language_model.rs

  1mod model;
  2mod rate_limiter;
  3mod registry;
  4mod request;
  5mod role;
  6mod telemetry;
  7
  8#[cfg(any(test, feature = "test-support"))]
  9pub mod fake_provider;
 10
 11use anyhow::{Context as _, Result};
 12use client::Client;
 13use futures::FutureExt;
 14use futures::{StreamExt, future::BoxFuture, stream::BoxStream};
 15use gpui::{AnyElement, AnyView, App, AsyncApp, SharedString, Task, Window};
 16use http_client::http::{HeaderMap, HeaderValue};
 17use icons::IconName;
 18use parking_lot::Mutex;
 19use schemars::JsonSchema;
 20use serde::{Deserialize, Serialize, de::DeserializeOwned};
 21use std::fmt;
 22use std::ops::{Add, Sub};
 23use std::str::FromStr as _;
 24use std::sync::Arc;
 25use thiserror::Error;
 26use util::serde::is_default;
 27use zed_llm_client::{
 28    CompletionRequestStatus, MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME,
 29    MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME, UsageLimit,
 30};
 31
 32pub use crate::model::*;
 33pub use crate::rate_limiter::*;
 34pub use crate::registry::*;
 35pub use crate::request::*;
 36pub use crate::role::*;
 37pub use crate::telemetry::*;
 38
 39pub const ZED_CLOUD_PROVIDER_ID: &str = "zed.dev";
 40
 41pub fn init(client: Arc<Client>, cx: &mut App) {
 42    init_settings(cx);
 43    RefreshLlmTokenListener::register(client.clone(), cx);
 44}
 45
 46pub fn init_settings(cx: &mut App) {
 47    registry::init(cx);
 48}
 49
 50/// Configuration for caching language model messages.
 51#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 52pub struct LanguageModelCacheConfiguration {
 53    pub max_cache_anchors: usize,
 54    pub should_speculate: bool,
 55    pub min_total_token: usize,
 56}
 57
 58/// A completion event from a language model.
 59#[derive(Debug, PartialEq, Clone, Serialize, Deserialize)]
 60pub enum LanguageModelCompletionEvent {
 61    StatusUpdate(CompletionRequestStatus),
 62    Stop(StopReason),
 63    Text(String),
 64    Thinking {
 65        text: String,
 66        signature: Option<String>,
 67    },
 68    ToolUse(LanguageModelToolUse),
 69    StartMessage {
 70        message_id: String,
 71    },
 72    UsageUpdate(TokenUsage),
 73}
 74
 75#[derive(Error, Debug)]
 76pub enum LanguageModelCompletionError {
 77    #[error("received bad input JSON")]
 78    BadInputJson {
 79        id: LanguageModelToolUseId,
 80        tool_name: Arc<str>,
 81        raw_input: Arc<str>,
 82        json_parse_error: String,
 83    },
 84    #[error(transparent)]
 85    Other(#[from] anyhow::Error),
 86}
 87
 88/// Indicates the format used to define the input schema for a language model tool.
 89#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
 90pub enum LanguageModelToolSchemaFormat {
 91    /// A JSON schema, see https://json-schema.org
 92    JsonSchema,
 93    /// A subset of an OpenAPI 3.0 schema object supported by Google AI, see https://ai.google.dev/api/caching#Schema
 94    JsonSchemaSubset,
 95}
 96
 97#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize)]
 98#[serde(rename_all = "snake_case")]
 99pub enum StopReason {
100    EndTurn,
101    MaxTokens,
102    ToolUse,
103    Refusal,
104}
105
106#[derive(Debug, Clone, Copy)]
107pub struct RequestUsage {
108    pub limit: UsageLimit,
109    pub amount: i32,
110}
111
112impl RequestUsage {
113    pub fn from_headers(headers: &HeaderMap<HeaderValue>) -> Result<Self> {
114        let limit = headers
115            .get(MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME)
116            .with_context(|| {
117                format!("missing {MODEL_REQUESTS_USAGE_LIMIT_HEADER_NAME:?} header")
118            })?;
119        let limit = UsageLimit::from_str(limit.to_str()?)?;
120
121        let amount = headers
122            .get(MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME)
123            .with_context(|| {
124                format!("missing {MODEL_REQUESTS_USAGE_AMOUNT_HEADER_NAME:?} header")
125            })?;
126        let amount = amount.to_str()?.parse::<i32>()?;
127
128        Ok(Self { limit, amount })
129    }
130}
131
132#[derive(Debug, PartialEq, Clone, Copy, Serialize, Deserialize, Default)]
133pub struct TokenUsage {
134    #[serde(default, skip_serializing_if = "is_default")]
135    pub input_tokens: u32,
136    #[serde(default, skip_serializing_if = "is_default")]
137    pub output_tokens: u32,
138    #[serde(default, skip_serializing_if = "is_default")]
139    pub cache_creation_input_tokens: u32,
140    #[serde(default, skip_serializing_if = "is_default")]
141    pub cache_read_input_tokens: u32,
142}
143
144impl TokenUsage {
145    pub fn total_tokens(&self) -> u32 {
146        self.input_tokens
147            + self.output_tokens
148            + self.cache_read_input_tokens
149            + self.cache_creation_input_tokens
150    }
151}
152
153impl Add<TokenUsage> for TokenUsage {
154    type Output = Self;
155
156    fn add(self, other: Self) -> Self {
157        Self {
158            input_tokens: self.input_tokens + other.input_tokens,
159            output_tokens: self.output_tokens + other.output_tokens,
160            cache_creation_input_tokens: self.cache_creation_input_tokens
161                + other.cache_creation_input_tokens,
162            cache_read_input_tokens: self.cache_read_input_tokens + other.cache_read_input_tokens,
163        }
164    }
165}
166
167impl Sub<TokenUsage> for TokenUsage {
168    type Output = Self;
169
170    fn sub(self, other: Self) -> Self {
171        Self {
172            input_tokens: self.input_tokens - other.input_tokens,
173            output_tokens: self.output_tokens - other.output_tokens,
174            cache_creation_input_tokens: self.cache_creation_input_tokens
175                - other.cache_creation_input_tokens,
176            cache_read_input_tokens: self.cache_read_input_tokens - other.cache_read_input_tokens,
177        }
178    }
179}
180
181#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
182pub struct LanguageModelToolUseId(Arc<str>);
183
184impl fmt::Display for LanguageModelToolUseId {
185    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
186        write!(f, "{}", self.0)
187    }
188}
189
190impl<T> From<T> for LanguageModelToolUseId
191where
192    T: Into<Arc<str>>,
193{
194    fn from(value: T) -> Self {
195        Self(value.into())
196    }
197}
198
199#[derive(Debug, PartialEq, Eq, Hash, Clone, Serialize, Deserialize)]
200pub struct LanguageModelToolUse {
201    pub id: LanguageModelToolUseId,
202    pub name: Arc<str>,
203    pub raw_input: String,
204    pub input: serde_json::Value,
205    pub is_input_complete: bool,
206}
207
208pub struct LanguageModelTextStream {
209    pub message_id: Option<String>,
210    pub stream: BoxStream<'static, Result<String, LanguageModelCompletionError>>,
211    // Has complete token usage after the stream has finished
212    pub last_token_usage: Arc<Mutex<TokenUsage>>,
213}
214
215impl Default for LanguageModelTextStream {
216    fn default() -> Self {
217        Self {
218            message_id: None,
219            stream: Box::pin(futures::stream::empty()),
220            last_token_usage: Arc::new(Mutex::new(TokenUsage::default())),
221        }
222    }
223}
224
225pub trait LanguageModel: Send + Sync {
226    fn id(&self) -> LanguageModelId;
227    fn name(&self) -> LanguageModelName;
228    fn provider_id(&self) -> LanguageModelProviderId;
229    fn provider_name(&self) -> LanguageModelProviderName;
230    fn telemetry_id(&self) -> String;
231
232    fn api_key(&self, _cx: &App) -> Option<String> {
233        None
234    }
235
236    /// Whether this model supports images
237    fn supports_images(&self) -> bool;
238
239    /// Whether this model supports tools.
240    fn supports_tools(&self) -> bool;
241
242    /// Whether this model supports choosing which tool to use.
243    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool;
244
245    /// Returns whether this model supports "max mode";
246    fn supports_max_mode(&self) -> bool {
247        if self.provider_id().0 != ZED_CLOUD_PROVIDER_ID {
248            return false;
249        }
250
251        const MAX_MODE_CAPABLE_MODELS: &[CloudModel] = &[
252            CloudModel::Anthropic(anthropic::Model::ClaudeOpus4),
253            CloudModel::Anthropic(anthropic::Model::ClaudeOpus4Thinking),
254            CloudModel::Anthropic(anthropic::Model::ClaudeSonnet4),
255            CloudModel::Anthropic(anthropic::Model::ClaudeSonnet4Thinking),
256            CloudModel::Anthropic(anthropic::Model::Claude3_7Sonnet),
257            CloudModel::Anthropic(anthropic::Model::Claude3_7SonnetThinking),
258        ];
259
260        for model in MAX_MODE_CAPABLE_MODELS {
261            if self.id().0 == model.id() {
262                return true;
263            }
264        }
265
266        false
267    }
268
269    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
270        LanguageModelToolSchemaFormat::JsonSchema
271    }
272
273    fn max_token_count(&self) -> usize;
274    fn max_output_tokens(&self) -> Option<u32> {
275        None
276    }
277
278    fn count_tokens(
279        &self,
280        request: LanguageModelRequest,
281        cx: &App,
282    ) -> BoxFuture<'static, Result<usize>>;
283
284    fn stream_completion(
285        &self,
286        request: LanguageModelRequest,
287        cx: &AsyncApp,
288    ) -> BoxFuture<
289        'static,
290        Result<
291            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
292        >,
293    >;
294
295    fn stream_completion_text(
296        &self,
297        request: LanguageModelRequest,
298        cx: &AsyncApp,
299    ) -> BoxFuture<'static, Result<LanguageModelTextStream>> {
300        let future = self.stream_completion(request, cx);
301
302        async move {
303            let events = future.await?;
304            let mut events = events.fuse();
305            let mut message_id = None;
306            let mut first_item_text = None;
307            let last_token_usage = Arc::new(Mutex::new(TokenUsage::default()));
308
309            if let Some(first_event) = events.next().await {
310                match first_event {
311                    Ok(LanguageModelCompletionEvent::StartMessage { message_id: id }) => {
312                        message_id = Some(id.clone());
313                    }
314                    Ok(LanguageModelCompletionEvent::Text(text)) => {
315                        first_item_text = Some(text);
316                    }
317                    _ => (),
318                }
319            }
320
321            let stream = futures::stream::iter(first_item_text.map(Ok))
322                .chain(events.filter_map({
323                    let last_token_usage = last_token_usage.clone();
324                    move |result| {
325                        let last_token_usage = last_token_usage.clone();
326                        async move {
327                            match result {
328                                Ok(LanguageModelCompletionEvent::StatusUpdate { .. }) => None,
329                                Ok(LanguageModelCompletionEvent::StartMessage { .. }) => None,
330                                Ok(LanguageModelCompletionEvent::Text(text)) => Some(Ok(text)),
331                                Ok(LanguageModelCompletionEvent::Thinking { .. }) => None,
332                                Ok(LanguageModelCompletionEvent::Stop(_)) => None,
333                                Ok(LanguageModelCompletionEvent::ToolUse(_)) => None,
334                                Ok(LanguageModelCompletionEvent::UsageUpdate(token_usage)) => {
335                                    *last_token_usage.lock() = token_usage;
336                                    None
337                                }
338                                Err(err) => Some(Err(err)),
339                            }
340                        }
341                    }
342                }))
343                .boxed();
344
345            Ok(LanguageModelTextStream {
346                message_id,
347                stream,
348                last_token_usage,
349            })
350        }
351        .boxed()
352    }
353
354    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
355        None
356    }
357
358    #[cfg(any(test, feature = "test-support"))]
359    fn as_fake(&self) -> &fake_provider::FakeLanguageModel {
360        unimplemented!()
361    }
362}
363
364#[derive(Debug, Error)]
365pub enum LanguageModelKnownError {
366    #[error("Context window limit exceeded ({tokens})")]
367    ContextWindowLimitExceeded { tokens: usize },
368}
369
370pub trait LanguageModelTool: 'static + DeserializeOwned + JsonSchema {
371    fn name() -> String;
372    fn description() -> String;
373}
374
375/// An error that occurred when trying to authenticate the language model provider.
376#[derive(Debug, Error)]
377pub enum AuthenticateError {
378    #[error("credentials not found")]
379    CredentialsNotFound,
380    #[error(transparent)]
381    Other(#[from] anyhow::Error),
382}
383
384pub trait LanguageModelProvider: 'static {
385    fn id(&self) -> LanguageModelProviderId;
386    fn name(&self) -> LanguageModelProviderName;
387    fn icon(&self) -> IconName {
388        IconName::ZedAssistant
389    }
390    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
391    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>>;
392    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>>;
393    fn recommended_models(&self, _cx: &App) -> Vec<Arc<dyn LanguageModel>> {
394        Vec::new()
395    }
396    fn load_model(&self, _model: Arc<dyn LanguageModel>, _cx: &App) {}
397    fn is_authenticated(&self, cx: &App) -> bool;
398    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>>;
399    fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView;
400    fn must_accept_terms(&self, _cx: &App) -> bool {
401        false
402    }
403    fn render_accept_terms(
404        &self,
405        _view: LanguageModelProviderTosView,
406        _cx: &mut App,
407    ) -> Option<AnyElement> {
408        None
409    }
410    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>>;
411}
412
413#[derive(PartialEq, Eq)]
414pub enum LanguageModelProviderTosView {
415    /// When there are some past interactions in the Agent Panel.
416    ThreadtEmptyState,
417    /// When there are no past interactions in the Agent Panel.
418    ThreadFreshStart,
419    PromptEditorPopup,
420    Configuration,
421}
422
423pub trait LanguageModelProviderState: 'static {
424    type ObservableEntity;
425
426    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>>;
427
428    fn subscribe<T: 'static>(
429        &self,
430        cx: &mut gpui::Context<T>,
431        callback: impl Fn(&mut T, &mut gpui::Context<T>) + 'static,
432    ) -> Option<gpui::Subscription> {
433        let entity = self.observable_entity()?;
434        Some(cx.observe(&entity, move |this, _, cx| {
435            callback(this, cx);
436        }))
437    }
438}
439
440#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd, Serialize, Deserialize)]
441pub struct LanguageModelId(pub SharedString);
442
443#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
444pub struct LanguageModelName(pub SharedString);
445
446#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
447pub struct LanguageModelProviderId(pub SharedString);
448
449#[derive(Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
450pub struct LanguageModelProviderName(pub SharedString);
451
452impl fmt::Display for LanguageModelProviderId {
453    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
454        write!(f, "{}", self.0)
455    }
456}
457
458impl From<String> for LanguageModelId {
459    fn from(value: String) -> Self {
460        Self(SharedString::from(value))
461    }
462}
463
464impl From<String> for LanguageModelName {
465    fn from(value: String) -> Self {
466        Self(SharedString::from(value))
467    }
468}
469
470impl From<String> for LanguageModelProviderId {
471    fn from(value: String) -> Self {
472        Self(SharedString::from(value))
473    }
474}
475
476impl From<String> for LanguageModelProviderName {
477    fn from(value: String) -> Self {
478        Self(SharedString::from(value))
479    }
480}