cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    PlanV1, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  11    SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME,
  12    ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{
  19    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  20};
  21use http_client::http::{HeaderMap, HeaderValue};
  22use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode};
  23use language_model::{
  24    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  25    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  26    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  27    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  28    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  29    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  30};
  31use release_channel::AppVersion;
  32use schemars::JsonSchema;
  33use serde::{Deserialize, Serialize, de::DeserializeOwned};
  34use settings::SettingsStore;
  35use smol::io::{AsyncReadExt, BufReader};
  36use std::pin::Pin;
  37use std::str::FromStr as _;
  38use std::sync::Arc;
  39use std::time::Duration;
  40use thiserror::Error;
  41use ui::{TintColor, prelude::*};
  42use util::{ResultExt as _, maybe};
  43
  44use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  45use crate::provider::google::{GoogleEventMapper, into_google};
  46use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  47
  48const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  49const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  50
  51#[derive(Default, Clone, Debug, PartialEq)]
  52pub struct ZedDotDevSettings {
  53    pub available_models: Vec<AvailableModel>,
  54}
  55
  56#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  57#[serde(rename_all = "lowercase")]
  58pub enum AvailableProvider {
  59    Anthropic,
  60    OpenAi,
  61    Google,
  62}
  63
  64#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  65pub struct AvailableModel {
  66    /// The provider of the language model.
  67    pub provider: AvailableProvider,
  68    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
  69    pub name: String,
  70    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
  71    pub display_name: Option<String>,
  72    /// The size of the context window, indicating the maximum number of tokens the model can process.
  73    pub max_tokens: usize,
  74    /// The maximum number of output tokens allowed by the model.
  75    pub max_output_tokens: Option<u64>,
  76    /// The maximum number of completion tokens allowed by the model (o1-* only)
  77    pub max_completion_tokens: Option<u64>,
  78    /// Override this model with a different Anthropic model for tool calls.
  79    pub tool_override: Option<String>,
  80    /// Indicates whether this custom model supports caching.
  81    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
  82    /// The default temperature to use for this model.
  83    pub default_temperature: Option<f32>,
  84    /// Any extra beta headers to provide when using the model.
  85    #[serde(default)]
  86    pub extra_beta_headers: Vec<String>,
  87    /// The model's mode (e.g. thinking)
  88    pub mode: Option<ModelMode>,
  89}
  90
  91#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  92#[serde(tag = "type", rename_all = "lowercase")]
  93pub enum ModelMode {
  94    #[default]
  95    Default,
  96    Thinking {
  97        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  98        budget_tokens: Option<u32>,
  99    },
 100}
 101
 102impl From<ModelMode> for AnthropicModelMode {
 103    fn from(value: ModelMode) -> Self {
 104        match value {
 105            ModelMode::Default => AnthropicModelMode::Default,
 106            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
 107        }
 108    }
 109}
 110
 111pub struct CloudLanguageModelProvider {
 112    client: Arc<Client>,
 113    state: gpui::Entity<State>,
 114    _maintain_client_status: Task<()>,
 115}
 116
 117pub struct State {
 118    client: Arc<Client>,
 119    llm_api_token: LlmApiToken,
 120    user_store: Entity<UserStore>,
 121    status: client::Status,
 122    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
 123    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
 124    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
 125    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
 126    _fetch_models_task: Task<()>,
 127    _settings_subscription: Subscription,
 128    _llm_token_subscription: Subscription,
 129}
 130
 131impl State {
 132    fn new(
 133        client: Arc<Client>,
 134        user_store: Entity<UserStore>,
 135        status: client::Status,
 136        cx: &mut Context<Self>,
 137    ) -> Self {
 138        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 139        let mut current_user = user_store.read(cx).watch_current_user();
 140        Self {
 141            client: client.clone(),
 142            llm_api_token: LlmApiToken::default(),
 143            user_store,
 144            status,
 145            models: Vec::new(),
 146            default_model: None,
 147            default_fast_model: None,
 148            recommended_models: Vec::new(),
 149            _fetch_models_task: cx.spawn(async move |this, cx| {
 150                maybe!(async move {
 151                    let (client, llm_api_token) = this
 152                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 153
 154                    while current_user.borrow().is_none() {
 155                        current_user.next().await;
 156                    }
 157
 158                    let response =
 159                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 160                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 161                    anyhow::Ok(())
 162                })
 163                .await
 164                .context("failed to fetch Zed models")
 165                .log_err();
 166            }),
 167            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 168                cx.notify();
 169            }),
 170            _llm_token_subscription: cx.subscribe(
 171                &refresh_llm_token_listener,
 172                move |this, _listener, _event, cx| {
 173                    let client = this.client.clone();
 174                    let llm_api_token = this.llm_api_token.clone();
 175                    cx.spawn(async move |this, cx| {
 176                        llm_api_token.refresh(&client).await?;
 177                        let response = Self::fetch_models(client, llm_api_token).await?;
 178                        this.update(cx, |this, cx| {
 179                            this.update_models(response, cx);
 180                        })
 181                    })
 182                    .detach_and_log_err(cx);
 183                },
 184            ),
 185        }
 186    }
 187
 188    fn is_signed_out(&self, cx: &App) -> bool {
 189        self.user_store.read(cx).current_user().is_none()
 190    }
 191
 192    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 193        let client = self.client.clone();
 194        cx.spawn(async move |state, cx| {
 195            client.sign_in_with_optional_connect(true, cx).await?;
 196            state.update(cx, |_, cx| cx.notify())
 197        })
 198    }
 199    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 200        let mut models = Vec::new();
 201
 202        for model in response.models {
 203            models.push(Arc::new(model.clone()));
 204
 205            // Right now we represent thinking variants of models as separate models on the client,
 206            // so we need to insert variants for any model that supports thinking.
 207            if model.supports_thinking {
 208                models.push(Arc::new(cloud_llm_client::LanguageModel {
 209                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 210                    display_name: format!("{} Thinking", model.display_name),
 211                    ..model
 212                }));
 213            }
 214        }
 215
 216        self.default_model = models
 217            .iter()
 218            .find(|model| model.id == response.default_model)
 219            .cloned();
 220        self.default_fast_model = models
 221            .iter()
 222            .find(|model| model.id == response.default_fast_model)
 223            .cloned();
 224        self.recommended_models = response
 225            .recommended_models
 226            .iter()
 227            .filter_map(|id| models.iter().find(|model| &model.id == id))
 228            .cloned()
 229            .collect();
 230        self.models = models;
 231        cx.notify();
 232    }
 233
 234    async fn fetch_models(
 235        client: Arc<Client>,
 236        llm_api_token: LlmApiToken,
 237    ) -> Result<ListModelsResponse> {
 238        let http_client = &client.http_client();
 239        let token = llm_api_token.acquire(&client).await?;
 240
 241        let request = http_client::Request::builder()
 242            .method(Method::GET)
 243            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 244            .header("Authorization", format!("Bearer {token}"))
 245            .body(AsyncBody::empty())?;
 246        let mut response = http_client
 247            .send(request)
 248            .await
 249            .context("failed to send list models request")?;
 250
 251        if response.status().is_success() {
 252            let mut body = String::new();
 253            response.body_mut().read_to_string(&mut body).await?;
 254            Ok(serde_json::from_str(&body)?)
 255        } else {
 256            let mut body = String::new();
 257            response.body_mut().read_to_string(&mut body).await?;
 258            anyhow::bail!(
 259                "error listing models.\nStatus: {:?}\nBody: {body}",
 260                response.status(),
 261            );
 262        }
 263    }
 264}
 265
 266impl CloudLanguageModelProvider {
 267    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 268        let mut status_rx = client.status();
 269        let status = *status_rx.borrow();
 270
 271        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 272
 273        let state_ref = state.downgrade();
 274        let maintain_client_status = cx.spawn(async move |cx| {
 275            while let Some(status) = status_rx.next().await {
 276                if let Some(this) = state_ref.upgrade() {
 277                    _ = this.update(cx, |this, cx| {
 278                        if this.status != status {
 279                            this.status = status;
 280                            cx.notify();
 281                        }
 282                    });
 283                } else {
 284                    break;
 285                }
 286            }
 287        });
 288
 289        Self {
 290            client,
 291            state,
 292            _maintain_client_status: maintain_client_status,
 293        }
 294    }
 295
 296    fn create_language_model(
 297        &self,
 298        model: Arc<cloud_llm_client::LanguageModel>,
 299        llm_api_token: LlmApiToken,
 300    ) -> Arc<dyn LanguageModel> {
 301        Arc::new(CloudLanguageModel {
 302            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 303            model,
 304            llm_api_token,
 305            client: self.client.clone(),
 306            request_limiter: RateLimiter::new(4),
 307        })
 308    }
 309}
 310
 311impl LanguageModelProviderState for CloudLanguageModelProvider {
 312    type ObservableEntity = State;
 313
 314    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 315        Some(self.state.clone())
 316    }
 317}
 318
 319impl LanguageModelProvider for CloudLanguageModelProvider {
 320    fn id(&self) -> LanguageModelProviderId {
 321        PROVIDER_ID
 322    }
 323
 324    fn name(&self) -> LanguageModelProviderName {
 325        PROVIDER_NAME
 326    }
 327
 328    fn icon(&self) -> IconName {
 329        IconName::AiZed
 330    }
 331
 332    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 333        let default_model = self.state.read(cx).default_model.clone()?;
 334        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 335        Some(self.create_language_model(default_model, llm_api_token))
 336    }
 337
 338    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 339        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 340        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 341        Some(self.create_language_model(default_fast_model, llm_api_token))
 342    }
 343
 344    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 345        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 346        self.state
 347            .read(cx)
 348            .recommended_models
 349            .iter()
 350            .cloned()
 351            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 352            .collect()
 353    }
 354
 355    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 356        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 357        self.state
 358            .read(cx)
 359            .models
 360            .iter()
 361            .cloned()
 362            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 363            .collect()
 364    }
 365
 366    fn is_authenticated(&self, cx: &App) -> bool {
 367        let state = self.state.read(cx);
 368        !state.is_signed_out(cx)
 369    }
 370
 371    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 372        Task::ready(Ok(()))
 373    }
 374
 375    fn configuration_view(
 376        &self,
 377        _target_agent: language_model::ConfigurationViewTargetAgent,
 378        _: &mut Window,
 379        cx: &mut App,
 380    ) -> AnyView {
 381        cx.new(|_| ConfigurationView::new(self.state.clone()))
 382            .into()
 383    }
 384
 385    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 386        Task::ready(Ok(()))
 387    }
 388}
 389
 390pub struct CloudLanguageModel {
 391    id: LanguageModelId,
 392    model: Arc<cloud_llm_client::LanguageModel>,
 393    llm_api_token: LlmApiToken,
 394    client: Arc<Client>,
 395    request_limiter: RateLimiter,
 396}
 397
 398struct PerformLlmCompletionResponse {
 399    response: Response<AsyncBody>,
 400    usage: Option<ModelRequestUsage>,
 401    tool_use_limit_reached: bool,
 402    includes_status_messages: bool,
 403}
 404
 405impl CloudLanguageModel {
 406    async fn perform_llm_completion(
 407        client: Arc<Client>,
 408        llm_api_token: LlmApiToken,
 409        app_version: Option<SemanticVersion>,
 410        body: CompletionBody,
 411    ) -> Result<PerformLlmCompletionResponse> {
 412        let http_client = &client.http_client();
 413
 414        let mut token = llm_api_token.acquire(&client).await?;
 415        let mut refreshed_token = false;
 416
 417        loop {
 418            let request_builder = http_client::Request::builder()
 419                .method(Method::POST)
 420                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref());
 421            let request_builder = if let Some(app_version) = app_version {
 422                request_builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 423            } else {
 424                request_builder
 425            };
 426
 427            let request = request_builder
 428                .header("Content-Type", "application/json")
 429                .header("Authorization", format!("Bearer {token}"))
 430                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 431                .body(serde_json::to_string(&body)?.into())?;
 432            let mut response = http_client.send(request).await?;
 433            let status = response.status();
 434            if status.is_success() {
 435                let includes_status_messages = response
 436                    .headers()
 437                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 438                    .is_some();
 439
 440                let tool_use_limit_reached = response
 441                    .headers()
 442                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 443                    .is_some();
 444
 445                let usage = if includes_status_messages {
 446                    None
 447                } else {
 448                    ModelRequestUsage::from_headers(response.headers()).ok()
 449                };
 450
 451                return Ok(PerformLlmCompletionResponse {
 452                    response,
 453                    usage,
 454                    includes_status_messages,
 455                    tool_use_limit_reached,
 456                });
 457            }
 458
 459            if !refreshed_token
 460                && response
 461                    .headers()
 462                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 463                    .is_some()
 464            {
 465                token = llm_api_token.refresh(&client).await?;
 466                refreshed_token = true;
 467                continue;
 468            }
 469
 470            if status == StatusCode::FORBIDDEN
 471                && response
 472                    .headers()
 473                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 474                    .is_some()
 475            {
 476                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 477                    .headers()
 478                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 479                    .and_then(|resource| resource.to_str().ok())
 480                    && let Some(plan) = response
 481                        .headers()
 482                        .get(CURRENT_PLAN_HEADER_NAME)
 483                        .and_then(|plan| plan.to_str().ok())
 484                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 485                        .map(Plan::V1)
 486                {
 487                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 488                }
 489            } else if status == StatusCode::PAYMENT_REQUIRED {
 490                return Err(anyhow!(PaymentRequiredError));
 491            }
 492
 493            let mut body = String::new();
 494            let headers = response.headers().clone();
 495            response.body_mut().read_to_string(&mut body).await?;
 496            return Err(anyhow!(ApiError {
 497                status,
 498                body,
 499                headers
 500            }));
 501        }
 502    }
 503}
 504
 505#[derive(Debug, Error)]
 506#[error("cloud language model request failed with status {status}: {body}")]
 507struct ApiError {
 508    status: StatusCode,
 509    body: String,
 510    headers: HeaderMap<HeaderValue>,
 511}
 512
 513/// Represents error responses from Zed's cloud API.
 514///
 515/// Example JSON for an upstream HTTP error:
 516/// ```json
 517/// {
 518///   "code": "upstream_http_error",
 519///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 520///   "upstream_status": 503
 521/// }
 522/// ```
 523#[derive(Debug, serde::Deserialize)]
 524struct CloudApiError {
 525    code: String,
 526    message: String,
 527    #[serde(default)]
 528    #[serde(deserialize_with = "deserialize_optional_status_code")]
 529    upstream_status: Option<StatusCode>,
 530    #[serde(default)]
 531    retry_after: Option<f64>,
 532}
 533
 534fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 535where
 536    D: serde::Deserializer<'de>,
 537{
 538    let opt: Option<u16> = Option::deserialize(deserializer)?;
 539    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 540}
 541
 542impl From<ApiError> for LanguageModelCompletionError {
 543    fn from(error: ApiError) -> Self {
 544        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 545            if cloud_error.code.starts_with("upstream_http_") {
 546                let status = if let Some(status) = cloud_error.upstream_status {
 547                    status
 548                } else if cloud_error.code.ends_with("_error") {
 549                    error.status
 550                } else {
 551                    // If there's a status code in the code string (e.g. "upstream_http_429")
 552                    // then use that; otherwise, see if the JSON contains a status code.
 553                    cloud_error
 554                        .code
 555                        .strip_prefix("upstream_http_")
 556                        .and_then(|code_str| code_str.parse::<u16>().ok())
 557                        .and_then(|code| StatusCode::from_u16(code).ok())
 558                        .unwrap_or(error.status)
 559                };
 560
 561                return LanguageModelCompletionError::UpstreamProviderError {
 562                    message: cloud_error.message,
 563                    status,
 564                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 565                };
 566            }
 567
 568            return LanguageModelCompletionError::from_http_status(
 569                PROVIDER_NAME,
 570                error.status,
 571                cloud_error.message,
 572                None,
 573            );
 574        }
 575
 576        let retry_after = None;
 577        LanguageModelCompletionError::from_http_status(
 578            PROVIDER_NAME,
 579            error.status,
 580            error.body,
 581            retry_after,
 582        )
 583    }
 584}
 585
 586impl LanguageModel for CloudLanguageModel {
 587    fn id(&self) -> LanguageModelId {
 588        self.id.clone()
 589    }
 590
 591    fn name(&self) -> LanguageModelName {
 592        LanguageModelName::from(self.model.display_name.clone())
 593    }
 594
 595    fn provider_id(&self) -> LanguageModelProviderId {
 596        PROVIDER_ID
 597    }
 598
 599    fn provider_name(&self) -> LanguageModelProviderName {
 600        PROVIDER_NAME
 601    }
 602
 603    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 604        use cloud_llm_client::LanguageModelProvider::*;
 605        match self.model.provider {
 606            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 607            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 608            Google => language_model::GOOGLE_PROVIDER_ID,
 609        }
 610    }
 611
 612    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 613        use cloud_llm_client::LanguageModelProvider::*;
 614        match self.model.provider {
 615            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 616            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 617            Google => language_model::GOOGLE_PROVIDER_NAME,
 618        }
 619    }
 620
 621    fn supports_tools(&self) -> bool {
 622        self.model.supports_tools
 623    }
 624
 625    fn supports_images(&self) -> bool {
 626        self.model.supports_images
 627    }
 628
 629    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 630        match choice {
 631            LanguageModelToolChoice::Auto
 632            | LanguageModelToolChoice::Any
 633            | LanguageModelToolChoice::None => true,
 634        }
 635    }
 636
 637    fn supports_burn_mode(&self) -> bool {
 638        self.model.supports_max_mode
 639    }
 640
 641    fn telemetry_id(&self) -> String {
 642        format!("zed.dev/{}", self.model.id)
 643    }
 644
 645    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 646        match self.model.provider {
 647            cloud_llm_client::LanguageModelProvider::Anthropic
 648            | cloud_llm_client::LanguageModelProvider::OpenAi => {
 649                LanguageModelToolSchemaFormat::JsonSchema
 650            }
 651            cloud_llm_client::LanguageModelProvider::Google => {
 652                LanguageModelToolSchemaFormat::JsonSchemaSubset
 653            }
 654        }
 655    }
 656
 657    fn max_token_count(&self) -> u64 {
 658        self.model.max_token_count as u64
 659    }
 660
 661    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 662        self.model
 663            .max_token_count_in_max_mode
 664            .filter(|_| self.model.supports_max_mode)
 665            .map(|max_token_count| max_token_count as u64)
 666    }
 667
 668    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 669        match &self.model.provider {
 670            cloud_llm_client::LanguageModelProvider::Anthropic => {
 671                Some(LanguageModelCacheConfiguration {
 672                    min_total_token: 2_048,
 673                    should_speculate: true,
 674                    max_cache_anchors: 4,
 675                })
 676            }
 677            cloud_llm_client::LanguageModelProvider::OpenAi
 678            | cloud_llm_client::LanguageModelProvider::Google => None,
 679        }
 680    }
 681
 682    fn count_tokens(
 683        &self,
 684        request: LanguageModelRequest,
 685        cx: &App,
 686    ) -> BoxFuture<'static, Result<u64>> {
 687        match self.model.provider {
 688            cloud_llm_client::LanguageModelProvider::Anthropic => {
 689                count_anthropic_tokens(request, cx)
 690            }
 691            cloud_llm_client::LanguageModelProvider::OpenAi => {
 692                let model = match open_ai::Model::from_id(&self.model.id.0) {
 693                    Ok(model) => model,
 694                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 695                };
 696                count_open_ai_tokens(request, model, cx)
 697            }
 698            cloud_llm_client::LanguageModelProvider::Google => {
 699                let client = self.client.clone();
 700                let llm_api_token = self.llm_api_token.clone();
 701                let model_id = self.model.id.to_string();
 702                let generate_content_request =
 703                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 704                async move {
 705                    let http_client = &client.http_client();
 706                    let token = llm_api_token.acquire(&client).await?;
 707
 708                    let request_body = CountTokensBody {
 709                        provider: cloud_llm_client::LanguageModelProvider::Google,
 710                        model: model_id,
 711                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 712                            generate_content_request,
 713                        })?,
 714                    };
 715                    let request = http_client::Request::builder()
 716                        .method(Method::POST)
 717                        .uri(
 718                            http_client
 719                                .build_zed_llm_url("/count_tokens", &[])?
 720                                .as_ref(),
 721                        )
 722                        .header("Content-Type", "application/json")
 723                        .header("Authorization", format!("Bearer {token}"))
 724                        .body(serde_json::to_string(&request_body)?.into())?;
 725                    let mut response = http_client.send(request).await?;
 726                    let status = response.status();
 727                    let headers = response.headers().clone();
 728                    let mut response_body = String::new();
 729                    response
 730                        .body_mut()
 731                        .read_to_string(&mut response_body)
 732                        .await?;
 733
 734                    if status.is_success() {
 735                        let response_body: CountTokensResponse =
 736                            serde_json::from_str(&response_body)?;
 737
 738                        Ok(response_body.tokens as u64)
 739                    } else {
 740                        Err(anyhow!(ApiError {
 741                            status,
 742                            body: response_body,
 743                            headers
 744                        }))
 745                    }
 746                }
 747                .boxed()
 748            }
 749        }
 750    }
 751
 752    fn stream_completion(
 753        &self,
 754        request: LanguageModelRequest,
 755        cx: &AsyncApp,
 756    ) -> BoxFuture<
 757        'static,
 758        Result<
 759            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 760            LanguageModelCompletionError,
 761        >,
 762    > {
 763        let thread_id = request.thread_id.clone();
 764        let prompt_id = request.prompt_id.clone();
 765        let intent = request.intent;
 766        let mode = request.mode;
 767        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 768        let thinking_allowed = request.thinking_allowed;
 769        match self.model.provider {
 770            cloud_llm_client::LanguageModelProvider::Anthropic => {
 771                let request = into_anthropic(
 772                    request,
 773                    self.model.id.to_string(),
 774                    1.0,
 775                    self.model.max_output_tokens as u64,
 776                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 777                        AnthropicModelMode::Thinking {
 778                            budget_tokens: Some(4_096),
 779                        }
 780                    } else {
 781                        AnthropicModelMode::Default
 782                    },
 783                );
 784                let client = self.client.clone();
 785                let llm_api_token = self.llm_api_token.clone();
 786                let future = self.request_limiter.stream(async move {
 787                    let PerformLlmCompletionResponse {
 788                        response,
 789                        usage,
 790                        includes_status_messages,
 791                        tool_use_limit_reached,
 792                    } = Self::perform_llm_completion(
 793                        client.clone(),
 794                        llm_api_token,
 795                        app_version,
 796                        CompletionBody {
 797                            thread_id,
 798                            prompt_id,
 799                            intent,
 800                            mode,
 801                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 802                            model: request.model.clone(),
 803                            provider_request: serde_json::to_value(&request)
 804                                .map_err(|e| anyhow!(e))?,
 805                        },
 806                    )
 807                    .await
 808                    .map_err(|err| match err.downcast::<ApiError>() {
 809                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 810                        Err(err) => anyhow!(err),
 811                    })?;
 812
 813                    let mut mapper = AnthropicEventMapper::new();
 814                    Ok(map_cloud_completion_events(
 815                        Box::pin(
 816                            response_lines(response, includes_status_messages)
 817                                .chain(usage_updated_event(usage))
 818                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 819                        ),
 820                        move |event| mapper.map_event(event),
 821                    ))
 822                });
 823                async move { Ok(future.await?.boxed()) }.boxed()
 824            }
 825            cloud_llm_client::LanguageModelProvider::OpenAi => {
 826                let client = self.client.clone();
 827                let model = match open_ai::Model::from_id(&self.model.id.0) {
 828                    Ok(model) => model,
 829                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 830                };
 831                let request = into_open_ai(
 832                    request,
 833                    model.id(),
 834                    model.supports_parallel_tool_calls(),
 835                    model.supports_prompt_cache_key(),
 836                    None,
 837                    None,
 838                );
 839                let llm_api_token = self.llm_api_token.clone();
 840                let future = self.request_limiter.stream(async move {
 841                    let PerformLlmCompletionResponse {
 842                        response,
 843                        usage,
 844                        includes_status_messages,
 845                        tool_use_limit_reached,
 846                    } = Self::perform_llm_completion(
 847                        client.clone(),
 848                        llm_api_token,
 849                        app_version,
 850                        CompletionBody {
 851                            thread_id,
 852                            prompt_id,
 853                            intent,
 854                            mode,
 855                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 856                            model: request.model.clone(),
 857                            provider_request: serde_json::to_value(&request)
 858                                .map_err(|e| anyhow!(e))?,
 859                        },
 860                    )
 861                    .await?;
 862
 863                    let mut mapper = OpenAiEventMapper::new();
 864                    Ok(map_cloud_completion_events(
 865                        Box::pin(
 866                            response_lines(response, includes_status_messages)
 867                                .chain(usage_updated_event(usage))
 868                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 869                        ),
 870                        move |event| mapper.map_event(event),
 871                    ))
 872                });
 873                async move { Ok(future.await?.boxed()) }.boxed()
 874            }
 875            cloud_llm_client::LanguageModelProvider::Google => {
 876                let client = self.client.clone();
 877                let request =
 878                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 879                let llm_api_token = self.llm_api_token.clone();
 880                let future = self.request_limiter.stream(async move {
 881                    let PerformLlmCompletionResponse {
 882                        response,
 883                        usage,
 884                        includes_status_messages,
 885                        tool_use_limit_reached,
 886                    } = Self::perform_llm_completion(
 887                        client.clone(),
 888                        llm_api_token,
 889                        app_version,
 890                        CompletionBody {
 891                            thread_id,
 892                            prompt_id,
 893                            intent,
 894                            mode,
 895                            provider: cloud_llm_client::LanguageModelProvider::Google,
 896                            model: request.model.model_id.clone(),
 897                            provider_request: serde_json::to_value(&request)
 898                                .map_err(|e| anyhow!(e))?,
 899                        },
 900                    )
 901                    .await?;
 902
 903                    let mut mapper = GoogleEventMapper::new();
 904                    Ok(map_cloud_completion_events(
 905                        Box::pin(
 906                            response_lines(response, includes_status_messages)
 907                                .chain(usage_updated_event(usage))
 908                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 909                        ),
 910                        move |event| mapper.map_event(event),
 911                    ))
 912                });
 913                async move { Ok(future.await?.boxed()) }.boxed()
 914            }
 915        }
 916    }
 917}
 918
 919fn map_cloud_completion_events<T, F>(
 920    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 921    mut map_callback: F,
 922) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 923where
 924    T: DeserializeOwned + 'static,
 925    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 926        + Send
 927        + 'static,
 928{
 929    stream
 930        .flat_map(move |event| {
 931            futures::stream::iter(match event {
 932                Err(error) => {
 933                    vec![Err(LanguageModelCompletionError::from(error))]
 934                }
 935                Ok(CompletionEvent::Status(event)) => {
 936                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 937                }
 938                Ok(CompletionEvent::Event(event)) => map_callback(event),
 939            })
 940        })
 941        .boxed()
 942}
 943
 944fn usage_updated_event<T>(
 945    usage: Option<ModelRequestUsage>,
 946) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 947    futures::stream::iter(usage.map(|usage| {
 948        Ok(CompletionEvent::Status(
 949            CompletionRequestStatus::UsageUpdated {
 950                amount: usage.amount as usize,
 951                limit: usage.limit,
 952            },
 953        ))
 954    }))
 955}
 956
 957fn tool_use_limit_reached_event<T>(
 958    tool_use_limit_reached: bool,
 959) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 960    futures::stream::iter(tool_use_limit_reached.then(|| {
 961        Ok(CompletionEvent::Status(
 962            CompletionRequestStatus::ToolUseLimitReached,
 963        ))
 964    }))
 965}
 966
 967fn response_lines<T: DeserializeOwned>(
 968    response: Response<AsyncBody>,
 969    includes_status_messages: bool,
 970) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 971    futures::stream::try_unfold(
 972        (String::new(), BufReader::new(response.into_body())),
 973        move |(mut line, mut body)| async move {
 974            match body.read_line(&mut line).await {
 975                Ok(0) => Ok(None),
 976                Ok(_) => {
 977                    let event = if includes_status_messages {
 978                        serde_json::from_str::<CompletionEvent<T>>(&line)?
 979                    } else {
 980                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
 981                    };
 982
 983                    line.clear();
 984                    Ok(Some((event, (line, body))))
 985                }
 986                Err(e) => Err(e.into()),
 987            }
 988        },
 989    )
 990}
 991
 992#[derive(IntoElement, RegisterComponent)]
 993struct ZedAiConfiguration {
 994    is_connected: bool,
 995    plan: Option<Plan>,
 996    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
 997    eligible_for_trial: bool,
 998    account_too_young: bool,
 999    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1000}
1001
1002impl RenderOnce for ZedAiConfiguration {
1003    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
1004        let young_account_banner = YoungAccountBanner;
1005
1006        let is_pro = self.plan.is_some_and(|plan| {
1007            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
1008        });
1009        let subscription_text = match (self.plan, self.subscription_period) {
1010            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1011                "You have access to Zed's hosted models through your Pro subscription."
1012            }
1013            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1014                "You have access to Zed's hosted models through your Pro trial."
1015            }
1016            (Some(Plan::V1(PlanV1::ZedFree) | Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1017                "You have basic access to Zed's hosted models through the Free plan."
1018            }
1019            _ => {
1020                if self.eligible_for_trial {
1021                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1022                } else {
1023                    "Subscribe for access to Zed's hosted models."
1024                }
1025            }
1026        };
1027
1028        let manage_subscription_buttons = if is_pro {
1029            Button::new("manage_settings", "Manage Subscription")
1030                .full_width()
1031                .style(ButtonStyle::Tinted(TintColor::Accent))
1032                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1033                .into_any_element()
1034        } else if self.plan.is_none() || self.eligible_for_trial {
1035            Button::new("start_trial", "Start 14-day Free Pro Trial")
1036                .full_width()
1037                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1038                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1039                .into_any_element()
1040        } else {
1041            Button::new("upgrade", "Upgrade to Pro")
1042                .full_width()
1043                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1044                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1045                .into_any_element()
1046        };
1047
1048        if !self.is_connected {
1049            return v_flex()
1050                .gap_2()
1051                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1052                .child(
1053                    Button::new("sign_in", "Sign In to use Zed AI")
1054                        .icon_color(Color::Muted)
1055                        .icon(IconName::Github)
1056                        .icon_size(IconSize::Small)
1057                        .icon_position(IconPosition::Start)
1058                        .full_width()
1059                        .on_click({
1060                            let callback = self.sign_in_callback.clone();
1061                            move |_, window, cx| (callback)(window, cx)
1062                        }),
1063                );
1064        }
1065
1066        v_flex().gap_2().w_full().map(|this| {
1067            if self.account_too_young {
1068                this.child(young_account_banner).child(
1069                    Button::new("upgrade", "Upgrade to Pro")
1070                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1071                        .full_width()
1072                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1073                )
1074            } else {
1075                this.text_sm()
1076                    .child(subscription_text)
1077                    .child(manage_subscription_buttons)
1078            }
1079        })
1080    }
1081}
1082
1083struct ConfigurationView {
1084    state: Entity<State>,
1085    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1086}
1087
1088impl ConfigurationView {
1089    fn new(state: Entity<State>) -> Self {
1090        let sign_in_callback = Arc::new({
1091            let state = state.clone();
1092            move |_window: &mut Window, cx: &mut App| {
1093                state.update(cx, |state, cx| {
1094                    state.authenticate(cx).detach_and_log_err(cx);
1095                });
1096            }
1097        });
1098
1099        Self {
1100            state,
1101            sign_in_callback,
1102        }
1103    }
1104}
1105
1106impl Render for ConfigurationView {
1107    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1108        let state = self.state.read(cx);
1109        let user_store = state.user_store.read(cx);
1110
1111        ZedAiConfiguration {
1112            is_connected: !state.is_signed_out(cx),
1113            plan: user_store.plan(),
1114            subscription_period: user_store.subscription_period(),
1115            eligible_for_trial: user_store.trial_started_at().is_none(),
1116            account_too_young: user_store.account_too_young(),
1117            sign_in_callback: self.sign_in_callback.clone(),
1118        }
1119    }
1120}
1121
1122impl Component for ZedAiConfiguration {
1123    fn name() -> &'static str {
1124        "AI Configuration Content"
1125    }
1126
1127    fn sort_name() -> &'static str {
1128        "AI Configuration Content"
1129    }
1130
1131    fn scope() -> ComponentScope {
1132        ComponentScope::Onboarding
1133    }
1134
1135    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1136        fn configuration(
1137            is_connected: bool,
1138            plan: Option<Plan>,
1139            eligible_for_trial: bool,
1140            account_too_young: bool,
1141        ) -> AnyElement {
1142            ZedAiConfiguration {
1143                is_connected,
1144                plan,
1145                subscription_period: plan
1146                    .is_some()
1147                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1148                eligible_for_trial,
1149                account_too_young,
1150                sign_in_callback: Arc::new(|_, _| {}),
1151            }
1152            .into_any_element()
1153        }
1154
1155        Some(
1156            v_flex()
1157                .p_4()
1158                .gap_4()
1159                .children(vec![
1160                    single_example("Not connected", configuration(false, None, false, false)),
1161                    single_example(
1162                        "Accept Terms of Service",
1163                        configuration(true, None, true, false),
1164                    ),
1165                    single_example(
1166                        "No Plan - Not eligible for trial",
1167                        configuration(true, None, false, false),
1168                    ),
1169                    single_example(
1170                        "No Plan - Eligible for trial",
1171                        configuration(true, None, true, false),
1172                    ),
1173                    single_example(
1174                        "Free Plan",
1175                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1176                    ),
1177                    single_example(
1178                        "Zed Pro Trial Plan",
1179                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1180                    ),
1181                    single_example(
1182                        "Zed Pro Plan",
1183                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1184                    ),
1185                ])
1186                .into_any_element(),
1187        )
1188    }
1189}
1190
1191#[cfg(test)]
1192mod tests {
1193    use super::*;
1194    use http_client::http::{HeaderMap, StatusCode};
1195    use language_model::LanguageModelCompletionError;
1196
1197    #[test]
1198    fn test_api_error_conversion_with_upstream_http_error() {
1199        // upstream_http_error with 503 status should become ServerOverloaded
1200        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1201
1202        let api_error = ApiError {
1203            status: StatusCode::INTERNAL_SERVER_ERROR,
1204            body: error_body.to_string(),
1205            headers: HeaderMap::new(),
1206        };
1207
1208        let completion_error: LanguageModelCompletionError = api_error.into();
1209
1210        match completion_error {
1211            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1212                assert_eq!(
1213                    message,
1214                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1215                );
1216            }
1217            _ => panic!(
1218                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1219                completion_error
1220            ),
1221        }
1222
1223        // upstream_http_error with 500 status should become ApiInternalServerError
1224        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1225
1226        let api_error = ApiError {
1227            status: StatusCode::INTERNAL_SERVER_ERROR,
1228            body: error_body.to_string(),
1229            headers: HeaderMap::new(),
1230        };
1231
1232        let completion_error: LanguageModelCompletionError = api_error.into();
1233
1234        match completion_error {
1235            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1236                assert_eq!(
1237                    message,
1238                    "Received an error from the OpenAI API: internal server error"
1239                );
1240            }
1241            _ => panic!(
1242                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1243                completion_error
1244            ),
1245        }
1246
1247        // upstream_http_error with 429 status should become RateLimitExceeded
1248        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1249
1250        let api_error = ApiError {
1251            status: StatusCode::INTERNAL_SERVER_ERROR,
1252            body: error_body.to_string(),
1253            headers: HeaderMap::new(),
1254        };
1255
1256        let completion_error: LanguageModelCompletionError = api_error.into();
1257
1258        match completion_error {
1259            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1260                assert_eq!(
1261                    message,
1262                    "Received an error from the Google API: rate limit exceeded"
1263                );
1264            }
1265            _ => panic!(
1266                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1267                completion_error
1268            ),
1269        }
1270
1271        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1272        let error_body = "Regular internal server error";
1273
1274        let api_error = ApiError {
1275            status: StatusCode::INTERNAL_SERVER_ERROR,
1276            body: error_body.to_string(),
1277            headers: HeaderMap::new(),
1278        };
1279
1280        let completion_error: LanguageModelCompletionError = api_error.into();
1281
1282        match completion_error {
1283            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1284                assert_eq!(provider, PROVIDER_NAME);
1285                assert_eq!(message, "Regular internal server error");
1286            }
1287            _ => panic!(
1288                "Expected ApiInternalServerError for regular 500, got: {:?}",
1289                completion_error
1290            ),
1291        }
1292
1293        // upstream_http_429 format should be converted to UpstreamProviderError
1294        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1295
1296        let api_error = ApiError {
1297            status: StatusCode::INTERNAL_SERVER_ERROR,
1298            body: error_body.to_string(),
1299            headers: HeaderMap::new(),
1300        };
1301
1302        let completion_error: LanguageModelCompletionError = api_error.into();
1303
1304        match completion_error {
1305            LanguageModelCompletionError::UpstreamProviderError {
1306                message,
1307                status,
1308                retry_after,
1309            } => {
1310                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1311                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1312                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1313            }
1314            _ => panic!(
1315                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1316                completion_error
1317            ),
1318        }
1319
1320        // Invalid JSON in error body should fall back to regular error handling
1321        let error_body = "Not JSON at all";
1322
1323        let api_error = ApiError {
1324            status: StatusCode::INTERNAL_SERVER_ERROR,
1325            body: error_body.to_string(),
1326            headers: HeaderMap::new(),
1327        };
1328
1329        let completion_error: LanguageModelCompletionError = api_error.into();
1330
1331        match completion_error {
1332            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1333                assert_eq!(provider, PROVIDER_NAME);
1334            }
1335            _ => panic!(
1336                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1337                completion_error
1338            ),
1339        }
1340    }
1341}