cloud.rs

  1use anthropic::{AnthropicError, AnthropicModelMode};
  2use anyhow::{Result, anyhow};
  3use client::{
  4    Client, EXPIRED_LLM_TOKEN_HEADER_NAME, MAX_LLM_MONTHLY_SPEND_REACHED_HEADER_NAME,
  5    PerformCompletionParams, UserStore, zed_urls,
  6};
  7use collections::BTreeMap;
  8use feature_flags::{FeatureFlagAppExt, LlmClosedBeta, ZedPro};
  9use futures::{
 10    AsyncBufReadExt, FutureExt, Stream, StreamExt, TryStreamExt as _, future::BoxFuture,
 11    stream::BoxStream,
 12};
 13use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
 14use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode};
 15use language_model::{
 16    AuthenticateError, CloudModel, LanguageModel, LanguageModelCacheConfiguration, LanguageModelId,
 17    LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
 18    LanguageModelProviderState, LanguageModelProviderTosView, LanguageModelRequest,
 19    LanguageModelToolSchemaFormat, RateLimiter, ZED_CLOUD_PROVIDER_ID,
 20};
 21use language_model::{
 22    LanguageModelAvailability, LanguageModelCompletionEvent, LanguageModelProvider, LlmApiToken,
 23    MaxMonthlySpendReachedError, PaymentRequiredError, RefreshLlmTokenListener,
 24};
 25use schemars::JsonSchema;
 26use serde::{Deserialize, Serialize, de::DeserializeOwned};
 27use serde_json::value::RawValue;
 28use settings::{Settings, SettingsStore};
 29use smol::Timer;
 30use smol::io::{AsyncReadExt, BufReader};
 31use std::{
 32    future,
 33    sync::{Arc, LazyLock},
 34    time::Duration,
 35};
 36use strum::IntoEnumIterator;
 37use ui::{TintColor, prelude::*};
 38
 39use crate::AllLanguageModelSettings;
 40use crate::provider::anthropic::{count_anthropic_tokens, into_anthropic};
 41use crate::provider::google::into_google;
 42use crate::provider::open_ai::{count_open_ai_tokens, into_open_ai};
 43
 44pub const PROVIDER_NAME: &str = "Zed";
 45
 46const ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON: Option<&str> =
 47    option_env!("ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON");
 48
 49fn zed_cloud_provider_additional_models() -> &'static [AvailableModel] {
 50    static ADDITIONAL_MODELS: LazyLock<Vec<AvailableModel>> = LazyLock::new(|| {
 51        ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON
 52            .map(|json| serde_json::from_str(json).unwrap())
 53            .unwrap_or_default()
 54    });
 55    ADDITIONAL_MODELS.as_slice()
 56}
 57
 58#[derive(Default, Clone, Debug, PartialEq)]
 59pub struct ZedDotDevSettings {
 60    pub available_models: Vec<AvailableModel>,
 61}
 62
 63#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 64#[serde(rename_all = "lowercase")]
 65pub enum AvailableProvider {
 66    Anthropic,
 67    OpenAi,
 68    Google,
 69}
 70
 71#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 72pub struct AvailableModel {
 73    /// The provider of the language model.
 74    pub provider: AvailableProvider,
 75    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
 76    pub name: String,
 77    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
 78    pub display_name: Option<String>,
 79    /// The size of the context window, indicating the maximum number of tokens the model can process.
 80    pub max_tokens: usize,
 81    /// The maximum number of output tokens allowed by the model.
 82    pub max_output_tokens: Option<u32>,
 83    /// The maximum number of completion tokens allowed by the model (o1-* only)
 84    pub max_completion_tokens: Option<u32>,
 85    /// Override this model with a different Anthropic model for tool calls.
 86    pub tool_override: Option<String>,
 87    /// Indicates whether this custom model supports caching.
 88    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
 89    /// The default temperature to use for this model.
 90    pub default_temperature: Option<f32>,
 91    /// Any extra beta headers to provide when using the model.
 92    #[serde(default)]
 93    pub extra_beta_headers: Vec<String>,
 94    /// The model's mode (e.g. thinking)
 95    pub mode: Option<ModelMode>,
 96}
 97
 98#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 99#[serde(tag = "type", rename_all = "lowercase")]
100pub enum ModelMode {
101    #[default]
102    Default,
103    Thinking {
104        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
105        budget_tokens: Option<u32>,
106    },
107}
108
109impl From<ModelMode> for AnthropicModelMode {
110    fn from(value: ModelMode) -> Self {
111        match value {
112            ModelMode::Default => AnthropicModelMode::Default,
113            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
114        }
115    }
116}
117
118pub struct CloudLanguageModelProvider {
119    client: Arc<Client>,
120    state: gpui::Entity<State>,
121    _maintain_client_status: Task<()>,
122}
123
124pub struct State {
125    client: Arc<Client>,
126    llm_api_token: LlmApiToken,
127    user_store: Entity<UserStore>,
128    status: client::Status,
129    accept_terms: Option<Task<Result<()>>>,
130    _settings_subscription: Subscription,
131    _llm_token_subscription: Subscription,
132}
133
134impl State {
135    fn new(
136        client: Arc<Client>,
137        user_store: Entity<UserStore>,
138        status: client::Status,
139        cx: &mut Context<Self>,
140    ) -> Self {
141        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
142
143        Self {
144            client: client.clone(),
145            llm_api_token: LlmApiToken::default(),
146            user_store,
147            status,
148            accept_terms: None,
149            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
150                cx.notify();
151            }),
152            _llm_token_subscription: cx.subscribe(
153                &refresh_llm_token_listener,
154                |this, _listener, _event, cx| {
155                    let client = this.client.clone();
156                    let llm_api_token = this.llm_api_token.clone();
157                    cx.spawn(async move |_this, _cx| {
158                        llm_api_token.refresh(&client).await?;
159                        anyhow::Ok(())
160                    })
161                    .detach_and_log_err(cx);
162                },
163            ),
164        }
165    }
166
167    fn is_signed_out(&self) -> bool {
168        self.status.is_signed_out()
169    }
170
171    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
172        let client = self.client.clone();
173        cx.spawn(async move |this, cx| {
174            client.authenticate_and_connect(true, &cx).await?;
175            this.update(cx, |_, cx| cx.notify())
176        })
177    }
178
179    fn has_accepted_terms_of_service(&self, cx: &App) -> bool {
180        self.user_store
181            .read(cx)
182            .current_user_has_accepted_terms()
183            .unwrap_or(false)
184    }
185
186    fn accept_terms_of_service(&mut self, cx: &mut Context<Self>) {
187        let user_store = self.user_store.clone();
188        self.accept_terms = Some(cx.spawn(async move |this, cx| {
189            let _ = user_store
190                .update(cx, |store, cx| store.accept_terms_of_service(cx))?
191                .await;
192            this.update(cx, |this, cx| {
193                this.accept_terms = None;
194                cx.notify()
195            })
196        }));
197    }
198}
199
200impl CloudLanguageModelProvider {
201    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
202        let mut status_rx = client.status();
203        let status = *status_rx.borrow();
204
205        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
206
207        let state_ref = state.downgrade();
208        let maintain_client_status = cx.spawn(async move |cx| {
209            while let Some(status) = status_rx.next().await {
210                if let Some(this) = state_ref.upgrade() {
211                    _ = this.update(cx, |this, cx| {
212                        if this.status != status {
213                            this.status = status;
214                            cx.notify();
215                        }
216                    });
217                } else {
218                    break;
219                }
220            }
221        });
222
223        Self {
224            client,
225            state: state.clone(),
226            _maintain_client_status: maintain_client_status,
227        }
228    }
229}
230
231impl LanguageModelProviderState for CloudLanguageModelProvider {
232    type ObservableEntity = State;
233
234    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
235        Some(self.state.clone())
236    }
237}
238
239impl LanguageModelProvider for CloudLanguageModelProvider {
240    fn id(&self) -> LanguageModelProviderId {
241        LanguageModelProviderId(ZED_CLOUD_PROVIDER_ID.into())
242    }
243
244    fn name(&self) -> LanguageModelProviderName {
245        LanguageModelProviderName(PROVIDER_NAME.into())
246    }
247
248    fn icon(&self) -> IconName {
249        IconName::AiZed
250    }
251
252    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
253        let llm_api_token = self.state.read(cx).llm_api_token.clone();
254        let model = CloudModel::Anthropic(anthropic::Model::default());
255        Some(Arc::new(CloudLanguageModel {
256            id: LanguageModelId::from(model.id().to_string()),
257            model,
258            llm_api_token: llm_api_token.clone(),
259            client: self.client.clone(),
260            request_limiter: RateLimiter::new(4),
261        }))
262    }
263
264    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
265        let mut models = BTreeMap::default();
266
267        if cx.is_staff() {
268            for model in anthropic::Model::iter() {
269                if !matches!(model, anthropic::Model::Custom { .. }) {
270                    models.insert(model.id().to_string(), CloudModel::Anthropic(model));
271                }
272            }
273            for model in open_ai::Model::iter() {
274                if !matches!(model, open_ai::Model::Custom { .. }) {
275                    models.insert(model.id().to_string(), CloudModel::OpenAi(model));
276                }
277            }
278            for model in google_ai::Model::iter() {
279                if !matches!(model, google_ai::Model::Custom { .. }) {
280                    models.insert(model.id().to_string(), CloudModel::Google(model));
281                }
282            }
283        } else {
284            models.insert(
285                anthropic::Model::Claude3_5Sonnet.id().to_string(),
286                CloudModel::Anthropic(anthropic::Model::Claude3_5Sonnet),
287            );
288            models.insert(
289                anthropic::Model::Claude3_7Sonnet.id().to_string(),
290                CloudModel::Anthropic(anthropic::Model::Claude3_7Sonnet),
291            );
292            models.insert(
293                anthropic::Model::Claude3_7SonnetThinking.id().to_string(),
294                CloudModel::Anthropic(anthropic::Model::Claude3_7SonnetThinking),
295            );
296        }
297
298        let llm_closed_beta_models = if cx.has_flag::<LlmClosedBeta>() {
299            zed_cloud_provider_additional_models()
300        } else {
301            &[]
302        };
303
304        // Override with available models from settings
305        for model in AllLanguageModelSettings::get_global(cx)
306            .zed_dot_dev
307            .available_models
308            .iter()
309            .chain(llm_closed_beta_models)
310            .cloned()
311        {
312            let model = match model.provider {
313                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
314                    name: model.name.clone(),
315                    display_name: model.display_name.clone(),
316                    max_tokens: model.max_tokens,
317                    tool_override: model.tool_override.clone(),
318                    cache_configuration: model.cache_configuration.as_ref().map(|config| {
319                        anthropic::AnthropicModelCacheConfiguration {
320                            max_cache_anchors: config.max_cache_anchors,
321                            should_speculate: config.should_speculate,
322                            min_total_token: config.min_total_token,
323                        }
324                    }),
325                    default_temperature: model.default_temperature,
326                    max_output_tokens: model.max_output_tokens,
327                    extra_beta_headers: model.extra_beta_headers.clone(),
328                    mode: model.mode.unwrap_or_default().into(),
329                }),
330                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
331                    name: model.name.clone(),
332                    display_name: model.display_name.clone(),
333                    max_tokens: model.max_tokens,
334                    max_output_tokens: model.max_output_tokens,
335                    max_completion_tokens: model.max_completion_tokens,
336                }),
337                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
338                    name: model.name.clone(),
339                    display_name: model.display_name.clone(),
340                    max_tokens: model.max_tokens,
341                }),
342            };
343            models.insert(model.id().to_string(), model.clone());
344        }
345
346        let llm_api_token = self.state.read(cx).llm_api_token.clone();
347        models
348            .into_values()
349            .map(|model| {
350                Arc::new(CloudLanguageModel {
351                    id: LanguageModelId::from(model.id().to_string()),
352                    model,
353                    llm_api_token: llm_api_token.clone(),
354                    client: self.client.clone(),
355                    request_limiter: RateLimiter::new(4),
356                }) as Arc<dyn LanguageModel>
357            })
358            .collect()
359    }
360
361    fn is_authenticated(&self, cx: &App) -> bool {
362        !self.state.read(cx).is_signed_out()
363    }
364
365    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
366        Task::ready(Ok(()))
367    }
368
369    fn configuration_view(&self, _: &mut Window, cx: &mut App) -> AnyView {
370        cx.new(|_| ConfigurationView {
371            state: self.state.clone(),
372        })
373        .into()
374    }
375
376    fn must_accept_terms(&self, cx: &App) -> bool {
377        !self.state.read(cx).has_accepted_terms_of_service(cx)
378    }
379
380    fn render_accept_terms(
381        &self,
382        view: LanguageModelProviderTosView,
383        cx: &mut App,
384    ) -> Option<AnyElement> {
385        render_accept_terms(self.state.clone(), view, cx)
386    }
387
388    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
389        Task::ready(Ok(()))
390    }
391}
392
393fn render_accept_terms(
394    state: Entity<State>,
395    view_kind: LanguageModelProviderTosView,
396    cx: &mut App,
397) -> Option<AnyElement> {
398    if state.read(cx).has_accepted_terms_of_service(cx) {
399        return None;
400    }
401
402    let accept_terms_disabled = state.read(cx).accept_terms.is_some();
403
404    let terms_button = Button::new("terms_of_service", "Terms of Service")
405        .style(ButtonStyle::Subtle)
406        .icon(IconName::ArrowUpRight)
407        .icon_color(Color::Muted)
408        .icon_size(IconSize::XSmall)
409        .on_click(move |_, _window, cx| cx.open_url("https://zed.dev/terms-of-service"));
410
411    let thread_view = match view_kind {
412        LanguageModelProviderTosView::ThreadEmptyState => true,
413        LanguageModelProviderTosView::PromptEditorPopup => false,
414        LanguageModelProviderTosView::Configuration => false,
415    };
416
417    let form = v_flex()
418        .w_full()
419        .gap_2()
420        .child(
421            h_flex()
422                .flex_wrap()
423                .when(thread_view, |this| this.justify_center())
424                .child(Label::new(
425                    "To start using Zed AI, please read and accept the",
426                ))
427                .child(terms_button),
428        )
429        .child({
430            let button_container = h_flex().w_full().child(
431                Button::new("accept_terms", "I accept the Terms of Service")
432                    .style(ButtonStyle::Tinted(TintColor::Accent))
433                    .icon(IconName::Check)
434                    .icon_position(IconPosition::Start)
435                    .icon_size(IconSize::Small)
436                    .full_width()
437                    .disabled(accept_terms_disabled)
438                    .on_click({
439                        let state = state.downgrade();
440                        move |_, _window, cx| {
441                            state
442                                .update(cx, |state, cx| state.accept_terms_of_service(cx))
443                                .ok();
444                        }
445                    }),
446            );
447
448            match view_kind {
449                LanguageModelProviderTosView::PromptEditorPopup => button_container.justify_end(),
450                LanguageModelProviderTosView::Configuration => button_container.justify_start(),
451                LanguageModelProviderTosView::ThreadEmptyState => button_container.justify_center(),
452            }
453        });
454
455    Some(form.into_any())
456}
457
458pub struct CloudLanguageModel {
459    id: LanguageModelId,
460    model: CloudModel,
461    llm_api_token: LlmApiToken,
462    client: Arc<Client>,
463    request_limiter: RateLimiter,
464}
465
466impl CloudLanguageModel {
467    const MAX_RETRIES: usize = 3;
468
469    async fn perform_llm_completion(
470        client: Arc<Client>,
471        llm_api_token: LlmApiToken,
472        body: PerformCompletionParams,
473    ) -> Result<Response<AsyncBody>> {
474        let http_client = &client.http_client();
475
476        let mut token = llm_api_token.acquire(&client).await?;
477        let mut retries_remaining = Self::MAX_RETRIES;
478        let mut retry_delay = Duration::from_secs(1);
479
480        loop {
481            let request_builder = http_client::Request::builder();
482            let request = request_builder
483                .method(Method::POST)
484                .uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
485                .header("Content-Type", "application/json")
486                .header("Authorization", format!("Bearer {token}"))
487                .body(serde_json::to_string(&body)?.into())?;
488            let mut response = http_client.send(request).await?;
489            let status = response.status();
490            if status.is_success() {
491                return Ok(response);
492            } else if response
493                .headers()
494                .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
495                .is_some()
496            {
497                retries_remaining -= 1;
498                token = llm_api_token.refresh(&client).await?;
499            } else if status == StatusCode::FORBIDDEN
500                && response
501                    .headers()
502                    .get(MAX_LLM_MONTHLY_SPEND_REACHED_HEADER_NAME)
503                    .is_some()
504            {
505                return Err(anyhow!(MaxMonthlySpendReachedError));
506            } else if status.as_u16() >= 500 && status.as_u16() < 600 {
507                // If we encounter an error in the 500 range, retry after a delay.
508                // We've seen at least these in the wild from API providers:
509                // * 500 Internal Server Error
510                // * 502 Bad Gateway
511                // * 529 Service Overloaded
512
513                if retries_remaining == 0 {
514                    let mut body = String::new();
515                    response.body_mut().read_to_string(&mut body).await?;
516                    return Err(anyhow!(
517                        "cloud language model completion failed after {} retries with status {status}: {body}",
518                        Self::MAX_RETRIES
519                    ));
520                }
521
522                Timer::after(retry_delay).await;
523
524                retries_remaining -= 1;
525                retry_delay *= 2; // If it fails again, wait longer.
526            } else if status == StatusCode::PAYMENT_REQUIRED {
527                return Err(anyhow!(PaymentRequiredError));
528            } else {
529                let mut body = String::new();
530                response.body_mut().read_to_string(&mut body).await?;
531                return Err(anyhow!(
532                    "cloud language model completion failed with status {status}: {body}",
533                ));
534            }
535        }
536    }
537}
538
539impl LanguageModel for CloudLanguageModel {
540    fn id(&self) -> LanguageModelId {
541        self.id.clone()
542    }
543
544    fn name(&self) -> LanguageModelName {
545        LanguageModelName::from(self.model.display_name().to_string())
546    }
547
548    fn icon(&self) -> Option<IconName> {
549        self.model.icon()
550    }
551
552    fn provider_id(&self) -> LanguageModelProviderId {
553        LanguageModelProviderId(ZED_CLOUD_PROVIDER_ID.into())
554    }
555
556    fn provider_name(&self) -> LanguageModelProviderName {
557        LanguageModelProviderName(PROVIDER_NAME.into())
558    }
559
560    fn supports_tools(&self) -> bool {
561        match self.model {
562            CloudModel::Anthropic(_) => true,
563            CloudModel::Google(_) => true,
564            CloudModel::OpenAi(_) => false,
565        }
566    }
567
568    fn telemetry_id(&self) -> String {
569        format!("zed.dev/{}", self.model.id())
570    }
571
572    fn availability(&self) -> LanguageModelAvailability {
573        self.model.availability()
574    }
575
576    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
577        self.model.tool_input_format()
578    }
579
580    fn max_token_count(&self) -> usize {
581        self.model.max_token_count()
582    }
583
584    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
585        match &self.model {
586            CloudModel::Anthropic(model) => {
587                model
588                    .cache_configuration()
589                    .map(|cache| LanguageModelCacheConfiguration {
590                        max_cache_anchors: cache.max_cache_anchors,
591                        should_speculate: cache.should_speculate,
592                        min_total_token: cache.min_total_token,
593                    })
594            }
595            CloudModel::OpenAi(_) | CloudModel::Google(_) => None,
596        }
597    }
598
599    fn count_tokens(
600        &self,
601        request: LanguageModelRequest,
602        cx: &App,
603    ) -> BoxFuture<'static, Result<usize>> {
604        match self.model.clone() {
605            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
606            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
607            CloudModel::Google(model) => {
608                let client = self.client.clone();
609                let request = into_google(request, model.id().into());
610                let request = google_ai::CountTokensRequest {
611                    contents: request.contents,
612                };
613                async move {
614                    let request = serde_json::to_string(&request)?;
615                    let response = client
616                        .request(proto::CountLanguageModelTokens {
617                            provider: proto::LanguageModelProvider::Google as i32,
618                            request,
619                        })
620                        .await?;
621                    Ok(response.token_count as usize)
622                }
623                .boxed()
624            }
625        }
626    }
627
628    fn stream_completion(
629        &self,
630        request: LanguageModelRequest,
631        _cx: &AsyncApp,
632    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
633        match &self.model {
634            CloudModel::Anthropic(model) => {
635                let request = into_anthropic(
636                    request,
637                    model.request_id().into(),
638                    model.default_temperature(),
639                    model.max_output_tokens(),
640                    model.mode(),
641                );
642                let client = self.client.clone();
643                let llm_api_token = self.llm_api_token.clone();
644                let future = self.request_limiter.stream(async move {
645                    let response = Self::perform_llm_completion(
646                        client.clone(),
647                        llm_api_token,
648                        PerformCompletionParams {
649                            provider: client::LanguageModelProvider::Anthropic,
650                            model: request.model.clone(),
651                            provider_request: RawValue::from_string(serde_json::to_string(
652                                &request,
653                            )?)?,
654                        },
655                    )
656                    .await?;
657                    Ok(
658                        crate::provider::anthropic::map_to_language_model_completion_events(
659                            Box::pin(response_lines(response).map_err(AnthropicError::Other)),
660                        ),
661                    )
662                });
663                async move { Ok(future.await?.boxed()) }.boxed()
664            }
665            CloudModel::OpenAi(model) => {
666                let client = self.client.clone();
667                let request = into_open_ai(request, model.id().into(), model.max_output_tokens());
668                let llm_api_token = self.llm_api_token.clone();
669                let future = self.request_limiter.stream(async move {
670                    let response = Self::perform_llm_completion(
671                        client.clone(),
672                        llm_api_token,
673                        PerformCompletionParams {
674                            provider: client::LanguageModelProvider::OpenAi,
675                            model: request.model.clone(),
676                            provider_request: RawValue::from_string(serde_json::to_string(
677                                &request,
678                            )?)?,
679                        },
680                    )
681                    .await?;
682                    Ok(open_ai::extract_text_from_events(response_lines(response)))
683                });
684                async move {
685                    Ok(future
686                        .await?
687                        .map(|result| result.map(LanguageModelCompletionEvent::Text))
688                        .boxed())
689                }
690                .boxed()
691            }
692            CloudModel::Google(model) => {
693                let client = self.client.clone();
694                let request = into_google(request, model.id().into());
695                let llm_api_token = self.llm_api_token.clone();
696                let future = self.request_limiter.stream(async move {
697                    let response = Self::perform_llm_completion(
698                        client.clone(),
699                        llm_api_token,
700                        PerformCompletionParams {
701                            provider: client::LanguageModelProvider::Google,
702                            model: request.model.clone(),
703                            provider_request: RawValue::from_string(serde_json::to_string(
704                                &request,
705                            )?)?,
706                        },
707                    )
708                    .await?;
709                    Ok(
710                        crate::provider::google::map_to_language_model_completion_events(Box::pin(
711                            response_lines(response),
712                        )),
713                    )
714                });
715                async move { Ok(future.await?.boxed()) }.boxed()
716            }
717        }
718    }
719
720    fn use_any_tool(
721        &self,
722        request: LanguageModelRequest,
723        tool_name: String,
724        tool_description: String,
725        input_schema: serde_json::Value,
726        _cx: &AsyncApp,
727    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
728        let client = self.client.clone();
729        let llm_api_token = self.llm_api_token.clone();
730
731        match &self.model {
732            CloudModel::Anthropic(model) => {
733                let mut request = into_anthropic(
734                    request,
735                    model.tool_model_id().into(),
736                    model.default_temperature(),
737                    model.max_output_tokens(),
738                    model.mode(),
739                );
740                request.tool_choice = Some(anthropic::ToolChoice::Tool {
741                    name: tool_name.clone(),
742                });
743                request.tools = vec![anthropic::Tool {
744                    name: tool_name.clone(),
745                    description: tool_description,
746                    input_schema,
747                }];
748
749                self.request_limiter
750                    .run(async move {
751                        let response = Self::perform_llm_completion(
752                            client.clone(),
753                            llm_api_token,
754                            PerformCompletionParams {
755                                provider: client::LanguageModelProvider::Anthropic,
756                                model: request.model.clone(),
757                                provider_request: RawValue::from_string(serde_json::to_string(
758                                    &request,
759                                )?)?,
760                            },
761                        )
762                        .await?;
763
764                        Ok(anthropic::extract_tool_args_from_events(
765                            tool_name,
766                            Box::pin(response_lines(response)),
767                        )
768                        .await?
769                        .boxed())
770                    })
771                    .boxed()
772            }
773            CloudModel::OpenAi(model) => {
774                let mut request =
775                    into_open_ai(request, model.id().into(), model.max_output_tokens());
776                request.tool_choice = Some(open_ai::ToolChoice::Other(
777                    open_ai::ToolDefinition::Function {
778                        function: open_ai::FunctionDefinition {
779                            name: tool_name.clone(),
780                            description: None,
781                            parameters: None,
782                        },
783                    },
784                ));
785                request.tools = vec![open_ai::ToolDefinition::Function {
786                    function: open_ai::FunctionDefinition {
787                        name: tool_name.clone(),
788                        description: Some(tool_description),
789                        parameters: Some(input_schema),
790                    },
791                }];
792
793                self.request_limiter
794                    .run(async move {
795                        let response = Self::perform_llm_completion(
796                            client.clone(),
797                            llm_api_token,
798                            PerformCompletionParams {
799                                provider: client::LanguageModelProvider::OpenAi,
800                                model: request.model.clone(),
801                                provider_request: RawValue::from_string(serde_json::to_string(
802                                    &request,
803                                )?)?,
804                            },
805                        )
806                        .await?;
807
808                        Ok(open_ai::extract_tool_args_from_events(
809                            tool_name,
810                            Box::pin(response_lines(response)),
811                        )
812                        .await?
813                        .boxed())
814                    })
815                    .boxed()
816            }
817            CloudModel::Google(_) => {
818                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
819            }
820        }
821    }
822}
823
824fn response_lines<T: DeserializeOwned>(
825    response: Response<AsyncBody>,
826) -> impl Stream<Item = Result<T>> {
827    futures::stream::try_unfold(
828        (String::new(), BufReader::new(response.into_body())),
829        move |(mut line, mut body)| async {
830            match body.read_line(&mut line).await {
831                Ok(0) => Ok(None),
832                Ok(_) => {
833                    let event: T = serde_json::from_str(&line)?;
834                    line.clear();
835                    Ok(Some((event, (line, body))))
836                }
837                Err(e) => Err(e.into()),
838            }
839        },
840    )
841}
842
843struct ConfigurationView {
844    state: gpui::Entity<State>,
845}
846
847impl ConfigurationView {
848    fn authenticate(&mut self, cx: &mut Context<Self>) {
849        self.state.update(cx, |state, cx| {
850            state.authenticate(cx).detach_and_log_err(cx);
851        });
852        cx.notify();
853    }
854}
855
856impl Render for ConfigurationView {
857    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
858        const ZED_AI_URL: &str = "https://zed.dev/ai";
859
860        let is_connected = !self.state.read(cx).is_signed_out();
861        let plan = self.state.read(cx).user_store.read(cx).current_plan();
862        let has_accepted_terms = self.state.read(cx).has_accepted_terms_of_service(cx);
863
864        let is_pro = plan == Some(proto::Plan::ZedPro);
865        let subscription_text = Label::new(if is_pro {
866            "You have full access to Zed's hosted LLMs, which include models from Anthropic, OpenAI, and Google. They come with faster speeds and higher limits through Zed Pro."
867        } else {
868            "You have basic access to models from Anthropic through the Zed AI Free plan."
869        });
870        let manage_subscription_button = if is_pro {
871            Some(
872                h_flex().child(
873                    Button::new("manage_settings", "Manage Subscription")
874                        .style(ButtonStyle::Tinted(TintColor::Accent))
875                        .on_click(
876                            cx.listener(|_, _, _, cx| cx.open_url(&zed_urls::account_url(cx))),
877                        ),
878                ),
879            )
880        } else if cx.has_flag::<ZedPro>() {
881            Some(
882                h_flex()
883                    .gap_2()
884                    .child(
885                        Button::new("learn_more", "Learn more")
886                            .style(ButtonStyle::Subtle)
887                            .on_click(cx.listener(|_, _, _, cx| cx.open_url(ZED_AI_URL))),
888                    )
889                    .child(
890                        Button::new("upgrade", "Upgrade")
891                            .style(ButtonStyle::Subtle)
892                            .color(Color::Accent)
893                            .on_click(
894                                cx.listener(|_, _, _, cx| cx.open_url(&zed_urls::account_url(cx))),
895                            ),
896                    ),
897            )
898        } else {
899            None
900        };
901
902        if is_connected {
903            v_flex()
904                .gap_3()
905                .w_full()
906                .children(render_accept_terms(
907                    self.state.clone(),
908                    LanguageModelProviderTosView::Configuration,
909                    cx,
910                ))
911                .when(has_accepted_terms, |this| {
912                    this.child(subscription_text)
913                        .children(manage_subscription_button)
914                })
915        } else {
916            v_flex()
917                .gap_2()
918                .child(Label::new("Use Zed AI to access hosted language models."))
919                .child(
920                    Button::new("sign_in", "Sign In")
921                        .icon_color(Color::Muted)
922                        .icon(IconName::Github)
923                        .icon_position(IconPosition::Start)
924                        .on_click(cx.listener(move |this, _, _, cx| this.authenticate(cx))),
925                )
926        }
927    }
928}