cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME,
   9    ListModelsResponse, Plan, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  10    ZED_VERSION_HEADER_NAME,
  11};
  12use feature_flags::{FeatureFlagAppExt as _, OpenAiResponsesApiFeatureFlag};
  13use futures::{
  14    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  15};
  16use google_ai::GoogleModelMode;
  17use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  18use http_client::http::{HeaderMap, HeaderValue};
  19use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  20use language_model::{
  21    AuthenticateError, IconOrSvg, LanguageModel, LanguageModelCacheConfiguration,
  22    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  23    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  24    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  25    LanguageModelToolSchemaFormat, LlmApiToken, PaymentRequiredError, RateLimiter,
  26    RefreshLlmTokenListener,
  27};
  28use release_channel::AppVersion;
  29use schemars::JsonSchema;
  30use semver::Version;
  31use serde::{Deserialize, Serialize, de::DeserializeOwned};
  32use settings::SettingsStore;
  33pub use settings::ZedDotDevAvailableModel as AvailableModel;
  34pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  35use smol::io::{AsyncReadExt, BufReader};
  36use std::pin::Pin;
  37use std::sync::Arc;
  38use std::time::Duration;
  39use thiserror::Error;
  40use ui::{TintColor, prelude::*};
  41use util::{ResultExt as _, maybe};
  42
  43use crate::provider::anthropic::{
  44    AnthropicEventMapper, count_anthropic_tokens_with_tiktoken, into_anthropic,
  45};
  46use crate::provider::google::{GoogleEventMapper, into_google};
  47use crate::provider::open_ai::{
  48    OpenAiEventMapper, OpenAiResponseEventMapper, count_open_ai_tokens, into_open_ai,
  49    into_open_ai_response,
  50};
  51use crate::provider::x_ai::count_xai_tokens;
  52
  53const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  54const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  55
  56#[derive(Default, Clone, Debug, PartialEq)]
  57pub struct ZedDotDevSettings {
  58    pub available_models: Vec<AvailableModel>,
  59}
  60#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  61#[serde(tag = "type", rename_all = "lowercase")]
  62pub enum ModelMode {
  63    #[default]
  64    Default,
  65    Thinking {
  66        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  67        budget_tokens: Option<u32>,
  68    },
  69}
  70
  71impl From<ModelMode> for AnthropicModelMode {
  72    fn from(value: ModelMode) -> Self {
  73        match value {
  74            ModelMode::Default => AnthropicModelMode::Default,
  75            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  76        }
  77    }
  78}
  79
  80pub struct CloudLanguageModelProvider {
  81    client: Arc<Client>,
  82    state: Entity<State>,
  83    _maintain_client_status: Task<()>,
  84}
  85
  86pub struct State {
  87    client: Arc<Client>,
  88    llm_api_token: LlmApiToken,
  89    user_store: Entity<UserStore>,
  90    status: client::Status,
  91    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  92    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  93    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  94    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  95    _fetch_models_task: Task<()>,
  96    _settings_subscription: Subscription,
  97    _llm_token_subscription: Subscription,
  98}
  99
 100impl State {
 101    fn new(
 102        client: Arc<Client>,
 103        user_store: Entity<UserStore>,
 104        status: client::Status,
 105        cx: &mut Context<Self>,
 106    ) -> Self {
 107        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 108        let mut current_user = user_store.read(cx).watch_current_user();
 109        Self {
 110            client: client.clone(),
 111            llm_api_token: LlmApiToken::default(),
 112            user_store,
 113            status,
 114            models: Vec::new(),
 115            default_model: None,
 116            default_fast_model: None,
 117            recommended_models: Vec::new(),
 118            _fetch_models_task: cx.spawn(async move |this, cx| {
 119                maybe!(async move {
 120                    let (client, llm_api_token) = this
 121                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 122
 123                    while current_user.borrow().is_none() {
 124                        current_user.next().await;
 125                    }
 126
 127                    let response =
 128                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 129                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 130                    anyhow::Ok(())
 131                })
 132                .await
 133                .context("failed to fetch Zed models")
 134                .log_err();
 135            }),
 136            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 137                cx.notify();
 138            }),
 139            _llm_token_subscription: cx.subscribe(
 140                &refresh_llm_token_listener,
 141                move |this, _listener, _event, cx| {
 142                    let client = this.client.clone();
 143                    let llm_api_token = this.llm_api_token.clone();
 144                    cx.spawn(async move |this, cx| {
 145                        llm_api_token.refresh(&client).await?;
 146                        let response = Self::fetch_models(client, llm_api_token).await?;
 147                        this.update(cx, |this, cx| {
 148                            this.update_models(response, cx);
 149                        })
 150                    })
 151                    .detach_and_log_err(cx);
 152                },
 153            ),
 154        }
 155    }
 156
 157    fn is_signed_out(&self, cx: &App) -> bool {
 158        self.user_store.read(cx).current_user().is_none()
 159    }
 160
 161    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 162        let client = self.client.clone();
 163        cx.spawn(async move |state, cx| {
 164            client.sign_in_with_optional_connect(true, cx).await?;
 165            state.update(cx, |_, cx| cx.notify())
 166        })
 167    }
 168    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 169        let mut models = Vec::new();
 170
 171        for model in response.models {
 172            models.push(Arc::new(model.clone()));
 173
 174            // Right now we represent thinking variants of models as separate models on the client,
 175            // so we need to insert variants for any model that supports thinking.
 176            if model.supports_thinking {
 177                models.push(Arc::new(cloud_llm_client::LanguageModel {
 178                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 179                    display_name: format!("{} Thinking", model.display_name),
 180                    ..model
 181                }));
 182            }
 183        }
 184
 185        self.default_model = models
 186            .iter()
 187            .find(|model| {
 188                response
 189                    .default_model
 190                    .as_ref()
 191                    .is_some_and(|default_model_id| &model.id == default_model_id)
 192            })
 193            .cloned();
 194        self.default_fast_model = models
 195            .iter()
 196            .find(|model| {
 197                response
 198                    .default_fast_model
 199                    .as_ref()
 200                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 201            })
 202            .cloned();
 203        self.recommended_models = response
 204            .recommended_models
 205            .iter()
 206            .filter_map(|id| models.iter().find(|model| &model.id == id))
 207            .cloned()
 208            .collect();
 209        self.models = models;
 210        cx.notify();
 211    }
 212
 213    async fn fetch_models(
 214        client: Arc<Client>,
 215        llm_api_token: LlmApiToken,
 216    ) -> Result<ListModelsResponse> {
 217        let http_client = &client.http_client();
 218        let token = llm_api_token.acquire(&client).await?;
 219
 220        let request = http_client::Request::builder()
 221            .method(Method::GET)
 222            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 223            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 224            .header("Authorization", format!("Bearer {token}"))
 225            .body(AsyncBody::empty())?;
 226        let mut response = http_client
 227            .send(request)
 228            .await
 229            .context("failed to send list models request")?;
 230
 231        if response.status().is_success() {
 232            let mut body = String::new();
 233            response.body_mut().read_to_string(&mut body).await?;
 234            Ok(serde_json::from_str(&body)?)
 235        } else {
 236            let mut body = String::new();
 237            response.body_mut().read_to_string(&mut body).await?;
 238            anyhow::bail!(
 239                "error listing models.\nStatus: {:?}\nBody: {body}",
 240                response.status(),
 241            );
 242        }
 243    }
 244}
 245
 246impl CloudLanguageModelProvider {
 247    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 248        let mut status_rx = client.status();
 249        let status = *status_rx.borrow();
 250
 251        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 252
 253        let state_ref = state.downgrade();
 254        let maintain_client_status = cx.spawn(async move |cx| {
 255            while let Some(status) = status_rx.next().await {
 256                if let Some(this) = state_ref.upgrade() {
 257                    _ = this.update(cx, |this, cx| {
 258                        if this.status != status {
 259                            this.status = status;
 260                            cx.notify();
 261                        }
 262                    });
 263                } else {
 264                    break;
 265                }
 266            }
 267        });
 268
 269        Self {
 270            client,
 271            state,
 272            _maintain_client_status: maintain_client_status,
 273        }
 274    }
 275
 276    fn create_language_model(
 277        &self,
 278        model: Arc<cloud_llm_client::LanguageModel>,
 279        llm_api_token: LlmApiToken,
 280    ) -> Arc<dyn LanguageModel> {
 281        Arc::new(CloudLanguageModel {
 282            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 283            model,
 284            llm_api_token,
 285            client: self.client.clone(),
 286            request_limiter: RateLimiter::new(4),
 287        })
 288    }
 289}
 290
 291impl LanguageModelProviderState for CloudLanguageModelProvider {
 292    type ObservableEntity = State;
 293
 294    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 295        Some(self.state.clone())
 296    }
 297}
 298
 299impl LanguageModelProvider for CloudLanguageModelProvider {
 300    fn id(&self) -> LanguageModelProviderId {
 301        PROVIDER_ID
 302    }
 303
 304    fn name(&self) -> LanguageModelProviderName {
 305        PROVIDER_NAME
 306    }
 307
 308    fn icon(&self) -> IconOrSvg {
 309        IconOrSvg::Icon(IconName::AiZed)
 310    }
 311
 312    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 313        let default_model = self.state.read(cx).default_model.clone()?;
 314        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 315        Some(self.create_language_model(default_model, llm_api_token))
 316    }
 317
 318    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 319        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 320        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 321        Some(self.create_language_model(default_fast_model, llm_api_token))
 322    }
 323
 324    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 325        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 326        self.state
 327            .read(cx)
 328            .recommended_models
 329            .iter()
 330            .cloned()
 331            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 332            .collect()
 333    }
 334
 335    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 336        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 337        self.state
 338            .read(cx)
 339            .models
 340            .iter()
 341            .cloned()
 342            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 343            .collect()
 344    }
 345
 346    fn is_authenticated(&self, cx: &App) -> bool {
 347        let state = self.state.read(cx);
 348        !state.is_signed_out(cx)
 349    }
 350
 351    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 352        Task::ready(Ok(()))
 353    }
 354
 355    fn configuration_view(
 356        &self,
 357        _target_agent: language_model::ConfigurationViewTargetAgent,
 358        _: &mut Window,
 359        cx: &mut App,
 360    ) -> AnyView {
 361        cx.new(|_| ConfigurationView::new(self.state.clone()))
 362            .into()
 363    }
 364
 365    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 366        Task::ready(Ok(()))
 367    }
 368}
 369
 370pub struct CloudLanguageModel {
 371    id: LanguageModelId,
 372    model: Arc<cloud_llm_client::LanguageModel>,
 373    llm_api_token: LlmApiToken,
 374    client: Arc<Client>,
 375    request_limiter: RateLimiter,
 376}
 377
 378struct PerformLlmCompletionResponse {
 379    response: Response<AsyncBody>,
 380    includes_status_messages: bool,
 381}
 382
 383impl CloudLanguageModel {
 384    async fn perform_llm_completion(
 385        client: Arc<Client>,
 386        llm_api_token: LlmApiToken,
 387        app_version: Option<Version>,
 388        body: CompletionBody,
 389    ) -> Result<PerformLlmCompletionResponse> {
 390        let http_client = &client.http_client();
 391
 392        let mut token = llm_api_token.acquire(&client).await?;
 393        let mut refreshed_token = false;
 394
 395        loop {
 396            let request = http_client::Request::builder()
 397                .method(Method::POST)
 398                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 399                .when_some(app_version.as_ref(), |builder, app_version| {
 400                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 401                })
 402                .header("Content-Type", "application/json")
 403                .header("Authorization", format!("Bearer {token}"))
 404                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 405                .body(serde_json::to_string(&body)?.into())?;
 406
 407            let mut response = http_client.send(request).await?;
 408            let status = response.status();
 409            if status.is_success() {
 410                let includes_status_messages = response
 411                    .headers()
 412                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 413                    .is_some();
 414
 415                return Ok(PerformLlmCompletionResponse {
 416                    response,
 417                    includes_status_messages,
 418                });
 419            }
 420
 421            if !refreshed_token
 422                && response
 423                    .headers()
 424                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 425                    .is_some()
 426            {
 427                token = llm_api_token.refresh(&client).await?;
 428                refreshed_token = true;
 429                continue;
 430            }
 431
 432            if status == StatusCode::PAYMENT_REQUIRED {
 433                return Err(anyhow!(PaymentRequiredError));
 434            }
 435
 436            let mut body = String::new();
 437            let headers = response.headers().clone();
 438            response.body_mut().read_to_string(&mut body).await?;
 439            return Err(anyhow!(ApiError {
 440                status,
 441                body,
 442                headers
 443            }));
 444        }
 445    }
 446}
 447
 448#[derive(Debug, Error)]
 449#[error("cloud language model request failed with status {status}: {body}")]
 450struct ApiError {
 451    status: StatusCode,
 452    body: String,
 453    headers: HeaderMap<HeaderValue>,
 454}
 455
 456/// Represents error responses from Zed's cloud API.
 457///
 458/// Example JSON for an upstream HTTP error:
 459/// ```json
 460/// {
 461///   "code": "upstream_http_error",
 462///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 463///   "upstream_status": 503
 464/// }
 465/// ```
 466#[derive(Debug, serde::Deserialize)]
 467struct CloudApiError {
 468    code: String,
 469    message: String,
 470    #[serde(default)]
 471    #[serde(deserialize_with = "deserialize_optional_status_code")]
 472    upstream_status: Option<StatusCode>,
 473    #[serde(default)]
 474    retry_after: Option<f64>,
 475}
 476
 477fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 478where
 479    D: serde::Deserializer<'de>,
 480{
 481    let opt: Option<u16> = Option::deserialize(deserializer)?;
 482    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 483}
 484
 485impl From<ApiError> for LanguageModelCompletionError {
 486    fn from(error: ApiError) -> Self {
 487        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 488            if cloud_error.code.starts_with("upstream_http_") {
 489                let status = if let Some(status) = cloud_error.upstream_status {
 490                    status
 491                } else if cloud_error.code.ends_with("_error") {
 492                    error.status
 493                } else {
 494                    // If there's a status code in the code string (e.g. "upstream_http_429")
 495                    // then use that; otherwise, see if the JSON contains a status code.
 496                    cloud_error
 497                        .code
 498                        .strip_prefix("upstream_http_")
 499                        .and_then(|code_str| code_str.parse::<u16>().ok())
 500                        .and_then(|code| StatusCode::from_u16(code).ok())
 501                        .unwrap_or(error.status)
 502                };
 503
 504                return LanguageModelCompletionError::UpstreamProviderError {
 505                    message: cloud_error.message,
 506                    status,
 507                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 508                };
 509            }
 510
 511            return LanguageModelCompletionError::from_http_status(
 512                PROVIDER_NAME,
 513                error.status,
 514                cloud_error.message,
 515                None,
 516            );
 517        }
 518
 519        let retry_after = None;
 520        LanguageModelCompletionError::from_http_status(
 521            PROVIDER_NAME,
 522            error.status,
 523            error.body,
 524            retry_after,
 525        )
 526    }
 527}
 528
 529impl LanguageModel for CloudLanguageModel {
 530    fn id(&self) -> LanguageModelId {
 531        self.id.clone()
 532    }
 533
 534    fn name(&self) -> LanguageModelName {
 535        LanguageModelName::from(self.model.display_name.clone())
 536    }
 537
 538    fn provider_id(&self) -> LanguageModelProviderId {
 539        PROVIDER_ID
 540    }
 541
 542    fn provider_name(&self) -> LanguageModelProviderName {
 543        PROVIDER_NAME
 544    }
 545
 546    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 547        use cloud_llm_client::LanguageModelProvider::*;
 548        match self.model.provider {
 549            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 550            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 551            Google => language_model::GOOGLE_PROVIDER_ID,
 552            XAi => language_model::X_AI_PROVIDER_ID,
 553        }
 554    }
 555
 556    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 557        use cloud_llm_client::LanguageModelProvider::*;
 558        match self.model.provider {
 559            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 560            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 561            Google => language_model::GOOGLE_PROVIDER_NAME,
 562            XAi => language_model::X_AI_PROVIDER_NAME,
 563        }
 564    }
 565
 566    fn supports_tools(&self) -> bool {
 567        self.model.supports_tools
 568    }
 569
 570    fn supports_images(&self) -> bool {
 571        self.model.supports_images
 572    }
 573
 574    fn supports_streaming_tools(&self) -> bool {
 575        self.model.supports_streaming_tools
 576    }
 577
 578    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 579        match choice {
 580            LanguageModelToolChoice::Auto
 581            | LanguageModelToolChoice::Any
 582            | LanguageModelToolChoice::None => true,
 583        }
 584    }
 585
 586    fn supports_burn_mode(&self) -> bool {
 587        self.model.supports_max_mode
 588    }
 589
 590    fn supports_split_token_display(&self) -> bool {
 591        use cloud_llm_client::LanguageModelProvider::*;
 592        matches!(self.model.provider, OpenAi)
 593    }
 594
 595    fn telemetry_id(&self) -> String {
 596        format!("zed.dev/{}", self.model.id)
 597    }
 598
 599    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 600        match self.model.provider {
 601            cloud_llm_client::LanguageModelProvider::Anthropic
 602            | cloud_llm_client::LanguageModelProvider::OpenAi
 603            | cloud_llm_client::LanguageModelProvider::XAi => {
 604                LanguageModelToolSchemaFormat::JsonSchema
 605            }
 606            cloud_llm_client::LanguageModelProvider::Google => {
 607                LanguageModelToolSchemaFormat::JsonSchemaSubset
 608            }
 609        }
 610    }
 611
 612    fn max_token_count(&self) -> u64 {
 613        self.model.max_token_count as u64
 614    }
 615
 616    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 617        self.model
 618            .max_token_count_in_max_mode
 619            .filter(|_| self.model.supports_max_mode)
 620            .map(|max_token_count| max_token_count as u64)
 621    }
 622
 623    fn max_output_tokens(&self) -> Option<u64> {
 624        Some(self.model.max_output_tokens as u64)
 625    }
 626
 627    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 628        match &self.model.provider {
 629            cloud_llm_client::LanguageModelProvider::Anthropic => {
 630                Some(LanguageModelCacheConfiguration {
 631                    min_total_token: 2_048,
 632                    should_speculate: true,
 633                    max_cache_anchors: 4,
 634                })
 635            }
 636            cloud_llm_client::LanguageModelProvider::OpenAi
 637            | cloud_llm_client::LanguageModelProvider::XAi
 638            | cloud_llm_client::LanguageModelProvider::Google => None,
 639        }
 640    }
 641
 642    fn count_tokens(
 643        &self,
 644        request: LanguageModelRequest,
 645        cx: &App,
 646    ) -> BoxFuture<'static, Result<u64>> {
 647        match self.model.provider {
 648            cloud_llm_client::LanguageModelProvider::Anthropic => cx
 649                .background_spawn(async move { count_anthropic_tokens_with_tiktoken(request) })
 650                .boxed(),
 651            cloud_llm_client::LanguageModelProvider::OpenAi => {
 652                let model = match open_ai::Model::from_id(&self.model.id.0) {
 653                    Ok(model) => model,
 654                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 655                };
 656                count_open_ai_tokens(request, model, cx)
 657            }
 658            cloud_llm_client::LanguageModelProvider::XAi => {
 659                let model = match x_ai::Model::from_id(&self.model.id.0) {
 660                    Ok(model) => model,
 661                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 662                };
 663                count_xai_tokens(request, model, cx)
 664            }
 665            cloud_llm_client::LanguageModelProvider::Google => {
 666                let client = self.client.clone();
 667                let llm_api_token = self.llm_api_token.clone();
 668                let model_id = self.model.id.to_string();
 669                let generate_content_request =
 670                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 671                async move {
 672                    let http_client = &client.http_client();
 673                    let token = llm_api_token.acquire(&client).await?;
 674
 675                    let request_body = CountTokensBody {
 676                        provider: cloud_llm_client::LanguageModelProvider::Google,
 677                        model: model_id,
 678                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 679                            generate_content_request,
 680                        })?,
 681                    };
 682                    let request = http_client::Request::builder()
 683                        .method(Method::POST)
 684                        .uri(
 685                            http_client
 686                                .build_zed_llm_url("/count_tokens", &[])?
 687                                .as_ref(),
 688                        )
 689                        .header("Content-Type", "application/json")
 690                        .header("Authorization", format!("Bearer {token}"))
 691                        .body(serde_json::to_string(&request_body)?.into())?;
 692                    let mut response = http_client.send(request).await?;
 693                    let status = response.status();
 694                    let headers = response.headers().clone();
 695                    let mut response_body = String::new();
 696                    response
 697                        .body_mut()
 698                        .read_to_string(&mut response_body)
 699                        .await?;
 700
 701                    if status.is_success() {
 702                        let response_body: CountTokensResponse =
 703                            serde_json::from_str(&response_body)?;
 704
 705                        Ok(response_body.tokens as u64)
 706                    } else {
 707                        Err(anyhow!(ApiError {
 708                            status,
 709                            body: response_body,
 710                            headers
 711                        }))
 712                    }
 713                }
 714                .boxed()
 715            }
 716        }
 717    }
 718
 719    fn stream_completion(
 720        &self,
 721        request: LanguageModelRequest,
 722        cx: &AsyncApp,
 723    ) -> BoxFuture<
 724        'static,
 725        Result<
 726            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 727            LanguageModelCompletionError,
 728        >,
 729    > {
 730        let thread_id = request.thread_id.clone();
 731        let prompt_id = request.prompt_id.clone();
 732        let intent = request.intent;
 733        let mode = request.mode;
 734        let app_version = Some(cx.update(|cx| AppVersion::global(cx)));
 735        let use_responses_api = cx.update(|cx| cx.has_flag::<OpenAiResponsesApiFeatureFlag>());
 736        let thinking_allowed = request.thinking_allowed;
 737        let provider_name = provider_name(&self.model.provider);
 738        match self.model.provider {
 739            cloud_llm_client::LanguageModelProvider::Anthropic => {
 740                let request = into_anthropic(
 741                    request,
 742                    self.model.id.to_string(),
 743                    1.0,
 744                    self.model.max_output_tokens as u64,
 745                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 746                        AnthropicModelMode::Thinking {
 747                            budget_tokens: Some(4_096),
 748                        }
 749                    } else {
 750                        AnthropicModelMode::Default
 751                    },
 752                );
 753                let client = self.client.clone();
 754                let llm_api_token = self.llm_api_token.clone();
 755                let future = self.request_limiter.stream(async move {
 756                    let PerformLlmCompletionResponse {
 757                        response,
 758                        includes_status_messages,
 759                    } = Self::perform_llm_completion(
 760                        client.clone(),
 761                        llm_api_token,
 762                        app_version,
 763                        CompletionBody {
 764                            thread_id,
 765                            prompt_id,
 766                            intent,
 767                            mode,
 768                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 769                            model: request.model.clone(),
 770                            provider_request: serde_json::to_value(&request)
 771                                .map_err(|e| anyhow!(e))?,
 772                        },
 773                    )
 774                    .await
 775                    .map_err(|err| match err.downcast::<ApiError>() {
 776                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 777                        Err(err) => anyhow!(err),
 778                    })?;
 779
 780                    let mut mapper = AnthropicEventMapper::new();
 781                    Ok(map_cloud_completion_events(
 782                        Box::pin(response_lines(response, includes_status_messages)),
 783                        &provider_name,
 784                        move |event| mapper.map_event(event),
 785                    ))
 786                });
 787                async move { Ok(future.await?.boxed()) }.boxed()
 788            }
 789            cloud_llm_client::LanguageModelProvider::OpenAi => {
 790                let client = self.client.clone();
 791                let llm_api_token = self.llm_api_token.clone();
 792
 793                if use_responses_api {
 794                    let request = into_open_ai_response(
 795                        request,
 796                        &self.model.id.0,
 797                        self.model.supports_parallel_tool_calls,
 798                        true,
 799                        None,
 800                        None,
 801                    );
 802                    let future = self.request_limiter.stream(async move {
 803                        let PerformLlmCompletionResponse {
 804                            response,
 805                            includes_status_messages,
 806                        } = Self::perform_llm_completion(
 807                            client.clone(),
 808                            llm_api_token,
 809                            app_version,
 810                            CompletionBody {
 811                                thread_id,
 812                                prompt_id,
 813                                intent,
 814                                mode,
 815                                provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 816                                model: request.model.clone(),
 817                                provider_request: serde_json::to_value(&request)
 818                                    .map_err(|e| anyhow!(e))?,
 819                            },
 820                        )
 821                        .await?;
 822
 823                        let mut mapper = OpenAiResponseEventMapper::new();
 824                        Ok(map_cloud_completion_events(
 825                            Box::pin(response_lines(response, includes_status_messages)),
 826                            &provider_name,
 827                            move |event| mapper.map_event(event),
 828                        ))
 829                    });
 830                    async move { Ok(future.await?.boxed()) }.boxed()
 831                } else {
 832                    let request = into_open_ai(
 833                        request,
 834                        &self.model.id.0,
 835                        self.model.supports_parallel_tool_calls,
 836                        true,
 837                        None,
 838                        None,
 839                    );
 840                    let future = self.request_limiter.stream(async move {
 841                        let PerformLlmCompletionResponse {
 842                            response,
 843                            includes_status_messages,
 844                        } = Self::perform_llm_completion(
 845                            client.clone(),
 846                            llm_api_token,
 847                            app_version,
 848                            CompletionBody {
 849                                thread_id,
 850                                prompt_id,
 851                                intent,
 852                                mode,
 853                                provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 854                                model: request.model.clone(),
 855                                provider_request: serde_json::to_value(&request)
 856                                    .map_err(|e| anyhow!(e))?,
 857                            },
 858                        )
 859                        .await?;
 860
 861                        let mut mapper = OpenAiEventMapper::new();
 862                        Ok(map_cloud_completion_events(
 863                            Box::pin(response_lines(response, includes_status_messages)),
 864                            &provider_name,
 865                            move |event| mapper.map_event(event),
 866                        ))
 867                    });
 868                    async move { Ok(future.await?.boxed()) }.boxed()
 869                }
 870            }
 871            cloud_llm_client::LanguageModelProvider::XAi => {
 872                let client = self.client.clone();
 873                let request = into_open_ai(
 874                    request,
 875                    &self.model.id.0,
 876                    self.model.supports_parallel_tool_calls,
 877                    false,
 878                    None,
 879                    None,
 880                );
 881                let llm_api_token = self.llm_api_token.clone();
 882                let future = self.request_limiter.stream(async move {
 883                    let PerformLlmCompletionResponse {
 884                        response,
 885                        includes_status_messages,
 886                    } = Self::perform_llm_completion(
 887                        client.clone(),
 888                        llm_api_token,
 889                        app_version,
 890                        CompletionBody {
 891                            thread_id,
 892                            prompt_id,
 893                            intent,
 894                            mode,
 895                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 896                            model: request.model.clone(),
 897                            provider_request: serde_json::to_value(&request)
 898                                .map_err(|e| anyhow!(e))?,
 899                        },
 900                    )
 901                    .await?;
 902
 903                    let mut mapper = OpenAiEventMapper::new();
 904                    Ok(map_cloud_completion_events(
 905                        Box::pin(response_lines(response, includes_status_messages)),
 906                        &provider_name,
 907                        move |event| mapper.map_event(event),
 908                    ))
 909                });
 910                async move { Ok(future.await?.boxed()) }.boxed()
 911            }
 912            cloud_llm_client::LanguageModelProvider::Google => {
 913                let client = self.client.clone();
 914                let request =
 915                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 916                let llm_api_token = self.llm_api_token.clone();
 917                let future = self.request_limiter.stream(async move {
 918                    let PerformLlmCompletionResponse {
 919                        response,
 920                        includes_status_messages,
 921                    } = Self::perform_llm_completion(
 922                        client.clone(),
 923                        llm_api_token,
 924                        app_version,
 925                        CompletionBody {
 926                            thread_id,
 927                            prompt_id,
 928                            intent,
 929                            mode,
 930                            provider: cloud_llm_client::LanguageModelProvider::Google,
 931                            model: request.model.model_id.clone(),
 932                            provider_request: serde_json::to_value(&request)
 933                                .map_err(|e| anyhow!(e))?,
 934                        },
 935                    )
 936                    .await?;
 937
 938                    let mut mapper = GoogleEventMapper::new();
 939                    Ok(map_cloud_completion_events(
 940                        Box::pin(response_lines(response, includes_status_messages)),
 941                        &provider_name,
 942                        move |event| mapper.map_event(event),
 943                    ))
 944                });
 945                async move { Ok(future.await?.boxed()) }.boxed()
 946            }
 947        }
 948    }
 949}
 950
 951fn map_cloud_completion_events<T, F>(
 952    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 953    provider: &LanguageModelProviderName,
 954    mut map_callback: F,
 955) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 956where
 957    T: DeserializeOwned + 'static,
 958    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 959        + Send
 960        + 'static,
 961{
 962    let provider = provider.clone();
 963    stream
 964        .flat_map(move |event| {
 965            futures::stream::iter(match event {
 966                Err(error) => {
 967                    vec![Err(LanguageModelCompletionError::from(error))]
 968                }
 969                Ok(CompletionEvent::Status(event)) => {
 970                    vec![
 971                        LanguageModelCompletionEvent::from_completion_request_status(
 972                            event,
 973                            provider.clone(),
 974                        ),
 975                    ]
 976                }
 977                Ok(CompletionEvent::Event(event)) => map_callback(event),
 978            })
 979        })
 980        .boxed()
 981}
 982
 983fn provider_name(provider: &cloud_llm_client::LanguageModelProvider) -> LanguageModelProviderName {
 984    match provider {
 985        cloud_llm_client::LanguageModelProvider::Anthropic => {
 986            language_model::ANTHROPIC_PROVIDER_NAME
 987        }
 988        cloud_llm_client::LanguageModelProvider::OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 989        cloud_llm_client::LanguageModelProvider::Google => language_model::GOOGLE_PROVIDER_NAME,
 990        cloud_llm_client::LanguageModelProvider::XAi => language_model::X_AI_PROVIDER_NAME,
 991    }
 992}
 993
 994fn response_lines<T: DeserializeOwned>(
 995    response: Response<AsyncBody>,
 996    includes_status_messages: bool,
 997) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 998    futures::stream::try_unfold(
 999        (String::new(), BufReader::new(response.into_body())),
1000        move |(mut line, mut body)| async move {
1001            match body.read_line(&mut line).await {
1002                Ok(0) => Ok(None),
1003                Ok(_) => {
1004                    let event = if includes_status_messages {
1005                        serde_json::from_str::<CompletionEvent<T>>(&line)?
1006                    } else {
1007                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
1008                    };
1009
1010                    line.clear();
1011                    Ok(Some((event, (line, body))))
1012                }
1013                Err(e) => Err(e.into()),
1014            }
1015        },
1016    )
1017}
1018
1019#[derive(IntoElement, RegisterComponent)]
1020struct ZedAiConfiguration {
1021    is_connected: bool,
1022    plan: Option<Plan>,
1023    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
1024    eligible_for_trial: bool,
1025    account_too_young: bool,
1026    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1027}
1028
1029impl RenderOnce for ZedAiConfiguration {
1030    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
1031        let is_pro = self
1032            .plan
1033            .is_some_and(|plan| plan == Plan::V2(PlanV2::ZedPro));
1034        let subscription_text = match (self.plan, self.subscription_period) {
1035            (Some(Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1036                "You have access to Zed's hosted models through your Pro subscription."
1037            }
1038            (Some(Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1039                "You have access to Zed's hosted models through your Pro trial."
1040            }
1041            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1042                if self.eligible_for_trial {
1043                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1044                } else {
1045                    "Subscribe for access to Zed's hosted models."
1046                }
1047            }
1048            _ => {
1049                if self.eligible_for_trial {
1050                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1051                } else {
1052                    "Subscribe for access to Zed's hosted models."
1053                }
1054            }
1055        };
1056
1057        let manage_subscription_buttons = if is_pro {
1058            Button::new("manage_settings", "Manage Subscription")
1059                .full_width()
1060                .style(ButtonStyle::Tinted(TintColor::Accent))
1061                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1062                .into_any_element()
1063        } else if self.plan.is_none() || self.eligible_for_trial {
1064            Button::new("start_trial", "Start 14-day Free Pro Trial")
1065                .full_width()
1066                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1067                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1068                .into_any_element()
1069        } else {
1070            Button::new("upgrade", "Upgrade to Pro")
1071                .full_width()
1072                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1073                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1074                .into_any_element()
1075        };
1076
1077        if !self.is_connected {
1078            return v_flex()
1079                .gap_2()
1080                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1081                .child(
1082                    Button::new("sign_in", "Sign In to use Zed AI")
1083                        .icon_color(Color::Muted)
1084                        .icon(IconName::Github)
1085                        .icon_size(IconSize::Small)
1086                        .icon_position(IconPosition::Start)
1087                        .full_width()
1088                        .on_click({
1089                            let callback = self.sign_in_callback.clone();
1090                            move |_, window, cx| (callback)(window, cx)
1091                        }),
1092                );
1093        }
1094
1095        v_flex().gap_2().w_full().map(|this| {
1096            if self.account_too_young {
1097                this.child(YoungAccountBanner).child(
1098                    Button::new("upgrade", "Upgrade to Pro")
1099                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1100                        .full_width()
1101                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1102                )
1103            } else {
1104                this.text_sm()
1105                    .child(subscription_text)
1106                    .child(manage_subscription_buttons)
1107            }
1108        })
1109    }
1110}
1111
1112struct ConfigurationView {
1113    state: Entity<State>,
1114    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1115}
1116
1117impl ConfigurationView {
1118    fn new(state: Entity<State>) -> Self {
1119        let sign_in_callback = Arc::new({
1120            let state = state.clone();
1121            move |_window: &mut Window, cx: &mut App| {
1122                state.update(cx, |state, cx| {
1123                    state.authenticate(cx).detach_and_log_err(cx);
1124                });
1125            }
1126        });
1127
1128        Self {
1129            state,
1130            sign_in_callback,
1131        }
1132    }
1133}
1134
1135impl Render for ConfigurationView {
1136    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1137        let state = self.state.read(cx);
1138        let user_store = state.user_store.read(cx);
1139
1140        ZedAiConfiguration {
1141            is_connected: !state.is_signed_out(cx),
1142            plan: user_store.plan(),
1143            subscription_period: user_store.subscription_period(),
1144            eligible_for_trial: user_store.trial_started_at().is_none(),
1145            account_too_young: user_store.account_too_young(),
1146            sign_in_callback: self.sign_in_callback.clone(),
1147        }
1148    }
1149}
1150
1151impl Component for ZedAiConfiguration {
1152    fn name() -> &'static str {
1153        "AI Configuration Content"
1154    }
1155
1156    fn sort_name() -> &'static str {
1157        "AI Configuration Content"
1158    }
1159
1160    fn scope() -> ComponentScope {
1161        ComponentScope::Onboarding
1162    }
1163
1164    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1165        fn configuration(
1166            is_connected: bool,
1167            plan: Option<Plan>,
1168            eligible_for_trial: bool,
1169            account_too_young: bool,
1170        ) -> AnyElement {
1171            ZedAiConfiguration {
1172                is_connected,
1173                plan,
1174                subscription_period: plan
1175                    .is_some()
1176                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1177                eligible_for_trial,
1178                account_too_young,
1179                sign_in_callback: Arc::new(|_, _| {}),
1180            }
1181            .into_any_element()
1182        }
1183
1184        Some(
1185            v_flex()
1186                .p_4()
1187                .gap_4()
1188                .children(vec![
1189                    single_example("Not connected", configuration(false, None, false, false)),
1190                    single_example(
1191                        "Accept Terms of Service",
1192                        configuration(true, None, true, false),
1193                    ),
1194                    single_example(
1195                        "No Plan - Not eligible for trial",
1196                        configuration(true, None, false, false),
1197                    ),
1198                    single_example(
1199                        "No Plan - Eligible for trial",
1200                        configuration(true, None, true, false),
1201                    ),
1202                    single_example(
1203                        "Free Plan",
1204                        configuration(true, Some(Plan::V2(PlanV2::ZedFree)), true, false),
1205                    ),
1206                    single_example(
1207                        "Zed Pro Trial Plan",
1208                        configuration(true, Some(Plan::V2(PlanV2::ZedProTrial)), true, false),
1209                    ),
1210                    single_example(
1211                        "Zed Pro Plan",
1212                        configuration(true, Some(Plan::V2(PlanV2::ZedPro)), true, false),
1213                    ),
1214                ])
1215                .into_any_element(),
1216        )
1217    }
1218}
1219
1220#[cfg(test)]
1221mod tests {
1222    use super::*;
1223    use http_client::http::{HeaderMap, StatusCode};
1224    use language_model::LanguageModelCompletionError;
1225
1226    #[test]
1227    fn test_api_error_conversion_with_upstream_http_error() {
1228        // upstream_http_error with 503 status should become ServerOverloaded
1229        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1230
1231        let api_error = ApiError {
1232            status: StatusCode::INTERNAL_SERVER_ERROR,
1233            body: error_body.to_string(),
1234            headers: HeaderMap::new(),
1235        };
1236
1237        let completion_error: LanguageModelCompletionError = api_error.into();
1238
1239        match completion_error {
1240            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1241                assert_eq!(
1242                    message,
1243                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1244                );
1245            }
1246            _ => panic!(
1247                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1248                completion_error
1249            ),
1250        }
1251
1252        // upstream_http_error with 500 status should become ApiInternalServerError
1253        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1254
1255        let api_error = ApiError {
1256            status: StatusCode::INTERNAL_SERVER_ERROR,
1257            body: error_body.to_string(),
1258            headers: HeaderMap::new(),
1259        };
1260
1261        let completion_error: LanguageModelCompletionError = api_error.into();
1262
1263        match completion_error {
1264            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1265                assert_eq!(
1266                    message,
1267                    "Received an error from the OpenAI API: internal server error"
1268                );
1269            }
1270            _ => panic!(
1271                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1272                completion_error
1273            ),
1274        }
1275
1276        // upstream_http_error with 429 status should become RateLimitExceeded
1277        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1278
1279        let api_error = ApiError {
1280            status: StatusCode::INTERNAL_SERVER_ERROR,
1281            body: error_body.to_string(),
1282            headers: HeaderMap::new(),
1283        };
1284
1285        let completion_error: LanguageModelCompletionError = api_error.into();
1286
1287        match completion_error {
1288            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1289                assert_eq!(
1290                    message,
1291                    "Received an error from the Google API: rate limit exceeded"
1292                );
1293            }
1294            _ => panic!(
1295                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1296                completion_error
1297            ),
1298        }
1299
1300        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1301        let error_body = "Regular internal server error";
1302
1303        let api_error = ApiError {
1304            status: StatusCode::INTERNAL_SERVER_ERROR,
1305            body: error_body.to_string(),
1306            headers: HeaderMap::new(),
1307        };
1308
1309        let completion_error: LanguageModelCompletionError = api_error.into();
1310
1311        match completion_error {
1312            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1313                assert_eq!(provider, PROVIDER_NAME);
1314                assert_eq!(message, "Regular internal server error");
1315            }
1316            _ => panic!(
1317                "Expected ApiInternalServerError for regular 500, got: {:?}",
1318                completion_error
1319            ),
1320        }
1321
1322        // upstream_http_429 format should be converted to UpstreamProviderError
1323        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1324
1325        let api_error = ApiError {
1326            status: StatusCode::INTERNAL_SERVER_ERROR,
1327            body: error_body.to_string(),
1328            headers: HeaderMap::new(),
1329        };
1330
1331        let completion_error: LanguageModelCompletionError = api_error.into();
1332
1333        match completion_error {
1334            LanguageModelCompletionError::UpstreamProviderError {
1335                message,
1336                status,
1337                retry_after,
1338            } => {
1339                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1340                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1341                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1342            }
1343            _ => panic!(
1344                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1345                completion_error
1346            ),
1347        }
1348
1349        // Invalid JSON in error body should fall back to regular error handling
1350        let error_body = "Not JSON at all";
1351
1352        let api_error = ApiError {
1353            status: StatusCode::INTERNAL_SERVER_ERROR,
1354            body: error_body.to_string(),
1355            headers: HeaderMap::new(),
1356        };
1357
1358        let completion_error: LanguageModelCompletionError = api_error.into();
1359
1360        match completion_error {
1361            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1362                assert_eq!(provider, PROVIDER_NAME);
1363            }
1364            _ => panic!(
1365                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1366                completion_error
1367            ),
1368        }
1369    }
1370}