1use crate::{
2 point, prelude::*, px, size, transparent_black, Action, AnyDrag, AnyElement, AnyTooltip,
3 AnyView, App, AppContext, Arena, Asset, AsyncWindowContext, AvailableSpace, Background, Bounds,
4 BoxShadow, Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
5 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
6 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
7 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
8 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
9 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
10 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
11 RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
12 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
13 Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement, TransformationMatrix,
14 Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance, WindowBounds,
15 WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
16 SUBPIXEL_VARIANTS,
17};
18use anyhow::{anyhow, Context as _, Result};
19use collections::{FxHashMap, FxHashSet};
20use derive_more::{Deref, DerefMut};
21use futures::channel::oneshot;
22use futures::FutureExt;
23#[cfg(target_os = "macos")]
24use media::core_video::CVImageBuffer;
25use parking_lot::RwLock;
26use refineable::Refineable;
27use slotmap::SlotMap;
28use smallvec::SmallVec;
29use std::{
30 any::{Any, TypeId},
31 borrow::Cow,
32 cell::{Cell, RefCell},
33 cmp,
34 fmt::{Debug, Display},
35 future::Future,
36 hash::{Hash, Hasher},
37 marker::PhantomData,
38 mem,
39 ops::{DerefMut, Range},
40 rc::Rc,
41 sync::{
42 atomic::{AtomicUsize, Ordering::SeqCst},
43 Arc, Weak,
44 },
45 time::{Duration, Instant},
46};
47use util::post_inc;
48use util::{measure, ResultExt};
49use uuid::Uuid;
50
51mod prompts;
52
53pub use prompts::*;
54
55pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
56
57/// Represents the two different phases when dispatching events.
58#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
59pub enum DispatchPhase {
60 /// After the capture phase comes the bubble phase, in which mouse event listeners are
61 /// invoked front to back and keyboard event listeners are invoked from the focused element
62 /// to the root of the element tree. This is the phase you'll most commonly want to use when
63 /// registering event listeners.
64 #[default]
65 Bubble,
66 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
67 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
68 /// is used for special purposes such as clearing the "pressed" state for click events. If
69 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
70 /// outside of the immediate region may rely on detecting non-local events during this phase.
71 Capture,
72}
73
74impl DispatchPhase {
75 /// Returns true if this represents the "bubble" phase.
76 pub fn bubble(self) -> bool {
77 self == DispatchPhase::Bubble
78 }
79
80 /// Returns true if this represents the "capture" phase.
81 pub fn capture(self) -> bool {
82 self == DispatchPhase::Capture
83 }
84}
85
86struct WindowInvalidatorInner {
87 pub dirty: bool,
88 pub draw_phase: DrawPhase,
89 pub dirty_views: FxHashSet<EntityId>,
90}
91
92#[derive(Clone)]
93pub(crate) struct WindowInvalidator {
94 inner: Rc<RefCell<WindowInvalidatorInner>>,
95}
96
97impl WindowInvalidator {
98 pub fn new() -> Self {
99 WindowInvalidator {
100 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
101 dirty: true,
102 draw_phase: DrawPhase::None,
103 dirty_views: FxHashSet::default(),
104 })),
105 }
106 }
107
108 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
109 let mut inner = self.inner.borrow_mut();
110 if inner.draw_phase == DrawPhase::None {
111 inner.dirty = true;
112 inner.dirty_views.insert(entity);
113 cx.push_effect(Effect::Notify { emitter: entity });
114 true
115 } else {
116 false
117 }
118 }
119
120 pub fn is_dirty(&self) -> bool {
121 self.inner.borrow().dirty
122 }
123
124 pub fn set_dirty(&self, dirty: bool) {
125 self.inner.borrow_mut().dirty = dirty
126 }
127
128 pub fn set_phase(&self, phase: DrawPhase) {
129 self.inner.borrow_mut().draw_phase = phase
130 }
131
132 pub fn take_views(&self) -> FxHashSet<EntityId> {
133 mem::take(&mut self.inner.borrow_mut().dirty_views)
134 }
135
136 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
137 self.inner.borrow_mut().dirty_views = views;
138 }
139
140 pub fn not_painting(&self) -> bool {
141 self.inner.borrow().draw_phase == DrawPhase::None
142 }
143
144 #[track_caller]
145 pub fn debug_assert_paint(&self) {
146 debug_assert!(
147 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
148 "this method can only be called during paint"
149 );
150 }
151
152 #[track_caller]
153 pub fn debug_assert_prepaint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
156 "this method can only be called during request_layout, or prepaint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint_or_prepaint(&self) {
162 debug_assert!(
163 matches!(
164 self.inner.borrow().draw_phase,
165 DrawPhase::Paint | DrawPhase::Prepaint
166 ),
167 "this method can only be called during request_layout, prepaint, or paint"
168 );
169 }
170}
171
172type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
173
174pub(crate) type AnyWindowFocusListener =
175 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
176
177pub(crate) struct WindowFocusEvent {
178 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
179 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
180}
181
182impl WindowFocusEvent {
183 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
184 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
185 }
186
187 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
188 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
189 }
190}
191
192/// This is provided when subscribing for `Context::on_focus_out` events.
193pub struct FocusOutEvent {
194 /// A weak focus handle representing what was blurred.
195 pub blurred: WeakFocusHandle,
196}
197
198slotmap::new_key_type! {
199 /// A globally unique identifier for a focusable element.
200 pub struct FocusId;
201}
202
203thread_local! {
204 /// 8MB wasn't quite enough...
205 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
206}
207
208pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
209
210impl FocusId {
211 /// Obtains whether the element associated with this handle is currently focused.
212 pub fn is_focused(&self, window: &Window) -> bool {
213 window.focus == Some(*self)
214 }
215
216 /// Obtains whether the element associated with this handle contains the focused
217 /// element or is itself focused.
218 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
219 window
220 .focused(cx)
221 .map_or(false, |focused| self.contains(focused.id, window))
222 }
223
224 /// Obtains whether the element associated with this handle is contained within the
225 /// focused element or is itself focused.
226 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
227 let focused = window.focused(cx);
228 focused.map_or(false, |focused| focused.id.contains(*self, window))
229 }
230
231 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
232 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
233 window
234 .rendered_frame
235 .dispatch_tree
236 .focus_contains(*self, other)
237 }
238}
239
240/// A handle which can be used to track and manipulate the focused element in a window.
241pub struct FocusHandle {
242 pub(crate) id: FocusId,
243 handles: Arc<FocusMap>,
244}
245
246impl std::fmt::Debug for FocusHandle {
247 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
248 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
249 }
250}
251
252impl FocusHandle {
253 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
254 let id = handles.write().insert(AtomicUsize::new(1));
255 Self {
256 id,
257 handles: handles.clone(),
258 }
259 }
260
261 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
262 let lock = handles.read();
263 let ref_count = lock.get(id)?;
264 if ref_count.load(SeqCst) == 0 {
265 None
266 } else {
267 ref_count.fetch_add(1, SeqCst);
268 Some(Self {
269 id,
270 handles: handles.clone(),
271 })
272 }
273 }
274
275 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
276 pub fn downgrade(&self) -> WeakFocusHandle {
277 WeakFocusHandle {
278 id: self.id,
279 handles: Arc::downgrade(&self.handles),
280 }
281 }
282
283 /// Moves the focus to the element associated with this handle.
284 pub fn focus(&self, window: &mut Window) {
285 window.focus(self)
286 }
287
288 /// Obtains whether the element associated with this handle is currently focused.
289 pub fn is_focused(&self, window: &Window) -> bool {
290 self.id.is_focused(window)
291 }
292
293 /// Obtains whether the element associated with this handle contains the focused
294 /// element or is itself focused.
295 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
296 self.id.contains_focused(window, cx)
297 }
298
299 /// Obtains whether the element associated with this handle is contained within the
300 /// focused element or is itself focused.
301 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
302 self.id.within_focused(window, cx)
303 }
304
305 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
306 pub fn contains(&self, other: &Self, window: &Window) -> bool {
307 self.id.contains(other.id, window)
308 }
309
310 /// Dispatch an action on the element that rendered this focus handle
311 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
312 if let Some(node_id) = window
313 .rendered_frame
314 .dispatch_tree
315 .focusable_node_id(self.id)
316 {
317 window.dispatch_action_on_node(node_id, action, cx)
318 }
319 }
320}
321
322impl Clone for FocusHandle {
323 fn clone(&self) -> Self {
324 Self::for_id(self.id, &self.handles).unwrap()
325 }
326}
327
328impl PartialEq for FocusHandle {
329 fn eq(&self, other: &Self) -> bool {
330 self.id == other.id
331 }
332}
333
334impl Eq for FocusHandle {}
335
336impl Drop for FocusHandle {
337 fn drop(&mut self) {
338 self.handles
339 .read()
340 .get(self.id)
341 .unwrap()
342 .fetch_sub(1, SeqCst);
343 }
344}
345
346/// A weak reference to a focus handle.
347#[derive(Clone, Debug)]
348pub struct WeakFocusHandle {
349 pub(crate) id: FocusId,
350 pub(crate) handles: Weak<FocusMap>,
351}
352
353impl WeakFocusHandle {
354 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
355 pub fn upgrade(&self) -> Option<FocusHandle> {
356 let handles = self.handles.upgrade()?;
357 FocusHandle::for_id(self.id, &handles)
358 }
359}
360
361impl PartialEq for WeakFocusHandle {
362 fn eq(&self, other: &WeakFocusHandle) -> bool {
363 self.id == other.id
364 }
365}
366
367impl Eq for WeakFocusHandle {}
368
369impl PartialEq<FocusHandle> for WeakFocusHandle {
370 fn eq(&self, other: &FocusHandle) -> bool {
371 self.id == other.id
372 }
373}
374
375impl PartialEq<WeakFocusHandle> for FocusHandle {
376 fn eq(&self, other: &WeakFocusHandle) -> bool {
377 self.id == other.id
378 }
379}
380
381/// Focusable allows users of your view to easily
382/// focus it (using window.focus_view(cx, view))
383pub trait Focusable: 'static {
384 /// Returns the focus handle associated with this view.
385 fn focus_handle(&self, cx: &App) -> FocusHandle;
386}
387
388impl<V: Focusable> Focusable for Entity<V> {
389 fn focus_handle(&self, cx: &App) -> FocusHandle {
390 self.read(cx).focus_handle(cx)
391 }
392}
393
394/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
395/// where the lifecycle of the view is handled by another view.
396pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
397
398impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
399
400/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
401pub struct DismissEvent;
402
403type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
404
405pub(crate) type AnyMouseListener =
406 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
407
408#[derive(Clone)]
409pub(crate) struct CursorStyleRequest {
410 pub(crate) hitbox_id: HitboxId,
411 pub(crate) style: CursorStyle,
412}
413
414/// An identifier for a [Hitbox].
415#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
416pub struct HitboxId(usize);
417
418impl HitboxId {
419 /// Checks if the hitbox with this id is currently hovered.
420 pub fn is_hovered(&self, window: &Window) -> bool {
421 window.mouse_hit_test.0.contains(self)
422 }
423}
424
425/// A rectangular region that potentially blocks hitboxes inserted prior.
426/// See [Window::insert_hitbox] for more details.
427#[derive(Clone, Debug, Deref)]
428pub struct Hitbox {
429 /// A unique identifier for the hitbox.
430 pub id: HitboxId,
431 /// The bounds of the hitbox.
432 #[deref]
433 pub bounds: Bounds<Pixels>,
434 /// The content mask when the hitbox was inserted.
435 pub content_mask: ContentMask<Pixels>,
436 /// Whether the hitbox occludes other hitboxes inserted prior.
437 pub opaque: bool,
438}
439
440impl Hitbox {
441 /// Checks if the hitbox is currently hovered.
442 pub fn is_hovered(&self, window: &Window) -> bool {
443 self.id.is_hovered(window)
444 }
445}
446
447#[derive(Default, Eq, PartialEq)]
448pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
449
450/// An identifier for a tooltip.
451#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
452pub struct TooltipId(usize);
453
454impl TooltipId {
455 /// Checks if the tooltip is currently hovered.
456 pub fn is_hovered(&self, window: &Window) -> bool {
457 window
458 .tooltip_bounds
459 .as_ref()
460 .map_or(false, |tooltip_bounds| {
461 tooltip_bounds.id == *self
462 && tooltip_bounds.bounds.contains(&window.mouse_position())
463 })
464 }
465}
466
467pub(crate) struct TooltipBounds {
468 id: TooltipId,
469 bounds: Bounds<Pixels>,
470}
471
472#[derive(Clone)]
473pub(crate) struct TooltipRequest {
474 id: TooltipId,
475 tooltip: AnyTooltip,
476}
477
478pub(crate) struct DeferredDraw {
479 priority: usize,
480 parent_node: DispatchNodeId,
481 element_id_stack: SmallVec<[ElementId; 32]>,
482 text_style_stack: Vec<TextStyleRefinement>,
483 element: Option<AnyElement>,
484 absolute_offset: Point<Pixels>,
485 prepaint_range: Range<PrepaintStateIndex>,
486 paint_range: Range<PaintIndex>,
487}
488
489pub(crate) struct Frame {
490 pub(crate) focus: Option<FocusId>,
491 pub(crate) window_active: bool,
492 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
493 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
494 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
495 pub(crate) dispatch_tree: DispatchTree,
496 pub(crate) scene: Scene,
497 pub(crate) hitboxes: Vec<Hitbox>,
498 pub(crate) deferred_draws: Vec<DeferredDraw>,
499 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
500 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
501 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
502 #[cfg(any(test, feature = "test-support"))]
503 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
504}
505
506#[derive(Clone, Default)]
507pub(crate) struct PrepaintStateIndex {
508 hitboxes_index: usize,
509 tooltips_index: usize,
510 deferred_draws_index: usize,
511 dispatch_tree_index: usize,
512 accessed_element_states_index: usize,
513 line_layout_index: LineLayoutIndex,
514}
515
516#[derive(Clone, Default)]
517pub(crate) struct PaintIndex {
518 scene_index: usize,
519 mouse_listeners_index: usize,
520 input_handlers_index: usize,
521 cursor_styles_index: usize,
522 accessed_element_states_index: usize,
523 line_layout_index: LineLayoutIndex,
524}
525
526impl Frame {
527 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
528 Frame {
529 focus: None,
530 window_active: false,
531 element_states: FxHashMap::default(),
532 accessed_element_states: Vec::new(),
533 mouse_listeners: Vec::new(),
534 dispatch_tree,
535 scene: Scene::default(),
536 hitboxes: Vec::new(),
537 deferred_draws: Vec::new(),
538 input_handlers: Vec::new(),
539 tooltip_requests: Vec::new(),
540 cursor_styles: Vec::new(),
541
542 #[cfg(any(test, feature = "test-support"))]
543 debug_bounds: FxHashMap::default(),
544 }
545 }
546
547 pub(crate) fn clear(&mut self) {
548 self.element_states.clear();
549 self.accessed_element_states.clear();
550 self.mouse_listeners.clear();
551 self.dispatch_tree.clear();
552 self.scene.clear();
553 self.input_handlers.clear();
554 self.tooltip_requests.clear();
555 self.cursor_styles.clear();
556 self.hitboxes.clear();
557 self.deferred_draws.clear();
558 self.focus = None;
559 }
560
561 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
562 let mut hit_test = HitTest::default();
563 for hitbox in self.hitboxes.iter().rev() {
564 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
565 if bounds.contains(&position) {
566 hit_test.0.push(hitbox.id);
567 if hitbox.opaque {
568 break;
569 }
570 }
571 }
572 hit_test
573 }
574
575 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
576 self.focus
577 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
578 .unwrap_or_default()
579 }
580
581 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
582 for element_state_key in &self.accessed_element_states {
583 if let Some((element_state_key, element_state)) =
584 prev_frame.element_states.remove_entry(element_state_key)
585 {
586 self.element_states.insert(element_state_key, element_state);
587 }
588 }
589
590 self.scene.finish();
591 }
592}
593
594// Holds the state for a specific window.
595#[doc(hidden)]
596pub struct Window {
597 pub(crate) handle: AnyWindowHandle,
598 pub(crate) invalidator: WindowInvalidator,
599 pub(crate) removed: bool,
600 pub(crate) platform_window: Box<dyn PlatformWindow>,
601 display_id: Option<DisplayId>,
602 sprite_atlas: Arc<dyn PlatformAtlas>,
603 text_system: Arc<WindowTextSystem>,
604 rem_size: Pixels,
605 /// The stack of override values for the window's rem size.
606 ///
607 /// This is used by `with_rem_size` to allow rendering an element tree with
608 /// a given rem size.
609 rem_size_override_stack: SmallVec<[Pixels; 8]>,
610 pub(crate) viewport_size: Size<Pixels>,
611 layout_engine: Option<TaffyLayoutEngine>,
612 pub(crate) root: Option<AnyView>,
613 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
614 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
615 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
616 pub(crate) element_opacity: Option<f32>,
617 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
618 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
619 pub(crate) rendered_frame: Frame,
620 pub(crate) next_frame: Frame,
621 pub(crate) next_hitbox_id: HitboxId,
622 pub(crate) next_tooltip_id: TooltipId,
623 pub(crate) tooltip_bounds: Option<TooltipBounds>,
624 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
625 pub(crate) dirty_views: FxHashSet<EntityId>,
626 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
627 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
628 default_prevented: bool,
629 mouse_position: Point<Pixels>,
630 mouse_hit_test: HitTest,
631 modifiers: Modifiers,
632 scale_factor: f32,
633 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
634 appearance: WindowAppearance,
635 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
636 active: Rc<Cell<bool>>,
637 hovered: Rc<Cell<bool>>,
638 pub(crate) needs_present: Rc<Cell<bool>>,
639 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
640 pub(crate) refreshing: bool,
641 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
642 pub(crate) focus: Option<FocusId>,
643 focus_enabled: bool,
644 pending_input: Option<PendingInput>,
645 pending_modifier: ModifierState,
646 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
647 prompt: Option<RenderablePromptHandle>,
648}
649
650#[derive(Clone, Debug, Default)]
651struct ModifierState {
652 modifiers: Modifiers,
653 saw_keystroke: bool,
654}
655
656#[derive(Clone, Copy, Debug, Eq, PartialEq)]
657pub(crate) enum DrawPhase {
658 None,
659 Prepaint,
660 Paint,
661 Focus,
662}
663
664#[derive(Default, Debug)]
665struct PendingInput {
666 keystrokes: SmallVec<[Keystroke; 1]>,
667 focus: Option<FocusId>,
668 timer: Option<Task<()>>,
669}
670
671pub(crate) struct ElementStateBox {
672 pub(crate) inner: Box<dyn Any>,
673 #[cfg(debug_assertions)]
674 pub(crate) type_name: &'static str,
675}
676
677fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
678 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
679
680 // TODO, BUG: if you open a window with the currently active window
681 // on the stack, this will erroneously select the 'unwrap_or_else'
682 // code path
683 cx.active_window()
684 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
685 .map(|mut bounds| {
686 bounds.origin += DEFAULT_WINDOW_OFFSET;
687 bounds
688 })
689 .unwrap_or_else(|| {
690 let display = display_id
691 .map(|id| cx.find_display(id))
692 .unwrap_or_else(|| cx.primary_display());
693
694 display
695 .map(|display| display.default_bounds())
696 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
697 })
698}
699
700impl Window {
701 pub(crate) fn new(
702 handle: AnyWindowHandle,
703 options: WindowOptions,
704 cx: &mut App,
705 ) -> Result<Self> {
706 let WindowOptions {
707 window_bounds,
708 titlebar,
709 focus,
710 show,
711 kind,
712 is_movable,
713 display_id,
714 window_background,
715 app_id,
716 window_min_size,
717 window_decorations,
718 } = options;
719
720 let bounds = window_bounds
721 .map(|bounds| bounds.get_bounds())
722 .unwrap_or_else(|| default_bounds(display_id, cx));
723 let mut platform_window = cx.platform.open_window(
724 handle,
725 WindowParams {
726 bounds,
727 titlebar,
728 kind,
729 is_movable,
730 focus,
731 show,
732 display_id,
733 window_min_size,
734 },
735 )?;
736 let display_id = platform_window.display().map(|display| display.id());
737 let sprite_atlas = platform_window.sprite_atlas();
738 let mouse_position = platform_window.mouse_position();
739 let modifiers = platform_window.modifiers();
740 let content_size = platform_window.content_size();
741 let scale_factor = platform_window.scale_factor();
742 let appearance = platform_window.appearance();
743 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
744 let invalidator = WindowInvalidator::new();
745 let active = Rc::new(Cell::new(platform_window.is_active()));
746 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
747 let needs_present = Rc::new(Cell::new(false));
748 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
749 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
750
751 platform_window
752 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
753 platform_window.set_background_appearance(window_background);
754
755 if let Some(ref window_open_state) = window_bounds {
756 match window_open_state {
757 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
758 WindowBounds::Maximized(_) => platform_window.zoom(),
759 WindowBounds::Windowed(_) => {}
760 }
761 }
762
763 platform_window.on_close(Box::new({
764 let mut cx = cx.to_async();
765 move || {
766 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
767 }
768 }));
769 platform_window.on_request_frame(Box::new({
770 let mut cx = cx.to_async();
771 let invalidator = invalidator.clone();
772 let active = active.clone();
773 let needs_present = needs_present.clone();
774 let next_frame_callbacks = next_frame_callbacks.clone();
775 let last_input_timestamp = last_input_timestamp.clone();
776 move |request_frame_options| {
777 let next_frame_callbacks = next_frame_callbacks.take();
778 if !next_frame_callbacks.is_empty() {
779 handle
780 .update(&mut cx, |_, window, cx| {
781 for callback in next_frame_callbacks {
782 callback(window, cx);
783 }
784 })
785 .log_err();
786 }
787
788 // Keep presenting the current scene for 1 extra second since the
789 // last input to prevent the display from underclocking the refresh rate.
790 let needs_present = request_frame_options.require_presentation
791 || needs_present.get()
792 || (active.get()
793 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
794
795 if invalidator.is_dirty() {
796 measure("frame duration", || {
797 handle
798 .update(&mut cx, |_, window, cx| {
799 window.draw(cx);
800 window.present();
801 })
802 .log_err();
803 })
804 } else if needs_present {
805 handle
806 .update(&mut cx, |_, window, _| window.present())
807 .log_err();
808 }
809
810 handle
811 .update(&mut cx, |_, window, _| {
812 window.complete_frame();
813 })
814 .log_err();
815 }
816 }));
817 platform_window.on_resize(Box::new({
818 let mut cx = cx.to_async();
819 move |_, _| {
820 handle
821 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
822 .log_err();
823 }
824 }));
825 platform_window.on_moved(Box::new({
826 let mut cx = cx.to_async();
827 move || {
828 handle
829 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
830 .log_err();
831 }
832 }));
833 platform_window.on_appearance_changed(Box::new({
834 let mut cx = cx.to_async();
835 move || {
836 handle
837 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
838 .log_err();
839 }
840 }));
841 platform_window.on_active_status_change(Box::new({
842 let mut cx = cx.to_async();
843 move |active| {
844 handle
845 .update(&mut cx, |_, window, cx| {
846 window.active.set(active);
847 window
848 .activation_observers
849 .clone()
850 .retain(&(), |callback| callback(window, cx));
851 window.refresh();
852 })
853 .log_err();
854 }
855 }));
856 platform_window.on_hover_status_change(Box::new({
857 let mut cx = cx.to_async();
858 move |active| {
859 handle
860 .update(&mut cx, |_, window, _| {
861 window.hovered.set(active);
862 window.refresh();
863 })
864 .log_err();
865 }
866 }));
867 platform_window.on_input({
868 let mut cx = cx.to_async();
869 Box::new(move |event| {
870 handle
871 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
872 .log_err()
873 .unwrap_or(DispatchEventResult::default())
874 })
875 });
876
877 if let Some(app_id) = app_id {
878 platform_window.set_app_id(&app_id);
879 }
880
881 platform_window.map_window().unwrap();
882
883 Ok(Window {
884 handle,
885 invalidator,
886 removed: false,
887 platform_window,
888 display_id,
889 sprite_atlas,
890 text_system,
891 rem_size: px(16.),
892 rem_size_override_stack: SmallVec::new(),
893 viewport_size: content_size,
894 layout_engine: Some(TaffyLayoutEngine::new()),
895 root: None,
896 element_id_stack: SmallVec::default(),
897 text_style_stack: Vec::new(),
898 element_offset_stack: Vec::new(),
899 content_mask_stack: Vec::new(),
900 element_opacity: None,
901 requested_autoscroll: None,
902 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
903 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
904 next_frame_callbacks,
905 next_hitbox_id: HitboxId::default(),
906 next_tooltip_id: TooltipId::default(),
907 tooltip_bounds: None,
908 dirty_views: FxHashSet::default(),
909 focus_listeners: SubscriberSet::new(),
910 focus_lost_listeners: SubscriberSet::new(),
911 default_prevented: true,
912 mouse_position,
913 mouse_hit_test: HitTest::default(),
914 modifiers,
915 scale_factor,
916 bounds_observers: SubscriberSet::new(),
917 appearance,
918 appearance_observers: SubscriberSet::new(),
919 active,
920 hovered,
921 needs_present,
922 last_input_timestamp,
923 refreshing: false,
924 activation_observers: SubscriberSet::new(),
925 focus: None,
926 focus_enabled: true,
927 pending_input: None,
928 pending_modifier: ModifierState::default(),
929 pending_input_observers: SubscriberSet::new(),
930 prompt: None,
931 })
932 }
933
934 pub(crate) fn new_focus_listener(
935 &self,
936 value: AnyWindowFocusListener,
937 ) -> (Subscription, impl FnOnce()) {
938 self.focus_listeners.insert((), value)
939 }
940}
941
942#[derive(Clone, Debug, Default, PartialEq, Eq)]
943pub(crate) struct DispatchEventResult {
944 pub propagate: bool,
945 pub default_prevented: bool,
946}
947
948/// Indicates which region of the window is visible. Content falling outside of this mask will not be
949/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
950/// to leave room to support more complex shapes in the future.
951#[derive(Clone, Debug, Default, PartialEq, Eq)]
952#[repr(C)]
953pub struct ContentMask<P: Clone + Default + Debug> {
954 /// The bounds
955 pub bounds: Bounds<P>,
956}
957
958impl ContentMask<Pixels> {
959 /// Scale the content mask's pixel units by the given scaling factor.
960 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
961 ContentMask {
962 bounds: self.bounds.scale(factor),
963 }
964 }
965
966 /// Intersect the content mask with the given content mask.
967 pub fn intersect(&self, other: &Self) -> Self {
968 let bounds = self.bounds.intersect(&other.bounds);
969 ContentMask { bounds }
970 }
971}
972
973impl Window {
974 /// Indicate that a view has changed, which will invoke any observers and also mark the window as dirty.
975 /// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
976 /// Note that this method will always cause a redraw, the entire window is refreshed if view_id is None.
977 pub(crate) fn notify(
978 &mut self,
979 notify_effect: bool,
980 entity_id: Option<EntityId>,
981 cx: &mut App,
982 ) {
983 let Some(view_id) = entity_id else {
984 self.refresh();
985 return;
986 };
987
988 self.mark_view_dirty(view_id);
989
990 if notify_effect {
991 self.invalidator.invalidate_view(view_id, cx);
992 }
993 }
994
995 fn mark_view_dirty(&mut self, view_id: EntityId) {
996 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
997 // should already be dirty.
998 for view_id in self
999 .rendered_frame
1000 .dispatch_tree
1001 .view_path(view_id)
1002 .into_iter()
1003 .rev()
1004 {
1005 if !self.dirty_views.insert(view_id) {
1006 break;
1007 }
1008 }
1009 }
1010
1011 /// Registers a callback to be invoked when the window appearance changes.
1012 pub fn observe_window_appearance(
1013 &self,
1014 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1015 ) -> Subscription {
1016 let (subscription, activate) = self.appearance_observers.insert(
1017 (),
1018 Box::new(move |window, cx| {
1019 callback(window, cx);
1020 true
1021 }),
1022 );
1023 activate();
1024 subscription
1025 }
1026
1027 pub fn replace_root<E>(
1028 &mut self,
1029 cx: &mut App,
1030 build_view: impl FnOnce(&mut Window, &mut Context<'_, E>) -> E,
1031 ) -> Entity<E>
1032 where
1033 E: 'static + Render,
1034 {
1035 let view = cx.new(|cx| build_view(self, cx));
1036 self.root = Some(view.clone().into());
1037 self.refresh();
1038 view
1039 }
1040
1041 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1042 where
1043 E: 'static + Render,
1044 {
1045 self.root
1046 .as_ref()
1047 .map(|view| view.clone().downcast::<E>().ok())
1048 }
1049
1050 /// Obtain a handle to the window that belongs to this context.
1051 pub fn window_handle(&self) -> AnyWindowHandle {
1052 self.handle
1053 }
1054
1055 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1056 pub fn refresh(&mut self) {
1057 if self.invalidator.not_painting() {
1058 self.refreshing = true;
1059 self.invalidator.set_dirty(true);
1060 }
1061 }
1062
1063 /// Close this window.
1064 pub fn remove_window(&mut self) {
1065 self.removed = true;
1066 }
1067
1068 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1069 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1070 self.focus
1071 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1072 }
1073
1074 /// Move focus to the element associated with the given [`FocusHandle`].
1075 pub fn focus(&mut self, handle: &FocusHandle) {
1076 if !self.focus_enabled || self.focus == Some(handle.id) {
1077 return;
1078 }
1079
1080 self.focus = Some(handle.id);
1081 self.clear_pending_keystrokes();
1082 self.refresh();
1083 }
1084
1085 /// Remove focus from all elements within this context's window.
1086 pub fn blur(&mut self) {
1087 if !self.focus_enabled {
1088 return;
1089 }
1090
1091 self.focus = None;
1092 self.refresh();
1093 }
1094
1095 /// Blur the window and don't allow anything in it to be focused again.
1096 pub fn disable_focus(&mut self) {
1097 self.blur();
1098 self.focus_enabled = false;
1099 }
1100
1101 /// Accessor for the text system.
1102 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1103 &self.text_system
1104 }
1105
1106 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1107 pub fn text_style(&self) -> TextStyle {
1108 let mut style = TextStyle::default();
1109 for refinement in &self.text_style_stack {
1110 style.refine(refinement);
1111 }
1112 style
1113 }
1114
1115 /// Check if the platform window is maximized
1116 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1117 pub fn is_maximized(&self) -> bool {
1118 self.platform_window.is_maximized()
1119 }
1120
1121 /// request a certain window decoration (Wayland)
1122 pub fn request_decorations(&self, decorations: WindowDecorations) {
1123 self.platform_window.request_decorations(decorations);
1124 }
1125
1126 /// Start a window resize operation (Wayland)
1127 pub fn start_window_resize(&self, edge: ResizeEdge) {
1128 self.platform_window.start_window_resize(edge);
1129 }
1130
1131 /// Return the `WindowBounds` to indicate that how a window should be opened
1132 /// after it has been closed
1133 pub fn window_bounds(&self) -> WindowBounds {
1134 self.platform_window.window_bounds()
1135 }
1136
1137 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1138 pub fn inner_window_bounds(&self) -> WindowBounds {
1139 self.platform_window.inner_window_bounds()
1140 }
1141
1142 /// Dispatch the given action on the currently focused element.
1143 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1144 let focus_handle = self.focused(cx);
1145
1146 let window = self.handle;
1147 cx.defer(move |cx| {
1148 window
1149 .update(cx, |_, window, cx| {
1150 let node_id = focus_handle
1151 .and_then(|handle| {
1152 window
1153 .rendered_frame
1154 .dispatch_tree
1155 .focusable_node_id(handle.id)
1156 })
1157 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1158
1159 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1160 })
1161 .log_err();
1162 })
1163 }
1164
1165 pub(crate) fn dispatch_keystroke_observers(
1166 &mut self,
1167 event: &dyn Any,
1168 action: Option<Box<dyn Action>>,
1169 cx: &mut App,
1170 ) {
1171 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1172 return;
1173 };
1174
1175 cx.keystroke_observers.clone().retain(&(), move |callback| {
1176 (callback)(
1177 &KeystrokeEvent {
1178 keystroke: key_down_event.keystroke.clone(),
1179 action: action.as_ref().map(|action| action.boxed_clone()),
1180 },
1181 self,
1182 cx,
1183 )
1184 });
1185 }
1186
1187 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1188 /// that are currently on the stack to be returned to the app.
1189 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1190 let handle = self.handle;
1191 cx.defer(move |cx| {
1192 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1193 });
1194 }
1195
1196 /// Subscribe to events emitted by a entity.
1197 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1198 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1199 pub fn observe<T: 'static>(
1200 &mut self,
1201 observed: &Entity<T>,
1202 cx: &mut App,
1203 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1204 ) -> Subscription {
1205 let entity_id = observed.entity_id();
1206 let observed = observed.downgrade();
1207 let window_handle = self.handle;
1208 cx.new_observer(
1209 entity_id,
1210 Box::new(move |cx| {
1211 window_handle
1212 .update(cx, |_, window, cx| {
1213 if let Some(handle) = observed.upgrade() {
1214 on_notify(handle, window, cx);
1215 true
1216 } else {
1217 false
1218 }
1219 })
1220 .unwrap_or(false)
1221 }),
1222 )
1223 }
1224
1225 /// Subscribe to events emitted by a entity.
1226 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1227 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1228 pub fn subscribe<Emitter, Evt>(
1229 &mut self,
1230 entity: &Entity<Emitter>,
1231 cx: &mut App,
1232 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1233 ) -> Subscription
1234 where
1235 Emitter: EventEmitter<Evt>,
1236 Evt: 'static,
1237 {
1238 let entity_id = entity.entity_id();
1239 let entity = entity.downgrade();
1240 let window_handle = self.handle;
1241 cx.new_subscription(
1242 entity_id,
1243 (
1244 TypeId::of::<Evt>(),
1245 Box::new(move |event, cx| {
1246 window_handle
1247 .update(cx, |_, window, cx| {
1248 if let Some(handle) = Entity::<Emitter>::upgrade_from(&entity) {
1249 let event = event.downcast_ref().expect("invalid event type");
1250 on_event(handle, event, window, cx);
1251 true
1252 } else {
1253 false
1254 }
1255 })
1256 .unwrap_or(false)
1257 }),
1258 ),
1259 )
1260 }
1261
1262 /// Register a callback to be invoked when the given `Entity` is released.
1263 pub fn observe_release<T>(
1264 &self,
1265 entity: &Entity<T>,
1266 cx: &mut App,
1267 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1268 ) -> Subscription
1269 where
1270 T: 'static,
1271 {
1272 let entity_id = entity.entity_id();
1273 let window_handle = self.handle;
1274 let (subscription, activate) = cx.release_listeners.insert(
1275 entity_id,
1276 Box::new(move |entity, cx| {
1277 let entity = entity.downcast_mut().expect("invalid entity type");
1278 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1279 }),
1280 );
1281 activate();
1282 subscription
1283 }
1284
1285 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1286 /// await points in async code.
1287 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1288 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1289 }
1290
1291 /// Schedule the given closure to be run directly after the current frame is rendered.
1292 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1293 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1294 }
1295
1296 /// Schedule a frame to be drawn on the next animation frame.
1297 ///
1298 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1299 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1300 ///
1301 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1302 pub fn request_animation_frame(&self) {
1303 let parent_id = self.parent_view_id();
1304 self.on_next_frame(move |window, cx| window.notify(true, parent_id, cx));
1305 }
1306
1307 /// Spawn the future returned by the given closure on the application thread pool.
1308 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1309 /// use within your future.
1310 pub fn spawn<Fut, R>(&self, cx: &App, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
1311 where
1312 R: 'static,
1313 Fut: Future<Output = R> + 'static,
1314 {
1315 cx.spawn(|app| f(AsyncWindowContext::new_context(app, self.handle)))
1316 }
1317
1318 fn bounds_changed(&mut self, cx: &mut App) {
1319 self.scale_factor = self.platform_window.scale_factor();
1320 self.viewport_size = self.platform_window.content_size();
1321 self.display_id = self.platform_window.display().map(|display| display.id());
1322
1323 self.refresh();
1324
1325 self.bounds_observers
1326 .clone()
1327 .retain(&(), |callback| callback(self, cx));
1328 }
1329
1330 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1331 pub fn bounds(&self) -> Bounds<Pixels> {
1332 self.platform_window.bounds()
1333 }
1334
1335 /// Returns whether or not the window is currently fullscreen
1336 pub fn is_fullscreen(&self) -> bool {
1337 self.platform_window.is_fullscreen()
1338 }
1339
1340 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1341 self.appearance = self.platform_window.appearance();
1342
1343 self.appearance_observers
1344 .clone()
1345 .retain(&(), |callback| callback(self, cx));
1346 }
1347
1348 /// Returns the appearance of the current window.
1349 pub fn appearance(&self) -> WindowAppearance {
1350 self.appearance
1351 }
1352
1353 /// Returns the size of the drawable area within the window.
1354 pub fn viewport_size(&self) -> Size<Pixels> {
1355 self.viewport_size
1356 }
1357
1358 /// Returns whether this window is focused by the operating system (receiving key events).
1359 pub fn is_window_active(&self) -> bool {
1360 self.active.get()
1361 }
1362
1363 /// Returns whether this window is considered to be the window
1364 /// that currently owns the mouse cursor.
1365 /// On mac, this is equivalent to `is_window_active`.
1366 pub fn is_window_hovered(&self) -> bool {
1367 if cfg!(any(
1368 target_os = "windows",
1369 target_os = "linux",
1370 target_os = "freebsd"
1371 )) {
1372 self.hovered.get()
1373 } else {
1374 self.is_window_active()
1375 }
1376 }
1377
1378 /// Toggle zoom on the window.
1379 pub fn zoom_window(&self) {
1380 self.platform_window.zoom();
1381 }
1382
1383 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1384 pub fn show_window_menu(&self, position: Point<Pixels>) {
1385 self.platform_window.show_window_menu(position)
1386 }
1387
1388 /// Tells the compositor to take control of window movement (Wayland and X11)
1389 ///
1390 /// Events may not be received during a move operation.
1391 pub fn start_window_move(&self) {
1392 self.platform_window.start_window_move()
1393 }
1394
1395 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1396 pub fn set_client_inset(&self, inset: Pixels) {
1397 self.platform_window.set_client_inset(inset);
1398 }
1399
1400 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1401 pub fn window_decorations(&self) -> Decorations {
1402 self.platform_window.window_decorations()
1403 }
1404
1405 /// Returns which window controls are currently visible (Wayland)
1406 pub fn window_controls(&self) -> WindowControls {
1407 self.platform_window.window_controls()
1408 }
1409
1410 /// Updates the window's title at the platform level.
1411 pub fn set_window_title(&mut self, title: &str) {
1412 self.platform_window.set_title(title);
1413 }
1414
1415 /// Sets the application identifier.
1416 pub fn set_app_id(&mut self, app_id: &str) {
1417 self.platform_window.set_app_id(app_id);
1418 }
1419
1420 /// Sets the window background appearance.
1421 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1422 self.platform_window
1423 .set_background_appearance(background_appearance);
1424 }
1425
1426 /// Mark the window as dirty at the platform level.
1427 pub fn set_window_edited(&mut self, edited: bool) {
1428 self.platform_window.set_edited(edited);
1429 }
1430
1431 /// Determine the display on which the window is visible.
1432 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1433 cx.platform
1434 .displays()
1435 .into_iter()
1436 .find(|display| Some(display.id()) == self.display_id)
1437 }
1438
1439 /// Show the platform character palette.
1440 pub fn show_character_palette(&self) {
1441 self.platform_window.show_character_palette();
1442 }
1443
1444 /// The scale factor of the display associated with the window. For example, it could
1445 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1446 /// be rendered as two pixels on screen.
1447 pub fn scale_factor(&self) -> f32 {
1448 self.scale_factor
1449 }
1450
1451 /// The size of an em for the base font of the application. Adjusting this value allows the
1452 /// UI to scale, just like zooming a web page.
1453 pub fn rem_size(&self) -> Pixels {
1454 self.rem_size_override_stack
1455 .last()
1456 .copied()
1457 .unwrap_or(self.rem_size)
1458 }
1459
1460 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1461 /// UI to scale, just like zooming a web page.
1462 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1463 self.rem_size = rem_size.into();
1464 }
1465
1466 /// Executes the provided function with the specified rem size.
1467 ///
1468 /// This method must only be called as part of element drawing.
1469 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1470 where
1471 F: FnOnce(&mut Self) -> R,
1472 {
1473 self.invalidator.debug_assert_paint_or_prepaint();
1474
1475 if let Some(rem_size) = rem_size {
1476 self.rem_size_override_stack.push(rem_size.into());
1477 let result = f(self);
1478 self.rem_size_override_stack.pop();
1479 result
1480 } else {
1481 f(self)
1482 }
1483 }
1484
1485 /// The line height associated with the current text style.
1486 pub fn line_height(&self) -> Pixels {
1487 self.text_style().line_height_in_pixels(self.rem_size())
1488 }
1489
1490 /// Call to prevent the default action of an event. Currently only used to prevent
1491 /// parent elements from becoming focused on mouse down.
1492 pub fn prevent_default(&mut self) {
1493 self.default_prevented = true;
1494 }
1495
1496 /// Obtain whether default has been prevented for the event currently being dispatched.
1497 pub fn default_prevented(&self) -> bool {
1498 self.default_prevented
1499 }
1500
1501 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1502 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1503 let target = self
1504 .focused(cx)
1505 .and_then(|focused_handle| {
1506 self.rendered_frame
1507 .dispatch_tree
1508 .focusable_node_id(focused_handle.id)
1509 })
1510 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1511 self.rendered_frame
1512 .dispatch_tree
1513 .is_action_available(action, target)
1514 }
1515
1516 /// The position of the mouse relative to the window.
1517 pub fn mouse_position(&self) -> Point<Pixels> {
1518 self.mouse_position
1519 }
1520
1521 /// The current state of the keyboard's modifiers
1522 pub fn modifiers(&self) -> Modifiers {
1523 self.modifiers
1524 }
1525
1526 fn complete_frame(&self) {
1527 self.platform_window.completed_frame();
1528 }
1529
1530 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1531 /// the contents of the new [Scene], use [present].
1532 #[profiling::function]
1533 pub fn draw(&mut self, cx: &mut App) {
1534 self.invalidate_entities();
1535 cx.entities.clear_accessed();
1536 self.invalidator.set_dirty(false);
1537 self.requested_autoscroll = None;
1538
1539 // Restore the previously-used input handler.
1540 if let Some(input_handler) = self.platform_window.take_input_handler() {
1541 self.rendered_frame.input_handlers.push(Some(input_handler));
1542 }
1543 self.draw_roots(cx);
1544 self.dirty_views.clear();
1545 self.next_frame.window_active = self.active.get();
1546
1547 // Register requested input handler with the platform window.
1548 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1549 self.platform_window
1550 .set_input_handler(input_handler.unwrap());
1551 }
1552
1553 self.layout_engine.as_mut().unwrap().clear();
1554 self.text_system().finish_frame();
1555 self.next_frame.finish(&mut self.rendered_frame);
1556 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1557 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1558 if percentage >= 80. {
1559 log::warn!("elevated element arena occupation: {}.", percentage);
1560 }
1561 element_arena.clear();
1562 });
1563
1564 self.invalidator.set_phase(DrawPhase::Focus);
1565 let previous_focus_path = self.rendered_frame.focus_path();
1566 let previous_window_active = self.rendered_frame.window_active;
1567 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1568 self.next_frame.clear();
1569 let current_focus_path = self.rendered_frame.focus_path();
1570 let current_window_active = self.rendered_frame.window_active;
1571
1572 if previous_focus_path != current_focus_path
1573 || previous_window_active != current_window_active
1574 {
1575 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1576 self.focus_lost_listeners
1577 .clone()
1578 .retain(&(), |listener| listener(self, cx));
1579 }
1580
1581 let event = WindowFocusEvent {
1582 previous_focus_path: if previous_window_active {
1583 previous_focus_path
1584 } else {
1585 Default::default()
1586 },
1587 current_focus_path: if current_window_active {
1588 current_focus_path
1589 } else {
1590 Default::default()
1591 },
1592 };
1593 self.focus_listeners
1594 .clone()
1595 .retain(&(), |listener| listener(&event, self, cx));
1596 }
1597
1598 self.record_entities_accessed(cx);
1599 self.reset_cursor_style(cx);
1600 self.refreshing = false;
1601 self.invalidator.set_phase(DrawPhase::None);
1602 self.needs_present.set(true);
1603 }
1604
1605 fn record_entities_accessed(&mut self, cx: &mut App) {
1606 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1607 let mut entities = mem::take(entities_ref.deref_mut());
1608 drop(entities_ref);
1609 let handle = self.handle;
1610 cx.record_entities_accessed(
1611 handle,
1612 // Try moving window invalidator into the Window
1613 self.invalidator.clone(),
1614 &entities,
1615 );
1616 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1617 mem::swap(&mut entities, entities_ref.deref_mut());
1618 }
1619
1620 fn invalidate_entities(&mut self) {
1621 let mut views = self.invalidator.take_views();
1622 for entity in views.drain() {
1623 self.mark_view_dirty(entity);
1624 }
1625 self.invalidator.replace_views(views);
1626 }
1627
1628 #[profiling::function]
1629 fn present(&self) {
1630 self.platform_window.draw(&self.rendered_frame.scene);
1631 self.needs_present.set(false);
1632 profiling::finish_frame!();
1633 }
1634
1635 fn draw_roots(&mut self, cx: &mut App) {
1636 self.invalidator.set_phase(DrawPhase::Prepaint);
1637 self.tooltip_bounds.take();
1638
1639 // Layout all root elements.
1640 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1641 root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1642
1643 let mut sorted_deferred_draws =
1644 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1645 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1646 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1647
1648 let mut prompt_element = None;
1649 let mut active_drag_element = None;
1650 let mut tooltip_element = None;
1651 if let Some(prompt) = self.prompt.take() {
1652 let mut element = prompt.view.any_view().into_any();
1653 element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1654 prompt_element = Some(element);
1655 self.prompt = Some(prompt);
1656 } else if let Some(active_drag) = cx.active_drag.take() {
1657 let mut element = active_drag.view.clone().into_any();
1658 let offset = self.mouse_position() - active_drag.cursor_offset;
1659 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1660 active_drag_element = Some(element);
1661 cx.active_drag = Some(active_drag);
1662 } else {
1663 tooltip_element = self.prepaint_tooltip(cx);
1664 }
1665
1666 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1667
1668 // Now actually paint the elements.
1669 self.invalidator.set_phase(DrawPhase::Paint);
1670 root_element.paint(self, cx);
1671
1672 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1673
1674 if let Some(mut prompt_element) = prompt_element {
1675 prompt_element.paint(self, cx);
1676 } else if let Some(mut drag_element) = active_drag_element {
1677 drag_element.paint(self, cx);
1678 } else if let Some(mut tooltip_element) = tooltip_element {
1679 tooltip_element.paint(self, cx);
1680 }
1681 }
1682
1683 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1684 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1685 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1686 let Some(Some(tooltip_request)) = self
1687 .next_frame
1688 .tooltip_requests
1689 .get(tooltip_request_index)
1690 .cloned()
1691 else {
1692 log::error!("Unexpectedly absent TooltipRequest");
1693 continue;
1694 };
1695 let mut element = tooltip_request.tooltip.view.clone().into_any();
1696 let mouse_position = tooltip_request.tooltip.mouse_position;
1697 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1698
1699 let mut tooltip_bounds =
1700 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1701 let window_bounds = Bounds {
1702 origin: Point::default(),
1703 size: self.viewport_size(),
1704 };
1705
1706 if tooltip_bounds.right() > window_bounds.right() {
1707 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1708 if new_x >= Pixels::ZERO {
1709 tooltip_bounds.origin.x = new_x;
1710 } else {
1711 tooltip_bounds.origin.x = cmp::max(
1712 Pixels::ZERO,
1713 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1714 );
1715 }
1716 }
1717
1718 if tooltip_bounds.bottom() > window_bounds.bottom() {
1719 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1720 if new_y >= Pixels::ZERO {
1721 tooltip_bounds.origin.y = new_y;
1722 } else {
1723 tooltip_bounds.origin.y = cmp::max(
1724 Pixels::ZERO,
1725 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1726 );
1727 }
1728 }
1729
1730 // It's possible for an element to have an active tooltip while not being painted (e.g.
1731 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1732 // case, instead update the tooltip's visibility here.
1733 let is_visible =
1734 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1735 if !is_visible {
1736 continue;
1737 }
1738
1739 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1740 element.prepaint(window, cx)
1741 });
1742
1743 self.tooltip_bounds = Some(TooltipBounds {
1744 id: tooltip_request.id,
1745 bounds: tooltip_bounds,
1746 });
1747 return Some(element);
1748 }
1749 None
1750 }
1751
1752 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1753 assert_eq!(self.element_id_stack.len(), 0);
1754
1755 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1756 for deferred_draw_ix in deferred_draw_indices {
1757 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1758 self.element_id_stack
1759 .clone_from(&deferred_draw.element_id_stack);
1760 self.text_style_stack
1761 .clone_from(&deferred_draw.text_style_stack);
1762 self.next_frame
1763 .dispatch_tree
1764 .set_active_node(deferred_draw.parent_node);
1765
1766 let prepaint_start = self.prepaint_index();
1767 if let Some(element) = deferred_draw.element.as_mut() {
1768 self.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1769 element.prepaint(window, cx)
1770 });
1771 } else {
1772 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1773 }
1774 let prepaint_end = self.prepaint_index();
1775 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1776 }
1777 assert_eq!(
1778 self.next_frame.deferred_draws.len(),
1779 0,
1780 "cannot call defer_draw during deferred drawing"
1781 );
1782 self.next_frame.deferred_draws = deferred_draws;
1783 self.element_id_stack.clear();
1784 self.text_style_stack.clear();
1785 }
1786
1787 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1788 assert_eq!(self.element_id_stack.len(), 0);
1789
1790 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1791 for deferred_draw_ix in deferred_draw_indices {
1792 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1793 self.element_id_stack
1794 .clone_from(&deferred_draw.element_id_stack);
1795 self.next_frame
1796 .dispatch_tree
1797 .set_active_node(deferred_draw.parent_node);
1798
1799 let paint_start = self.paint_index();
1800 if let Some(element) = deferred_draw.element.as_mut() {
1801 element.paint(self, cx);
1802 } else {
1803 self.reuse_paint(deferred_draw.paint_range.clone());
1804 }
1805 let paint_end = self.paint_index();
1806 deferred_draw.paint_range = paint_start..paint_end;
1807 }
1808 self.next_frame.deferred_draws = deferred_draws;
1809 self.element_id_stack.clear();
1810 }
1811
1812 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1813 PrepaintStateIndex {
1814 hitboxes_index: self.next_frame.hitboxes.len(),
1815 tooltips_index: self.next_frame.tooltip_requests.len(),
1816 deferred_draws_index: self.next_frame.deferred_draws.len(),
1817 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1818 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1819 line_layout_index: self.text_system.layout_index(),
1820 }
1821 }
1822
1823 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1824 self.next_frame.hitboxes.extend(
1825 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1826 .iter()
1827 .cloned(),
1828 );
1829 self.next_frame.tooltip_requests.extend(
1830 self.rendered_frame.tooltip_requests
1831 [range.start.tooltips_index..range.end.tooltips_index]
1832 .iter_mut()
1833 .map(|request| request.take()),
1834 );
1835 self.next_frame.accessed_element_states.extend(
1836 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1837 ..range.end.accessed_element_states_index]
1838 .iter()
1839 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1840 );
1841 self.text_system
1842 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1843
1844 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1845 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1846 &mut self.rendered_frame.dispatch_tree,
1847 self.focus,
1848 );
1849
1850 if reused_subtree.contains_focus() {
1851 self.next_frame.focus = self.focus;
1852 }
1853
1854 self.next_frame.deferred_draws.extend(
1855 self.rendered_frame.deferred_draws
1856 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1857 .iter()
1858 .map(|deferred_draw| DeferredDraw {
1859 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1860 element_id_stack: deferred_draw.element_id_stack.clone(),
1861 text_style_stack: deferred_draw.text_style_stack.clone(),
1862 priority: deferred_draw.priority,
1863 element: None,
1864 absolute_offset: deferred_draw.absolute_offset,
1865 prepaint_range: deferred_draw.prepaint_range.clone(),
1866 paint_range: deferred_draw.paint_range.clone(),
1867 }),
1868 );
1869 }
1870
1871 pub(crate) fn paint_index(&self) -> PaintIndex {
1872 PaintIndex {
1873 scene_index: self.next_frame.scene.len(),
1874 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1875 input_handlers_index: self.next_frame.input_handlers.len(),
1876 cursor_styles_index: self.next_frame.cursor_styles.len(),
1877 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1878 line_layout_index: self.text_system.layout_index(),
1879 }
1880 }
1881
1882 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1883 self.next_frame.cursor_styles.extend(
1884 self.rendered_frame.cursor_styles
1885 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1886 .iter()
1887 .cloned(),
1888 );
1889 self.next_frame.input_handlers.extend(
1890 self.rendered_frame.input_handlers
1891 [range.start.input_handlers_index..range.end.input_handlers_index]
1892 .iter_mut()
1893 .map(|handler| handler.take()),
1894 );
1895 self.next_frame.mouse_listeners.extend(
1896 self.rendered_frame.mouse_listeners
1897 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1898 .iter_mut()
1899 .map(|listener| listener.take()),
1900 );
1901 self.next_frame.accessed_element_states.extend(
1902 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1903 ..range.end.accessed_element_states_index]
1904 .iter()
1905 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1906 );
1907
1908 self.text_system
1909 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1910 self.next_frame.scene.replay(
1911 range.start.scene_index..range.end.scene_index,
1912 &self.rendered_frame.scene,
1913 );
1914 }
1915
1916 /// Push a text style onto the stack, and call a function with that style active.
1917 /// Use [`Window::text_style`] to get the current, combined text style. This method
1918 /// should only be called as part of element drawing.
1919 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1920 where
1921 F: FnOnce(&mut Self) -> R,
1922 {
1923 self.invalidator.debug_assert_paint_or_prepaint();
1924 if let Some(style) = style {
1925 self.text_style_stack.push(style);
1926 let result = f(self);
1927 self.text_style_stack.pop();
1928 result
1929 } else {
1930 f(self)
1931 }
1932 }
1933
1934 /// Updates the cursor style at the platform level. This method should only be called
1935 /// during the prepaint phase of element drawing.
1936 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
1937 self.invalidator.debug_assert_paint();
1938 self.next_frame.cursor_styles.push(CursorStyleRequest {
1939 hitbox_id: hitbox.id,
1940 style,
1941 });
1942 }
1943
1944 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
1945 /// during the paint phase of element drawing.
1946 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
1947 self.invalidator.debug_assert_prepaint();
1948 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
1949 self.next_frame
1950 .tooltip_requests
1951 .push(Some(TooltipRequest { id, tooltip }));
1952 id
1953 }
1954
1955 /// Invoke the given function with the given content mask after intersecting it
1956 /// with the current mask. This method should only be called during element drawing.
1957 pub fn with_content_mask<R>(
1958 &mut self,
1959 mask: Option<ContentMask<Pixels>>,
1960 f: impl FnOnce(&mut Self) -> R,
1961 ) -> R {
1962 self.invalidator.debug_assert_paint_or_prepaint();
1963 if let Some(mask) = mask {
1964 let mask = mask.intersect(&self.content_mask());
1965 self.content_mask_stack.push(mask);
1966 let result = f(self);
1967 self.content_mask_stack.pop();
1968 result
1969 } else {
1970 f(self)
1971 }
1972 }
1973
1974 /// Updates the global element offset relative to the current offset. This is used to implement
1975 /// scrolling. This method should only be called during the prepaint phase of element drawing.
1976 pub fn with_element_offset<R>(
1977 &mut self,
1978 offset: Point<Pixels>,
1979 f: impl FnOnce(&mut Self) -> R,
1980 ) -> R {
1981 self.invalidator.debug_assert_prepaint();
1982
1983 if offset.is_zero() {
1984 return f(self);
1985 };
1986
1987 let abs_offset = self.element_offset() + offset;
1988 self.with_absolute_element_offset(abs_offset, f)
1989 }
1990
1991 /// Updates the global element offset based on the given offset. This is used to implement
1992 /// drag handles and other manual painting of elements. This method should only be called during
1993 /// the prepaint phase of element drawing.
1994 pub fn with_absolute_element_offset<R>(
1995 &mut self,
1996 offset: Point<Pixels>,
1997 f: impl FnOnce(&mut Self) -> R,
1998 ) -> R {
1999 self.invalidator.debug_assert_prepaint();
2000 self.element_offset_stack.push(offset);
2001 let result = f(self);
2002 self.element_offset_stack.pop();
2003 result
2004 }
2005
2006 pub(crate) fn with_element_opacity<R>(
2007 &mut self,
2008 opacity: Option<f32>,
2009 f: impl FnOnce(&mut Self) -> R,
2010 ) -> R {
2011 if opacity.is_none() {
2012 return f(self);
2013 }
2014
2015 self.invalidator.debug_assert_paint_or_prepaint();
2016 self.element_opacity = opacity;
2017 let result = f(self);
2018 self.element_opacity = None;
2019 result
2020 }
2021
2022 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2023 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2024 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2025 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2026 /// called during the prepaint phase of element drawing.
2027 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2028 self.invalidator.debug_assert_prepaint();
2029 let index = self.prepaint_index();
2030 let result = f(self);
2031 if result.is_err() {
2032 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2033 self.next_frame
2034 .tooltip_requests
2035 .truncate(index.tooltips_index);
2036 self.next_frame
2037 .deferred_draws
2038 .truncate(index.deferred_draws_index);
2039 self.next_frame
2040 .dispatch_tree
2041 .truncate(index.dispatch_tree_index);
2042 self.next_frame
2043 .accessed_element_states
2044 .truncate(index.accessed_element_states_index);
2045 self.text_system.truncate_layouts(index.line_layout_index);
2046 }
2047 result
2048 }
2049
2050 /// When you call this method during [`prepaint`], containing elements will attempt to
2051 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2052 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2053 /// that supports this method being called on the elements it contains. This method should only be
2054 /// called during the prepaint phase of element drawing.
2055 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2056 self.invalidator.debug_assert_prepaint();
2057 self.requested_autoscroll = Some(bounds);
2058 }
2059
2060 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2061 /// described in [`request_autoscroll`].
2062 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2063 self.invalidator.debug_assert_prepaint();
2064 self.requested_autoscroll.take()
2065 }
2066
2067 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2068 /// Your view will be re-drawn once the asset has finished loading.
2069 ///
2070 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2071 /// time.
2072 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2073 let (task, is_first) = cx.fetch_asset::<A>(source);
2074 task.clone().now_or_never().or_else(|| {
2075 if is_first {
2076 let parent_id = self.parent_view_id();
2077 self.spawn(cx, {
2078 let task = task.clone();
2079 |mut cx| async move {
2080 task.await;
2081
2082 cx.on_next_frame(move |window, cx| {
2083 window.notify(true, parent_id, cx);
2084 });
2085 }
2086 })
2087 .detach();
2088 }
2089
2090 None
2091 })
2092 }
2093 /// Obtain the current element offset. This method should only be called during the
2094 /// prepaint phase of element drawing.
2095 pub fn element_offset(&self) -> Point<Pixels> {
2096 self.invalidator.debug_assert_prepaint();
2097 self.element_offset_stack
2098 .last()
2099 .copied()
2100 .unwrap_or_default()
2101 }
2102
2103 /// Obtain the current element opacity. This method should only be called during the
2104 /// prepaint phase of element drawing.
2105 pub(crate) fn element_opacity(&self) -> f32 {
2106 self.invalidator.debug_assert_paint_or_prepaint();
2107 self.element_opacity.unwrap_or(1.0)
2108 }
2109
2110 /// Obtain the current content mask. This method should only be called during element drawing.
2111 pub fn content_mask(&self) -> ContentMask<Pixels> {
2112 self.invalidator.debug_assert_paint_or_prepaint();
2113 self.content_mask_stack
2114 .last()
2115 .cloned()
2116 .unwrap_or_else(|| ContentMask {
2117 bounds: Bounds {
2118 origin: Point::default(),
2119 size: self.viewport_size,
2120 },
2121 })
2122 }
2123
2124 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2125 /// This can be used within a custom element to distinguish multiple sets of child elements.
2126 pub fn with_element_namespace<R>(
2127 &mut self,
2128 element_id: impl Into<ElementId>,
2129 f: impl FnOnce(&mut Self) -> R,
2130 ) -> R {
2131 self.element_id_stack.push(element_id.into());
2132 let result = f(self);
2133 self.element_id_stack.pop();
2134 result
2135 }
2136
2137 /// Updates or initializes state for an element with the given id that lives across multiple
2138 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2139 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2140 /// when drawing the next frame. This method should only be called as part of element drawing.
2141 pub fn with_element_state<S, R>(
2142 &mut self,
2143 global_id: &GlobalElementId,
2144 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2145 ) -> R
2146 where
2147 S: 'static,
2148 {
2149 self.invalidator.debug_assert_paint_or_prepaint();
2150
2151 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2152 self.next_frame
2153 .accessed_element_states
2154 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2155
2156 if let Some(any) = self
2157 .next_frame
2158 .element_states
2159 .remove(&key)
2160 .or_else(|| self.rendered_frame.element_states.remove(&key))
2161 {
2162 let ElementStateBox {
2163 inner,
2164 #[cfg(debug_assertions)]
2165 type_name,
2166 } = any;
2167 // Using the extra inner option to avoid needing to reallocate a new box.
2168 let mut state_box = inner
2169 .downcast::<Option<S>>()
2170 .map_err(|_| {
2171 #[cfg(debug_assertions)]
2172 {
2173 anyhow::anyhow!(
2174 "invalid element state type for id, requested {:?}, actual: {:?}",
2175 std::any::type_name::<S>(),
2176 type_name
2177 )
2178 }
2179
2180 #[cfg(not(debug_assertions))]
2181 {
2182 anyhow::anyhow!(
2183 "invalid element state type for id, requested {:?}",
2184 std::any::type_name::<S>(),
2185 )
2186 }
2187 })
2188 .unwrap();
2189
2190 let state = state_box.take().expect(
2191 "reentrant call to with_element_state for the same state type and element id",
2192 );
2193 let (result, state) = f(Some(state), self);
2194 state_box.replace(state);
2195 self.next_frame.element_states.insert(
2196 key,
2197 ElementStateBox {
2198 inner: state_box,
2199 #[cfg(debug_assertions)]
2200 type_name,
2201 },
2202 );
2203 result
2204 } else {
2205 let (result, state) = f(None, self);
2206 self.next_frame.element_states.insert(
2207 key,
2208 ElementStateBox {
2209 inner: Box::new(Some(state)),
2210 #[cfg(debug_assertions)]
2211 type_name: std::any::type_name::<S>(),
2212 },
2213 );
2214 result
2215 }
2216 }
2217
2218 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2219 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2220 /// when the element is guaranteed to have an id.
2221 ///
2222 /// The first option means 'no ID provided'
2223 /// The second option means 'not yet initialized'
2224 pub fn with_optional_element_state<S, R>(
2225 &mut self,
2226 global_id: Option<&GlobalElementId>,
2227 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2228 ) -> R
2229 where
2230 S: 'static,
2231 {
2232 self.invalidator.debug_assert_paint_or_prepaint();
2233
2234 if let Some(global_id) = global_id {
2235 self.with_element_state(global_id, |state, cx| {
2236 let (result, state) = f(Some(state), cx);
2237 let state =
2238 state.expect("you must return some state when you pass some element id");
2239 (result, state)
2240 })
2241 } else {
2242 let (result, state) = f(None, self);
2243 debug_assert!(
2244 state.is_none(),
2245 "you must not return an element state when passing None for the global id"
2246 );
2247 result
2248 }
2249 }
2250
2251 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2252 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2253 /// with higher values being drawn on top.
2254 ///
2255 /// This method should only be called as part of the prepaint phase of element drawing.
2256 pub fn defer_draw(
2257 &mut self,
2258 element: AnyElement,
2259 absolute_offset: Point<Pixels>,
2260 priority: usize,
2261 ) {
2262 self.invalidator.debug_assert_prepaint();
2263 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2264 self.next_frame.deferred_draws.push(DeferredDraw {
2265 parent_node,
2266 element_id_stack: self.element_id_stack.clone(),
2267 text_style_stack: self.text_style_stack.clone(),
2268 priority,
2269 element: Some(element),
2270 absolute_offset,
2271 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2272 paint_range: PaintIndex::default()..PaintIndex::default(),
2273 });
2274 }
2275
2276 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2277 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2278 /// for performance reasons.
2279 ///
2280 /// This method should only be called as part of the paint phase of element drawing.
2281 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2282 self.invalidator.debug_assert_paint();
2283
2284 let scale_factor = self.scale_factor();
2285 let content_mask = self.content_mask();
2286 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2287 if !clipped_bounds.is_empty() {
2288 self.next_frame
2289 .scene
2290 .push_layer(clipped_bounds.scale(scale_factor));
2291 }
2292
2293 let result = f(self);
2294
2295 if !clipped_bounds.is_empty() {
2296 self.next_frame.scene.pop_layer();
2297 }
2298
2299 result
2300 }
2301
2302 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2303 ///
2304 /// This method should only be called as part of the paint phase of element drawing.
2305 pub fn paint_shadows(
2306 &mut self,
2307 bounds: Bounds<Pixels>,
2308 corner_radii: Corners<Pixels>,
2309 shadows: &[BoxShadow],
2310 ) {
2311 self.invalidator.debug_assert_paint();
2312
2313 let scale_factor = self.scale_factor();
2314 let content_mask = self.content_mask();
2315 let opacity = self.element_opacity();
2316 for shadow in shadows {
2317 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2318 self.next_frame.scene.insert_primitive(Shadow {
2319 order: 0,
2320 blur_radius: shadow.blur_radius.scale(scale_factor),
2321 bounds: shadow_bounds.scale(scale_factor),
2322 content_mask: content_mask.scale(scale_factor),
2323 corner_radii: corner_radii.scale(scale_factor),
2324 color: shadow.color.opacity(opacity),
2325 });
2326 }
2327 }
2328
2329 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2330 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2331 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2332 ///
2333 /// This method should only be called as part of the paint phase of element drawing.
2334 pub fn paint_quad(&mut self, quad: PaintQuad) {
2335 self.invalidator.debug_assert_paint();
2336
2337 let scale_factor = self.scale_factor();
2338 let content_mask = self.content_mask();
2339 let opacity = self.element_opacity();
2340 self.next_frame.scene.insert_primitive(Quad {
2341 order: 0,
2342 pad: 0,
2343 bounds: quad.bounds.scale(scale_factor),
2344 content_mask: content_mask.scale(scale_factor),
2345 background: quad.background.opacity(opacity),
2346 border_color: quad.border_color.opacity(opacity),
2347 corner_radii: quad.corner_radii.scale(scale_factor),
2348 border_widths: quad.border_widths.scale(scale_factor),
2349 });
2350 }
2351
2352 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2353 ///
2354 /// This method should only be called as part of the paint phase of element drawing.
2355 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2356 self.invalidator.debug_assert_paint();
2357
2358 let scale_factor = self.scale_factor();
2359 let content_mask = self.content_mask();
2360 let opacity = self.element_opacity();
2361 path.content_mask = content_mask;
2362 let color: Background = color.into();
2363 path.color = color.opacity(opacity);
2364 self.next_frame
2365 .scene
2366 .insert_primitive(path.scale(scale_factor));
2367 }
2368
2369 /// Paint an underline into the scene for the next frame at the current z-index.
2370 ///
2371 /// This method should only be called as part of the paint phase of element drawing.
2372 pub fn paint_underline(
2373 &mut self,
2374 origin: Point<Pixels>,
2375 width: Pixels,
2376 style: &UnderlineStyle,
2377 ) {
2378 self.invalidator.debug_assert_paint();
2379
2380 let scale_factor = self.scale_factor();
2381 let height = if style.wavy {
2382 style.thickness * 3.
2383 } else {
2384 style.thickness
2385 };
2386 let bounds = Bounds {
2387 origin,
2388 size: size(width, height),
2389 };
2390 let content_mask = self.content_mask();
2391 let element_opacity = self.element_opacity();
2392
2393 self.next_frame.scene.insert_primitive(Underline {
2394 order: 0,
2395 pad: 0,
2396 bounds: bounds.scale(scale_factor),
2397 content_mask: content_mask.scale(scale_factor),
2398 color: style.color.unwrap_or_default().opacity(element_opacity),
2399 thickness: style.thickness.scale(scale_factor),
2400 wavy: style.wavy,
2401 });
2402 }
2403
2404 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2405 ///
2406 /// This method should only be called as part of the paint phase of element drawing.
2407 pub fn paint_strikethrough(
2408 &mut self,
2409 origin: Point<Pixels>,
2410 width: Pixels,
2411 style: &StrikethroughStyle,
2412 ) {
2413 self.invalidator.debug_assert_paint();
2414
2415 let scale_factor = self.scale_factor();
2416 let height = style.thickness;
2417 let bounds = Bounds {
2418 origin,
2419 size: size(width, height),
2420 };
2421 let content_mask = self.content_mask();
2422 let opacity = self.element_opacity();
2423
2424 self.next_frame.scene.insert_primitive(Underline {
2425 order: 0,
2426 pad: 0,
2427 bounds: bounds.scale(scale_factor),
2428 content_mask: content_mask.scale(scale_factor),
2429 thickness: style.thickness.scale(scale_factor),
2430 color: style.color.unwrap_or_default().opacity(opacity),
2431 wavy: false,
2432 });
2433 }
2434
2435 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2436 ///
2437 /// The y component of the origin is the baseline of the glyph.
2438 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2439 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2440 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2441 ///
2442 /// This method should only be called as part of the paint phase of element drawing.
2443 pub fn paint_glyph(
2444 &mut self,
2445 origin: Point<Pixels>,
2446 font_id: FontId,
2447 glyph_id: GlyphId,
2448 font_size: Pixels,
2449 color: Hsla,
2450 ) -> Result<()> {
2451 self.invalidator.debug_assert_paint();
2452
2453 let element_opacity = self.element_opacity();
2454 let scale_factor = self.scale_factor();
2455 let glyph_origin = origin.scale(scale_factor);
2456 let subpixel_variant = Point {
2457 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2458 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2459 };
2460 let params = RenderGlyphParams {
2461 font_id,
2462 glyph_id,
2463 font_size,
2464 subpixel_variant,
2465 scale_factor,
2466 is_emoji: false,
2467 };
2468
2469 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2470 if !raster_bounds.is_zero() {
2471 let tile = self
2472 .sprite_atlas
2473 .get_or_insert_with(¶ms.clone().into(), &mut || {
2474 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2475 Ok(Some((size, Cow::Owned(bytes))))
2476 })?
2477 .expect("Callback above only errors or returns Some");
2478 let bounds = Bounds {
2479 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2480 size: tile.bounds.size.map(Into::into),
2481 };
2482 let content_mask = self.content_mask().scale(scale_factor);
2483 self.next_frame.scene.insert_primitive(MonochromeSprite {
2484 order: 0,
2485 pad: 0,
2486 bounds,
2487 content_mask,
2488 color: color.opacity(element_opacity),
2489 tile,
2490 transformation: TransformationMatrix::unit(),
2491 });
2492 }
2493 Ok(())
2494 }
2495
2496 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2497 ///
2498 /// The y component of the origin is the baseline of the glyph.
2499 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2500 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2501 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2502 ///
2503 /// This method should only be called as part of the paint phase of element drawing.
2504 pub fn paint_emoji(
2505 &mut self,
2506 origin: Point<Pixels>,
2507 font_id: FontId,
2508 glyph_id: GlyphId,
2509 font_size: Pixels,
2510 ) -> Result<()> {
2511 self.invalidator.debug_assert_paint();
2512
2513 let scale_factor = self.scale_factor();
2514 let glyph_origin = origin.scale(scale_factor);
2515 let params = RenderGlyphParams {
2516 font_id,
2517 glyph_id,
2518 font_size,
2519 // We don't render emojis with subpixel variants.
2520 subpixel_variant: Default::default(),
2521 scale_factor,
2522 is_emoji: true,
2523 };
2524
2525 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2526 if !raster_bounds.is_zero() {
2527 let tile = self
2528 .sprite_atlas
2529 .get_or_insert_with(¶ms.clone().into(), &mut || {
2530 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2531 Ok(Some((size, Cow::Owned(bytes))))
2532 })?
2533 .expect("Callback above only errors or returns Some");
2534
2535 let bounds = Bounds {
2536 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2537 size: tile.bounds.size.map(Into::into),
2538 };
2539 let content_mask = self.content_mask().scale(scale_factor);
2540 let opacity = self.element_opacity();
2541
2542 self.next_frame.scene.insert_primitive(PolychromeSprite {
2543 order: 0,
2544 pad: 0,
2545 grayscale: false,
2546 bounds,
2547 corner_radii: Default::default(),
2548 content_mask,
2549 tile,
2550 opacity,
2551 });
2552 }
2553 Ok(())
2554 }
2555
2556 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2557 ///
2558 /// This method should only be called as part of the paint phase of element drawing.
2559 pub fn paint_svg(
2560 &mut self,
2561 bounds: Bounds<Pixels>,
2562 path: SharedString,
2563 transformation: TransformationMatrix,
2564 color: Hsla,
2565 cx: &App,
2566 ) -> Result<()> {
2567 self.invalidator.debug_assert_paint();
2568
2569 let element_opacity = self.element_opacity();
2570 let scale_factor = self.scale_factor();
2571 let bounds = bounds.scale(scale_factor);
2572 // Render the SVG at twice the size to get a higher quality result.
2573 let params = RenderSvgParams {
2574 path,
2575 size: bounds
2576 .size
2577 .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
2578 };
2579
2580 let Some(tile) =
2581 self.sprite_atlas
2582 .get_or_insert_with(¶ms.clone().into(), &mut || {
2583 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2584 return Ok(None);
2585 };
2586 Ok(Some((params.size, Cow::Owned(bytes))))
2587 })?
2588 else {
2589 return Ok(());
2590 };
2591 let content_mask = self.content_mask().scale(scale_factor);
2592
2593 self.next_frame.scene.insert_primitive(MonochromeSprite {
2594 order: 0,
2595 pad: 0,
2596 bounds: bounds
2597 .map_origin(|origin| origin.floor())
2598 .map_size(|size| size.ceil()),
2599 content_mask,
2600 color: color.opacity(element_opacity),
2601 tile,
2602 transformation,
2603 });
2604
2605 Ok(())
2606 }
2607
2608 /// Paint an image into the scene for the next frame at the current z-index.
2609 /// This method will panic if the frame_index is not valid
2610 ///
2611 /// This method should only be called as part of the paint phase of element drawing.
2612 pub fn paint_image(
2613 &mut self,
2614 bounds: Bounds<Pixels>,
2615 corner_radii: Corners<Pixels>,
2616 data: Arc<RenderImage>,
2617 frame_index: usize,
2618 grayscale: bool,
2619 ) -> Result<()> {
2620 self.invalidator.debug_assert_paint();
2621
2622 let scale_factor = self.scale_factor();
2623 let bounds = bounds.scale(scale_factor);
2624 let params = RenderImageParams {
2625 image_id: data.id,
2626 frame_index,
2627 };
2628
2629 let tile = self
2630 .sprite_atlas
2631 .get_or_insert_with(¶ms.clone().into(), &mut || {
2632 Ok(Some((
2633 data.size(frame_index),
2634 Cow::Borrowed(
2635 data.as_bytes(frame_index)
2636 .expect("It's the caller's job to pass a valid frame index"),
2637 ),
2638 )))
2639 })?
2640 .expect("Callback above only returns Some");
2641 let content_mask = self.content_mask().scale(scale_factor);
2642 let corner_radii = corner_radii.scale(scale_factor);
2643 let opacity = self.element_opacity();
2644
2645 self.next_frame.scene.insert_primitive(PolychromeSprite {
2646 order: 0,
2647 pad: 0,
2648 grayscale,
2649 bounds,
2650 content_mask,
2651 corner_radii,
2652 tile,
2653 opacity,
2654 });
2655 Ok(())
2656 }
2657
2658 /// Paint a surface into the scene for the next frame at the current z-index.
2659 ///
2660 /// This method should only be called as part of the paint phase of element drawing.
2661 #[cfg(target_os = "macos")]
2662 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
2663 use crate::PaintSurface;
2664
2665 self.invalidator.debug_assert_paint();
2666
2667 let scale_factor = self.scale_factor();
2668 let bounds = bounds.scale(scale_factor);
2669 let content_mask = self.content_mask().scale(scale_factor);
2670 self.next_frame.scene.insert_primitive(PaintSurface {
2671 order: 0,
2672 bounds,
2673 content_mask,
2674 image_buffer,
2675 });
2676 }
2677
2678 /// Removes an image from the sprite atlas.
2679 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2680 for frame_index in 0..data.frame_count() {
2681 let params = RenderImageParams {
2682 image_id: data.id,
2683 frame_index,
2684 };
2685
2686 self.sprite_atlas.remove(¶ms.clone().into());
2687 }
2688
2689 Ok(())
2690 }
2691
2692 #[must_use]
2693 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2694 /// layout is being requested, along with the layout ids of any children. This method is called during
2695 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2696 ///
2697 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2698 pub fn request_layout(
2699 &mut self,
2700 style: Style,
2701 children: impl IntoIterator<Item = LayoutId>,
2702 cx: &mut App,
2703 ) -> LayoutId {
2704 self.invalidator.debug_assert_prepaint();
2705
2706 cx.layout_id_buffer.clear();
2707 cx.layout_id_buffer.extend(children);
2708 let rem_size = self.rem_size();
2709
2710 self.layout_engine
2711 .as_mut()
2712 .unwrap()
2713 .request_layout(style, rem_size, &cx.layout_id_buffer)
2714 }
2715
2716 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2717 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2718 /// determine the element's size. One place this is used internally is when measuring text.
2719 ///
2720 /// The given closure is invoked at layout time with the known dimensions and available space and
2721 /// returns a `Size`.
2722 ///
2723 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2724 pub fn request_measured_layout<
2725 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2726 + 'static,
2727 >(
2728 &mut self,
2729 style: Style,
2730 measure: F,
2731 ) -> LayoutId {
2732 self.invalidator.debug_assert_prepaint();
2733
2734 let rem_size = self.rem_size();
2735 self.layout_engine
2736 .as_mut()
2737 .unwrap()
2738 .request_measured_layout(style, rem_size, measure)
2739 }
2740
2741 /// Compute the layout for the given id within the given available space.
2742 /// This method is called for its side effect, typically by the framework prior to painting.
2743 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2744 ///
2745 /// This method should only be called as part of the prepaint phase of element drawing.
2746 pub fn compute_layout(
2747 &mut self,
2748 layout_id: LayoutId,
2749 available_space: Size<AvailableSpace>,
2750 cx: &mut App,
2751 ) {
2752 self.invalidator.debug_assert_prepaint();
2753
2754 let mut layout_engine = self.layout_engine.take().unwrap();
2755 layout_engine.compute_layout(layout_id, available_space, self, cx);
2756 self.layout_engine = Some(layout_engine);
2757 }
2758
2759 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2760 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2761 ///
2762 /// This method should only be called as part of element drawing.
2763 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2764 self.invalidator.debug_assert_prepaint();
2765
2766 let mut bounds = self
2767 .layout_engine
2768 .as_mut()
2769 .unwrap()
2770 .layout_bounds(layout_id)
2771 .map(Into::into);
2772 bounds.origin += self.element_offset();
2773 bounds
2774 }
2775
2776 /// This method should be called during `prepaint`. You can use
2777 /// the returned [Hitbox] during `paint` or in an event handler
2778 /// to determine whether the inserted hitbox was the topmost.
2779 ///
2780 /// This method should only be called as part of the prepaint phase of element drawing.
2781 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2782 self.invalidator.debug_assert_prepaint();
2783
2784 let content_mask = self.content_mask();
2785 let id = self.next_hitbox_id;
2786 self.next_hitbox_id.0 += 1;
2787 let hitbox = Hitbox {
2788 id,
2789 bounds,
2790 content_mask,
2791 opaque,
2792 };
2793 self.next_frame.hitboxes.push(hitbox.clone());
2794 hitbox
2795 }
2796
2797 /// Sets the key context for the current element. This context will be used to translate
2798 /// keybindings into actions.
2799 ///
2800 /// This method should only be called as part of the paint phase of element drawing.
2801 pub fn set_key_context(&mut self, context: KeyContext) {
2802 self.invalidator.debug_assert_paint();
2803 self.next_frame.dispatch_tree.set_key_context(context);
2804 }
2805
2806 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2807 /// and keyboard event dispatch for the element.
2808 ///
2809 /// This method should only be called as part of the prepaint phase of element drawing.
2810 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2811 self.invalidator.debug_assert_prepaint();
2812 if focus_handle.is_focused(self) {
2813 self.next_frame.focus = Some(focus_handle.id);
2814 }
2815 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2816 }
2817
2818 /// Sets the view id for the current element, which will be used to manage view caching.
2819 ///
2820 /// This method should only be called as part of element prepaint. We plan on removing this
2821 /// method eventually when we solve some issues that require us to construct editor elements
2822 /// directly instead of always using editors via views.
2823 pub fn set_view_id(&mut self, view_id: EntityId) {
2824 self.invalidator.debug_assert_prepaint();
2825 self.next_frame.dispatch_tree.set_view_id(view_id);
2826 }
2827
2828 /// Get the last view id for the current element
2829 pub fn parent_view_id(&self) -> Option<EntityId> {
2830 self.next_frame.dispatch_tree.parent_view_id()
2831 }
2832
2833 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2834 /// platform to receive textual input with proper integration with concerns such
2835 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2836 /// rendered.
2837 ///
2838 /// This method should only be called as part of the paint phase of element drawing.
2839 ///
2840 /// [element_input_handler]: crate::ElementInputHandler
2841 pub fn handle_input(
2842 &mut self,
2843 focus_handle: &FocusHandle,
2844 input_handler: impl InputHandler,
2845 cx: &App,
2846 ) {
2847 self.invalidator.debug_assert_paint();
2848
2849 if focus_handle.is_focused(self) {
2850 let cx = self.to_async(cx);
2851 self.next_frame
2852 .input_handlers
2853 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2854 }
2855 }
2856
2857 /// Register a mouse event listener on the window for the next frame. The type of event
2858 /// is determined by the first parameter of the given listener. When the next frame is rendered
2859 /// the listener will be cleared.
2860 ///
2861 /// This method should only be called as part of the paint phase of element drawing.
2862 pub fn on_mouse_event<Event: MouseEvent>(
2863 &mut self,
2864 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2865 ) {
2866 self.invalidator.debug_assert_paint();
2867
2868 self.next_frame.mouse_listeners.push(Some(Box::new(
2869 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2870 if let Some(event) = event.downcast_ref() {
2871 handler(event, phase, window, cx)
2872 }
2873 },
2874 )));
2875 }
2876
2877 /// Register a key event listener on the window for the next frame. The type of event
2878 /// is determined by the first parameter of the given listener. When the next frame is rendered
2879 /// the listener will be cleared.
2880 ///
2881 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2882 /// a specific need to register a global listener.
2883 ///
2884 /// This method should only be called as part of the paint phase of element drawing.
2885 pub fn on_key_event<Event: KeyEvent>(
2886 &mut self,
2887 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2888 ) {
2889 self.invalidator.debug_assert_paint();
2890
2891 self.next_frame.dispatch_tree.on_key_event(Rc::new(
2892 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
2893 if let Some(event) = event.downcast_ref::<Event>() {
2894 listener(event, phase, window, cx)
2895 }
2896 },
2897 ));
2898 }
2899
2900 /// Register a modifiers changed event listener on the window for the next frame.
2901 ///
2902 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2903 /// a specific need to register a global listener.
2904 ///
2905 /// This method should only be called as part of the paint phase of element drawing.
2906 pub fn on_modifiers_changed(
2907 &mut self,
2908 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
2909 ) {
2910 self.invalidator.debug_assert_paint();
2911
2912 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
2913 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
2914 listener(event, window, cx)
2915 },
2916 ));
2917 }
2918
2919 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2920 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
2921 /// Returns a subscription and persists until the subscription is dropped.
2922 pub fn on_focus_in(
2923 &mut self,
2924 handle: &FocusHandle,
2925 cx: &mut App,
2926 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
2927 ) -> Subscription {
2928 let focus_id = handle.id;
2929 let (subscription, activate) =
2930 self.new_focus_listener(Box::new(move |event, window, cx| {
2931 if event.is_focus_in(focus_id) {
2932 listener(window, cx);
2933 }
2934 true
2935 }));
2936 cx.defer(move |_| activate());
2937 subscription
2938 }
2939
2940 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2941 /// Returns a subscription and persists until the subscription is dropped.
2942 pub fn on_focus_out(
2943 &mut self,
2944 handle: &FocusHandle,
2945 cx: &mut App,
2946 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
2947 ) -> Subscription {
2948 let focus_id = handle.id;
2949 let (subscription, activate) =
2950 self.new_focus_listener(Box::new(move |event, window, cx| {
2951 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
2952 if event.is_focus_out(focus_id) {
2953 let event = FocusOutEvent {
2954 blurred: WeakFocusHandle {
2955 id: blurred_id,
2956 handles: Arc::downgrade(&cx.focus_handles),
2957 },
2958 };
2959 listener(event, window, cx)
2960 }
2961 }
2962 true
2963 }));
2964 cx.defer(move |_| activate());
2965 subscription
2966 }
2967
2968 fn reset_cursor_style(&self, cx: &mut App) {
2969 // Set the cursor only if we're the active window.
2970 if self.is_window_hovered() {
2971 let style = self
2972 .rendered_frame
2973 .cursor_styles
2974 .iter()
2975 .rev()
2976 .find(|request| request.hitbox_id.is_hovered(self))
2977 .map(|request| request.style)
2978 .unwrap_or(CursorStyle::Arrow);
2979 cx.platform.set_cursor_style(style);
2980 }
2981 }
2982
2983 /// Dispatch a given keystroke as though the user had typed it.
2984 /// You can create a keystroke with Keystroke::parse("").
2985 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
2986 let keystroke = keystroke.with_simulated_ime();
2987 let result = self.dispatch_event(
2988 PlatformInput::KeyDown(KeyDownEvent {
2989 keystroke: keystroke.clone(),
2990 is_held: false,
2991 }),
2992 cx,
2993 );
2994 if !result.propagate {
2995 return true;
2996 }
2997
2998 if let Some(input) = keystroke.key_char {
2999 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3000 input_handler.dispatch_input(&input, self, cx);
3001 self.platform_window.set_input_handler(input_handler);
3002 return true;
3003 }
3004 }
3005
3006 false
3007 }
3008
3009 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3010 /// binding for the action (last binding added to the keymap).
3011 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3012 self.bindings_for_action(action)
3013 .last()
3014 .map(|binding| {
3015 binding
3016 .keystrokes()
3017 .iter()
3018 .map(ToString::to_string)
3019 .collect::<Vec<_>>()
3020 .join(" ")
3021 })
3022 .unwrap_or_else(|| action.name().to_string())
3023 }
3024
3025 /// Dispatch a mouse or keyboard event on the window.
3026 #[profiling::function]
3027 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3028 self.last_input_timestamp.set(Instant::now());
3029 // Handlers may set this to false by calling `stop_propagation`.
3030 cx.propagate_event = true;
3031 // Handlers may set this to true by calling `prevent_default`.
3032 self.default_prevented = false;
3033
3034 let event = match event {
3035 // Track the mouse position with our own state, since accessing the platform
3036 // API for the mouse position can only occur on the main thread.
3037 PlatformInput::MouseMove(mouse_move) => {
3038 self.mouse_position = mouse_move.position;
3039 self.modifiers = mouse_move.modifiers;
3040 PlatformInput::MouseMove(mouse_move)
3041 }
3042 PlatformInput::MouseDown(mouse_down) => {
3043 self.mouse_position = mouse_down.position;
3044 self.modifiers = mouse_down.modifiers;
3045 PlatformInput::MouseDown(mouse_down)
3046 }
3047 PlatformInput::MouseUp(mouse_up) => {
3048 self.mouse_position = mouse_up.position;
3049 self.modifiers = mouse_up.modifiers;
3050 PlatformInput::MouseUp(mouse_up)
3051 }
3052 PlatformInput::MouseExited(mouse_exited) => {
3053 self.modifiers = mouse_exited.modifiers;
3054 PlatformInput::MouseExited(mouse_exited)
3055 }
3056 PlatformInput::ModifiersChanged(modifiers_changed) => {
3057 self.modifiers = modifiers_changed.modifiers;
3058 PlatformInput::ModifiersChanged(modifiers_changed)
3059 }
3060 PlatformInput::ScrollWheel(scroll_wheel) => {
3061 self.mouse_position = scroll_wheel.position;
3062 self.modifiers = scroll_wheel.modifiers;
3063 PlatformInput::ScrollWheel(scroll_wheel)
3064 }
3065 // Translate dragging and dropping of external files from the operating system
3066 // to internal drag and drop events.
3067 PlatformInput::FileDrop(file_drop) => match file_drop {
3068 FileDropEvent::Entered { position, paths } => {
3069 self.mouse_position = position;
3070 if cx.active_drag.is_none() {
3071 cx.active_drag = Some(AnyDrag {
3072 value: Arc::new(paths.clone()),
3073 view: cx.new(|_| paths).into(),
3074 cursor_offset: position,
3075 });
3076 }
3077 PlatformInput::MouseMove(MouseMoveEvent {
3078 position,
3079 pressed_button: Some(MouseButton::Left),
3080 modifiers: Modifiers::default(),
3081 })
3082 }
3083 FileDropEvent::Pending { position } => {
3084 self.mouse_position = position;
3085 PlatformInput::MouseMove(MouseMoveEvent {
3086 position,
3087 pressed_button: Some(MouseButton::Left),
3088 modifiers: Modifiers::default(),
3089 })
3090 }
3091 FileDropEvent::Submit { position } => {
3092 cx.activate(true);
3093 self.mouse_position = position;
3094 PlatformInput::MouseUp(MouseUpEvent {
3095 button: MouseButton::Left,
3096 position,
3097 modifiers: Modifiers::default(),
3098 click_count: 1,
3099 })
3100 }
3101 FileDropEvent::Exited => {
3102 cx.active_drag.take();
3103 PlatformInput::FileDrop(FileDropEvent::Exited)
3104 }
3105 },
3106 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3107 };
3108
3109 if let Some(any_mouse_event) = event.mouse_event() {
3110 self.dispatch_mouse_event(any_mouse_event, cx);
3111 } else if let Some(any_key_event) = event.keyboard_event() {
3112 self.dispatch_key_event(any_key_event, cx);
3113 }
3114
3115 DispatchEventResult {
3116 propagate: cx.propagate_event,
3117 default_prevented: self.default_prevented,
3118 }
3119 }
3120
3121 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3122 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3123 if hit_test != self.mouse_hit_test {
3124 self.mouse_hit_test = hit_test;
3125 self.reset_cursor_style(cx);
3126 }
3127
3128 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3129
3130 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3131 // special purposes, such as detecting events outside of a given Bounds.
3132 for listener in &mut mouse_listeners {
3133 let listener = listener.as_mut().unwrap();
3134 listener(event, DispatchPhase::Capture, self, cx);
3135 if !cx.propagate_event {
3136 break;
3137 }
3138 }
3139
3140 // Bubble phase, where most normal handlers do their work.
3141 if cx.propagate_event {
3142 for listener in mouse_listeners.iter_mut().rev() {
3143 let listener = listener.as_mut().unwrap();
3144 listener(event, DispatchPhase::Bubble, self, cx);
3145 if !cx.propagate_event {
3146 break;
3147 }
3148 }
3149 }
3150
3151 self.rendered_frame.mouse_listeners = mouse_listeners;
3152
3153 if cx.has_active_drag() {
3154 if event.is::<MouseMoveEvent>() {
3155 // If this was a mouse move event, redraw the window so that the
3156 // active drag can follow the mouse cursor.
3157 self.refresh();
3158 } else if event.is::<MouseUpEvent>() {
3159 // If this was a mouse up event, cancel the active drag and redraw
3160 // the window.
3161 cx.active_drag = None;
3162 self.refresh();
3163 }
3164 }
3165 }
3166
3167 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3168 if self.invalidator.is_dirty() {
3169 self.draw(cx);
3170 }
3171
3172 let node_id = self
3173 .focus
3174 .and_then(|focus_id| {
3175 self.rendered_frame
3176 .dispatch_tree
3177 .focusable_node_id(focus_id)
3178 })
3179 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3180
3181 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3182
3183 let mut keystroke: Option<Keystroke> = None;
3184
3185 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3186 if event.modifiers.number_of_modifiers() == 0
3187 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3188 && !self.pending_modifier.saw_keystroke
3189 {
3190 let key = match self.pending_modifier.modifiers {
3191 modifiers if modifiers.shift => Some("shift"),
3192 modifiers if modifiers.control => Some("control"),
3193 modifiers if modifiers.alt => Some("alt"),
3194 modifiers if modifiers.platform => Some("platform"),
3195 modifiers if modifiers.function => Some("function"),
3196 _ => None,
3197 };
3198 if let Some(key) = key {
3199 keystroke = Some(Keystroke {
3200 key: key.to_string(),
3201 key_char: None,
3202 modifiers: Modifiers::default(),
3203 });
3204 }
3205 }
3206
3207 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3208 && event.modifiers.number_of_modifiers() == 1
3209 {
3210 self.pending_modifier.saw_keystroke = false
3211 }
3212 self.pending_modifier.modifiers = event.modifiers
3213 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3214 self.pending_modifier.saw_keystroke = true;
3215 keystroke = Some(key_down_event.keystroke.clone());
3216 }
3217
3218 let Some(keystroke) = keystroke else {
3219 self.finish_dispatch_key_event(event, dispatch_path, cx);
3220 return;
3221 };
3222
3223 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3224 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3225 currently_pending = PendingInput::default();
3226 }
3227
3228 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3229 currently_pending.keystrokes,
3230 keystroke,
3231 &dispatch_path,
3232 );
3233 if !match_result.to_replay.is_empty() {
3234 self.replay_pending_input(match_result.to_replay, cx)
3235 }
3236
3237 if !match_result.pending.is_empty() {
3238 currently_pending.keystrokes = match_result.pending;
3239 currently_pending.focus = self.focus;
3240 currently_pending.timer = Some(self.spawn(cx, |mut cx| async move {
3241 cx.background_executor.timer(Duration::from_secs(1)).await;
3242 cx.update(move |window, cx| {
3243 let Some(currently_pending) = window
3244 .pending_input
3245 .take()
3246 .filter(|pending| pending.focus == window.focus)
3247 else {
3248 return;
3249 };
3250
3251 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3252
3253 let to_replay = window
3254 .rendered_frame
3255 .dispatch_tree
3256 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3257
3258 window.replay_pending_input(to_replay, cx)
3259 })
3260 .log_err();
3261 }));
3262 self.pending_input = Some(currently_pending);
3263 self.pending_input_changed(cx);
3264 cx.propagate_event = false;
3265 return;
3266 }
3267
3268 cx.propagate_event = true;
3269 for binding in match_result.bindings {
3270 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3271 if !cx.propagate_event {
3272 self.dispatch_keystroke_observers(event, Some(binding.action), cx);
3273 self.pending_input_changed(cx);
3274 return;
3275 }
3276 }
3277
3278 self.finish_dispatch_key_event(event, dispatch_path, cx);
3279 self.pending_input_changed(cx);
3280 }
3281
3282 fn finish_dispatch_key_event(
3283 &mut self,
3284 event: &dyn Any,
3285 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3286 cx: &mut App,
3287 ) {
3288 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3289 if !cx.propagate_event {
3290 return;
3291 }
3292
3293 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3294 if !cx.propagate_event {
3295 return;
3296 }
3297
3298 self.dispatch_keystroke_observers(event, None, cx);
3299 }
3300
3301 fn pending_input_changed(&mut self, cx: &mut App) {
3302 self.pending_input_observers
3303 .clone()
3304 .retain(&(), |callback| callback(self, cx));
3305 }
3306
3307 fn dispatch_key_down_up_event(
3308 &mut self,
3309 event: &dyn Any,
3310 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3311 cx: &mut App,
3312 ) {
3313 // Capture phase
3314 for node_id in dispatch_path {
3315 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3316
3317 for key_listener in node.key_listeners.clone() {
3318 key_listener(event, DispatchPhase::Capture, self, cx);
3319 if !cx.propagate_event {
3320 return;
3321 }
3322 }
3323 }
3324
3325 // Bubble phase
3326 for node_id in dispatch_path.iter().rev() {
3327 // Handle low level key events
3328 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3329 for key_listener in node.key_listeners.clone() {
3330 key_listener(event, DispatchPhase::Bubble, self, cx);
3331 if !cx.propagate_event {
3332 return;
3333 }
3334 }
3335 }
3336 }
3337
3338 fn dispatch_modifiers_changed_event(
3339 &mut self,
3340 event: &dyn Any,
3341 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3342 cx: &mut App,
3343 ) {
3344 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3345 return;
3346 };
3347 for node_id in dispatch_path.iter().rev() {
3348 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3349 for listener in node.modifiers_changed_listeners.clone() {
3350 listener(event, self, cx);
3351 if !cx.propagate_event {
3352 return;
3353 }
3354 }
3355 }
3356 }
3357
3358 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3359 pub fn has_pending_keystrokes(&self) -> bool {
3360 self.pending_input.is_some()
3361 }
3362
3363 pub(crate) fn clear_pending_keystrokes(&mut self) {
3364 self.pending_input.take();
3365 }
3366
3367 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3368 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3369 self.pending_input
3370 .as_ref()
3371 .map(|pending_input| pending_input.keystrokes.as_slice())
3372 }
3373
3374 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3375 let node_id = self
3376 .focus
3377 .and_then(|focus_id| {
3378 self.rendered_frame
3379 .dispatch_tree
3380 .focusable_node_id(focus_id)
3381 })
3382 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3383
3384 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3385
3386 'replay: for replay in replays {
3387 let event = KeyDownEvent {
3388 keystroke: replay.keystroke.clone(),
3389 is_held: false,
3390 };
3391
3392 cx.propagate_event = true;
3393 for binding in replay.bindings {
3394 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3395 if !cx.propagate_event {
3396 self.dispatch_keystroke_observers(&event, Some(binding.action), cx);
3397 continue 'replay;
3398 }
3399 }
3400
3401 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3402 if !cx.propagate_event {
3403 continue 'replay;
3404 }
3405 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3406 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3407 input_handler.dispatch_input(&input, self, cx);
3408 self.platform_window.set_input_handler(input_handler)
3409 }
3410 }
3411 }
3412 }
3413
3414 fn dispatch_action_on_node(
3415 &mut self,
3416 node_id: DispatchNodeId,
3417 action: &dyn Action,
3418 cx: &mut App,
3419 ) {
3420 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3421
3422 // Capture phase for global actions.
3423 cx.propagate_event = true;
3424 if let Some(mut global_listeners) = cx
3425 .global_action_listeners
3426 .remove(&action.as_any().type_id())
3427 {
3428 for listener in &global_listeners {
3429 listener(action.as_any(), DispatchPhase::Capture, cx);
3430 if !cx.propagate_event {
3431 break;
3432 }
3433 }
3434
3435 global_listeners.extend(
3436 cx.global_action_listeners
3437 .remove(&action.as_any().type_id())
3438 .unwrap_or_default(),
3439 );
3440
3441 cx.global_action_listeners
3442 .insert(action.as_any().type_id(), global_listeners);
3443 }
3444
3445 if !cx.propagate_event {
3446 return;
3447 }
3448
3449 // Capture phase for window actions.
3450 for node_id in &dispatch_path {
3451 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3452 for DispatchActionListener {
3453 action_type,
3454 listener,
3455 } in node.action_listeners.clone()
3456 {
3457 let any_action = action.as_any();
3458 if action_type == any_action.type_id() {
3459 listener(any_action, DispatchPhase::Capture, self, cx);
3460
3461 if !cx.propagate_event {
3462 return;
3463 }
3464 }
3465 }
3466 }
3467
3468 // Bubble phase for window actions.
3469 for node_id in dispatch_path.iter().rev() {
3470 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3471 for DispatchActionListener {
3472 action_type,
3473 listener,
3474 } in node.action_listeners.clone()
3475 {
3476 let any_action = action.as_any();
3477 if action_type == any_action.type_id() {
3478 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3479 listener(any_action, DispatchPhase::Bubble, self, cx);
3480
3481 if !cx.propagate_event {
3482 return;
3483 }
3484 }
3485 }
3486 }
3487
3488 // Bubble phase for global actions.
3489 if let Some(mut global_listeners) = cx
3490 .global_action_listeners
3491 .remove(&action.as_any().type_id())
3492 {
3493 for listener in global_listeners.iter().rev() {
3494 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3495
3496 listener(action.as_any(), DispatchPhase::Bubble, cx);
3497 if !cx.propagate_event {
3498 break;
3499 }
3500 }
3501
3502 global_listeners.extend(
3503 cx.global_action_listeners
3504 .remove(&action.as_any().type_id())
3505 .unwrap_or_default(),
3506 );
3507
3508 cx.global_action_listeners
3509 .insert(action.as_any().type_id(), global_listeners);
3510 }
3511 }
3512
3513 /// Register the given handler to be invoked whenever the global of the given type
3514 /// is updated.
3515 pub fn observe_global<G: Global>(
3516 &mut self,
3517 cx: &mut App,
3518 f: impl Fn(&mut Window, &mut App) + 'static,
3519 ) -> Subscription {
3520 let window_handle = self.handle;
3521 let (subscription, activate) = cx.global_observers.insert(
3522 TypeId::of::<G>(),
3523 Box::new(move |cx| {
3524 window_handle
3525 .update(cx, |_, window, cx| f(window, cx))
3526 .is_ok()
3527 }),
3528 );
3529 cx.defer(move |_| activate());
3530 subscription
3531 }
3532
3533 /// Focus the current window and bring it to the foreground at the platform level.
3534 pub fn activate_window(&self) {
3535 self.platform_window.activate();
3536 }
3537
3538 /// Minimize the current window at the platform level.
3539 pub fn minimize_window(&self) {
3540 self.platform_window.minimize();
3541 }
3542
3543 /// Toggle full screen status on the current window at the platform level.
3544 pub fn toggle_fullscreen(&self) {
3545 self.platform_window.toggle_fullscreen();
3546 }
3547
3548 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3549 pub fn invalidate_character_coordinates(&self) {
3550 self.on_next_frame(|window, cx| {
3551 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3552 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3553 window
3554 .platform_window
3555 .update_ime_position(bounds.scale(window.scale_factor()));
3556 }
3557 window.platform_window.set_input_handler(input_handler);
3558 }
3559 });
3560 }
3561
3562 /// Present a platform dialog.
3563 /// The provided message will be presented, along with buttons for each answer.
3564 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3565 pub fn prompt(
3566 &mut self,
3567 level: PromptLevel,
3568 message: &str,
3569 detail: Option<&str>,
3570 answers: &[&str],
3571 cx: &mut App,
3572 ) -> oneshot::Receiver<usize> {
3573 let prompt_builder = cx.prompt_builder.take();
3574 let Some(prompt_builder) = prompt_builder else {
3575 unreachable!("Re-entrant window prompting is not supported by GPUI");
3576 };
3577
3578 let receiver = match &prompt_builder {
3579 PromptBuilder::Default => self
3580 .platform_window
3581 .prompt(level, message, detail, answers)
3582 .unwrap_or_else(|| {
3583 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3584 }),
3585 PromptBuilder::Custom(_) => {
3586 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3587 }
3588 };
3589
3590 cx.prompt_builder = Some(prompt_builder);
3591
3592 receiver
3593 }
3594
3595 fn build_custom_prompt(
3596 &mut self,
3597 prompt_builder: &PromptBuilder,
3598 level: PromptLevel,
3599 message: &str,
3600 detail: Option<&str>,
3601 answers: &[&str],
3602 cx: &mut App,
3603 ) -> oneshot::Receiver<usize> {
3604 let (sender, receiver) = oneshot::channel();
3605 let handle = PromptHandle::new(sender);
3606 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3607 self.prompt = Some(handle);
3608 receiver
3609 }
3610
3611 /// Returns the current context stack.
3612 pub fn context_stack(&self) -> Vec<KeyContext> {
3613 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3614 let node_id = self
3615 .focus
3616 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3617 .unwrap_or_else(|| dispatch_tree.root_node_id());
3618
3619 dispatch_tree
3620 .dispatch_path(node_id)
3621 .iter()
3622 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3623 .collect()
3624 }
3625
3626 /// Returns all available actions for the focused element.
3627 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3628 let node_id = self
3629 .focus
3630 .and_then(|focus_id| {
3631 self.rendered_frame
3632 .dispatch_tree
3633 .focusable_node_id(focus_id)
3634 })
3635 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3636
3637 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3638 for action_type in cx.global_action_listeners.keys() {
3639 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3640 let action = cx.actions.build_action_type(action_type).ok();
3641 if let Some(action) = action {
3642 actions.insert(ix, action);
3643 }
3644 }
3645 }
3646 actions
3647 }
3648
3649 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3650 /// returned in the order they were added. For display, the last binding should take precedence.
3651 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3652 self.rendered_frame
3653 .dispatch_tree
3654 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3655 }
3656
3657 /// Returns any bindings that would invoke an action on the given focus handle if it were
3658 /// focused. Bindings are returned in the order they were added. For display, the last binding
3659 /// should take precedence.
3660 pub fn bindings_for_action_in(
3661 &self,
3662 action: &dyn Action,
3663 focus_handle: &FocusHandle,
3664 ) -> Vec<KeyBinding> {
3665 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3666
3667 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3668 return vec![];
3669 };
3670 let context_stack: Vec<_> = dispatch_tree
3671 .dispatch_path(node_id)
3672 .into_iter()
3673 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3674 .collect();
3675 dispatch_tree.bindings_for_action(action, &context_stack)
3676 }
3677
3678 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3679 pub fn listener_for<V: Render, E>(
3680 &self,
3681 view: &Entity<V>,
3682 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3683 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3684 let view = view.downgrade();
3685 move |e: &E, window: &mut Window, cx: &mut App| {
3686 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3687 }
3688 }
3689
3690 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3691 pub fn handler_for<V: Render>(
3692 &self,
3693 view: &Entity<V>,
3694 f: impl Fn(&mut V, &mut Window, &mut Context<V>) + 'static,
3695 ) -> impl Fn(&mut Window, &mut App) {
3696 let view = view.downgrade();
3697 move |window: &mut Window, cx: &mut App| {
3698 view.update(cx, |view, cx| f(view, window, cx)).ok();
3699 }
3700 }
3701
3702 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3703 /// If the callback returns false, the window won't be closed.
3704 pub fn on_window_should_close(
3705 &self,
3706 cx: &App,
3707 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3708 ) {
3709 let mut cx = self.to_async(cx);
3710 self.platform_window.on_should_close(Box::new(move || {
3711 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3712 }))
3713 }
3714
3715 /// Register an action listener on the window for the next frame. The type of action
3716 /// is determined by the first parameter of the given listener. When the next frame is rendered
3717 /// the listener will be cleared.
3718 ///
3719 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3720 /// a specific need to register a global listener.
3721 pub fn on_action(
3722 &mut self,
3723 action_type: TypeId,
3724 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3725 ) {
3726 self.next_frame
3727 .dispatch_tree
3728 .on_action(action_type, Rc::new(listener));
3729 }
3730
3731 /// Read information about the GPU backing this window.
3732 /// Currently returns None on Mac and Windows.
3733 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3734 self.platform_window.gpu_specs()
3735 }
3736}
3737
3738// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3739slotmap::new_key_type! {
3740 /// A unique identifier for a window.
3741 pub struct WindowId;
3742}
3743
3744impl WindowId {
3745 /// Converts this window ID to a `u64`.
3746 pub fn as_u64(&self) -> u64 {
3747 self.0.as_ffi()
3748 }
3749}
3750
3751impl From<u64> for WindowId {
3752 fn from(value: u64) -> Self {
3753 WindowId(slotmap::KeyData::from_ffi(value))
3754 }
3755}
3756
3757/// A handle to a window with a specific root view type.
3758/// Note that this does not keep the window alive on its own.
3759#[derive(Deref, DerefMut)]
3760pub struct WindowHandle<V> {
3761 #[deref]
3762 #[deref_mut]
3763 pub(crate) any_handle: AnyWindowHandle,
3764 state_type: PhantomData<V>,
3765}
3766
3767impl<V: 'static + Render> WindowHandle<V> {
3768 /// Creates a new handle from a window ID.
3769 /// This does not check if the root type of the window is `V`.
3770 pub fn new(id: WindowId) -> Self {
3771 WindowHandle {
3772 any_handle: AnyWindowHandle {
3773 id,
3774 state_type: TypeId::of::<V>(),
3775 },
3776 state_type: PhantomData,
3777 }
3778 }
3779
3780 /// Get the root view out of this window.
3781 ///
3782 /// This will fail if the window is closed or if the root view's type does not match `V`.
3783 #[cfg(any(test, feature = "test-support"))]
3784 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
3785 where
3786 C: AppContext,
3787 {
3788 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
3789 root_view
3790 .downcast::<V>()
3791 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3792 }))
3793 }
3794
3795 /// Updates the root view of this window.
3796 ///
3797 /// This will fail if the window has been closed or if the root view's type does not match
3798 pub fn update<C, R>(
3799 &self,
3800 cx: &mut C,
3801 update: impl FnOnce(&mut V, &mut Window, &mut Context<'_, V>) -> R,
3802 ) -> Result<R>
3803 where
3804 C: AppContext,
3805 {
3806 cx.update_window(self.any_handle, |root_view, window, cx| {
3807 let view = root_view
3808 .downcast::<V>()
3809 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3810
3811 Ok(view.update(cx, |view, cx| update(view, window, cx)))
3812 })?
3813 }
3814
3815 /// Read the root view out of this window.
3816 ///
3817 /// This will fail if the window is closed or if the root view's type does not match `V`.
3818 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
3819 let x = cx
3820 .windows
3821 .get(self.id)
3822 .and_then(|window| {
3823 window
3824 .as_ref()
3825 .and_then(|window| window.root.clone())
3826 .map(|root_view| root_view.downcast::<V>())
3827 })
3828 .ok_or_else(|| anyhow!("window not found"))?
3829 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3830
3831 Ok(x.read(cx))
3832 }
3833
3834 /// Read the root view out of this window, with a callback
3835 ///
3836 /// This will fail if the window is closed or if the root view's type does not match `V`.
3837 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
3838 where
3839 C: AppContext,
3840 {
3841 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3842 }
3843
3844 /// Read the root view pointer off of this window.
3845 ///
3846 /// This will fail if the window is closed or if the root view's type does not match `V`.
3847 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
3848 where
3849 C: AppContext,
3850 {
3851 cx.read_window(self, |root_view, _cx| root_view.clone())
3852 }
3853
3854 /// Check if this window is 'active'.
3855 ///
3856 /// Will return `None` if the window is closed or currently
3857 /// borrowed.
3858 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
3859 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
3860 .ok()
3861 }
3862}
3863
3864impl<V> Copy for WindowHandle<V> {}
3865
3866impl<V> Clone for WindowHandle<V> {
3867 fn clone(&self) -> Self {
3868 *self
3869 }
3870}
3871
3872impl<V> PartialEq for WindowHandle<V> {
3873 fn eq(&self, other: &Self) -> bool {
3874 self.any_handle == other.any_handle
3875 }
3876}
3877
3878impl<V> Eq for WindowHandle<V> {}
3879
3880impl<V> Hash for WindowHandle<V> {
3881 fn hash<H: Hasher>(&self, state: &mut H) {
3882 self.any_handle.hash(state);
3883 }
3884}
3885
3886impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3887 fn from(val: WindowHandle<V>) -> Self {
3888 val.any_handle
3889 }
3890}
3891
3892unsafe impl<V> Send for WindowHandle<V> {}
3893unsafe impl<V> Sync for WindowHandle<V> {}
3894
3895/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3896#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3897pub struct AnyWindowHandle {
3898 pub(crate) id: WindowId,
3899 state_type: TypeId,
3900}
3901
3902impl AnyWindowHandle {
3903 /// Get the ID of this window.
3904 pub fn window_id(&self) -> WindowId {
3905 self.id
3906 }
3907
3908 /// Attempt to convert this handle to a window handle with a specific root view type.
3909 /// If the types do not match, this will return `None`.
3910 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3911 if TypeId::of::<T>() == self.state_type {
3912 Some(WindowHandle {
3913 any_handle: *self,
3914 state_type: PhantomData,
3915 })
3916 } else {
3917 None
3918 }
3919 }
3920
3921 /// Updates the state of the root view of this window.
3922 ///
3923 /// This will fail if the window has been closed.
3924 pub fn update<C, R>(
3925 self,
3926 cx: &mut C,
3927 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
3928 ) -> Result<R>
3929 where
3930 C: AppContext,
3931 {
3932 cx.update_window(self, update)
3933 }
3934
3935 /// Read the state of the root view of this window.
3936 ///
3937 /// This will fail if the window has been closed.
3938 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
3939 where
3940 C: AppContext,
3941 T: 'static,
3942 {
3943 let view = self
3944 .downcast::<T>()
3945 .context("the type of the window's root view has changed")?;
3946
3947 cx.read_window(&view, read)
3948 }
3949}
3950
3951/// An identifier for an [`Element`](crate::Element).
3952///
3953/// Can be constructed with a string, a number, or both, as well
3954/// as other internal representations.
3955#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3956pub enum ElementId {
3957 /// The ID of a View element
3958 View(EntityId),
3959 /// An integer ID.
3960 Integer(usize),
3961 /// A string based ID.
3962 Name(SharedString),
3963 /// A UUID.
3964 Uuid(Uuid),
3965 /// An ID that's equated with a focus handle.
3966 FocusHandle(FocusId),
3967 /// A combination of a name and an integer.
3968 NamedInteger(SharedString, usize),
3969 /// A path
3970 Path(Arc<std::path::Path>),
3971}
3972
3973impl Display for ElementId {
3974 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3975 match self {
3976 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
3977 ElementId::Integer(ix) => write!(f, "{}", ix)?,
3978 ElementId::Name(name) => write!(f, "{}", name)?,
3979 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
3980 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
3981 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
3982 ElementId::Path(path) => write!(f, "{}", path.display())?,
3983 }
3984
3985 Ok(())
3986 }
3987}
3988
3989impl TryInto<SharedString> for ElementId {
3990 type Error = anyhow::Error;
3991
3992 fn try_into(self) -> anyhow::Result<SharedString> {
3993 if let ElementId::Name(name) = self {
3994 Ok(name)
3995 } else {
3996 Err(anyhow!("element id is not string"))
3997 }
3998 }
3999}
4000
4001impl From<usize> for ElementId {
4002 fn from(id: usize) -> Self {
4003 ElementId::Integer(id)
4004 }
4005}
4006
4007impl From<i32> for ElementId {
4008 fn from(id: i32) -> Self {
4009 Self::Integer(id as usize)
4010 }
4011}
4012
4013impl From<SharedString> for ElementId {
4014 fn from(name: SharedString) -> Self {
4015 ElementId::Name(name)
4016 }
4017}
4018
4019impl From<Arc<std::path::Path>> for ElementId {
4020 fn from(path: Arc<std::path::Path>) -> Self {
4021 ElementId::Path(path)
4022 }
4023}
4024
4025impl From<&'static str> for ElementId {
4026 fn from(name: &'static str) -> Self {
4027 ElementId::Name(name.into())
4028 }
4029}
4030
4031impl<'a> From<&'a FocusHandle> for ElementId {
4032 fn from(handle: &'a FocusHandle) -> Self {
4033 ElementId::FocusHandle(handle.id)
4034 }
4035}
4036
4037impl From<(&'static str, EntityId)> for ElementId {
4038 fn from((name, id): (&'static str, EntityId)) -> Self {
4039 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
4040 }
4041}
4042
4043impl From<(&'static str, usize)> for ElementId {
4044 fn from((name, id): (&'static str, usize)) -> Self {
4045 ElementId::NamedInteger(name.into(), id)
4046 }
4047}
4048
4049impl From<(SharedString, usize)> for ElementId {
4050 fn from((name, id): (SharedString, usize)) -> Self {
4051 ElementId::NamedInteger(name, id)
4052 }
4053}
4054
4055impl From<(&'static str, u64)> for ElementId {
4056 fn from((name, id): (&'static str, u64)) -> Self {
4057 ElementId::NamedInteger(name.into(), id as usize)
4058 }
4059}
4060
4061impl From<Uuid> for ElementId {
4062 fn from(value: Uuid) -> Self {
4063 Self::Uuid(value)
4064 }
4065}
4066
4067impl From<(&'static str, u32)> for ElementId {
4068 fn from((name, id): (&'static str, u32)) -> Self {
4069 ElementId::NamedInteger(name.into(), id as usize)
4070 }
4071}
4072
4073/// A rectangle to be rendered in the window at the given position and size.
4074/// Passed as an argument [`Window::paint_quad`].
4075#[derive(Clone)]
4076pub struct PaintQuad {
4077 /// The bounds of the quad within the window.
4078 pub bounds: Bounds<Pixels>,
4079 /// The radii of the quad's corners.
4080 pub corner_radii: Corners<Pixels>,
4081 /// The background color of the quad.
4082 pub background: Background,
4083 /// The widths of the quad's borders.
4084 pub border_widths: Edges<Pixels>,
4085 /// The color of the quad's borders.
4086 pub border_color: Hsla,
4087}
4088
4089impl PaintQuad {
4090 /// Sets the corner radii of the quad.
4091 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4092 PaintQuad {
4093 corner_radii: corner_radii.into(),
4094 ..self
4095 }
4096 }
4097
4098 /// Sets the border widths of the quad.
4099 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4100 PaintQuad {
4101 border_widths: border_widths.into(),
4102 ..self
4103 }
4104 }
4105
4106 /// Sets the border color of the quad.
4107 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4108 PaintQuad {
4109 border_color: border_color.into(),
4110 ..self
4111 }
4112 }
4113
4114 /// Sets the background color of the quad.
4115 pub fn background(self, background: impl Into<Background>) -> Self {
4116 PaintQuad {
4117 background: background.into(),
4118 ..self
4119 }
4120 }
4121}
4122
4123/// Creates a quad with the given parameters.
4124pub fn quad(
4125 bounds: Bounds<Pixels>,
4126 corner_radii: impl Into<Corners<Pixels>>,
4127 background: impl Into<Background>,
4128 border_widths: impl Into<Edges<Pixels>>,
4129 border_color: impl Into<Hsla>,
4130) -> PaintQuad {
4131 PaintQuad {
4132 bounds,
4133 corner_radii: corner_radii.into(),
4134 background: background.into(),
4135 border_widths: border_widths.into(),
4136 border_color: border_color.into(),
4137 }
4138}
4139
4140/// Creates a filled quad with the given bounds and background color.
4141pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4142 PaintQuad {
4143 bounds: bounds.into(),
4144 corner_radii: (0.).into(),
4145 background: background.into(),
4146 border_widths: (0.).into(),
4147 border_color: transparent_black(),
4148 }
4149}
4150
4151/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4152pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
4153 PaintQuad {
4154 bounds: bounds.into(),
4155 corner_radii: (0.).into(),
4156 background: transparent_black().into(),
4157 border_widths: (1.).into(),
4158 border_color: border_color.into(),
4159 }
4160}