shaders.wgsl

   1/* Functions useful for debugging:
   2
   3// A heat map color for debugging (blue -> cyan -> green -> yellow -> red).
   4fn heat_map_color(value: f32, minValue: f32, maxValue: f32, position: vec2<f32>) -> vec4<f32> {
   5    // Normalize value to 0-1 range
   6    let t = clamp((value - minValue) / (maxValue - minValue), 0.0, 1.0);
   7
   8    // Heat map color calculation
   9    let r = t * t;
  10    let g = 4.0 * t * (1.0 - t);
  11    let b = (1.0 - t) * (1.0 - t);
  12    let heat_color = vec3<f32>(r, g, b);
  13
  14    // Create a checkerboard pattern (black and white)
  15    let sum = floor(position.x / 3) + floor(position.y / 3);
  16    let is_odd = fract(sum * 0.5); // 0.0 for even, 0.5 for odd
  17    let checker_value = is_odd * 2.0; // 0.0 for even, 1.0 for odd
  18    let checker_color = vec3<f32>(checker_value);
  19
  20    // Determine if value is in range (1.0 if in range, 0.0 if out of range)
  21    let in_range = step(minValue, value) * step(value, maxValue);
  22
  23    // Mix checkerboard and heat map based on whether value is in range
  24    let final_color = mix(checker_color, heat_color, in_range);
  25
  26    return vec4<f32>(final_color, 1.0);
  27}
  28
  29*/
  30
  31fn color_brightness(color: vec3<f32>) -> f32 {
  32    // REC. 601 luminance coefficients for perceived brightness
  33    return dot(color, vec3<f32>(0.30, 0.59, 0.11));
  34}
  35
  36fn light_on_dark_contrast(enhancedContrast: f32, color: vec3<f32>) -> f32 {
  37    let brightness = color_brightness(color);
  38    let multiplier = saturate(4.0 * (0.75 - brightness));
  39    return enhancedContrast * multiplier;
  40}
  41
  42fn enhance_contrast(alpha: f32, k: f32) -> f32 {
  43    return alpha * (k + 1.0) / (alpha * k + 1.0);
  44}
  45
  46fn apply_alpha_correction(a: f32, b: f32, g: vec4<f32>) -> f32 {
  47    let brightness_adjustment = g.x * b + g.y;
  48    let correction = brightness_adjustment * a + (g.z * b + g.w);
  49    return a + a * (1.0 - a) * correction;
  50}
  51
  52fn apply_contrast_and_gamma_correction(sample: f32, color: vec3<f32>, enhanced_contrast_factor: f32, gamma_ratios: vec4<f32>) -> f32 {
  53    let enhanced_contrast = light_on_dark_contrast(enhanced_contrast_factor, color);
  54    let brightness = color_brightness(color);
  55
  56    let contrasted = enhance_contrast(sample, enhanced_contrast);
  57    return apply_alpha_correction(contrasted, brightness, gamma_ratios);
  58}
  59
  60struct GlobalParams {
  61    viewport_size: vec2<f32>,
  62    premultiplied_alpha: u32,
  63    pad: u32,
  64}
  65
  66var<uniform> globals: GlobalParams;
  67var<uniform> gamma_ratios: vec4<f32>;
  68var<uniform> grayscale_enhanced_contrast: f32;
  69var t_sprite: texture_2d<f32>;
  70var s_sprite: sampler;
  71
  72const M_PI_F: f32 = 3.1415926;
  73const GRAYSCALE_FACTORS: vec3<f32> = vec3<f32>(0.2126, 0.7152, 0.0722);
  74
  75struct Bounds {
  76    origin: vec2<f32>,
  77    size: vec2<f32>,
  78}
  79
  80struct Corners {
  81    top_left: f32,
  82    top_right: f32,
  83    bottom_right: f32,
  84    bottom_left: f32,
  85}
  86
  87struct Edges {
  88    top: f32,
  89    right: f32,
  90    bottom: f32,
  91    left: f32,
  92}
  93
  94struct Hsla {
  95    h: f32,
  96    s: f32,
  97    l: f32,
  98    a: f32,
  99}
 100
 101struct LinearColorStop {
 102    color: Hsla,
 103    percentage: f32,
 104}
 105
 106struct Background {
 107    // 0u is Solid
 108    // 1u is LinearGradient
 109    // 2u is PatternSlash
 110    tag: u32,
 111    // 0u is sRGB linear color
 112    // 1u is Oklab color
 113    color_space: u32,
 114    solid: Hsla,
 115    gradient_angle_or_pattern_height: f32,
 116    colors: array<LinearColorStop, 2>,
 117    pad: u32,
 118}
 119
 120struct AtlasTextureId {
 121    index: u32,
 122    kind: u32,
 123}
 124
 125struct AtlasBounds {
 126    origin: vec2<i32>,
 127    size: vec2<i32>,
 128}
 129
 130struct AtlasTile {
 131    texture_id: AtlasTextureId,
 132    tile_id: u32,
 133    padding: u32,
 134    bounds: AtlasBounds,
 135}
 136
 137struct TransformationMatrix {
 138    rotation_scale: mat2x2<f32>,
 139    translation: vec2<f32>,
 140}
 141
 142fn to_device_position_impl(position: vec2<f32>) -> vec4<f32> {
 143    let device_position = position / globals.viewport_size * vec2<f32>(2.0, -2.0) + vec2<f32>(-1.0, 1.0);
 144    return vec4<f32>(device_position, 0.0, 1.0);
 145}
 146
 147fn to_device_position(unit_vertex: vec2<f32>, bounds: Bounds) -> vec4<f32> {
 148    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 149    return to_device_position_impl(position);
 150}
 151
 152fn to_device_position_transformed(unit_vertex: vec2<f32>, bounds: Bounds, transform: TransformationMatrix) -> vec4<f32> {
 153    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 154    //Note: Rust side stores it as row-major, so transposing here
 155    let transformed = transpose(transform.rotation_scale) * position + transform.translation;
 156    return to_device_position_impl(transformed);
 157}
 158
 159fn to_tile_position(unit_vertex: vec2<f32>, tile: AtlasTile) -> vec2<f32> {
 160  let atlas_size = vec2<f32>(textureDimensions(t_sprite, 0));
 161  return (vec2<f32>(tile.bounds.origin) + unit_vertex * vec2<f32>(tile.bounds.size)) / atlas_size;
 162}
 163
 164fn distance_from_clip_rect_impl(position: vec2<f32>, clip_bounds: Bounds) -> vec4<f32> {
 165    let tl = position - clip_bounds.origin;
 166    let br = clip_bounds.origin + clip_bounds.size - position;
 167    return vec4<f32>(tl.x, br.x, tl.y, br.y);
 168}
 169
 170fn distance_from_clip_rect(unit_vertex: vec2<f32>, bounds: Bounds, clip_bounds: Bounds) -> vec4<f32> {
 171    let position = unit_vertex * vec2<f32>(bounds.size) + bounds.origin;
 172    return distance_from_clip_rect_impl(position, clip_bounds);
 173}
 174
 175// https://gamedev.stackexchange.com/questions/92015/optimized-linear-to-srgb-glsl
 176fn srgb_to_linear(srgb: vec3<f32>) -> vec3<f32> {
 177    let cutoff = srgb < vec3<f32>(0.04045);
 178    let higher = pow((srgb + vec3<f32>(0.055)) / vec3<f32>(1.055), vec3<f32>(2.4));
 179    let lower = srgb / vec3<f32>(12.92);
 180    return select(higher, lower, cutoff);
 181}
 182
 183fn srgb_to_linear_component(a: f32) -> f32 {
 184    let cutoff = a < 0.04045;
 185    let higher = pow((a + 0.055) / 1.055, 2.4);
 186    let lower = a / 12.92;
 187    return select(higher, lower, cutoff);
 188}
 189
 190fn linear_to_srgb(linear: vec3<f32>) -> vec3<f32> {
 191    let cutoff = linear < vec3<f32>(0.0031308);
 192    let higher = vec3<f32>(1.055) * pow(linear, vec3<f32>(1.0 / 2.4)) - vec3<f32>(0.055);
 193    let lower = linear * vec3<f32>(12.92);
 194    return select(higher, lower, cutoff);
 195}
 196
 197fn linear_to_srgb_component(linear: f32) -> f32 {
 198    let cutoff = linear < 0.0031308;
 199    let higher = 1.055 * pow(linear, 1.0 / 2.4) - 0.055;
 200    let lower = linear * 12.92;
 201    return select(higher, lower, cutoff);
 202}
 203
 204/// Convert a linear color to sRGBA space.
 205fn linear_to_srgba(color: vec4<f32>) -> vec4<f32> {
 206    return vec4<f32>(linear_to_srgb(color.rgb), color.a);
 207}
 208
 209/// Convert a sRGBA color to linear space.
 210fn srgba_to_linear(color: vec4<f32>) -> vec4<f32> {
 211    return vec4<f32>(srgb_to_linear(color.rgb), color.a);
 212}
 213
 214/// Hsla to linear RGBA conversion.
 215fn hsla_to_rgba(hsla: Hsla) -> vec4<f32> {
 216    let h = hsla.h * 6.0; // Now, it's an angle but scaled in [0, 6) range
 217    let s = hsla.s;
 218    let l = hsla.l;
 219    let a = hsla.a;
 220
 221    let c = (1.0 - abs(2.0 * l - 1.0)) * s;
 222    let x = c * (1.0 - abs(h % 2.0 - 1.0));
 223    let m = l - c / 2.0;
 224    var color = vec3<f32>(m);
 225
 226    if (h >= 0.0 && h < 1.0) {
 227        color.r += c;
 228        color.g += x;
 229    } else if (h >= 1.0 && h < 2.0) {
 230        color.r += x;
 231        color.g += c;
 232    } else if (h >= 2.0 && h < 3.0) {
 233        color.g += c;
 234        color.b += x;
 235    } else if (h >= 3.0 && h < 4.0) {
 236        color.g += x;
 237        color.b += c;
 238    } else if (h >= 4.0 && h < 5.0) {
 239        color.r += x;
 240        color.b += c;
 241    } else {
 242        color.r += c;
 243        color.b += x;
 244    }
 245
 246    // Input colors are assumed to be in sRGB space,
 247    // but blending and rendering needs to happen in linear space.
 248    // The output will be converted to sRGB by either the target
 249    // texture format or the swapchain color space.
 250    let linear = srgb_to_linear(color);
 251    return vec4<f32>(linear, a);
 252}
 253
 254/// Convert a linear sRGB to Oklab space.
 255/// Reference: https://bottosson.github.io/posts/oklab/#converting-from-linear-srgb-to-oklab
 256fn linear_srgb_to_oklab(color: vec4<f32>) -> vec4<f32> {
 257	let l = 0.4122214708 * color.r + 0.5363325363 * color.g + 0.0514459929 * color.b;
 258	let m = 0.2119034982 * color.r + 0.6806995451 * color.g + 0.1073969566 * color.b;
 259	let s = 0.0883024619 * color.r + 0.2817188376 * color.g + 0.6299787005 * color.b;
 260
 261	let l_ = pow(l, 1.0 / 3.0);
 262	let m_ = pow(m, 1.0 / 3.0);
 263	let s_ = pow(s, 1.0 / 3.0);
 264
 265	return vec4<f32>(
 266		0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_,
 267		1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_,
 268		0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_,
 269		color.a
 270	);
 271}
 272
 273/// Convert an Oklab color to linear sRGB space.
 274fn oklab_to_linear_srgb(color: vec4<f32>) -> vec4<f32> {
 275	let l_ = color.r + 0.3963377774 * color.g + 0.2158037573 * color.b;
 276	let m_ = color.r - 0.1055613458 * color.g - 0.0638541728 * color.b;
 277	let s_ = color.r - 0.0894841775 * color.g - 1.2914855480 * color.b;
 278
 279	let l = l_ * l_ * l_;
 280	let m = m_ * m_ * m_;
 281	let s = s_ * s_ * s_;
 282
 283	return vec4<f32>(
 284		4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s,
 285		-1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s,
 286		-0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s,
 287		color.a
 288	);
 289}
 290
 291fn over(below: vec4<f32>, above: vec4<f32>) -> vec4<f32> {
 292    let alpha = above.a + below.a * (1.0 - above.a);
 293    let color = (above.rgb * above.a + below.rgb * below.a * (1.0 - above.a)) / alpha;
 294    return vec4<f32>(color, alpha);
 295}
 296
 297// A standard gaussian function, used for weighting samples
 298fn gaussian(x: f32, sigma: f32) -> f32{
 299    return exp(-(x * x) / (2.0 * sigma * sigma)) / (sqrt(2.0 * M_PI_F) * sigma);
 300}
 301
 302// This approximates the error function, needed for the gaussian integral
 303fn erf(v: vec2<f32>) -> vec2<f32> {
 304    let s = sign(v);
 305    let a = abs(v);
 306    let r1 = 1.0 + (0.278393 + (0.230389 + (0.000972 + 0.078108 * a) * a) * a) * a;
 307    let r2 = r1 * r1;
 308    return s - s / (r2 * r2);
 309}
 310
 311fn blur_along_x(x: f32, y: f32, sigma: f32, corner: f32, half_size: vec2<f32>) -> f32 {
 312  let delta = min(half_size.y - corner - abs(y), 0.0);
 313  let curved = half_size.x - corner + sqrt(max(0.0, corner * corner - delta * delta));
 314  let integral = 0.5 + 0.5 * erf((x + vec2<f32>(-curved, curved)) * (sqrt(0.5) / sigma));
 315  return integral.y - integral.x;
 316}
 317
 318// Selects corner radius based on quadrant.
 319fn pick_corner_radius(center_to_point: vec2<f32>, radii: Corners) -> f32 {
 320    if (center_to_point.x < 0.0) {
 321        if (center_to_point.y < 0.0) {
 322            return radii.top_left;
 323        } else {
 324            return radii.bottom_left;
 325        }
 326    } else {
 327        if (center_to_point.y < 0.0) {
 328            return radii.top_right;
 329        } else {
 330            return radii.bottom_right;
 331        }
 332    }
 333}
 334
 335// Signed distance of the point to the quad's border - positive outside the
 336// border, and negative inside.
 337//
 338// See comments on similar code using `quad_sdf_impl` in `fs_quad` for
 339// explanation.
 340fn quad_sdf(point: vec2<f32>, bounds: Bounds, corner_radii: Corners) -> f32 {
 341    let half_size = bounds.size / 2.0;
 342    let center = bounds.origin + half_size;
 343    let center_to_point = point - center;
 344    let corner_radius = pick_corner_radius(center_to_point, corner_radii);
 345    let corner_to_point = abs(center_to_point) - half_size;
 346    let corner_center_to_point = corner_to_point + corner_radius;
 347    return quad_sdf_impl(corner_center_to_point, corner_radius);
 348}
 349
 350fn quad_sdf_impl(corner_center_to_point: vec2<f32>, corner_radius: f32) -> f32 {
 351    if (corner_radius == 0.0) {
 352        // Fast path for unrounded corners.
 353        return max(corner_center_to_point.x, corner_center_to_point.y);
 354    } else {
 355        // Signed distance of the point from a quad that is inset by corner_radius.
 356        // It is negative inside this quad, and positive outside.
 357        let signed_distance_to_inset_quad =
 358            // 0 inside the inset quad, and positive outside.
 359            length(max(vec2<f32>(0.0), corner_center_to_point)) +
 360            // 0 outside the inset quad, and negative inside.
 361            min(0.0, max(corner_center_to_point.x, corner_center_to_point.y));
 362
 363        return signed_distance_to_inset_quad - corner_radius;
 364    }
 365}
 366
 367// Abstract away the final color transformation based on the
 368// target alpha compositing mode.
 369fn blend_color(color: vec4<f32>, alpha_factor: f32) -> vec4<f32> {
 370    let alpha = color.a * alpha_factor;
 371    let multiplier = select(1.0, alpha, globals.premultiplied_alpha != 0u);
 372    return vec4<f32>(color.rgb * multiplier, alpha);
 373}
 374
 375
 376struct GradientColor {
 377    solid: vec4<f32>,
 378    color0: vec4<f32>,
 379    color1: vec4<f32>,
 380}
 381
 382fn prepare_gradient_color(tag: u32, color_space: u32,
 383    solid: Hsla, colors: array<LinearColorStop, 2>) -> GradientColor {
 384    var result = GradientColor();
 385
 386    if (tag == 0u || tag == 2u) {
 387        result.solid = hsla_to_rgba(solid);
 388    } else if (tag == 1u) {
 389        // The hsla_to_rgba is returns a linear sRGB color
 390        result.color0 = hsla_to_rgba(colors[0].color);
 391        result.color1 = hsla_to_rgba(colors[1].color);
 392
 393        // Prepare color space in vertex for avoid conversion
 394        // in fragment shader for performance reasons
 395        if (color_space == 0u) {
 396            // sRGB
 397            result.color0 = linear_to_srgba(result.color0);
 398            result.color1 = linear_to_srgba(result.color1);
 399        } else if (color_space == 1u) {
 400            // Oklab
 401            result.color0 = linear_srgb_to_oklab(result.color0);
 402            result.color1 = linear_srgb_to_oklab(result.color1);
 403        }
 404    }
 405
 406    return result;
 407}
 408
 409fn gradient_color(background: Background, position: vec2<f32>, bounds: Bounds,
 410    solid_color: vec4<f32>, color0: vec4<f32>, color1: vec4<f32>) -> vec4<f32> {
 411    var background_color = vec4<f32>(0.0);
 412
 413    switch (background.tag) {
 414        default: {
 415            return solid_color;
 416        }
 417        case 1u: {
 418            // Linear gradient background.
 419            // -90 degrees to match the CSS gradient angle.
 420            let angle = background.gradient_angle_or_pattern_height;
 421            let radians = (angle % 360.0 - 90.0) * M_PI_F / 180.0;
 422            var direction = vec2<f32>(cos(radians), sin(radians));
 423            let stop0_percentage = background.colors[0].percentage;
 424            let stop1_percentage = background.colors[1].percentage;
 425
 426            // Expand the short side to be the same as the long side
 427            if (bounds.size.x > bounds.size.y) {
 428                direction.y *= bounds.size.y / bounds.size.x;
 429            } else {
 430                direction.x *= bounds.size.x / bounds.size.y;
 431            }
 432
 433            // Get the t value for the linear gradient with the color stop percentages.
 434            let half_size = bounds.size / 2.0;
 435            let center = bounds.origin + half_size;
 436            let center_to_point = position - center;
 437            var t = dot(center_to_point, direction) / length(direction);
 438            // Check the direct to determine the use x or y
 439            if (abs(direction.x) > abs(direction.y)) {
 440                t = (t + half_size.x) / bounds.size.x;
 441            } else {
 442                t = (t + half_size.y) / bounds.size.y;
 443            }
 444
 445            // Adjust t based on the stop percentages
 446            t = (t - stop0_percentage) / (stop1_percentage - stop0_percentage);
 447            t = clamp(t, 0.0, 1.0);
 448
 449            switch (background.color_space) {
 450                default: {
 451                    background_color = srgba_to_linear(mix(color0, color1, t));
 452                }
 453                case 1u: {
 454                    let oklab_color = mix(color0, color1, t);
 455                    background_color = oklab_to_linear_srgb(oklab_color);
 456                }
 457            }
 458        }
 459        case 2u: {
 460            let gradient_angle_or_pattern_height = background.gradient_angle_or_pattern_height;
 461            let pattern_width = (gradient_angle_or_pattern_height / 65535.0f) / 255.0f;
 462            let pattern_interval = (gradient_angle_or_pattern_height % 65535.0f) / 255.0f;
 463            let pattern_height = pattern_width + pattern_interval;
 464            let stripe_angle = M_PI_F / 4.0;
 465            let pattern_period = pattern_height * sin(stripe_angle);
 466            let rotation = mat2x2<f32>(
 467                cos(stripe_angle), -sin(stripe_angle),
 468                sin(stripe_angle), cos(stripe_angle)
 469            );
 470            let relative_position = position - bounds.origin;
 471            let rotated_point = rotation * relative_position;
 472            let pattern = rotated_point.x % pattern_period;
 473            let distance = min(pattern, pattern_period - pattern) - pattern_period * (pattern_width / pattern_height) /  2.0f;
 474            background_color = solid_color;
 475            background_color.a *= saturate(0.5 - distance);
 476        }
 477    }
 478
 479    return background_color;
 480}
 481
 482// --- quads --- //
 483
 484struct Quad {
 485    order: u32,
 486    border_style: u32,
 487    bounds: Bounds,
 488    content_mask: Bounds,
 489    background: Background,
 490    border_color: Hsla,
 491    corner_radii: Corners,
 492    border_widths: Edges,
 493}
 494var<storage, read> b_quads: array<Quad>;
 495
 496struct QuadVarying {
 497    @builtin(position) position: vec4<f32>,
 498    @location(0) @interpolate(flat) border_color: vec4<f32>,
 499    @location(1) @interpolate(flat) quad_id: u32,
 500    // TODO: use `clip_distance` once Naga supports it
 501    @location(2) clip_distances: vec4<f32>,
 502    @location(3) @interpolate(flat) background_solid: vec4<f32>,
 503    @location(4) @interpolate(flat) background_color0: vec4<f32>,
 504    @location(5) @interpolate(flat) background_color1: vec4<f32>,
 505}
 506
 507@vertex
 508fn vs_quad(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> QuadVarying {
 509    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 510    let quad = b_quads[instance_id];
 511
 512    var out = QuadVarying();
 513    out.position = to_device_position(unit_vertex, quad.bounds);
 514
 515    let gradient = prepare_gradient_color(
 516        quad.background.tag,
 517        quad.background.color_space,
 518        quad.background.solid,
 519        quad.background.colors
 520    );
 521    out.background_solid = gradient.solid;
 522    out.background_color0 = gradient.color0;
 523    out.background_color1 = gradient.color1;
 524    out.border_color = hsla_to_rgba(quad.border_color);
 525    out.quad_id = instance_id;
 526    out.clip_distances = distance_from_clip_rect(unit_vertex, quad.bounds, quad.content_mask);
 527    return out;
 528}
 529
 530@fragment
 531fn fs_quad(input: QuadVarying) -> @location(0) vec4<f32> {
 532    // Alpha clip first, since we don't have `clip_distance`.
 533    if (any(input.clip_distances < vec4<f32>(0.0))) {
 534        return vec4<f32>(0.0);
 535    }
 536
 537    let quad = b_quads[input.quad_id];
 538
 539    let background_color = gradient_color(quad.background, input.position.xy, quad.bounds,
 540        input.background_solid, input.background_color0, input.background_color1);
 541
 542    let unrounded = quad.corner_radii.top_left == 0.0 &&
 543        quad.corner_radii.bottom_left == 0.0 &&
 544        quad.corner_radii.top_right == 0.0 &&
 545        quad.corner_radii.bottom_right == 0.0;
 546
 547    // Fast path when the quad is not rounded and doesn't have any border
 548    if (quad.border_widths.top == 0.0 &&
 549            quad.border_widths.left == 0.0 &&
 550            quad.border_widths.right == 0.0 &&
 551            quad.border_widths.bottom == 0.0 &&
 552            unrounded) {
 553        return blend_color(background_color, 1.0);
 554    }
 555
 556    let size = quad.bounds.size;
 557    let half_size = size / 2.0;
 558    let point = input.position.xy - quad.bounds.origin;
 559    let center_to_point = point - half_size;
 560
 561    // Signed distance field threshold for inclusion of pixels. 0.5 is the
 562    // minimum distance between the center of the pixel and the edge.
 563    let antialias_threshold = 0.5;
 564
 565    // Radius of the nearest corner
 566    let corner_radius = pick_corner_radius(center_to_point, quad.corner_radii);
 567
 568    // Width of the nearest borders
 569    let border = vec2<f32>(
 570        select(
 571            quad.border_widths.right,
 572            quad.border_widths.left,
 573            center_to_point.x < 0.0),
 574        select(
 575            quad.border_widths.bottom,
 576            quad.border_widths.top,
 577            center_to_point.y < 0.0));
 578
 579    // 0-width borders are reduced so that `inner_sdf >= antialias_threshold`.
 580    // The purpose of this is to not draw antialiasing pixels in this case.
 581    let reduced_border =
 582        vec2<f32>(select(border.x, -antialias_threshold, border.x == 0.0),
 583                  select(border.y, -antialias_threshold, border.y == 0.0));
 584
 585    // Vector from the corner of the quad bounds to the point, after mirroring
 586    // the point into the bottom right quadrant. Both components are <= 0.
 587    let corner_to_point = abs(center_to_point) - half_size;
 588
 589    // Vector from the point to the center of the rounded corner's circle, also
 590    // mirrored into bottom right quadrant.
 591    let corner_center_to_point = corner_to_point + corner_radius;
 592
 593    // Whether the nearest point on the border is rounded
 594    let is_near_rounded_corner =
 595            corner_center_to_point.x >= 0 &&
 596            corner_center_to_point.y >= 0;
 597
 598    // Vector from straight border inner corner to point.
 599    let straight_border_inner_corner_to_point = corner_to_point + reduced_border;
 600
 601    // Whether the point is beyond the inner edge of the straight border.
 602    let is_beyond_inner_straight_border =
 603            straight_border_inner_corner_to_point.x > 0 ||
 604            straight_border_inner_corner_to_point.y > 0;
 605
 606    // Whether the point is far enough inside the quad, such that the pixels are
 607    // not affected by the straight border.
 608    let is_within_inner_straight_border =
 609        straight_border_inner_corner_to_point.x < -antialias_threshold &&
 610        straight_border_inner_corner_to_point.y < -antialias_threshold;
 611
 612    // Fast path for points that must be part of the background.
 613    //
 614    // This could be optimized further for large rounded corners by including
 615    // points in an inscribed rectangle, or some other quick linear check.
 616    // However, that might negatively impact performance in the case of
 617    // reasonable sizes for rounded corners.
 618    if (is_within_inner_straight_border && !is_near_rounded_corner) {
 619        return blend_color(background_color, 1.0);
 620    }
 621
 622    // Signed distance of the point to the outside edge of the quad's border. It
 623    // is positive outside this edge, and negative inside.
 624    let outer_sdf = quad_sdf_impl(corner_center_to_point, corner_radius);
 625
 626    // Approximate signed distance of the point to the inside edge of the quad's
 627    // border. It is negative outside this edge (within the border), and
 628    // positive inside.
 629    //
 630    // This is not always an accurate signed distance:
 631    // * The rounded portions with varying border width use an approximation of
 632    //   nearest-point-on-ellipse.
 633    // * When it is quickly known to be outside the edge, -1.0 is used.
 634    var inner_sdf = 0.0;
 635    if (corner_center_to_point.x <= 0 || corner_center_to_point.y <= 0) {
 636        // Fast paths for straight borders.
 637        inner_sdf = -max(straight_border_inner_corner_to_point.x,
 638                         straight_border_inner_corner_to_point.y);
 639    } else if (is_beyond_inner_straight_border) {
 640        // Fast path for points that must be outside the inner edge.
 641        inner_sdf = -1.0;
 642    } else if (reduced_border.x == reduced_border.y) {
 643        // Fast path for circular inner edge.
 644        inner_sdf = -(outer_sdf + reduced_border.x);
 645    } else {
 646        let ellipse_radii = max(vec2<f32>(0.0), corner_radius - reduced_border);
 647        inner_sdf = quarter_ellipse_sdf(corner_center_to_point, ellipse_radii);
 648    }
 649
 650    // Negative when inside the border
 651    let border_sdf = max(inner_sdf, outer_sdf);
 652
 653    var color = background_color;
 654    if (border_sdf < antialias_threshold) {
 655        var border_color = input.border_color;
 656
 657        // Dashed border logic when border_style == 1
 658        if (quad.border_style == 1) {
 659            // Position along the perimeter in "dash space", where each dash
 660            // period has length 1
 661            var t = 0.0;
 662
 663            // Total number of dash periods, so that the dash spacing can be
 664            // adjusted to evenly divide it
 665            var max_t = 0.0;
 666
 667            // Border width is proportional to dash size. This is the behavior
 668            // used by browsers, but also avoids dashes from different segments
 669            // overlapping when dash size is smaller than the border width.
 670            //
 671            // Dash pattern: (2 * border width) dash, (1 * border width) gap
 672            let dash_length_per_width = 2.0;
 673            let dash_gap_per_width = 1.0;
 674            let dash_period_per_width = dash_length_per_width + dash_gap_per_width;
 675
 676            // Since the dash size is determined by border width, the density of
 677            // dashes varies. Multiplying a pixel distance by this returns a
 678            // position in dash space - it has units (dash period / pixels). So
 679            // a dash velocity of (1 / 10) is 1 dash every 10 pixels.
 680            var dash_velocity = 0.0;
 681
 682            // Dividing this by the border width gives the dash velocity
 683            let dv_numerator = 1.0 / dash_period_per_width;
 684
 685            if (unrounded) {
 686                // When corners aren't rounded, the dashes are separately laid
 687                // out on each straight line, rather than around the whole
 688                // perimeter. This way each line starts and ends with a dash.
 689                let is_horizontal =
 690                        corner_center_to_point.x <
 691                        corner_center_to_point.y;
 692                let border_width = select(border.y, border.x, is_horizontal);
 693                dash_velocity = dv_numerator / border_width;
 694                t = select(point.y, point.x, is_horizontal) * dash_velocity;
 695                max_t = select(size.y, size.x, is_horizontal) * dash_velocity;
 696            } else {
 697                // When corners are rounded, the dashes are laid out clockwise
 698                // around the whole perimeter.
 699
 700                let r_tr = quad.corner_radii.top_right;
 701                let r_br = quad.corner_radii.bottom_right;
 702                let r_bl = quad.corner_radii.bottom_left;
 703                let r_tl = quad.corner_radii.top_left;
 704
 705                let w_t = quad.border_widths.top;
 706                let w_r = quad.border_widths.right;
 707                let w_b = quad.border_widths.bottom;
 708                let w_l = quad.border_widths.left;
 709
 710                // Straight side dash velocities
 711                let dv_t = select(dv_numerator / w_t, 0.0, w_t <= 0.0);
 712                let dv_r = select(dv_numerator / w_r, 0.0, w_r <= 0.0);
 713                let dv_b = select(dv_numerator / w_b, 0.0, w_b <= 0.0);
 714                let dv_l = select(dv_numerator / w_l, 0.0, w_l <= 0.0);
 715
 716                // Straight side lengths in dash space
 717                let s_t = (size.x - r_tl - r_tr) * dv_t;
 718                let s_r = (size.y - r_tr - r_br) * dv_r;
 719                let s_b = (size.x - r_br - r_bl) * dv_b;
 720                let s_l = (size.y - r_bl - r_tl) * dv_l;
 721
 722                let corner_dash_velocity_tr = corner_dash_velocity(dv_t, dv_r);
 723                let corner_dash_velocity_br = corner_dash_velocity(dv_b, dv_r);
 724                let corner_dash_velocity_bl = corner_dash_velocity(dv_b, dv_l);
 725                let corner_dash_velocity_tl = corner_dash_velocity(dv_t, dv_l);
 726
 727                // Corner lengths in dash space
 728                let c_tr = r_tr * (M_PI_F / 2.0) * corner_dash_velocity_tr;
 729                let c_br = r_br * (M_PI_F / 2.0) * corner_dash_velocity_br;
 730                let c_bl = r_bl * (M_PI_F / 2.0) * corner_dash_velocity_bl;
 731                let c_tl = r_tl * (M_PI_F / 2.0) * corner_dash_velocity_tl;
 732
 733                // Cumulative dash space upto each segment
 734                let upto_tr = s_t;
 735                let upto_r = upto_tr + c_tr;
 736                let upto_br = upto_r + s_r;
 737                let upto_b = upto_br + c_br;
 738                let upto_bl = upto_b + s_b;
 739                let upto_l = upto_bl + c_bl;
 740                let upto_tl = upto_l + s_l;
 741                max_t = upto_tl + c_tl;
 742
 743                if (is_near_rounded_corner) {
 744                    let radians = atan2(corner_center_to_point.y,
 745                                        corner_center_to_point.x);
 746                    let corner_t = radians * corner_radius;
 747
 748                    if (center_to_point.x >= 0.0) {
 749                        if (center_to_point.y < 0.0) {
 750                            dash_velocity = corner_dash_velocity_tr;
 751                            // Subtracted because radians is pi/2 to 0 when
 752                            // going clockwise around the top right corner,
 753                            // since the y axis has been flipped
 754                            t = upto_r - corner_t * dash_velocity;
 755                        } else {
 756                            dash_velocity = corner_dash_velocity_br;
 757                            // Added because radians is 0 to pi/2 when going
 758                            // clockwise around the bottom-right corner
 759                            t = upto_br + corner_t * dash_velocity;
 760                        }
 761                    } else {
 762                        if (center_to_point.y >= 0.0) {
 763                            dash_velocity = corner_dash_velocity_bl;
 764                            // Subtracted because radians is pi/2 to 0 when
 765                            // going clockwise around the bottom-left corner,
 766                            // since the x axis has been flipped
 767                            t = upto_l - corner_t * dash_velocity;
 768                        } else {
 769                            dash_velocity = corner_dash_velocity_tl;
 770                            // Added because radians is 0 to pi/2 when going
 771                            // clockwise around the top-left corner, since both
 772                            // axis were flipped
 773                            t = upto_tl + corner_t * dash_velocity;
 774                        }
 775                    }
 776                } else {
 777                    // Straight borders
 778                    let is_horizontal =
 779                            corner_center_to_point.x <
 780                            corner_center_to_point.y;
 781                    if (is_horizontal) {
 782                        if (center_to_point.y < 0.0) {
 783                            dash_velocity = dv_t;
 784                            t = (point.x - r_tl) * dash_velocity;
 785                        } else {
 786                            dash_velocity = dv_b;
 787                            t = upto_bl - (point.x - r_bl) * dash_velocity;
 788                        }
 789                    } else {
 790                        if (center_to_point.x < 0.0) {
 791                            dash_velocity = dv_l;
 792                            t = upto_tl - (point.y - r_tl) * dash_velocity;
 793                        } else {
 794                            dash_velocity = dv_r;
 795                            t = upto_r + (point.y - r_tr) * dash_velocity;
 796                        }
 797                    }
 798                }
 799            }
 800
 801            let dash_length = dash_length_per_width / dash_period_per_width;
 802            let desired_dash_gap = dash_gap_per_width / dash_period_per_width;
 803
 804            // Straight borders should start and end with a dash, so max_t is
 805            // reduced to cause this.
 806            max_t -= select(0.0, dash_length, unrounded);
 807            if (max_t >= 1.0) {
 808                // Adjust dash gap to evenly divide max_t.
 809                let dash_count = floor(max_t);
 810                let dash_period = max_t / dash_count;
 811                border_color.a *= dash_alpha(
 812                    t,
 813                    dash_period,
 814                    dash_length,
 815                    dash_velocity,
 816                    antialias_threshold);
 817            } else if (unrounded) {
 818                // When there isn't enough space for the full gap between the
 819                // two start / end dashes of a straight border, reduce gap to
 820                // make them fit.
 821                let dash_gap = max_t - dash_length;
 822                if (dash_gap > 0.0) {
 823                    let dash_period = dash_length + dash_gap;
 824                    border_color.a *= dash_alpha(
 825                        t,
 826                        dash_period,
 827                        dash_length,
 828                        dash_velocity,
 829                        antialias_threshold);
 830                }
 831            }
 832        }
 833
 834        // Blend the border on top of the background and then linearly interpolate
 835        // between the two as we slide inside the background.
 836        let blended_border = over(background_color, border_color);
 837        color = mix(background_color, blended_border,
 838                    saturate(antialias_threshold - inner_sdf));
 839    }
 840
 841    return blend_color(color, saturate(antialias_threshold - outer_sdf));
 842}
 843
 844// Returns the dash velocity of a corner given the dash velocity of the two
 845// sides, by returning the slower velocity (larger dashes).
 846//
 847// Since 0 is used for dash velocity when the border width is 0 (instead of
 848// +inf), this returns the other dash velocity in that case.
 849//
 850// An alternative to this might be to appropriately interpolate the dash
 851// velocity around the corner, but that seems overcomplicated.
 852fn corner_dash_velocity(dv1: f32, dv2: f32) -> f32 {
 853    if (dv1 == 0.0) {
 854        return dv2;
 855    } else if (dv2 == 0.0) {
 856        return dv1;
 857    } else {
 858        return min(dv1, dv2);
 859    }
 860}
 861
 862// Returns alpha used to render antialiased dashes.
 863// `t` is within the dash when `fmod(t, period) < length`.
 864fn dash_alpha(t: f32, period: f32, length: f32, dash_velocity: f32, antialias_threshold: f32) -> f32 {
 865    let half_period = period / 2;
 866    let half_length = length / 2;
 867    // Value in [-half_period, half_period].
 868    // The dash is in [-half_length, half_length].
 869    let centered = fmod(t + half_period - half_length, period) - half_period;
 870    // Signed distance for the dash, negative values are inside the dash.
 871    let signed_distance = abs(centered) - half_length;
 872    // Antialiased alpha based on the signed distance.
 873    return saturate(antialias_threshold - signed_distance / dash_velocity);
 874}
 875
 876// This approximates distance to the nearest point to a quarter ellipse in a way
 877// that is sufficient for anti-aliasing when the ellipse is not very eccentric.
 878// The components of `point` are expected to be positive.
 879//
 880// Negative on the outside and positive on the inside.
 881fn quarter_ellipse_sdf(point: vec2<f32>, radii: vec2<f32>) -> f32 {
 882    // Scale the space to treat the ellipse like a unit circle.
 883    let circle_vec = point / radii;
 884    let unit_circle_sdf = length(circle_vec) - 1.0;
 885    // Approximate up-scaling of the length by using the average of the radii.
 886    //
 887    // TODO: A better solution would be to use the gradient of the implicit
 888    // function for an ellipse to approximate a scaling factor.
 889    return unit_circle_sdf * (radii.x + radii.y) * -0.5;
 890}
 891
 892// Modulus that has the same sign as `a`.
 893fn fmod(a: f32, b: f32) -> f32 {
 894    return a - b * trunc(a / b);
 895}
 896
 897// --- shadows --- //
 898
 899struct Shadow {
 900    order: u32,
 901    blur_radius: f32,
 902    bounds: Bounds,
 903    corner_radii: Corners,
 904    content_mask: Bounds,
 905    color: Hsla,
 906}
 907var<storage, read> b_shadows: array<Shadow>;
 908
 909struct ShadowVarying {
 910    @builtin(position) position: vec4<f32>,
 911    @location(0) @interpolate(flat) color: vec4<f32>,
 912    @location(1) @interpolate(flat) shadow_id: u32,
 913    //TODO: use `clip_distance` once Naga supports it
 914    @location(3) clip_distances: vec4<f32>,
 915}
 916
 917@vertex
 918fn vs_shadow(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> ShadowVarying {
 919    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
 920    var shadow = b_shadows[instance_id];
 921
 922    let margin = 3.0 * shadow.blur_radius;
 923    // Set the bounds of the shadow and adjust its size based on the shadow's
 924    // spread radius to achieve the spreading effect
 925    shadow.bounds.origin -= vec2<f32>(margin);
 926    shadow.bounds.size += 2.0 * vec2<f32>(margin);
 927
 928    var out = ShadowVarying();
 929    out.position = to_device_position(unit_vertex, shadow.bounds);
 930    out.color = hsla_to_rgba(shadow.color);
 931    out.shadow_id = instance_id;
 932    out.clip_distances = distance_from_clip_rect(unit_vertex, shadow.bounds, shadow.content_mask);
 933    return out;
 934}
 935
 936@fragment
 937fn fs_shadow(input: ShadowVarying) -> @location(0) vec4<f32> {
 938    // Alpha clip first, since we don't have `clip_distance`.
 939    if (any(input.clip_distances < vec4<f32>(0.0))) {
 940        return vec4<f32>(0.0);
 941    }
 942
 943    let shadow = b_shadows[input.shadow_id];
 944    let half_size = shadow.bounds.size / 2.0;
 945    let center = shadow.bounds.origin + half_size;
 946    let center_to_point = input.position.xy - center;
 947
 948    let corner_radius = pick_corner_radius(center_to_point, shadow.corner_radii);
 949
 950    // The signal is only non-zero in a limited range, so don't waste samples
 951    let low = center_to_point.y - half_size.y;
 952    let high = center_to_point.y + half_size.y;
 953    let start = clamp(-3.0 * shadow.blur_radius, low, high);
 954    let end = clamp(3.0 * shadow.blur_radius, low, high);
 955
 956    // Accumulate samples (we can get away with surprisingly few samples)
 957    let step = (end - start) / 4.0;
 958    var y = start + step * 0.5;
 959    var alpha = 0.0;
 960    for (var i = 0; i < 4; i += 1) {
 961        let blur = blur_along_x(center_to_point.x, center_to_point.y - y,
 962            shadow.blur_radius, corner_radius, half_size);
 963        alpha +=  blur * gaussian(y, shadow.blur_radius) * step;
 964        y += step;
 965    }
 966
 967    return blend_color(input.color, alpha);
 968}
 969
 970// --- path rasterization --- //
 971
 972struct PathRasterizationVertex {
 973    xy_position: vec2<f32>,
 974    st_position: vec2<f32>,
 975    color: Background,
 976    bounds: Bounds,
 977}
 978
 979var<storage, read> b_path_vertices: array<PathRasterizationVertex>;
 980
 981struct PathRasterizationVarying {
 982    @builtin(position) position: vec4<f32>,
 983    @location(0) st_position: vec2<f32>,
 984    @location(1) vertex_id: u32,
 985    //TODO: use `clip_distance` once Naga supports it
 986    @location(3) clip_distances: vec4<f32>,
 987}
 988
 989@vertex
 990fn vs_path_rasterization(@builtin(vertex_index) vertex_id: u32) -> PathRasterizationVarying {
 991    let v = b_path_vertices[vertex_id];
 992
 993    var out = PathRasterizationVarying();
 994    out.position = to_device_position_impl(v.xy_position);
 995    out.st_position = v.st_position;
 996    out.vertex_id = vertex_id;
 997    out.clip_distances = distance_from_clip_rect_impl(v.xy_position, v.bounds);
 998    return out;
 999}
1000
1001@fragment
1002fn fs_path_rasterization(input: PathRasterizationVarying) -> @location(0) vec4<f32> {
1003    let dx = dpdx(input.st_position);
1004    let dy = dpdy(input.st_position);
1005    if (any(input.clip_distances < vec4<f32>(0.0))) {
1006        return vec4<f32>(0.0);
1007    }
1008
1009    let v = b_path_vertices[input.vertex_id];
1010    let background = v.color;
1011    let bounds = v.bounds;
1012
1013    var alpha: f32;
1014    if (length(vec2<f32>(dx.x, dy.x)) < 0.001) {
1015        // If the gradient is too small, return a solid color.
1016        alpha = 1.0;
1017    } else {
1018        let gradient = 2.0 * input.st_position.xx * vec2<f32>(dx.x, dy.x) - vec2<f32>(dx.y, dy.y);
1019        let f = input.st_position.x * input.st_position.x - input.st_position.y;
1020        let distance = f / length(gradient);
1021        alpha = saturate(0.5 - distance);
1022    }
1023    let gradient_color = prepare_gradient_color(
1024        background.tag,
1025        background.color_space,
1026        background.solid,
1027        background.colors,
1028    );
1029    let color = gradient_color(background, input.position.xy, bounds,
1030        gradient_color.solid, gradient_color.color0, gradient_color.color1);
1031    return vec4<f32>(color.rgb * color.a * alpha, color.a * alpha);
1032}
1033
1034// --- paths --- //
1035
1036struct PathSprite {
1037    bounds: Bounds,
1038}
1039var<storage, read> b_path_sprites: array<PathSprite>;
1040
1041struct PathVarying {
1042    @builtin(position) position: vec4<f32>,
1043    @location(0) texture_coords: vec2<f32>,
1044}
1045
1046@vertex
1047fn vs_path(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PathVarying {
1048    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1049    let sprite = b_path_sprites[instance_id];
1050    // Don't apply content mask because it was already accounted for when rasterizing the path.
1051    let device_position = to_device_position(unit_vertex, sprite.bounds);
1052    // For screen-space intermediate texture, convert screen position to texture coordinates
1053    let screen_position = sprite.bounds.origin + unit_vertex * sprite.bounds.size;
1054    let texture_coords = screen_position / globals.viewport_size;
1055
1056    var out = PathVarying();
1057    out.position = device_position;
1058    out.texture_coords = texture_coords;
1059
1060    return out;
1061}
1062
1063@fragment
1064fn fs_path(input: PathVarying) -> @location(0) vec4<f32> {
1065    let sample = textureSample(t_sprite, s_sprite, input.texture_coords);
1066    return sample;
1067}
1068
1069// --- underlines --- //
1070
1071struct Underline {
1072    order: u32,
1073    pad: u32,
1074    bounds: Bounds,
1075    content_mask: Bounds,
1076    color: Hsla,
1077    thickness: f32,
1078    wavy: u32,
1079}
1080var<storage, read> b_underlines: array<Underline>;
1081
1082struct UnderlineVarying {
1083    @builtin(position) position: vec4<f32>,
1084    @location(0) @interpolate(flat) color: vec4<f32>,
1085    @location(1) @interpolate(flat) underline_id: u32,
1086    //TODO: use `clip_distance` once Naga supports it
1087    @location(3) clip_distances: vec4<f32>,
1088}
1089
1090@vertex
1091fn vs_underline(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> UnderlineVarying {
1092    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1093    let underline = b_underlines[instance_id];
1094
1095    var out = UnderlineVarying();
1096    out.position = to_device_position(unit_vertex, underline.bounds);
1097    out.color = hsla_to_rgba(underline.color);
1098    out.underline_id = instance_id;
1099    out.clip_distances = distance_from_clip_rect(unit_vertex, underline.bounds, underline.content_mask);
1100    return out;
1101}
1102
1103@fragment
1104fn fs_underline(input: UnderlineVarying) -> @location(0) vec4<f32> {
1105    const WAVE_FREQUENCY: f32 = 2.0;
1106    const WAVE_HEIGHT_RATIO: f32 = 0.8;
1107
1108    // Alpha clip first, since we don't have `clip_distance`.
1109    if (any(input.clip_distances < vec4<f32>(0.0))) {
1110        return vec4<f32>(0.0);
1111    }
1112
1113    let underline = b_underlines[input.underline_id];
1114    if ((underline.wavy & 0xFFu) == 0u)
1115    {
1116        return blend_color(input.color, input.color.a);
1117    }
1118
1119    let half_thickness = underline.thickness * 0.5;
1120
1121    let st = (input.position.xy - underline.bounds.origin) / underline.bounds.size.y - vec2<f32>(0.0, 0.5);
1122    let frequency = M_PI_F * WAVE_FREQUENCY * underline.thickness / underline.bounds.size.y;
1123    let amplitude = (underline.thickness * WAVE_HEIGHT_RATIO) / underline.bounds.size.y;
1124
1125    let sine = sin(st.x * frequency) * amplitude;
1126    let dSine = cos(st.x * frequency) * amplitude * frequency;
1127    let distance = (st.y - sine) / sqrt(1.0 + dSine * dSine);
1128    let distance_in_pixels = distance * underline.bounds.size.y;
1129    let distance_from_top_border = distance_in_pixels - half_thickness;
1130    let distance_from_bottom_border = distance_in_pixels + half_thickness;
1131    let alpha = saturate(0.5 - max(-distance_from_bottom_border, distance_from_top_border));
1132    return blend_color(input.color, alpha * input.color.a);
1133}
1134
1135// --- monochrome sprites --- //
1136
1137struct MonochromeSprite {
1138    order: u32,
1139    pad: u32,
1140    bounds: Bounds,
1141    content_mask: Bounds,
1142    color: Hsla,
1143    tile: AtlasTile,
1144    transformation: TransformationMatrix,
1145}
1146var<storage, read> b_mono_sprites: array<MonochromeSprite>;
1147
1148struct MonoSpriteVarying {
1149    @builtin(position) position: vec4<f32>,
1150    @location(0) tile_position: vec2<f32>,
1151    @location(1) @interpolate(flat) color: vec4<f32>,
1152    @location(3) clip_distances: vec4<f32>,
1153}
1154
1155@vertex
1156fn vs_mono_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> MonoSpriteVarying {
1157    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1158    let sprite = b_mono_sprites[instance_id];
1159
1160    var out = MonoSpriteVarying();
1161    out.position = to_device_position_transformed(unit_vertex, sprite.bounds, sprite.transformation);
1162
1163    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1164    out.color = hsla_to_rgba(sprite.color);
1165    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1166    return out;
1167}
1168
1169@fragment
1170fn fs_mono_sprite(input: MonoSpriteVarying) -> @location(0) vec4<f32> {
1171    let sample = textureSample(t_sprite, s_sprite, input.tile_position).r;
1172    // converting to linear space to do color operations as cosmic_text outputs texture data in srgb format
1173    // cannot make the gpu automatically do the conversion as there's no R8UnormSrgb format
1174    let sample_linear = srgb_to_linear_component(sample);
1175    let alpha_corrected = apply_contrast_and_gamma_correction(sample_linear, input.color.rgb, grayscale_enhanced_contrast, gamma_ratios);
1176
1177    // Alpha clip after using the derivatives.
1178    if (any(input.clip_distances < vec4<f32>(0.0))) {
1179        return vec4<f32>(0.0);
1180    }
1181
1182    // convert to srgb space as the rest of the code (output swapchain) expects that
1183    return blend_color(input.color, linear_to_srgb_component(alpha_corrected));
1184}
1185
1186// --- polychrome sprites --- //
1187
1188struct PolychromeSprite {
1189    order: u32,
1190    pad: u32,
1191    grayscale: u32,
1192    opacity: f32,
1193    bounds: Bounds,
1194    content_mask: Bounds,
1195    corner_radii: Corners,
1196    tile: AtlasTile,
1197}
1198var<storage, read> b_poly_sprites: array<PolychromeSprite>;
1199
1200struct PolySpriteVarying {
1201    @builtin(position) position: vec4<f32>,
1202    @location(0) tile_position: vec2<f32>,
1203    @location(1) @interpolate(flat) sprite_id: u32,
1204    @location(3) clip_distances: vec4<f32>,
1205}
1206
1207@vertex
1208fn vs_poly_sprite(@builtin(vertex_index) vertex_id: u32, @builtin(instance_index) instance_id: u32) -> PolySpriteVarying {
1209    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1210    let sprite = b_poly_sprites[instance_id];
1211
1212    var out = PolySpriteVarying();
1213    out.position = to_device_position(unit_vertex, sprite.bounds);
1214    out.tile_position = to_tile_position(unit_vertex, sprite.tile);
1215    out.sprite_id = instance_id;
1216    out.clip_distances = distance_from_clip_rect(unit_vertex, sprite.bounds, sprite.content_mask);
1217    return out;
1218}
1219
1220@fragment
1221fn fs_poly_sprite(input: PolySpriteVarying) -> @location(0) vec4<f32> {
1222    let sample = textureSample(t_sprite, s_sprite, input.tile_position);
1223    // Alpha clip after using the derivatives.
1224    if (any(input.clip_distances < vec4<f32>(0.0))) {
1225        return vec4<f32>(0.0);
1226    }
1227
1228    let sprite = b_poly_sprites[input.sprite_id];
1229    let distance = quad_sdf(input.position.xy, sprite.bounds, sprite.corner_radii);
1230
1231    var color = sample;
1232    if ((sprite.grayscale & 0xFFu) != 0u) {
1233        let grayscale = dot(color.rgb, GRAYSCALE_FACTORS);
1234        color = vec4<f32>(vec3<f32>(grayscale), sample.a);
1235    }
1236    return blend_color(color, linear_to_srgb_component(sprite.opacity * saturate(0.5 - distance)));
1237}
1238
1239// --- surfaces --- //
1240
1241struct SurfaceParams {
1242    bounds: Bounds,
1243    content_mask: Bounds,
1244}
1245
1246var<uniform> surface_locals: SurfaceParams;
1247var t_y: texture_2d<f32>;
1248var t_cb_cr: texture_2d<f32>;
1249var s_surface: sampler;
1250
1251const ycbcr_to_RGB = mat4x4<f32>(
1252    vec4<f32>( 1.0000f,  1.0000f,  1.0000f, 0.0),
1253    vec4<f32>( 0.0000f, -0.3441f,  1.7720f, 0.0),
1254    vec4<f32>( 1.4020f, -0.7141f,  0.0000f, 0.0),
1255    vec4<f32>(-0.7010f,  0.5291f, -0.8860f, 1.0),
1256);
1257
1258struct SurfaceVarying {
1259    @builtin(position) position: vec4<f32>,
1260    @location(0) texture_position: vec2<f32>,
1261    @location(3) clip_distances: vec4<f32>,
1262}
1263
1264@vertex
1265fn vs_surface(@builtin(vertex_index) vertex_id: u32) -> SurfaceVarying {
1266    let unit_vertex = vec2<f32>(f32(vertex_id & 1u), 0.5 * f32(vertex_id & 2u));
1267
1268    var out = SurfaceVarying();
1269    out.position = to_device_position(unit_vertex, surface_locals.bounds);
1270    out.texture_position = unit_vertex;
1271    out.clip_distances = distance_from_clip_rect(unit_vertex, surface_locals.bounds, surface_locals.content_mask);
1272    return out;
1273}
1274
1275@fragment
1276fn fs_surface(input: SurfaceVarying) -> @location(0) vec4<f32> {
1277    // Alpha clip after using the derivatives.
1278    if (any(input.clip_distances < vec4<f32>(0.0))) {
1279        return vec4<f32>(0.0);
1280    }
1281
1282    let y_cb_cr = vec4<f32>(
1283        textureSampleLevel(t_y, s_surface, input.texture_position, 0.0).r,
1284        textureSampleLevel(t_cb_cr, s_surface, input.texture_position, 0.0).rg,
1285        1.0);
1286
1287    return ycbcr_to_RGB * y_cb_cr;
1288}