sum_tree.rs

   1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator as _};
   7use std::marker::PhantomData;
   8use std::mem;
   9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  11use ztracing::instrument;
  12
  13#[cfg(test)]
  14pub const TREE_BASE: usize = 2;
  15#[cfg(not(test))]
  16pub const TREE_BASE: usize = 6;
  17
  18/// An item that can be stored in a [`SumTree`]
  19///
  20/// Must be summarized by a type that implements [`Summary`]
  21pub trait Item: Clone {
  22    type Summary: Summary;
  23
  24    fn summary(&self, cx: <Self::Summary as Summary>::Context<'_>) -> Self::Summary;
  25}
  26
  27/// An [`Item`] whose summary has a specific key that can be used to identify it
  28pub trait KeyedItem: Item {
  29    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  30
  31    fn key(&self) -> Self::Key;
  32}
  33
  34/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  35///
  36/// Each Summary type can have multiple [`Dimension`]s that it measures,
  37/// which can be used to navigate the tree
  38pub trait Summary: Clone {
  39    type Context<'a>: Copy;
  40    fn zero<'a>(cx: Self::Context<'a>) -> Self;
  41    fn add_summary<'a>(&mut self, summary: &Self, cx: Self::Context<'a>);
  42}
  43
  44pub trait ContextLessSummary: Clone {
  45    fn zero() -> Self;
  46    fn add_summary(&mut self, summary: &Self);
  47}
  48
  49impl<T: ContextLessSummary> Summary for T {
  50    type Context<'a> = ();
  51
  52    fn zero<'a>((): ()) -> Self {
  53        T::zero()
  54    }
  55
  56    fn add_summary<'a>(&mut self, summary: &Self, (): ()) {
  57        T::add_summary(self, summary)
  58    }
  59}
  60
  61#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
  62pub struct NoSummary;
  63
  64/// Catch-all implementation for when you need something that implements [`Summary`] without a specific type.
  65/// We implement it on a `NoSummary` instead of re-using `()`, as that avoids blanket impl collisions with `impl<T: Summary> Dimension for T`
  66/// (as we also need unit type to be a fill-in dimension)
  67impl ContextLessSummary for NoSummary {
  68    fn zero() -> Self {
  69        NoSummary
  70    }
  71
  72    fn add_summary(&mut self, _: &Self) {}
  73}
  74
  75/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  76///
  77/// You can use dimensions to seek to a specific location in the [`SumTree`]
  78///
  79/// # Example:
  80/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  81/// Each of these are different dimensions we may want to seek to
  82pub trait Dimension<'a, S: Summary>: Clone {
  83    fn zero(cx: S::Context<'_>) -> Self;
  84
  85    fn add_summary(&mut self, summary: &'a S, cx: S::Context<'_>);
  86    #[must_use]
  87    fn with_added_summary(mut self, summary: &'a S, cx: S::Context<'_>) -> Self {
  88        self.add_summary(summary, cx);
  89        self
  90    }
  91
  92    fn from_summary(summary: &'a S, cx: S::Context<'_>) -> Self {
  93        let mut dimension = Self::zero(cx);
  94        dimension.add_summary(summary, cx);
  95        dimension
  96    }
  97}
  98
  99impl<'a, T: Summary> Dimension<'a, T> for T {
 100    fn zero(cx: T::Context<'_>) -> Self {
 101        Summary::zero(cx)
 102    }
 103
 104    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 105        Summary::add_summary(self, summary, cx);
 106    }
 107}
 108
 109pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>> {
 110    fn cmp(&self, cursor_location: &D, cx: S::Context<'_>) -> Ordering;
 111}
 112
 113impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
 114    fn cmp(&self, cursor_location: &Self, _: S::Context<'_>) -> Ordering {
 115        Ord::cmp(self, cursor_location)
 116    }
 117}
 118
 119impl<'a, T: Summary> Dimension<'a, T> for () {
 120    fn zero(_: T::Context<'_>) -> Self {}
 121
 122    fn add_summary(&mut self, _: &'a T, _: T::Context<'_>) {}
 123}
 124
 125#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
 126pub struct Dimensions<D1, D2, D3 = ()>(pub D1, pub D2, pub D3);
 127
 128impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>, D3: Dimension<'a, T>>
 129    Dimension<'a, T> for Dimensions<D1, D2, D3>
 130{
 131    fn zero(cx: T::Context<'_>) -> Self {
 132        Dimensions(D1::zero(cx), D2::zero(cx), D3::zero(cx))
 133    }
 134
 135    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 136        self.0.add_summary(summary, cx);
 137        self.1.add_summary(summary, cx);
 138        self.2.add_summary(summary, cx);
 139    }
 140}
 141
 142impl<'a, S, D1, D2, D3> SeekTarget<'a, S, Dimensions<D1, D2, D3>> for D1
 143where
 144    S: Summary,
 145    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
 146    D2: Dimension<'a, S>,
 147    D3: Dimension<'a, S>,
 148{
 149    fn cmp(&self, cursor_location: &Dimensions<D1, D2, D3>, cx: S::Context<'_>) -> Ordering {
 150        self.cmp(&cursor_location.0, cx)
 151    }
 152}
 153
 154/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 155///
 156/// The primary use case is for text, where Bias influences
 157/// which character an offset or anchor is associated with.
 158///
 159/// # Examples
 160/// Given the buffer `AˇBCD`:
 161/// - The offset of the cursor is 1
 162/// - [Bias::Left] would attach the cursor to the character `A`
 163/// - [Bias::Right] would attach the cursor to the character `B`
 164///
 165/// Given the buffer `A«BCˇ»D`:
 166/// - The offset of the cursor is 3, and the selection is from 1 to 3
 167/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 168/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 169///
 170/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 171/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 172/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 173/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 174///   and the buffer offset would be the offset of the first character of the folded region
 175#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 176pub enum Bias {
 177    /// Attach to the character on the left
 178    #[default]
 179    Left,
 180    /// Attach to the character on the right
 181    Right,
 182}
 183
 184impl Bias {
 185    pub fn invert(self) -> Self {
 186        match self {
 187            Self::Left => Self::Right,
 188            Self::Right => Self::Left,
 189        }
 190    }
 191}
 192
 193/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
 194/// Each internal node contains a `Summary` of the items in its subtree.
 195///
 196/// The maximum number of items per node is `TREE_BASE * 2`.
 197///
 198/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 199#[derive(Clone)]
 200pub struct SumTree<T: Item>(Arc<Node<T>>);
 201
 202impl<T> fmt::Debug for SumTree<T>
 203where
 204    T: fmt::Debug + Item,
 205    T::Summary: fmt::Debug,
 206{
 207    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 208        f.debug_tuple("SumTree").field(&self.0).finish()
 209    }
 210}
 211
 212impl<T: Item> SumTree<T> {
 213    pub fn new(cx: <T::Summary as Summary>::Context<'_>) -> Self {
 214        SumTree(Arc::new(Node::Leaf {
 215            summary: <T::Summary as Summary>::zero(cx),
 216            items: ArrayVec::new(),
 217            item_summaries: ArrayVec::new(),
 218        }))
 219    }
 220
 221    /// Useful in cases where the item type has a non-trivial context type, but the zero value of the summary type doesn't depend on that context.
 222    pub fn from_summary(summary: T::Summary) -> Self {
 223        SumTree(Arc::new(Node::Leaf {
 224            summary,
 225            items: ArrayVec::new(),
 226            item_summaries: ArrayVec::new(),
 227        }))
 228    }
 229
 230    pub fn from_item(item: T, cx: <T::Summary as Summary>::Context<'_>) -> Self {
 231        let mut tree = Self::new(cx);
 232        tree.push(item, cx);
 233        tree
 234    }
 235
 236    pub fn from_iter<I: IntoIterator<Item = T>>(
 237        iter: I,
 238        cx: <T::Summary as Summary>::Context<'_>,
 239    ) -> Self {
 240        let mut nodes = Vec::new();
 241
 242        let mut iter = iter.into_iter().fuse().peekable();
 243        while iter.peek().is_some() {
 244            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 245            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 246                items.iter().map(|item| item.summary(cx)).collect();
 247
 248            let mut summary = item_summaries[0].clone();
 249            for item_summary in &item_summaries[1..] {
 250                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 251            }
 252
 253            nodes.push(SumTree(Arc::new(Node::Leaf {
 254                summary,
 255                items,
 256                item_summaries,
 257            })));
 258        }
 259
 260        let mut parent_nodes = Vec::new();
 261        let mut height = 0;
 262        while nodes.len() > 1 {
 263            height += 1;
 264            let mut current_parent_node = None;
 265            for child_node in nodes.drain(..) {
 266                let parent_node = current_parent_node.get_or_insert_with(|| {
 267                    SumTree(Arc::new(Node::Internal {
 268                        summary: <T::Summary as Summary>::zero(cx),
 269                        height,
 270                        child_summaries: ArrayVec::new(),
 271                        child_trees: ArrayVec::new(),
 272                    }))
 273                });
 274                let Node::Internal {
 275                    summary,
 276                    child_summaries,
 277                    child_trees,
 278                    ..
 279                } = Arc::get_mut(&mut parent_node.0).unwrap()
 280                else {
 281                    unreachable!()
 282                };
 283                let child_summary = child_node.summary();
 284                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 285                child_summaries.push(child_summary.clone());
 286                child_trees.push(child_node);
 287
 288                if child_trees.len() == 2 * TREE_BASE {
 289                    parent_nodes.extend(current_parent_node.take());
 290                }
 291            }
 292            parent_nodes.extend(current_parent_node.take());
 293            mem::swap(&mut nodes, &mut parent_nodes);
 294        }
 295
 296        if nodes.is_empty() {
 297            Self::new(cx)
 298        } else {
 299            debug_assert_eq!(nodes.len(), 1);
 300            nodes.pop().unwrap()
 301        }
 302    }
 303
 304    pub fn from_par_iter<I, Iter>(iter: I, cx: <T::Summary as Summary>::Context<'_>) -> Self
 305    where
 306        I: IntoParallelIterator<Iter = Iter>,
 307        Iter: IndexedParallelIterator<Item = T>,
 308        T: Send + Sync,
 309        T::Summary: Send + Sync,
 310        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
 311    {
 312        let mut nodes = iter
 313            .into_par_iter()
 314            .chunks(2 * TREE_BASE)
 315            .map(|items| {
 316                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
 317                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 318                    items.iter().map(|item| item.summary(cx)).collect();
 319                let mut summary = item_summaries[0].clone();
 320                for item_summary in &item_summaries[1..] {
 321                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 322                }
 323                SumTree(Arc::new(Node::Leaf {
 324                    summary,
 325                    items,
 326                    item_summaries,
 327                }))
 328            })
 329            .collect::<Vec<_>>();
 330
 331        let mut height = 0;
 332        while nodes.len() > 1 {
 333            height += 1;
 334            nodes = nodes
 335                .into_par_iter()
 336                .chunks(2 * TREE_BASE)
 337                .map(|child_nodes| {
 338                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 339                        child_nodes.into_iter().collect();
 340                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 341                        .iter()
 342                        .map(|child_tree| child_tree.summary().clone())
 343                        .collect();
 344                    let mut summary = child_summaries[0].clone();
 345                    for child_summary in &child_summaries[1..] {
 346                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
 347                    }
 348                    SumTree(Arc::new(Node::Internal {
 349                        height,
 350                        summary,
 351                        child_summaries,
 352                        child_trees,
 353                    }))
 354                })
 355                .collect::<Vec<_>>();
 356        }
 357
 358        if nodes.is_empty() {
 359            Self::new(cx)
 360        } else {
 361            debug_assert_eq!(nodes.len(), 1);
 362            nodes.pop().unwrap()
 363        }
 364    }
 365
 366    #[allow(unused)]
 367    pub fn items<'a>(&'a self, cx: <T::Summary as Summary>::Context<'a>) -> Vec<T> {
 368        let mut items = Vec::new();
 369        let mut cursor = self.cursor::<()>(cx);
 370        cursor.next();
 371        while let Some(item) = cursor.item() {
 372            items.push(item.clone());
 373            cursor.next();
 374        }
 375        items
 376    }
 377
 378    pub fn iter(&self) -> Iter<'_, T> {
 379        Iter::new(self)
 380    }
 381
 382    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`.
 383    ///
 384    /// Only returns the item that exactly has the target match.
 385    #[instrument(skip_all)]
 386    pub fn find_exact<'a, 'slf, D, Target>(
 387        &'slf self,
 388        cx: <T::Summary as Summary>::Context<'a>,
 389        target: &Target,
 390        bias: Bias,
 391    ) -> (D, D, Option<&'slf T>)
 392    where
 393        D: Dimension<'slf, T::Summary>,
 394        Target: SeekTarget<'slf, T::Summary, D>,
 395    {
 396        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 397        let comparison = target.cmp(&tree_end, cx);
 398        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 399        {
 400            return (tree_end.clone(), tree_end, None);
 401        }
 402
 403        let mut pos = D::zero(cx);
 404        return match Self::find_iterate::<_, _, true>(cx, target, bias, &mut pos, self) {
 405            Some((item, end)) => (pos, end, Some(item)),
 406            None => (pos.clone(), pos, None),
 407        };
 408    }
 409
 410    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`
 411    #[instrument(skip_all)]
 412    pub fn find<'a, 'slf, D, Target>(
 413        &'slf self,
 414        cx: <T::Summary as Summary>::Context<'a>,
 415        target: &Target,
 416        bias: Bias,
 417    ) -> (D, D, Option<&'slf T>)
 418    where
 419        D: Dimension<'slf, T::Summary>,
 420        Target: SeekTarget<'slf, T::Summary, D>,
 421    {
 422        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 423        let comparison = target.cmp(&tree_end, cx);
 424        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 425        {
 426            return (tree_end.clone(), tree_end, None);
 427        }
 428
 429        let mut pos = D::zero(cx);
 430        return match Self::find_iterate::<_, _, false>(cx, target, bias, &mut pos, self) {
 431            Some((item, end)) => (pos, end, Some(item)),
 432            None => (pos.clone(), pos, None),
 433        };
 434    }
 435
 436    fn find_iterate<'tree, 'a, D, Target, const EXACT: bool>(
 437        cx: <T::Summary as Summary>::Context<'a>,
 438        target: &Target,
 439        bias: Bias,
 440        position: &mut D,
 441        mut this: &'tree SumTree<T>,
 442    ) -> Option<(&'tree T, D)>
 443    where
 444        D: Dimension<'tree, T::Summary>,
 445        Target: SeekTarget<'tree, T::Summary, D>,
 446    {
 447        'iterate: loop {
 448            match &*this.0 {
 449                Node::Internal {
 450                    child_summaries,
 451                    child_trees,
 452                    ..
 453                } => {
 454                    for (child_tree, child_summary) in child_trees.iter().zip(child_summaries) {
 455                        let child_end = position.clone().with_added_summary(child_summary, cx);
 456
 457                        let comparison = target.cmp(&child_end, cx);
 458                        let target_in_child = comparison == Ordering::Less
 459                            || (comparison == Ordering::Equal && bias == Bias::Left);
 460                        if target_in_child {
 461                            this = child_tree;
 462                            continue 'iterate;
 463                        }
 464                        *position = child_end;
 465                    }
 466                }
 467                Node::Leaf {
 468                    items,
 469                    item_summaries,
 470                    ..
 471                } => {
 472                    for (item, item_summary) in items.iter().zip(item_summaries) {
 473                        let mut child_end = position.clone();
 474                        child_end.add_summary(item_summary, cx);
 475
 476                        let comparison = target.cmp(&child_end, cx);
 477                        let entry_found = if EXACT {
 478                            comparison == Ordering::Equal
 479                        } else {
 480                            comparison == Ordering::Less
 481                                || (comparison == Ordering::Equal && bias == Bias::Left)
 482                        };
 483                        if entry_found {
 484                            return Some((item, child_end));
 485                        }
 486
 487                        *position = child_end;
 488                    }
 489                }
 490            }
 491            return None;
 492        }
 493    }
 494
 495    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`
 496    #[instrument(skip_all)]
 497    pub fn find_with_prev<'a, 'slf, D, Target>(
 498        &'slf self,
 499        cx: <T::Summary as Summary>::Context<'a>,
 500        target: &Target,
 501        bias: Bias,
 502    ) -> (D, D, Option<(Option<&'slf T>, &'slf T)>)
 503    where
 504        D: Dimension<'slf, T::Summary>,
 505        Target: SeekTarget<'slf, T::Summary, D>,
 506    {
 507        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 508        let comparison = target.cmp(&tree_end, cx);
 509        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 510        {
 511            return (tree_end.clone(), tree_end, None);
 512        }
 513
 514        let mut pos = D::zero(cx);
 515        return match Self::find_with_prev_iterate::<_, _, false>(cx, target, bias, &mut pos, self) {
 516            Some((prev, item, end)) => (pos, end, Some((prev, item))),
 517            None => (pos.clone(), pos, None),
 518        };
 519    }
 520
 521    fn find_with_prev_iterate<'tree, 'a, D, Target, const EXACT: bool>(
 522        cx: <T::Summary as Summary>::Context<'a>,
 523        target: &Target,
 524        bias: Bias,
 525        position: &mut D,
 526        mut this: &'tree SumTree<T>,
 527    ) -> Option<(Option<&'tree T>, &'tree T, D)>
 528    where
 529        D: Dimension<'tree, T::Summary>,
 530        Target: SeekTarget<'tree, T::Summary, D>,
 531    {
 532        let mut prev = None;
 533        'iterate: loop {
 534            match &*this.0 {
 535                Node::Internal {
 536                    child_summaries,
 537                    child_trees,
 538                    ..
 539                } => {
 540                    for (child_tree, child_summary) in child_trees.iter().zip(child_summaries) {
 541                        let child_end = position.clone().with_added_summary(child_summary, cx);
 542
 543                        let comparison = target.cmp(&child_end, cx);
 544                        let target_in_child = comparison == Ordering::Less
 545                            || (comparison == Ordering::Equal && bias == Bias::Left);
 546                        if target_in_child {
 547                            this = child_tree;
 548                            continue 'iterate;
 549                        }
 550                        prev = child_tree.last();
 551                        *position = child_end;
 552                    }
 553                }
 554                Node::Leaf {
 555                    items,
 556                    item_summaries,
 557                    ..
 558                } => {
 559                    for (item, item_summary) in items.iter().zip(item_summaries) {
 560                        let mut child_end = position.clone();
 561                        child_end.add_summary(item_summary, cx);
 562
 563                        let comparison = target.cmp(&child_end, cx);
 564                        let entry_found = if EXACT {
 565                            comparison == Ordering::Equal
 566                        } else {
 567                            comparison == Ordering::Less
 568                                || (comparison == Ordering::Equal && bias == Bias::Left)
 569                        };
 570                        if entry_found {
 571                            return Some((prev, item, child_end));
 572                        }
 573
 574                        prev = Some(item);
 575                        *position = child_end;
 576                    }
 577                }
 578            }
 579            return None;
 580        }
 581    }
 582
 583    pub fn cursor<'a, 'b, D>(
 584        &'a self,
 585        cx: <T::Summary as Summary>::Context<'b>,
 586    ) -> Cursor<'a, 'b, T, D>
 587    where
 588        D: Dimension<'a, T::Summary>,
 589    {
 590        Cursor::new(self, cx)
 591    }
 592
 593    /// Note: If the summary type requires a non `()` context, then the filter cursor
 594    /// that is returned cannot be used with Rust's iterators.
 595    pub fn filter<'a, 'b, F, U>(
 596        &'a self,
 597        cx: <T::Summary as Summary>::Context<'b>,
 598        filter_node: F,
 599    ) -> FilterCursor<'a, 'b, F, T, U>
 600    where
 601        F: FnMut(&T::Summary) -> bool,
 602        U: Dimension<'a, T::Summary>,
 603    {
 604        FilterCursor::new(self, cx, filter_node)
 605    }
 606
 607    #[allow(dead_code)]
 608    pub fn first(&self) -> Option<&T> {
 609        self.leftmost_leaf().0.items().first()
 610    }
 611
 612    pub fn last(&self) -> Option<&T> {
 613        self.rightmost_leaf().0.items().last()
 614    }
 615
 616    pub fn update_last(
 617        &mut self,
 618        f: impl FnOnce(&mut T),
 619        cx: <T::Summary as Summary>::Context<'_>,
 620    ) {
 621        self.update_last_recursive(f, cx);
 622    }
 623
 624    fn update_last_recursive(
 625        &mut self,
 626        f: impl FnOnce(&mut T),
 627        cx: <T::Summary as Summary>::Context<'_>,
 628    ) -> Option<T::Summary> {
 629        match Arc::make_mut(&mut self.0) {
 630            Node::Internal {
 631                summary,
 632                child_summaries,
 633                child_trees,
 634                ..
 635            } => {
 636                let last_summary = child_summaries.last_mut().unwrap();
 637                let last_child = child_trees.last_mut().unwrap();
 638                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 639                *summary = sum(child_summaries.iter(), cx);
 640                Some(summary.clone())
 641            }
 642            Node::Leaf {
 643                summary,
 644                items,
 645                item_summaries,
 646            } => {
 647                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 648                {
 649                    (f)(item);
 650                    *item_summary = item.summary(cx);
 651                    *summary = sum(item_summaries.iter(), cx);
 652                    Some(summary.clone())
 653                } else {
 654                    None
 655                }
 656            }
 657        }
 658    }
 659
 660    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 661        &'a self,
 662        cx: <T::Summary as Summary>::Context<'_>,
 663    ) -> D {
 664        let mut extent = D::zero(cx);
 665        match self.0.as_ref() {
 666            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 667                extent.add_summary(summary, cx);
 668            }
 669        }
 670        extent
 671    }
 672
 673    pub fn summary(&self) -> &T::Summary {
 674        match self.0.as_ref() {
 675            Node::Internal { summary, .. } => summary,
 676            Node::Leaf { summary, .. } => summary,
 677        }
 678    }
 679
 680    pub fn is_empty(&self) -> bool {
 681        match self.0.as_ref() {
 682            Node::Internal { .. } => false,
 683            Node::Leaf { items, .. } => items.is_empty(),
 684        }
 685    }
 686
 687    pub fn extend<I>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 688    where
 689        I: IntoIterator<Item = T>,
 690    {
 691        self.append(Self::from_iter(iter, cx), cx);
 692    }
 693
 694    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 695    where
 696        I: IntoParallelIterator<Iter = Iter>,
 697        Iter: IndexedParallelIterator<Item = T>,
 698        T: Send + Sync,
 699        T::Summary: Send + Sync,
 700        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
 701    {
 702        self.append(Self::from_par_iter(iter, cx), cx);
 703    }
 704
 705    pub fn push(&mut self, item: T, cx: <T::Summary as Summary>::Context<'_>) {
 706        let summary = item.summary(cx);
 707        self.append(
 708            SumTree(Arc::new(Node::Leaf {
 709                summary: summary.clone(),
 710                items: ArrayVec::from_iter(Some(item)),
 711                item_summaries: ArrayVec::from_iter(Some(summary)),
 712            })),
 713            cx,
 714        );
 715    }
 716
 717    pub fn append(&mut self, mut other: Self, cx: <T::Summary as Summary>::Context<'_>) {
 718        if self.is_empty() {
 719            *self = other;
 720        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 721            if self.0.height() < other.0.height() {
 722                if let Some(tree) = Self::append_large(self.clone(), &mut other, cx) {
 723                    *self = Self::from_child_trees(tree, other, cx);
 724                } else {
 725                    *self = other;
 726                }
 727            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 728                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 729            }
 730        }
 731    }
 732
 733    fn push_tree_recursive(
 734        &mut self,
 735        other: SumTree<T>,
 736        cx: <T::Summary as Summary>::Context<'_>,
 737    ) -> Option<SumTree<T>> {
 738        match Arc::make_mut(&mut self.0) {
 739            Node::Internal {
 740                height,
 741                summary,
 742                child_summaries,
 743                child_trees,
 744                ..
 745            } => {
 746                let other_node = other.0.clone();
 747                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 748
 749                let height_delta = *height - other_node.height();
 750                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 751                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 752                if height_delta == 0 {
 753                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 754                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 755                } else if height_delta == 1 && !other_node.is_underflowing() {
 756                    summaries_to_append.push(other_node.summary().clone());
 757                    trees_to_append.push(other)
 758                } else {
 759                    let tree_to_append = child_trees
 760                        .last_mut()
 761                        .unwrap()
 762                        .push_tree_recursive(other, cx);
 763                    *child_summaries.last_mut().unwrap() =
 764                        child_trees.last().unwrap().0.summary().clone();
 765
 766                    if let Some(split_tree) = tree_to_append {
 767                        summaries_to_append.push(split_tree.0.summary().clone());
 768                        trees_to_append.push(split_tree);
 769                    }
 770                }
 771
 772                let child_count = child_trees.len() + trees_to_append.len();
 773                if child_count > 2 * TREE_BASE {
 774                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 775                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 776                    let left_trees;
 777                    let right_trees;
 778
 779                    let midpoint = (child_count + child_count % 2) / 2;
 780                    {
 781                        let mut all_summaries = child_summaries
 782                            .iter()
 783                            .chain(summaries_to_append.iter())
 784                            .cloned();
 785                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 786                        right_summaries = all_summaries.collect();
 787                        let mut all_trees =
 788                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 789                        left_trees = all_trees.by_ref().take(midpoint).collect();
 790                        right_trees = all_trees.collect();
 791                    }
 792                    *summary = sum(left_summaries.iter(), cx);
 793                    *child_summaries = left_summaries;
 794                    *child_trees = left_trees;
 795
 796                    Some(SumTree(Arc::new(Node::Internal {
 797                        height: *height,
 798                        summary: sum(right_summaries.iter(), cx),
 799                        child_summaries: right_summaries,
 800                        child_trees: right_trees,
 801                    })))
 802                } else {
 803                    child_summaries.extend(summaries_to_append);
 804                    child_trees.extend(trees_to_append);
 805                    None
 806                }
 807            }
 808            Node::Leaf {
 809                summary,
 810                items,
 811                item_summaries,
 812            } => {
 813                let other_node = other.0;
 814
 815                let child_count = items.len() + other_node.items().len();
 816                if child_count > 2 * TREE_BASE {
 817                    let left_items;
 818                    let right_items;
 819                    let left_summaries;
 820                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 821
 822                    let midpoint = (child_count + child_count % 2) / 2;
 823                    {
 824                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 825                        left_items = all_items.by_ref().take(midpoint).collect();
 826                        right_items = all_items.collect();
 827
 828                        let mut all_summaries = item_summaries
 829                            .iter()
 830                            .chain(other_node.child_summaries())
 831                            .cloned();
 832                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 833                        right_summaries = all_summaries.collect();
 834                    }
 835                    *items = left_items;
 836                    *item_summaries = left_summaries;
 837                    *summary = sum(item_summaries.iter(), cx);
 838                    Some(SumTree(Arc::new(Node::Leaf {
 839                        items: right_items,
 840                        summary: sum(right_summaries.iter(), cx),
 841                        item_summaries: right_summaries,
 842                    })))
 843                } else {
 844                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 845                    items.extend(other_node.items().iter().cloned());
 846                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 847                    None
 848                }
 849            }
 850        }
 851    }
 852
 853    // appends the `large` tree to a `small` tree, assumes small.height() <= large.height()
 854    fn append_large(
 855        small: Self,
 856        large: &mut Self,
 857        cx: <T::Summary as Summary>::Context<'_>,
 858    ) -> Option<Self> {
 859        if small.0.height() == large.0.height() {
 860            if !small.0.is_underflowing() {
 861                Some(small)
 862            } else {
 863                Self::merge_into_right(small, large, cx)
 864            }
 865        } else {
 866            debug_assert!(small.0.height() < large.0.height());
 867            let Node::Internal {
 868                height,
 869                summary,
 870                child_summaries,
 871                child_trees,
 872            } = Arc::make_mut(&mut large.0)
 873            else {
 874                unreachable!();
 875            };
 876            let mut full_summary = small.summary().clone();
 877            Summary::add_summary(&mut full_summary, summary, cx);
 878            *summary = full_summary;
 879
 880            let first = child_trees.first_mut().unwrap();
 881            let res = Self::append_large(small, first, cx);
 882            *child_summaries.first_mut().unwrap() = first.summary().clone();
 883            if let Some(tree) = res {
 884                if child_trees.len() < 2 * TREE_BASE {
 885                    child_summaries.insert(0, tree.summary().clone());
 886                    child_trees.insert(0, tree);
 887                    None
 888                } else {
 889                    let new_child_summaries = {
 890                        let mut res = ArrayVec::from_iter([tree.summary().clone()]);
 891                        res.extend(child_summaries.drain(..TREE_BASE));
 892                        res
 893                    };
 894                    let tree = SumTree(Arc::new(Node::Internal {
 895                        height: *height,
 896                        summary: sum(new_child_summaries.iter(), cx),
 897                        child_summaries: new_child_summaries,
 898                        child_trees: {
 899                            let mut res = ArrayVec::from_iter([tree]);
 900                            res.extend(child_trees.drain(..TREE_BASE));
 901                            res
 902                        },
 903                    }));
 904
 905                    *summary = sum(child_summaries.iter(), cx);
 906                    Some(tree)
 907                }
 908            } else {
 909                None
 910            }
 911        }
 912    }
 913
 914    // Merge two nodes into `large`.
 915    //
 916    // `large` will contain the contents of `small` followed by its own data.
 917    // If the combined data exceed the node capacity, returns a new node that
 918    // holds the first half of the merged items and `large` is left with the
 919    // second half
 920    //
 921    // The nodes must be on the same height
 922    // It only makes sense to call this when `small` is underflowing
 923    fn merge_into_right(
 924        small: Self,
 925        large: &mut Self,
 926        cx: <<T as Item>::Summary as Summary>::Context<'_>,
 927    ) -> Option<SumTree<T>> {
 928        debug_assert_eq!(small.0.height(), large.0.height());
 929        match (small.0.as_ref(), Arc::make_mut(&mut large.0)) {
 930            (
 931                Node::Internal {
 932                    summary: small_summary,
 933                    child_summaries: small_child_summaries,
 934                    child_trees: small_child_trees,
 935                    ..
 936                },
 937                Node::Internal {
 938                    summary,
 939                    child_summaries,
 940                    child_trees,
 941                    height,
 942                },
 943            ) => {
 944                let total_child_count = child_trees.len() + small_child_trees.len();
 945                if total_child_count <= 2 * TREE_BASE {
 946                    let mut all_trees = small_child_trees.clone();
 947                    all_trees.extend(child_trees.drain(..));
 948                    *child_trees = all_trees;
 949
 950                    let mut all_summaries = small_child_summaries.clone();
 951                    all_summaries.extend(child_summaries.drain(..));
 952                    *child_summaries = all_summaries;
 953
 954                    let mut full_summary = small_summary.clone();
 955                    Summary::add_summary(&mut full_summary, summary, cx);
 956                    *summary = full_summary;
 957                    None
 958                } else {
 959                    let midpoint = total_child_count.div_ceil(2);
 960                    let mut all_trees = small_child_trees.iter().chain(child_trees.iter()).cloned();
 961                    let left_trees = all_trees.by_ref().take(midpoint).collect();
 962                    *child_trees = all_trees.collect();
 963
 964                    let mut all_summaries = small_child_summaries
 965                        .iter()
 966                        .chain(child_summaries.iter())
 967                        .cloned();
 968                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }> =
 969                        all_summaries.by_ref().take(midpoint).collect();
 970                    *child_summaries = all_summaries.collect();
 971
 972                    *summary = sum(child_summaries.iter(), cx);
 973                    Some(SumTree(Arc::new(Node::Internal {
 974                        height: *height,
 975                        summary: sum(left_summaries.iter(), cx),
 976                        child_summaries: left_summaries,
 977                        child_trees: left_trees,
 978                    })))
 979                }
 980            }
 981            (
 982                Node::Leaf {
 983                    summary: small_summary,
 984                    items: small_items,
 985                    item_summaries: small_item_summaries,
 986                },
 987                Node::Leaf {
 988                    summary,
 989                    items,
 990                    item_summaries,
 991                },
 992            ) => {
 993                let total_child_count = small_items.len() + items.len();
 994                if total_child_count <= 2 * TREE_BASE {
 995                    let mut all_items = small_items.clone();
 996                    all_items.extend(items.drain(..));
 997                    *items = all_items;
 998
 999                    let mut all_summaries = small_item_summaries.clone();
1000                    all_summaries.extend(item_summaries.drain(..));
1001                    *item_summaries = all_summaries;
1002
1003                    let mut full_summary = small_summary.clone();
1004                    Summary::add_summary(&mut full_summary, summary, cx);
1005                    *summary = full_summary;
1006                    None
1007                } else {
1008                    let midpoint = total_child_count.div_ceil(2);
1009                    let mut all_items = small_items.iter().chain(items.iter()).cloned();
1010                    let left_items = all_items.by_ref().take(midpoint).collect();
1011                    *items = all_items.collect();
1012
1013                    let mut all_summaries = small_item_summaries
1014                        .iter()
1015                        .chain(item_summaries.iter())
1016                        .cloned();
1017                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }> =
1018                        all_summaries.by_ref().take(midpoint).collect();
1019                    *item_summaries = all_summaries.collect();
1020
1021                    *summary = sum(item_summaries.iter(), cx);
1022                    Some(SumTree(Arc::new(Node::Leaf {
1023                        items: left_items,
1024                        summary: sum(left_summaries.iter(), cx),
1025                        item_summaries: left_summaries,
1026                    })))
1027                }
1028            }
1029            _ => unreachable!(),
1030        }
1031    }
1032
1033    fn from_child_trees(
1034        left: SumTree<T>,
1035        right: SumTree<T>,
1036        cx: <T::Summary as Summary>::Context<'_>,
1037    ) -> Self {
1038        let height = left.0.height() + 1;
1039        let mut child_summaries = ArrayVec::new();
1040        child_summaries.push(left.0.summary().clone());
1041        child_summaries.push(right.0.summary().clone());
1042        let mut child_trees = ArrayVec::new();
1043        child_trees.push(left);
1044        child_trees.push(right);
1045        SumTree(Arc::new(Node::Internal {
1046            height,
1047            summary: sum(child_summaries.iter(), cx),
1048            child_summaries,
1049            child_trees,
1050        }))
1051    }
1052
1053    fn leftmost_leaf(&self) -> &Self {
1054        match *self.0 {
1055            Node::Leaf { .. } => self,
1056            Node::Internal {
1057                ref child_trees, ..
1058            } => child_trees.first().unwrap().leftmost_leaf(),
1059        }
1060    }
1061
1062    fn rightmost_leaf(&self) -> &Self {
1063        match *self.0 {
1064            Node::Leaf { .. } => self,
1065            Node::Internal {
1066                ref child_trees, ..
1067            } => child_trees.last().unwrap().rightmost_leaf(),
1068        }
1069    }
1070}
1071
1072impl<T: Item + PartialEq> PartialEq for SumTree<T> {
1073    fn eq(&self, other: &Self) -> bool {
1074        self.iter().eq(other.iter())
1075    }
1076}
1077
1078impl<T: Item + Eq> Eq for SumTree<T> {}
1079
1080impl<T: KeyedItem> SumTree<T> {
1081    pub fn insert_or_replace<'a, 'b>(
1082        &'a mut self,
1083        item: T,
1084        cx: <T::Summary as Summary>::Context<'b>,
1085    ) -> Option<T> {
1086        let mut replaced = None;
1087        {
1088            let mut cursor = self.cursor::<T::Key>(cx);
1089            let mut new_tree = cursor.slice(&item.key(), Bias::Left);
1090            if let Some(cursor_item) = cursor.item()
1091                && cursor_item.key() == item.key()
1092            {
1093                replaced = Some(cursor_item.clone());
1094                cursor.next();
1095            }
1096            new_tree.push(item, cx);
1097            new_tree.append(cursor.suffix(), cx);
1098            drop(cursor);
1099            *self = new_tree
1100        };
1101        replaced
1102    }
1103
1104    pub fn remove(&mut self, key: &T::Key, cx: <T::Summary as Summary>::Context<'_>) -> Option<T> {
1105        let mut removed = None;
1106        *self = {
1107            let mut cursor = self.cursor::<T::Key>(cx);
1108            let mut new_tree = cursor.slice(key, Bias::Left);
1109            if let Some(item) = cursor.item()
1110                && item.key() == *key
1111            {
1112                removed = Some(item.clone());
1113                cursor.next();
1114            }
1115            new_tree.append(cursor.suffix(), cx);
1116            new_tree
1117        };
1118        removed
1119    }
1120
1121    pub fn edit(
1122        &mut self,
1123        mut edits: Vec<Edit<T>>,
1124        cx: <T::Summary as Summary>::Context<'_>,
1125    ) -> Vec<T> {
1126        if edits.is_empty() {
1127            return Vec::new();
1128        }
1129
1130        let mut removed = Vec::new();
1131        edits.sort_unstable_by_key(|item| item.key());
1132
1133        *self = {
1134            let mut cursor = self.cursor::<T::Key>(cx);
1135            let mut new_tree = SumTree::new(cx);
1136            let mut buffered_items = Vec::new();
1137
1138            cursor.seek(&T::Key::zero(cx), Bias::Left);
1139            for edit in edits {
1140                let new_key = edit.key();
1141                let mut old_item = cursor.item();
1142
1143                if old_item
1144                    .as_ref()
1145                    .is_some_and(|old_item| old_item.key() < new_key)
1146                {
1147                    new_tree.extend(buffered_items.drain(..), cx);
1148                    let slice = cursor.slice(&new_key, Bias::Left);
1149                    new_tree.append(slice, cx);
1150                    old_item = cursor.item();
1151                }
1152
1153                if let Some(old_item) = old_item
1154                    && old_item.key() == new_key
1155                {
1156                    removed.push(old_item.clone());
1157                    cursor.next();
1158                }
1159
1160                match edit {
1161                    Edit::Insert(item) => {
1162                        buffered_items.push(item);
1163                    }
1164                    Edit::Remove(_) => {}
1165                }
1166            }
1167
1168            new_tree.extend(buffered_items, cx);
1169            new_tree.append(cursor.suffix(), cx);
1170            new_tree
1171        };
1172
1173        removed
1174    }
1175
1176    pub fn get<'a>(
1177        &'a self,
1178        key: &T::Key,
1179        cx: <T::Summary as Summary>::Context<'a>,
1180    ) -> Option<&'a T> {
1181        if let (_, _, Some(item)) = self.find_exact::<T::Key, _>(cx, key, Bias::Left) {
1182            Some(item)
1183        } else {
1184            None
1185        }
1186    }
1187}
1188
1189impl<T, S> Default for SumTree<T>
1190where
1191    T: Item<Summary = S>,
1192    S: for<'a> Summary<Context<'a> = ()>,
1193{
1194    fn default() -> Self {
1195        Self::new(())
1196    }
1197}
1198
1199#[derive(Clone)]
1200pub enum Node<T: Item> {
1201    Internal {
1202        height: u8,
1203        summary: T::Summary,
1204        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
1205        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
1206    },
1207    Leaf {
1208        summary: T::Summary,
1209        items: ArrayVec<T, { 2 * TREE_BASE }>,
1210        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
1211    },
1212}
1213
1214impl<T> fmt::Debug for Node<T>
1215where
1216    T: Item + fmt::Debug,
1217    T::Summary: fmt::Debug,
1218{
1219    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1220        match self {
1221            Node::Internal {
1222                height,
1223                summary,
1224                child_summaries,
1225                child_trees,
1226            } => f
1227                .debug_struct("Internal")
1228                .field("height", height)
1229                .field("summary", summary)
1230                .field("child_summaries", child_summaries)
1231                .field("child_trees", child_trees)
1232                .finish(),
1233            Node::Leaf {
1234                summary,
1235                items,
1236                item_summaries,
1237            } => f
1238                .debug_struct("Leaf")
1239                .field("summary", summary)
1240                .field("items", items)
1241                .field("item_summaries", item_summaries)
1242                .finish(),
1243        }
1244    }
1245}
1246
1247impl<T: Item> Node<T> {
1248    fn is_leaf(&self) -> bool {
1249        matches!(self, Node::Leaf { .. })
1250    }
1251
1252    fn height(&self) -> u8 {
1253        match self {
1254            Node::Internal { height, .. } => *height,
1255            Node::Leaf { .. } => 0,
1256        }
1257    }
1258
1259    fn summary(&self) -> &T::Summary {
1260        match self {
1261            Node::Internal { summary, .. } => summary,
1262            Node::Leaf { summary, .. } => summary,
1263        }
1264    }
1265
1266    fn child_summaries(&self) -> &[T::Summary] {
1267        match self {
1268            Node::Internal {
1269                child_summaries, ..
1270            } => child_summaries.as_slice(),
1271            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
1272        }
1273    }
1274
1275    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
1276        match self {
1277            Node::Internal { child_trees, .. } => child_trees,
1278            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
1279        }
1280    }
1281
1282    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
1283        match self {
1284            Node::Leaf { items, .. } => items,
1285            Node::Internal { .. } => panic!("Internal nodes have no items"),
1286        }
1287    }
1288
1289    fn is_underflowing(&self) -> bool {
1290        match self {
1291            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
1292            Node::Leaf { items, .. } => items.len() < TREE_BASE,
1293        }
1294    }
1295}
1296
1297#[derive(Debug)]
1298pub enum Edit<T: KeyedItem> {
1299    Insert(T),
1300    Remove(T::Key),
1301}
1302
1303impl<T: KeyedItem> Edit<T> {
1304    fn key(&self) -> T::Key {
1305        match self {
1306            Edit::Insert(item) => item.key(),
1307            Edit::Remove(key) => key.clone(),
1308        }
1309    }
1310}
1311
1312fn sum<'a, T, I>(iter: I, cx: T::Context<'_>) -> T
1313where
1314    T: 'a + Summary,
1315    I: Iterator<Item = &'a T>,
1316{
1317    let mut sum = T::zero(cx);
1318    for value in iter {
1319        sum.add_summary(value, cx);
1320    }
1321    sum
1322}
1323
1324#[cfg(test)]
1325mod tests {
1326    use super::*;
1327    use rand::{distr::StandardUniform, prelude::*};
1328    use std::cmp;
1329
1330    #[ctor::ctor]
1331    fn init_logger() {
1332        zlog::init_test();
1333    }
1334
1335    #[test]
1336    fn test_extend_and_push_tree() {
1337        let mut tree1 = SumTree::default();
1338        tree1.extend(0..20, ());
1339
1340        let mut tree2 = SumTree::default();
1341        tree2.extend(50..100, ());
1342
1343        tree1.append(tree2, ());
1344        assert_eq!(tree1.items(()), (0..20).chain(50..100).collect::<Vec<u8>>());
1345    }
1346
1347    #[test]
1348    fn test_random() {
1349        let mut starting_seed = 0;
1350        if let Ok(value) = std::env::var("SEED") {
1351            starting_seed = value.parse().expect("invalid SEED variable");
1352        }
1353        let mut num_iterations = 100;
1354        if let Ok(value) = std::env::var("ITERATIONS") {
1355            num_iterations = value.parse().expect("invalid ITERATIONS variable");
1356        }
1357        let num_operations = std::env::var("OPERATIONS")
1358            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
1359
1360        for seed in starting_seed..(starting_seed + num_iterations) {
1361            eprintln!("seed = {}", seed);
1362            let mut rng = StdRng::seed_from_u64(seed);
1363
1364            let rng = &mut rng;
1365            let mut tree = SumTree::<u8>::default();
1366            let count = rng.random_range(0..10);
1367            if rng.random() {
1368                tree.extend(rng.sample_iter(StandardUniform).take(count), ());
1369            } else {
1370                let items = rng
1371                    .sample_iter(StandardUniform)
1372                    .take(count)
1373                    .collect::<Vec<_>>();
1374                tree.par_extend(items, ());
1375            }
1376
1377            for _ in 0..num_operations {
1378                let splice_end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1379                let splice_start = rng.random_range(0..splice_end + 1);
1380                let count = rng.random_range(0..10);
1381                let tree_end = tree.extent::<Count>(());
1382                let new_items = rng
1383                    .sample_iter(StandardUniform)
1384                    .take(count)
1385                    .collect::<Vec<u8>>();
1386
1387                let mut reference_items = tree.items(());
1388                reference_items.splice(splice_start..splice_end, new_items.clone());
1389
1390                tree = {
1391                    let mut cursor = tree.cursor::<Count>(());
1392                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right);
1393                    if rng.random() {
1394                        new_tree.extend(new_items, ());
1395                    } else {
1396                        new_tree.par_extend(new_items, ());
1397                    }
1398                    cursor.seek(&Count(splice_end), Bias::Right);
1399                    new_tree.append(cursor.slice(&tree_end, Bias::Right), ());
1400                    new_tree
1401                };
1402
1403                assert_eq!(tree.items(()), reference_items);
1404                assert_eq!(
1405                    tree.iter().collect::<Vec<_>>(),
1406                    tree.cursor::<()>(()).collect::<Vec<_>>()
1407                );
1408
1409                log::info!("tree items: {:?}", tree.items(()));
1410
1411                let mut filter_cursor =
1412                    tree.filter::<_, Count>((), |summary| summary.contains_even);
1413                let expected_filtered_items = tree
1414                    .items(())
1415                    .into_iter()
1416                    .enumerate()
1417                    .filter(|(_, item)| (item & 1) == 0)
1418                    .collect::<Vec<_>>();
1419
1420                let mut item_ix = if rng.random() {
1421                    filter_cursor.next();
1422                    0
1423                } else {
1424                    filter_cursor.prev();
1425                    expected_filtered_items.len().saturating_sub(1)
1426                };
1427                while item_ix < expected_filtered_items.len() {
1428                    log::info!("filter_cursor, item_ix: {}", item_ix);
1429                    let actual_item = filter_cursor.item().unwrap();
1430                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
1431                    assert_eq!(actual_item, &reference_item);
1432                    assert_eq!(filter_cursor.start().0, reference_index);
1433                    log::info!("next");
1434                    filter_cursor.next();
1435                    item_ix += 1;
1436
1437                    while item_ix > 0 && rng.random_bool(0.2) {
1438                        log::info!("prev");
1439                        filter_cursor.prev();
1440                        item_ix -= 1;
1441
1442                        if item_ix == 0 && rng.random_bool(0.2) {
1443                            filter_cursor.prev();
1444                            assert_eq!(filter_cursor.item(), None);
1445                            assert_eq!(filter_cursor.start().0, 0);
1446                            filter_cursor.next();
1447                        }
1448                    }
1449                }
1450                assert_eq!(filter_cursor.item(), None);
1451
1452                let mut before_start = false;
1453                let mut cursor = tree.cursor::<Count>(());
1454                let start_pos = rng.random_range(0..=reference_items.len());
1455                cursor.seek(&Count(start_pos), Bias::Right);
1456                let mut pos = rng.random_range(start_pos..=reference_items.len());
1457                cursor.seek_forward(&Count(pos), Bias::Right);
1458
1459                for i in 0..10 {
1460                    assert_eq!(cursor.start().0, pos);
1461
1462                    if pos > 0 {
1463                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
1464                    } else {
1465                        assert_eq!(cursor.prev_item(), None);
1466                    }
1467
1468                    if pos < reference_items.len() && !before_start {
1469                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
1470                    } else {
1471                        assert_eq!(cursor.item(), None);
1472                    }
1473
1474                    if before_start {
1475                        assert_eq!(cursor.next_item(), reference_items.first());
1476                    } else if pos + 1 < reference_items.len() {
1477                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
1478                    } else {
1479                        assert_eq!(cursor.next_item(), None);
1480                    }
1481
1482                    if i < 5 {
1483                        cursor.next();
1484                        if pos < reference_items.len() {
1485                            pos += 1;
1486                            before_start = false;
1487                        }
1488                    } else {
1489                        cursor.prev();
1490                        if pos == 0 {
1491                            before_start = true;
1492                        }
1493                        pos = pos.saturating_sub(1);
1494                    }
1495                }
1496            }
1497
1498            for _ in 0..10 {
1499                let end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1500                let start = rng.random_range(0..end + 1);
1501                let start_bias = if rng.random() {
1502                    Bias::Left
1503                } else {
1504                    Bias::Right
1505                };
1506                let end_bias = if rng.random() {
1507                    Bias::Left
1508                } else {
1509                    Bias::Right
1510                };
1511
1512                let mut cursor = tree.cursor::<Count>(());
1513                cursor.seek(&Count(start), start_bias);
1514                let slice = cursor.slice(&Count(end), end_bias);
1515
1516                cursor.seek(&Count(start), start_bias);
1517                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias);
1518
1519                assert_eq!(summary.0, slice.summary().sum);
1520            }
1521        }
1522    }
1523
1524    #[test]
1525    fn test_cursor() {
1526        // Empty tree
1527        let tree = SumTree::<u8>::default();
1528        let mut cursor = tree.cursor::<IntegersSummary>(());
1529        assert_eq!(
1530            cursor.slice(&Count(0), Bias::Right).items(()),
1531            Vec::<u8>::new()
1532        );
1533        assert_eq!(cursor.item(), None);
1534        assert_eq!(cursor.prev_item(), None);
1535        assert_eq!(cursor.next_item(), None);
1536        assert_eq!(cursor.start().sum, 0);
1537        cursor.prev();
1538        assert_eq!(cursor.item(), None);
1539        assert_eq!(cursor.prev_item(), None);
1540        assert_eq!(cursor.next_item(), None);
1541        assert_eq!(cursor.start().sum, 0);
1542        cursor.next();
1543        assert_eq!(cursor.item(), None);
1544        assert_eq!(cursor.prev_item(), None);
1545        assert_eq!(cursor.next_item(), None);
1546        assert_eq!(cursor.start().sum, 0);
1547
1548        // Single-element tree
1549        let mut tree = SumTree::<u8>::default();
1550        tree.extend(vec![1], ());
1551        let mut cursor = tree.cursor::<IntegersSummary>(());
1552        assert_eq!(
1553            cursor.slice(&Count(0), Bias::Right).items(()),
1554            Vec::<u8>::new()
1555        );
1556        assert_eq!(cursor.item(), Some(&1));
1557        assert_eq!(cursor.prev_item(), None);
1558        assert_eq!(cursor.next_item(), None);
1559        assert_eq!(cursor.start().sum, 0);
1560
1561        cursor.next();
1562        assert_eq!(cursor.item(), None);
1563        assert_eq!(cursor.prev_item(), Some(&1));
1564        assert_eq!(cursor.next_item(), None);
1565        assert_eq!(cursor.start().sum, 1);
1566
1567        cursor.prev();
1568        assert_eq!(cursor.item(), Some(&1));
1569        assert_eq!(cursor.prev_item(), None);
1570        assert_eq!(cursor.next_item(), None);
1571        assert_eq!(cursor.start().sum, 0);
1572
1573        let mut cursor = tree.cursor::<IntegersSummary>(());
1574        assert_eq!(cursor.slice(&Count(1), Bias::Right).items(()), [1]);
1575        assert_eq!(cursor.item(), None);
1576        assert_eq!(cursor.prev_item(), Some(&1));
1577        assert_eq!(cursor.next_item(), None);
1578        assert_eq!(cursor.start().sum, 1);
1579
1580        cursor.seek(&Count(0), Bias::Right);
1581        assert_eq!(
1582            cursor
1583                .slice(&tree.extent::<Count>(()), Bias::Right)
1584                .items(()),
1585            [1]
1586        );
1587        assert_eq!(cursor.item(), None);
1588        assert_eq!(cursor.prev_item(), Some(&1));
1589        assert_eq!(cursor.next_item(), None);
1590        assert_eq!(cursor.start().sum, 1);
1591
1592        // Multiple-element tree
1593        let mut tree = SumTree::default();
1594        tree.extend(vec![1, 2, 3, 4, 5, 6], ());
1595        let mut cursor = tree.cursor::<IntegersSummary>(());
1596
1597        assert_eq!(cursor.slice(&Count(2), Bias::Right).items(()), [1, 2]);
1598        assert_eq!(cursor.item(), Some(&3));
1599        assert_eq!(cursor.prev_item(), Some(&2));
1600        assert_eq!(cursor.next_item(), Some(&4));
1601        assert_eq!(cursor.start().sum, 3);
1602
1603        cursor.next();
1604        assert_eq!(cursor.item(), Some(&4));
1605        assert_eq!(cursor.prev_item(), Some(&3));
1606        assert_eq!(cursor.next_item(), Some(&5));
1607        assert_eq!(cursor.start().sum, 6);
1608
1609        cursor.next();
1610        assert_eq!(cursor.item(), Some(&5));
1611        assert_eq!(cursor.prev_item(), Some(&4));
1612        assert_eq!(cursor.next_item(), Some(&6));
1613        assert_eq!(cursor.start().sum, 10);
1614
1615        cursor.next();
1616        assert_eq!(cursor.item(), Some(&6));
1617        assert_eq!(cursor.prev_item(), Some(&5));
1618        assert_eq!(cursor.next_item(), None);
1619        assert_eq!(cursor.start().sum, 15);
1620
1621        cursor.next();
1622        cursor.next();
1623        assert_eq!(cursor.item(), None);
1624        assert_eq!(cursor.prev_item(), Some(&6));
1625        assert_eq!(cursor.next_item(), None);
1626        assert_eq!(cursor.start().sum, 21);
1627
1628        cursor.prev();
1629        assert_eq!(cursor.item(), Some(&6));
1630        assert_eq!(cursor.prev_item(), Some(&5));
1631        assert_eq!(cursor.next_item(), None);
1632        assert_eq!(cursor.start().sum, 15);
1633
1634        cursor.prev();
1635        assert_eq!(cursor.item(), Some(&5));
1636        assert_eq!(cursor.prev_item(), Some(&4));
1637        assert_eq!(cursor.next_item(), Some(&6));
1638        assert_eq!(cursor.start().sum, 10);
1639
1640        cursor.prev();
1641        assert_eq!(cursor.item(), Some(&4));
1642        assert_eq!(cursor.prev_item(), Some(&3));
1643        assert_eq!(cursor.next_item(), Some(&5));
1644        assert_eq!(cursor.start().sum, 6);
1645
1646        cursor.prev();
1647        assert_eq!(cursor.item(), Some(&3));
1648        assert_eq!(cursor.prev_item(), Some(&2));
1649        assert_eq!(cursor.next_item(), Some(&4));
1650        assert_eq!(cursor.start().sum, 3);
1651
1652        cursor.prev();
1653        assert_eq!(cursor.item(), Some(&2));
1654        assert_eq!(cursor.prev_item(), Some(&1));
1655        assert_eq!(cursor.next_item(), Some(&3));
1656        assert_eq!(cursor.start().sum, 1);
1657
1658        cursor.prev();
1659        assert_eq!(cursor.item(), Some(&1));
1660        assert_eq!(cursor.prev_item(), None);
1661        assert_eq!(cursor.next_item(), Some(&2));
1662        assert_eq!(cursor.start().sum, 0);
1663
1664        cursor.prev();
1665        assert_eq!(cursor.item(), None);
1666        assert_eq!(cursor.prev_item(), None);
1667        assert_eq!(cursor.next_item(), Some(&1));
1668        assert_eq!(cursor.start().sum, 0);
1669
1670        cursor.next();
1671        assert_eq!(cursor.item(), Some(&1));
1672        assert_eq!(cursor.prev_item(), None);
1673        assert_eq!(cursor.next_item(), Some(&2));
1674        assert_eq!(cursor.start().sum, 0);
1675
1676        let mut cursor = tree.cursor::<IntegersSummary>(());
1677        assert_eq!(
1678            cursor
1679                .slice(&tree.extent::<Count>(()), Bias::Right)
1680                .items(()),
1681            tree.items(())
1682        );
1683        assert_eq!(cursor.item(), None);
1684        assert_eq!(cursor.prev_item(), Some(&6));
1685        assert_eq!(cursor.next_item(), None);
1686        assert_eq!(cursor.start().sum, 21);
1687
1688        cursor.seek(&Count(3), Bias::Right);
1689        assert_eq!(
1690            cursor
1691                .slice(&tree.extent::<Count>(()), Bias::Right)
1692                .items(()),
1693            [4, 5, 6]
1694        );
1695        assert_eq!(cursor.item(), None);
1696        assert_eq!(cursor.prev_item(), Some(&6));
1697        assert_eq!(cursor.next_item(), None);
1698        assert_eq!(cursor.start().sum, 21);
1699
1700        // Seeking can bias left or right
1701        cursor.seek(&Count(1), Bias::Left);
1702        assert_eq!(cursor.item(), Some(&1));
1703        cursor.seek(&Count(1), Bias::Right);
1704        assert_eq!(cursor.item(), Some(&2));
1705
1706        // Slicing without resetting starts from where the cursor is parked at.
1707        cursor.seek(&Count(1), Bias::Right);
1708        assert_eq!(cursor.slice(&Count(3), Bias::Right).items(()), vec![2, 3]);
1709        assert_eq!(cursor.slice(&Count(6), Bias::Left).items(()), vec![4, 5]);
1710        assert_eq!(cursor.slice(&Count(6), Bias::Right).items(()), vec![6]);
1711    }
1712
1713    #[test]
1714    fn test_edit() {
1715        let mut tree = SumTree::<u8>::default();
1716
1717        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], ());
1718        assert_eq!(tree.items(()), vec![0, 1, 2]);
1719        assert_eq!(removed, Vec::<u8>::new());
1720        assert_eq!(tree.get(&0, ()), Some(&0));
1721        assert_eq!(tree.get(&1, ()), Some(&1));
1722        assert_eq!(tree.get(&2, ()), Some(&2));
1723        assert_eq!(tree.get(&4, ()), None);
1724
1725        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], ());
1726        assert_eq!(tree.items(()), vec![1, 2, 4]);
1727        assert_eq!(removed, vec![0, 2]);
1728        assert_eq!(tree.get(&0, ()), None);
1729        assert_eq!(tree.get(&1, ()), Some(&1));
1730        assert_eq!(tree.get(&2, ()), Some(&2));
1731        assert_eq!(tree.get(&4, ()), Some(&4));
1732    }
1733
1734    #[test]
1735    fn test_from_iter() {
1736        assert_eq!(
1737            SumTree::from_iter(0..100, ()).items(()),
1738            (0..100).collect::<Vec<_>>()
1739        );
1740
1741        // Ensure `from_iter` works correctly when the given iterator restarts
1742        // after calling `next` if `None` was already returned.
1743        let mut ix = 0;
1744        let iterator = std::iter::from_fn(|| {
1745            ix = (ix + 1) % 2;
1746            if ix == 1 { Some(1) } else { None }
1747        });
1748        assert_eq!(SumTree::from_iter(iterator, ()).items(()), vec![1]);
1749    }
1750
1751    #[derive(Clone, Default, Debug)]
1752    pub struct IntegersSummary {
1753        count: usize,
1754        sum: usize,
1755        contains_even: bool,
1756        max: u8,
1757    }
1758
1759    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1760    struct Count(usize);
1761
1762    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1763    struct Sum(usize);
1764
1765    impl Item for u8 {
1766        type Summary = IntegersSummary;
1767
1768        fn summary(&self, _cx: ()) -> Self::Summary {
1769            IntegersSummary {
1770                count: 1,
1771                sum: *self as usize,
1772                contains_even: (*self & 1) == 0,
1773                max: *self,
1774            }
1775        }
1776    }
1777
1778    impl KeyedItem for u8 {
1779        type Key = u8;
1780
1781        fn key(&self) -> Self::Key {
1782            *self
1783        }
1784    }
1785
1786    impl ContextLessSummary for IntegersSummary {
1787        fn zero() -> Self {
1788            Default::default()
1789        }
1790
1791        fn add_summary(&mut self, other: &Self) {
1792            self.count += other.count;
1793            self.sum += other.sum;
1794            self.contains_even |= other.contains_even;
1795            self.max = cmp::max(self.max, other.max);
1796        }
1797    }
1798
1799    impl Dimension<'_, IntegersSummary> for u8 {
1800        fn zero(_cx: ()) -> Self {
1801            Default::default()
1802        }
1803
1804        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1805            *self = summary.max;
1806        }
1807    }
1808
1809    impl Dimension<'_, IntegersSummary> for Count {
1810        fn zero(_cx: ()) -> Self {
1811            Default::default()
1812        }
1813
1814        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1815            self.0 += summary.count;
1816        }
1817    }
1818
1819    impl SeekTarget<'_, IntegersSummary, IntegersSummary> for Count {
1820        fn cmp(&self, cursor_location: &IntegersSummary, _: ()) -> Ordering {
1821            self.0.cmp(&cursor_location.count)
1822        }
1823    }
1824
1825    impl Dimension<'_, IntegersSummary> for Sum {
1826        fn zero(_cx: ()) -> Self {
1827            Default::default()
1828        }
1829
1830        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1831            self.0 += summary.sum;
1832        }
1833    }
1834}