 32
 33const API_KEY_ENV_VAR_NAME: &str = "OPENAI_API_KEY";
 34static API_KEY_ENV_VAR: LazyLock<EnvVar> = env_var!(API_KEY_ENV_VAR_NAME);
 35
 36#[derive(Default, Clone, Debug, PartialEq)]
 37pub struct OpenAiSettings {
 38    pub api_url: String,
 39    pub available_models: Vec<AvailableModel>,
 40}
 41
 42pub struct OpenAiLanguageModelProvider {
 43    http_client: Arc<dyn HttpClient>,
 44    state: Entity<State>,
 45}
 46
 47pub struct State {
 48    api_key_state: ApiKeyState,
 49}
 50
 51impl State {
 52    fn is_authenticated(&self) -> bool {
 53        self.api_key_state.has_key()
 54    }
 55
 56    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
 57        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 58        self.api_key_state
 59            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
 60    }
 61
 62    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 63        let api_url = OpenAiLanguageModelProvider::api_url(cx);
 64        self.api_key_state.load_if_needed(
 65            api_url,
 66            &API_KEY_ENV_VAR,
 67            |this| &mut this.api_key_state,
 68            cx,
 69        )
 70    }
 71}
 72
 73impl OpenAiLanguageModelProvider {
 74    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
 75        let state = cx.new(|cx| {
 76            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
 77                let api_url = Self::api_url(cx);
 78                this.api_key_state.handle_url_change(
 79                    api_url,
 80                    &API_KEY_ENV_VAR,
 81                    |this| &mut this.api_key_state,
 82                    cx,
 83                );
 84                cx.notify();
 85            })
 86            .detach();
 87            State {
 88                api_key_state: ApiKeyState::new(Self::api_url(cx)),
 89            }
 90        });
 91
 92        Self { http_client, state }
 93    }
 94
 95    fn create_language_model(&self, model: open_ai::Model) -> Arc<dyn LanguageModel> {
 96        Arc::new(OpenAiLanguageModel {
 97            id: LanguageModelId::from(model.id().to_string()),
 98            model,
 99            state: self.state.clone(),
100            http_client: self.http_client.clone(),
101            request_limiter: RateLimiter::new(4),
102        })
103    }
104
105    fn settings(cx: &App) -> &OpenAiSettings {
106        &crate::AllLanguageModelSettings::get_global(cx).openai
107    }
108
109    fn api_url(cx: &App) -> SharedString {
110        let api_url = &Self::settings(cx).api_url;
111        if api_url.is_empty() {
112            open_ai::OPEN_AI_API_URL.into()
113        } else {
114            SharedString::new(api_url.as_str())
115        }
116    }
117}
118
119impl LanguageModelProviderState for OpenAiLanguageModelProvider {
120    type ObservableEntity = State;
121
122    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
123        Some(self.state.clone())
124    }
125}
126
127impl LanguageModelProvider for OpenAiLanguageModelProvider {
128    fn id(&self) -> LanguageModelProviderId {
129        PROVIDER_ID
130    }
131
132    fn name(&self) -> LanguageModelProviderName {
133        PROVIDER_NAME
134    }
135
136    fn icon(&self) -> IconName {
137        IconName::AiOpenAi
138    }
139
140    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
141        Some(self.create_language_model(open_ai::Model::default()))
142    }
143
144    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
145        Some(self.create_language_model(open_ai::Model::default_fast()))
146    }
147
148    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
149        let mut models = BTreeMap::default();
150
151        // Add base models from open_ai::Model::iter()
152        for model in open_ai::Model::iter() {
153            if !matches!(model, open_ai::Model::Custom { .. }) {
154                models.insert(model.id().to_string(), model);
155            }
156        }
157
158        // Override with available models from settings
159        for model in &OpenAiLanguageModelProvider::settings(cx).available_models {
160            models.insert(
161                model.name.clone(),
162                open_ai::Model::Custom {
163                    name: model.name.clone(),
164                    display_name: model.display_name.clone(),
165                    max_tokens: model.max_tokens,
166                    max_output_tokens: model.max_output_tokens,
167                    max_completion_tokens: model.max_completion_tokens,
168                    reasoning_effort: model.reasoning_effort.clone(),
169                },
170            );
171        }
172
173        models
174            .into_values()
175            .map(|model| self.create_language_model(model))
176            .collect()
177    }
178
179    fn is_authenticated(&self, cx: &App) -> bool {
180        self.state.read(cx).is_authenticated()
181    }
182
183    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
184        self.state.update(cx, |state, cx| state.authenticate(cx))
185    }
186
187    fn configuration_view(
188        &self,
189        _target_agent: language_model::ConfigurationViewTargetAgent,
190        window: &mut Window,
191        cx: &mut App,
192    ) -> AnyView {
193        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
194            .into()
195    }
196
197    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
198        self.state
199            .update(cx, |state, cx| state.set_api_key(None, cx))
200    }
201}
202
203pub struct OpenAiLanguageModel {
204    id: LanguageModelId,
205    model: open_ai::Model,
206    state: Entity<State>,
207    http_client: Arc<dyn HttpClient>,
208    request_limiter: RateLimiter,
209}
210
211impl OpenAiLanguageModel {
212    fn stream_completion(
213        &self,
214        request: open_ai::Request,
215        cx: &AsyncApp,
216    ) -> BoxFuture<'static, Result<futures::stream::BoxStream<'static, Result<ResponseStreamEvent>>>>
217    {
218        let http_client = self.http_client.clone();
219
220        let Ok((api_key, api_url)) = self.state.read_with(cx, |state, cx| {
221            let api_url = OpenAiLanguageModelProvider::api_url(cx);
222            (state.api_key_state.key(&api_url), api_url)
223        }) else {
224            return future::ready(Err(anyhow!("App state dropped"))).boxed();
225        };
226
227        let future = self.request_limiter.stream(async move {
228            let Some(api_key) = api_key else {
229                return Err(LanguageModelCompletionError::NoApiKey {
230                    provider: PROVIDER_NAME,
231                });
232            };
233            let request = stream_completion(http_client.as_ref(), &api_url, &api_key, request);
234            let response = request.await?;
235            Ok(response)
236        });
237
238        async move { Ok(future.await?.boxed()) }.boxed()
239    }
240}
241
242impl LanguageModel for OpenAiLanguageModel {
243    fn id(&self) -> LanguageModelId {
244        self.id.clone()
245    }
246
247    fn name(&self) -> LanguageModelName {
248        LanguageModelName::from(self.model.display_name().to_string())
249    }
250
251    fn provider_id(&self) -> LanguageModelProviderId {
252        PROVIDER_ID
253    }
254
255    fn provider_name(&self) -> LanguageModelProviderName {
256        PROVIDER_NAME
257    }
258
259    fn supports_tools(&self) -> bool {
260        true
261    }
262
263    fn supports_images(&self) -> bool {
264        use open_ai::Model;
265        match &self.model {
266            Model::FourOmni
267            | Model::FourOmniMini
268            | Model::FourPointOne
269            | Model::FourPointOneMini
270            | Model::FourPointOneNano
271            | Model::Five
272            | Model::FiveMini
273            | Model::FiveNano
274            | Model::O1
275            | Model::O3
276            | Model::O4Mini => true,
277            Model::ThreePointFiveTurbo
278            | Model::Four
279            | Model::FourTurbo
280            | Model::O3Mini
281            | Model::Custom { .. } => false,
282        }
283    }
284
285    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
286        match choice {
287            LanguageModelToolChoice::Auto => true,
288            LanguageModelToolChoice::Any => true,
289            LanguageModelToolChoice::None => true,
290        }
291    }
292
293    fn telemetry_id(&self) -> String {
294        format!("openai/{}", self.model.id())
295    }
296
297    fn max_token_count(&self) -> u64 {
298        self.model.max_token_count()
299    }
300
301    fn max_output_tokens(&self) -> Option<u64> {
302        self.model.max_output_tokens()
303    }
304
305    fn count_tokens(
306        &self,
307        request: LanguageModelRequest,
308        cx: &App,
309    ) -> BoxFuture<'static, Result<u64>> {
310        count_open_ai_tokens(request, self.model.clone(), cx)
311    }
312
313    fn stream_completion(
314        &self,
315        request: LanguageModelRequest,
316        cx: &AsyncApp,
317    ) -> BoxFuture<
318        'static,
319        Result<
320            futures::stream::BoxStream<
321                'static,
322                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
323            >,
324            LanguageModelCompletionError,
325        >,
326    > {
327        let request = into_open_ai(
328            request,
329            self.model.id(),
330            self.model.supports_parallel_tool_calls(),
331            self.model.supports_prompt_cache_key(),
332            self.max_output_tokens(),
333            self.model.reasoning_effort(),
334        );
335        let completions = self.stream_completion(request, cx);
336        async move {
337            let mapper = OpenAiEventMapper::new();
338            Ok(mapper.map_stream(completions.await?).boxed())
339        }
340        .boxed()
341    }
342}
343
344pub fn into_open_ai(
345    request: LanguageModelRequest,
346    model_id: &str,
347    supports_parallel_tool_calls: bool,
348    supports_prompt_cache_key: bool,
349    max_output_tokens: Option<u64>,
350    reasoning_effort: Option<ReasoningEffort>,
351) -> open_ai::Request {
352    let stream = !model_id.starts_with("o1-");
353
354    let mut messages = Vec::new();
355    for message in request.messages {
356        for content in message.content {
357            match content {
358                MessageContent::Text(text) | MessageContent::Thinking { text, .. } => {
359                    add_message_content_part(
360                        open_ai::MessagePart::Text { text },
361                        message.role,
362                        &mut messages,
363                    )
364                }
365                MessageContent::RedactedThinking(_) => {}
366                MessageContent::Image(image) => {
367                    add_message_content_part(
368                        open_ai::MessagePart::Image {
369                            image_url: ImageUrl {
370                                url: image.to_base64_url(),
371                                detail: None,
372                            },
373                        },
374                        message.role,
375                        &mut messages,
376                    );
377                }
378                MessageContent::ToolUse(tool_use) => {
379                    let tool_call = open_ai::ToolCall {
380                        id: tool_use.id.to_string(),
381                        content: open_ai::ToolCallContent::Function {
382                            function: open_ai::FunctionContent {
383                                name: tool_use.name.to_string(),
384                                arguments: serde_json::to_string(&tool_use.input)
385                                    .unwrap_or_default(),
386                            },
387                        },
388                    };
389
390                    if let Some(open_ai::RequestMessage::Assistant { tool_calls, .. }) =
391                        messages.last_mut()
392                    {
393                        tool_calls.push(tool_call);
394                    } else {
395                        messages.push(open_ai::RequestMessage::Assistant {
396                            content: None,
397                            tool_calls: vec![tool_call],
398                        });
399                    }
400                }
401                MessageContent::ToolResult(tool_result) => {
402                    let content = match &tool_result.content {
403                        LanguageModelToolResultContent::Text(text) => {
404                            vec![open_ai::MessagePart::Text {
405                                text: text.to_string(),
406                            }]
407                        }
408                        LanguageModelToolResultContent::Image(image) => {
409                            vec![open_ai::MessagePart::Image {
410                                image_url: ImageUrl {
411                                    url: image.to_base64_url(),
412                                    detail: None,
413                                },
414                            }]
415                        }
416                    };
417
418                    messages.push(open_ai::RequestMessage::Tool {
419                        content: content.into(),
420                        tool_call_id: tool_result.tool_use_id.to_string(),
421                    });
422                }
423            }
424        }
425    }
426
427    open_ai::Request {
428        model: model_id.into(),
429        messages,
430        stream,
431        stop: request.stop,
432        temperature: request.temperature.unwrap_or(1.0),
433        max_completion_tokens: max_output_tokens,
434        parallel_tool_calls: if supports_parallel_tool_calls && !request.tools.is_empty() {
435            // Disable parallel tool calls, as the Agent currently expects a maximum of one per turn.
436            Some(false)
437        } else {
438            None
439        },
440        prompt_cache_key: if supports_prompt_cache_key {
441            request.thread_id
442        } else {
443            None
444        },
445        tools: request
446            .tools
447            .into_iter()
448            .map(|tool| open_ai::ToolDefinition::Function {
449                function: open_ai::FunctionDefinition {
450                    name: tool.name,
451                    description: Some(tool.description),
452                    parameters: Some(tool.input_schema),
453                },
454            })
455            .collect(),
456        tool_choice: request.tool_choice.map(|choice| match choice {
457            LanguageModelToolChoice::Auto => open_ai::ToolChoice::Auto,
458            LanguageModelToolChoice::Any => open_ai::ToolChoice::Required,
459            LanguageModelToolChoice::None => open_ai::ToolChoice::None,
460        }),
461        reasoning_effort,
462    }
463}
464
465fn add_message_content_part(
466    new_part: open_ai::MessagePart,
467    role: Role,
468    messages: &mut Vec<open_ai::RequestMessage>,
469) {
470    match (role, messages.last_mut()) {
471        (Role::User, Some(open_ai::RequestMessage::User { content }))
472        | (
473            Role::Assistant,
474            Some(open_ai::RequestMessage::Assistant {
475                content: Some(content),
476                ..
477            }),
478        )
479        | (Role::System, Some(open_ai::RequestMessage::System { content, .. })) => {
480            content.push_part(new_part);
481        }
482        _ => {
483            messages.push(match role {
484                Role::User => open_ai::RequestMessage::User {
485                    content: open_ai::MessageContent::from(vec![new_part]),
486                },
487                Role::Assistant => open_ai::RequestMessage::Assistant {
488                    content: Some(open_ai::MessageContent::from(vec![new_part])),
489                    tool_calls: Vec::new(),
490                },
491                Role::System => open_ai::RequestMessage::System {
492                    content: open_ai::MessageContent::from(vec![new_part]),
493                },
494            });
495        }
496    }
497}
498
499pub struct OpenAiEventMapper {
500    tool_calls_by_index: HashMap<usize, RawToolCall>,
501}
502
503impl OpenAiEventMapper {
504    pub fn new() -> Self {
505        Self {
506            tool_calls_by_index: HashMap::default(),
507        }
508    }
509
510    pub fn map_stream(
511        mut self,
512        events: Pin<Box<dyn Send + Stream<Item = Result<ResponseStreamEvent>>>>,
513    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
514    {
515        events.flat_map(move |event| {
516            futures::stream::iter(match event {
517                Ok(event) => self.map_event(event),
518                Err(error) => vec![Err(LanguageModelCompletionError::from(anyhow!(error)))],
519            })
520        })
521    }
522
523    pub fn map_event(
524        &mut self,
525        event: ResponseStreamEvent,
526    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
527        let mut events = Vec::new();
528        if let Some(usage) = event.usage {
529            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
530                input_tokens: usage.prompt_tokens,
531                output_tokens: usage.completion_tokens,
532                cache_creation_input_tokens: 0,
533                cache_read_input_tokens: 0,
534            })));
535        }
536
537        let Some(choice) = event.choices.first() else {
538            return events;
539        };
540
541        if let Some(content) = choice.delta.content.clone() {
542            if !content.is_empty() {
543                events.push(Ok(LanguageModelCompletionEvent::Text(content)));
544            }
545        }
546
547        if let Some(tool_calls) = choice.delta.tool_calls.as_ref() {
548            for tool_call in tool_calls {
549                let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
550
551                if let Some(tool_id) = tool_call.id.clone() {
552                    entry.id = tool_id;
553                }
554
555                if let Some(function) = tool_call.function.as_ref() {
556                    if let Some(name) = function.name.clone() {
557                        entry.name = name;
558                    }
559
560                    if let Some(arguments) = function.arguments.clone() {
561                        entry.arguments.push_str(&arguments);
562                    }
563                }
564            }
565        }
566
567        match choice.finish_reason.as_deref() {
568            Some("stop") => {
569                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
570            }
571            Some("tool_calls") => {
572                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
573                    match serde_json::Value::from_str(&tool_call.arguments) {
574                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
575                            LanguageModelToolUse {
576                                id: tool_call.id.clone().into(),
577                                name: tool_call.name.as_str().into(),
578                                is_input_complete: true,
579                                input,
580                                raw_input: tool_call.arguments.clone(),
581                            },
582                        )),
583                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
584                            id: tool_call.id.into(),
585                            tool_name: tool_call.name.into(),
586                            raw_input: tool_call.arguments.clone().into(),
587                            json_parse_error: error.to_string(),
588                        }),
589                    }
590                }));
591
592                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
593            }
594            Some(stop_reason) => {
595                log::error!("Unexpected OpenAI stop_reason: {stop_reason:?}",);
596                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
597            }
598            None => {}
599        }
600
601        events
602    }
603}
604
605#[derive(Default)]
606struct RawToolCall {
607    id: String,
608    name: String,
609    arguments: String,
610}
611
612pub(crate) fn collect_tiktoken_messages(
613    request: LanguageModelRequest,
614) -> Vec<tiktoken_rs::ChatCompletionRequestMessage> {
615    request
616        .messages
617        .into_iter()
618        .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
619            role: match message.role {
620                Role::User => "user".into(),
621                Role::Assistant => "assistant".into(),
622                Role::System => "system".into(),
623            },
624            content: Some(message.string_contents()),
625            name: None,
626            function_call: None,
627        })
628        .collect::<Vec<_>>()
629}
630
631pub fn count_open_ai_tokens(
632    request: LanguageModelRequest,
633    model: Model,
634    cx: &App,
635) -> BoxFuture<'static, Result<u64>> {
636    cx.background_spawn(async move {
637        let messages = collect_tiktoken_messages(request);
638
639        match model {
640            Model::Custom { max_tokens, .. } => {
641                let model = if max_tokens >= 100_000 {
642                    // If the max tokens is 100k or more, it is likely the o200k_base tokenizer from gpt4o
643                    "gpt-4o"
644                } else {
645                    // Otherwise fallback to gpt-4, since only cl100k_base and o200k_base are
646                    // supported with this tiktoken method
647                    "gpt-4"
648                };
649                tiktoken_rs::num_tokens_from_messages(model, &messages)
650            }
651            // Currently supported by tiktoken_rs
652            // Sometimes tiktoken-rs is behind on model support. If that is the case, make a new branch
653            // arm with an override. We enumerate all supported models here so that we can check if new
654            // models are supported yet or not.
655            Model::ThreePointFiveTurbo
656            | Model::Four
657            | Model::FourTurbo
658            | Model::FourOmni
659            | Model::FourOmniMini
660            | Model::FourPointOne
661            | Model::FourPointOneMini
662            | Model::FourPointOneNano
663            | Model::O1
664            | Model::O3
665            | Model::O3Mini
666            | Model::O4Mini => tiktoken_rs::num_tokens_from_messages(model.id(), &messages),
667            // GPT-5 models don't have tiktoken support yet; fall back on gpt-4o tokenizer
668            Model::Five | Model::FiveMini | Model::FiveNano => {
669                tiktoken_rs::num_tokens_from_messages("gpt-4o", &messages)
670            }
671        }
672        .map(|tokens| tokens as u64)
673    })
674    .boxed()
675}
676
677struct ConfigurationView {
678    api_key_editor: Entity<InputField>,
679    state: Entity<State>,
680    load_credentials_task: Option<Task<()>>,
681}
682
683impl ConfigurationView {
684    fn new(state: Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
685        let api_key_editor = cx.new(|cx| {
686            InputField::new(
687                window,
688                cx,
689                "sk-000000000000000000000000000000000000000000000000",
690            )
691        });
692
693        cx.observe(&state, |_, _, cx| {
694            cx.notify();
695        })
696        .detach();
697
698        let load_credentials_task = Some(cx.spawn_in(window, {
699            let state = state.clone();
700            async move |this, cx| {
701                if let Some(task) = state
702                    .update(cx, |state, cx| state.authenticate(cx))
703                    .log_err()
704                {
705                    // We don't log an error, because "not signed in" is also an error.
706                    let _ = task.await;
707                }
708                this.update(cx, |this, cx| {
709                    this.load_credentials_task = None;
710                    cx.notify();
711                })
712                .log_err();
713            }
714        }));
715
716        Self {
717            api_key_editor,
718            state,
719            load_credentials_task,
720        }
721    }
722
723    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
724        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
725        if api_key.is_empty() {
726            return;
727        }
728
729        // url changes can cause the editor to be displayed again
730        self.api_key_editor
731            .update(cx, |editor, cx| editor.set_text("", window, cx));
732
733        let state = self.state.clone();
734        cx.spawn_in(window, async move |_, cx| {
735            state
736                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
737                .await
738        })
739        .detach_and_log_err(cx);
740    }
741
742    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
743        self.api_key_editor
744            .update(cx, |input, cx| input.set_text("", window, cx));
745
746        let state = self.state.clone();
747        cx.spawn_in(window, async move |_, cx| {
748            state
749                .update(cx, |state, cx| state.set_api_key(None, cx))?
750                .await
751        })
752        .detach_and_log_err(cx);
753    }
754
755    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
756        !self.state.read(cx).is_authenticated()
757    }
758}
759
760impl Render for ConfigurationView {
761    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
762        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
763
764        let api_key_section = if self.should_render_editor(cx) {
765            v_flex()
766                .on_action(cx.listener(Self::save_api_key))
767                .child(Label::new("To use Zed's agent with OpenAI, you need to add an API key. Follow these steps:"))
768                .child(
769                    List::new()
770                        .child(InstructionListItem::new(
771                            "Create one by visiting",
772                            Some("OpenAI's console"),
773                            Some("https://platform.openai.com/api-keys"),
774                        ))
775                        .child(InstructionListItem::text_only(
776                            "Ensure your OpenAI account has credits",
777                        ))
778                        .child(InstructionListItem::text_only(
779                            "Paste your API key below and hit enter to start using the assistant",
780                        )),
781                )
782                .child(self.api_key_editor.clone())
783                .child(
784                    Label::new(format!(
785                        "You can also assign the {API_KEY_ENV_VAR_NAME} environment variable and restart Zed."
786                    ))
787                    .size(LabelSize::Small)
788                    .color(Color::Muted),
789                )
790                .child(
791                    Label::new(
792                        "Note that having a subscription for another service like GitHub Copilot won't work.",
793                    )
794                    .size(LabelSize::Small).color(Color::Muted),
795                )
796                .into_any()
797        } else {
798            h_flex()
799                .mt_1()
800                .p_1()
801                .justify_between()
802                .rounded_md()
803                .border_1()
804                .border_color(cx.theme().colors().border)
805                .bg(cx.theme().colors().background)
806                .child(
807                    h_flex()
808                        .gap_1()
809                        .child(Icon::new(IconName::Check).color(Color::Success))
810                        .child(Label::new(if env_var_set {
811                            format!("API key set in {API_KEY_ENV_VAR_NAME} environment variable")
812                        } else {
813                            let api_url = OpenAiLanguageModelProvider::api_url(cx);
814                            if api_url == OPEN_AI_API_URL {
815                                "API key configured".to_string()
816                            } else {
817                                format!("API key configured for {}", truncate_and_trailoff(&api_url, 32))
818                            }
819                        })),
820                )
821                .child(
822                    Button::new("reset-api-key", "Reset API Key")
823                        .label_size(LabelSize::Small)
824                        .icon(IconName::Undo)
825                        .icon_size(IconSize::Small)
826                        .icon_position(IconPosition::Start)
827                        .layer(ElevationIndex::ModalSurface)
828                        .when(env_var_set, |this| {
829                            this.tooltip(Tooltip::text(format!("To reset your API key, unset the {API_KEY_ENV_VAR_NAME} environment variable.")))
830                        })
831                        .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
832                )
833                .into_any()
834        };
835
836        let compatible_api_section = h_flex()
837            .mt_1p5()
838            .gap_0p5()
839            .flex_wrap()
840            .when(self.should_render_editor(cx), |this| {
841                this.pt_1p5()
842                    .border_t_1()
843                    .border_color(cx.theme().colors().border_variant)
844            })
845            .child(
846                h_flex()
847                    .gap_2()
848                    .child(
849                        Icon::new(IconName::Info)
850                            .size(IconSize::XSmall)
851                            .color(Color::Muted),
852                    )
853                    .child(Label::new("Zed also supports OpenAI-compatible models.")),
854            )
855            .child(
856                Button::new("docs", "Learn More")
857                    .icon(IconName::ArrowUpRight)
858                    .icon_size(IconSize::Small)
859                    .icon_color(Color::Muted)
860                    .on_click(move |_, _window, cx| {
861                        cx.open_url("https://zed.dev/docs/ai/llm-providers#openai-api-compatible")
862                    }),
863            );
864
865        if self.load_credentials_task.is_some() {
866            div().child(Label::new("Loading credentials…")).into_any()
867        } else {
868            v_flex()
869                .size_full()
870                .child(api_key_section)
871                .child(compatible_api_section)
872                .into_any()
873        }
874    }
875}
876
877#[cfg(test)]
878mod tests {
879    use gpui::TestAppContext;
880    use language_model::LanguageModelRequestMessage;
881
882    use super::*;
883
884    #[gpui::test]
885    fn tiktoken_rs_support(cx: &TestAppContext) {
886        let request = LanguageModelRequest {
887            thread_id: None,
888            prompt_id: None,
889            intent: None,
890            mode: None,
891            messages: vec![LanguageModelRequestMessage {
892                role: Role::User,
893                content: vec![MessageContent::Text("message".into())],
894                cache: false,
895            }],
896            tools: vec![],
897            tool_choice: None,
898            stop: vec![],
899            temperature: None,
900            thinking_allowed: true,
901        };
902
903        // Validate that all models are supported by tiktoken-rs
904        for model in Model::iter() {
905            let count = cx
906                .executor()
907                .block(count_open_ai_tokens(
908                    request.clone(),
909                    model,
910                    &cx.app.borrow(),
911                ))
912                .unwrap();
913            assert!(count > 0);
914        }
915    }
916}