lmstudio.rs

  1use anyhow::{Result, anyhow};
  2use collections::HashMap;
  3use futures::Stream;
  4use futures::{FutureExt, StreamExt, future::BoxFuture, stream::BoxStream};
  5use gpui::{AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
  6use http_client::HttpClient;
  7use language_model::{
  8    AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
  9    LanguageModelToolChoice, LanguageModelToolResultContent, LanguageModelToolUse, MessageContent,
 10    StopReason, TokenUsage,
 11};
 12use language_model::{
 13    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
 14    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 15    LanguageModelRequest, RateLimiter, Role,
 16};
 17use lmstudio::{ModelType, get_models};
 18pub use settings::LmStudioAvailableModel as AvailableModel;
 19use settings::{Settings, SettingsStore};
 20use std::pin::Pin;
 21use std::str::FromStr;
 22use std::{collections::BTreeMap, sync::Arc};
 23use ui::{ButtonLike, Indicator, List, prelude::*};
 24use util::ResultExt;
 25
 26use crate::AllLanguageModelSettings;
 27use crate::ui::InstructionListItem;
 28
 29const LMSTUDIO_DOWNLOAD_URL: &str = "https://lmstudio.ai/download";
 30const LMSTUDIO_CATALOG_URL: &str = "https://lmstudio.ai/models";
 31const LMSTUDIO_SITE: &str = "https://lmstudio.ai/";
 32
 33const PROVIDER_ID: LanguageModelProviderId = LanguageModelProviderId::new("lmstudio");
 34const PROVIDER_NAME: LanguageModelProviderName = LanguageModelProviderName::new("LM Studio");
 35
 36#[derive(Default, Debug, Clone, PartialEq)]
 37pub struct LmStudioSettings {
 38    pub api_url: String,
 39    pub available_models: Vec<AvailableModel>,
 40}
 41
 42pub struct LmStudioLanguageModelProvider {
 43    http_client: Arc<dyn HttpClient>,
 44    state: Entity<State>,
 45}
 46
 47pub struct State {
 48    http_client: Arc<dyn HttpClient>,
 49    available_models: Vec<lmstudio::Model>,
 50    fetch_model_task: Option<Task<Result<()>>>,
 51    _subscription: Subscription,
 52}
 53
 54impl State {
 55    fn is_authenticated(&self) -> bool {
 56        !self.available_models.is_empty()
 57    }
 58
 59    fn fetch_models(&mut self, cx: &mut Context<Self>) -> Task<Result<()>> {
 60        let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
 61        let http_client = self.http_client.clone();
 62        let api_url = settings.api_url.clone();
 63
 64        // As a proxy for the server being "authenticated", we'll check if its up by fetching the models
 65        cx.spawn(async move |this, cx| {
 66            let models = get_models(http_client.as_ref(), &api_url, None).await?;
 67
 68            let mut models: Vec<lmstudio::Model> = models
 69                .into_iter()
 70                .filter(|model| model.r#type != ModelType::Embeddings)
 71                .map(|model| {
 72                    lmstudio::Model::new(
 73                        &model.id,
 74                        None,
 75                        model
 76                            .loaded_context_length
 77                            .or_else(|| model.max_context_length),
 78                        model.capabilities.supports_tool_calls(),
 79                        model.capabilities.supports_images() || model.r#type == ModelType::Vlm,
 80                    )
 81                })
 82                .collect();
 83
 84            models.sort_by(|a, b| a.name.cmp(&b.name));
 85
 86            this.update(cx, |this, cx| {
 87                this.available_models = models;
 88                cx.notify();
 89            })
 90        })
 91    }
 92
 93    fn restart_fetch_models_task(&mut self, cx: &mut Context<Self>) {
 94        let task = self.fetch_models(cx);
 95        self.fetch_model_task.replace(task);
 96    }
 97
 98    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
 99        if self.is_authenticated() {
100            return Task::ready(Ok(()));
101        }
102
103        let fetch_models_task = self.fetch_models(cx);
104        cx.spawn(async move |_this, _cx| {
105            match fetch_models_task.await {
106                Ok(()) => Ok(()),
107                Err(err) => {
108                    // If any cause in the error chain is an std::io::Error with
109                    // ErrorKind::ConnectionRefused, treat this as "credentials not found"
110                    // (i.e. LM Studio not running).
111                    let mut connection_refused = false;
112                    for cause in err.chain() {
113                        if let Some(io_err) = cause.downcast_ref::<std::io::Error>() {
114                            if io_err.kind() == std::io::ErrorKind::ConnectionRefused {
115                                connection_refused = true;
116                                break;
117                            }
118                        }
119                    }
120                    if connection_refused {
121                        Err(AuthenticateError::ConnectionRefused)
122                    } else {
123                        Err(AuthenticateError::Other(err))
124                    }
125                }
126            }
127        })
128    }
129}
130
131impl LmStudioLanguageModelProvider {
132    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
133        let this = Self {
134            http_client: http_client.clone(),
135            state: cx.new(|cx| {
136                let subscription = cx.observe_global::<SettingsStore>({
137                    let mut settings = AllLanguageModelSettings::get_global(cx).lmstudio.clone();
138                    move |this: &mut State, cx| {
139                        let new_settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
140                        if &settings != new_settings {
141                            settings = new_settings.clone();
142                            this.restart_fetch_models_task(cx);
143                            cx.notify();
144                        }
145                    }
146                });
147
148                State {
149                    http_client,
150                    available_models: Default::default(),
151                    fetch_model_task: None,
152                    _subscription: subscription,
153                }
154            }),
155        };
156        this.state
157            .update(cx, |state, cx| state.restart_fetch_models_task(cx));
158        this
159    }
160}
161
162impl LanguageModelProviderState for LmStudioLanguageModelProvider {
163    type ObservableEntity = State;
164
165    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
166        Some(self.state.clone())
167    }
168}
169
170impl LanguageModelProvider for LmStudioLanguageModelProvider {
171    fn id(&self) -> LanguageModelProviderId {
172        PROVIDER_ID
173    }
174
175    fn name(&self) -> LanguageModelProviderName {
176        PROVIDER_NAME
177    }
178
179    fn icon(&self) -> IconName {
180        IconName::AiLmStudio
181    }
182
183    fn default_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
184        // We shouldn't try to select default model, because it might lead to a load call for an unloaded model.
185        // In a constrained environment where user might not have enough resources it'll be a bad UX to select something
186        // to load by default.
187        None
188    }
189
190    fn default_fast_model(&self, _: &App) -> Option<Arc<dyn LanguageModel>> {
191        // See explanation for default_model.
192        None
193    }
194
195    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
196        let mut models: BTreeMap<String, lmstudio::Model> = BTreeMap::default();
197
198        // Add models from the LM Studio API
199        for model in self.state.read(cx).available_models.iter() {
200            models.insert(model.name.clone(), model.clone());
201        }
202
203        // Override with available models from settings
204        for model in AllLanguageModelSettings::get_global(cx)
205            .lmstudio
206            .available_models
207            .iter()
208        {
209            models.insert(
210                model.name.clone(),
211                lmstudio::Model {
212                    name: model.name.clone(),
213                    display_name: model.display_name.clone(),
214                    max_tokens: model.max_tokens,
215                    supports_tool_calls: model.supports_tool_calls,
216                    supports_images: model.supports_images,
217                },
218            );
219        }
220
221        models
222            .into_values()
223            .map(|model| {
224                Arc::new(LmStudioLanguageModel {
225                    id: LanguageModelId::from(model.name.clone()),
226                    model,
227                    http_client: self.http_client.clone(),
228                    request_limiter: RateLimiter::new(4),
229                }) as Arc<dyn LanguageModel>
230            })
231            .collect()
232    }
233
234    fn is_authenticated(&self, cx: &App) -> bool {
235        self.state.read(cx).is_authenticated()
236    }
237
238    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
239        self.state.update(cx, |state, cx| state.authenticate(cx))
240    }
241
242    fn configuration_view(
243        &self,
244        _target_agent: language_model::ConfigurationViewTargetAgent,
245        _window: &mut Window,
246        cx: &mut App,
247    ) -> AnyView {
248        let state = self.state.clone();
249        cx.new(|cx| ConfigurationView::new(state, cx)).into()
250    }
251
252    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
253        self.state.update(cx, |state, cx| state.fetch_models(cx))
254    }
255}
256
257pub struct LmStudioLanguageModel {
258    id: LanguageModelId,
259    model: lmstudio::Model,
260    http_client: Arc<dyn HttpClient>,
261    request_limiter: RateLimiter,
262}
263
264impl LmStudioLanguageModel {
265    fn to_lmstudio_request(
266        &self,
267        request: LanguageModelRequest,
268    ) -> lmstudio::ChatCompletionRequest {
269        let mut messages = Vec::new();
270
271        for message in request.messages {
272            for content in message.content {
273                match content {
274                    MessageContent::Text(text) => add_message_content_part(
275                        lmstudio::MessagePart::Text { text },
276                        message.role,
277                        &mut messages,
278                    ),
279                    MessageContent::Thinking { .. } => {}
280                    MessageContent::RedactedThinking(_) => {}
281                    MessageContent::Image(image) => {
282                        add_message_content_part(
283                            lmstudio::MessagePart::Image {
284                                image_url: lmstudio::ImageUrl {
285                                    url: image.to_base64_url(),
286                                    detail: None,
287                                },
288                            },
289                            message.role,
290                            &mut messages,
291                        );
292                    }
293                    MessageContent::ToolUse(tool_use) => {
294                        let tool_call = lmstudio::ToolCall {
295                            id: tool_use.id.to_string(),
296                            content: lmstudio::ToolCallContent::Function {
297                                function: lmstudio::FunctionContent {
298                                    name: tool_use.name.to_string(),
299                                    arguments: serde_json::to_string(&tool_use.input)
300                                        .unwrap_or_default(),
301                                },
302                            },
303                        };
304
305                        if let Some(lmstudio::ChatMessage::Assistant { tool_calls, .. }) =
306                            messages.last_mut()
307                        {
308                            tool_calls.push(tool_call);
309                        } else {
310                            messages.push(lmstudio::ChatMessage::Assistant {
311                                content: None,
312                                tool_calls: vec![tool_call],
313                            });
314                        }
315                    }
316                    MessageContent::ToolResult(tool_result) => {
317                        let content = match &tool_result.content {
318                            LanguageModelToolResultContent::Text(text) => {
319                                vec![lmstudio::MessagePart::Text {
320                                    text: text.to_string(),
321                                }]
322                            }
323                            LanguageModelToolResultContent::Image(image) => {
324                                vec![lmstudio::MessagePart::Image {
325                                    image_url: lmstudio::ImageUrl {
326                                        url: image.to_base64_url(),
327                                        detail: None,
328                                    },
329                                }]
330                            }
331                        };
332
333                        messages.push(lmstudio::ChatMessage::Tool {
334                            content: content.into(),
335                            tool_call_id: tool_result.tool_use_id.to_string(),
336                        });
337                    }
338                }
339            }
340        }
341
342        lmstudio::ChatCompletionRequest {
343            model: self.model.name.clone(),
344            messages,
345            stream: true,
346            max_tokens: Some(-1),
347            stop: Some(request.stop),
348            // In LM Studio you can configure specific settings you'd like to use for your model.
349            // For example Qwen3 is recommended to be used with 0.7 temperature.
350            // It would be a bad UX to silently override these settings from Zed, so we pass no temperature as a default.
351            temperature: request.temperature.or(None),
352            tools: request
353                .tools
354                .into_iter()
355                .map(|tool| lmstudio::ToolDefinition::Function {
356                    function: lmstudio::FunctionDefinition {
357                        name: tool.name,
358                        description: Some(tool.description),
359                        parameters: Some(tool.input_schema),
360                    },
361                })
362                .collect(),
363            tool_choice: request.tool_choice.map(|choice| match choice {
364                LanguageModelToolChoice::Auto => lmstudio::ToolChoice::Auto,
365                LanguageModelToolChoice::Any => lmstudio::ToolChoice::Required,
366                LanguageModelToolChoice::None => lmstudio::ToolChoice::None,
367            }),
368        }
369    }
370
371    fn stream_completion(
372        &self,
373        request: lmstudio::ChatCompletionRequest,
374        cx: &AsyncApp,
375    ) -> BoxFuture<
376        'static,
377        Result<futures::stream::BoxStream<'static, Result<lmstudio::ResponseStreamEvent>>>,
378    > {
379        let http_client = self.http_client.clone();
380        let Ok(api_url) = cx.update(|cx| {
381            let settings = &AllLanguageModelSettings::get_global(cx).lmstudio;
382            settings.api_url.clone()
383        }) else {
384            return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
385        };
386
387        let future = self.request_limiter.stream(async move {
388            let request = lmstudio::stream_chat_completion(http_client.as_ref(), &api_url, request);
389            let response = request.await?;
390            Ok(response)
391        });
392
393        async move { Ok(future.await?.boxed()) }.boxed()
394    }
395}
396
397impl LanguageModel for LmStudioLanguageModel {
398    fn id(&self) -> LanguageModelId {
399        self.id.clone()
400    }
401
402    fn name(&self) -> LanguageModelName {
403        LanguageModelName::from(self.model.display_name().to_string())
404    }
405
406    fn provider_id(&self) -> LanguageModelProviderId {
407        PROVIDER_ID
408    }
409
410    fn provider_name(&self) -> LanguageModelProviderName {
411        PROVIDER_NAME
412    }
413
414    fn supports_tools(&self) -> bool {
415        self.model.supports_tool_calls()
416    }
417
418    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
419        self.supports_tools()
420            && match choice {
421                LanguageModelToolChoice::Auto => true,
422                LanguageModelToolChoice::Any => true,
423                LanguageModelToolChoice::None => true,
424            }
425    }
426
427    fn supports_images(&self) -> bool {
428        self.model.supports_images
429    }
430
431    fn telemetry_id(&self) -> String {
432        format!("lmstudio/{}", self.model.id())
433    }
434
435    fn max_token_count(&self) -> u64 {
436        self.model.max_token_count()
437    }
438
439    fn count_tokens(
440        &self,
441        request: LanguageModelRequest,
442        _cx: &App,
443    ) -> BoxFuture<'static, Result<u64>> {
444        // Endpoint for this is coming soon. In the meantime, hacky estimation
445        let token_count = request
446            .messages
447            .iter()
448            .map(|msg| msg.string_contents().split_whitespace().count())
449            .sum::<usize>();
450
451        let estimated_tokens = (token_count as f64 * 0.75) as u64;
452        async move { Ok(estimated_tokens) }.boxed()
453    }
454
455    fn stream_completion(
456        &self,
457        request: LanguageModelRequest,
458        cx: &AsyncApp,
459    ) -> BoxFuture<
460        'static,
461        Result<
462            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
463            LanguageModelCompletionError,
464        >,
465    > {
466        let request = self.to_lmstudio_request(request);
467        let completions = self.stream_completion(request, cx);
468        async move {
469            let mapper = LmStudioEventMapper::new();
470            Ok(mapper.map_stream(completions.await?).boxed())
471        }
472        .boxed()
473    }
474}
475
476struct LmStudioEventMapper {
477    tool_calls_by_index: HashMap<usize, RawToolCall>,
478}
479
480impl LmStudioEventMapper {
481    fn new() -> Self {
482        Self {
483            tool_calls_by_index: HashMap::default(),
484        }
485    }
486
487    pub fn map_stream(
488        mut self,
489        events: Pin<Box<dyn Send + Stream<Item = Result<lmstudio::ResponseStreamEvent>>>>,
490    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
491    {
492        events.flat_map(move |event| {
493            futures::stream::iter(match event {
494                Ok(event) => self.map_event(event),
495                Err(error) => vec![Err(LanguageModelCompletionError::from(error))],
496            })
497        })
498    }
499
500    pub fn map_event(
501        &mut self,
502        event: lmstudio::ResponseStreamEvent,
503    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
504        let Some(choice) = event.choices.into_iter().next() else {
505            return vec![Err(LanguageModelCompletionError::from(anyhow!(
506                "Response contained no choices"
507            )))];
508        };
509
510        let mut events = Vec::new();
511        if let Some(content) = choice.delta.content {
512            events.push(Ok(LanguageModelCompletionEvent::Text(content)));
513        }
514
515        if let Some(reasoning_content) = choice.delta.reasoning_content {
516            events.push(Ok(LanguageModelCompletionEvent::Thinking {
517                text: reasoning_content,
518                signature: None,
519            }));
520        }
521
522        if let Some(tool_calls) = choice.delta.tool_calls {
523            for tool_call in tool_calls {
524                let entry = self.tool_calls_by_index.entry(tool_call.index).or_default();
525
526                if let Some(tool_id) = tool_call.id {
527                    entry.id = tool_id;
528                }
529
530                if let Some(function) = tool_call.function {
531                    if let Some(name) = function.name {
532                        // At the time of writing this code LM Studio (0.3.15) is incompatible with the OpenAI API:
533                        // 1. It sends function name in the first chunk
534                        // 2. It sends empty string in the function name field in all subsequent chunks for arguments
535                        // According to https://platform.openai.com/docs/guides/function-calling?api-mode=responses#streaming
536                        // function name field should be sent only inside the first chunk.
537                        if !name.is_empty() {
538                            entry.name = name;
539                        }
540                    }
541
542                    if let Some(arguments) = function.arguments {
543                        entry.arguments.push_str(&arguments);
544                    }
545                }
546            }
547        }
548
549        if let Some(usage) = event.usage {
550            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(TokenUsage {
551                input_tokens: usage.prompt_tokens,
552                output_tokens: usage.completion_tokens,
553                cache_creation_input_tokens: 0,
554                cache_read_input_tokens: 0,
555            })));
556        }
557
558        match choice.finish_reason.as_deref() {
559            Some("stop") => {
560                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
561            }
562            Some("tool_calls") => {
563                events.extend(self.tool_calls_by_index.drain().map(|(_, tool_call)| {
564                    match serde_json::Value::from_str(&tool_call.arguments) {
565                        Ok(input) => Ok(LanguageModelCompletionEvent::ToolUse(
566                            LanguageModelToolUse {
567                                id: tool_call.id.into(),
568                                name: tool_call.name.into(),
569                                is_input_complete: true,
570                                input,
571                                raw_input: tool_call.arguments,
572                            },
573                        )),
574                        Err(error) => Ok(LanguageModelCompletionEvent::ToolUseJsonParseError {
575                            id: tool_call.id.into(),
576                            tool_name: tool_call.name.into(),
577                            raw_input: tool_call.arguments.into(),
578                            json_parse_error: error.to_string(),
579                        }),
580                    }
581                }));
582
583                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
584            }
585            Some(stop_reason) => {
586                log::error!("Unexpected LMStudio stop_reason: {stop_reason:?}",);
587                events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::EndTurn)));
588            }
589            None => {}
590        }
591
592        events
593    }
594}
595
596#[derive(Default)]
597struct RawToolCall {
598    id: String,
599    name: String,
600    arguments: String,
601}
602
603fn add_message_content_part(
604    new_part: lmstudio::MessagePart,
605    role: Role,
606    messages: &mut Vec<lmstudio::ChatMessage>,
607) {
608    match (role, messages.last_mut()) {
609        (Role::User, Some(lmstudio::ChatMessage::User { content }))
610        | (
611            Role::Assistant,
612            Some(lmstudio::ChatMessage::Assistant {
613                content: Some(content),
614                ..
615            }),
616        )
617        | (Role::System, Some(lmstudio::ChatMessage::System { content })) => {
618            content.push_part(new_part);
619        }
620        _ => {
621            messages.push(match role {
622                Role::User => lmstudio::ChatMessage::User {
623                    content: lmstudio::MessageContent::from(vec![new_part]),
624                },
625                Role::Assistant => lmstudio::ChatMessage::Assistant {
626                    content: Some(lmstudio::MessageContent::from(vec![new_part])),
627                    tool_calls: Vec::new(),
628                },
629                Role::System => lmstudio::ChatMessage::System {
630                    content: lmstudio::MessageContent::from(vec![new_part]),
631                },
632            });
633        }
634    }
635}
636
637struct ConfigurationView {
638    state: Entity<State>,
639    loading_models_task: Option<Task<()>>,
640}
641
642impl ConfigurationView {
643    pub fn new(state: Entity<State>, cx: &mut Context<Self>) -> Self {
644        let loading_models_task = Some(cx.spawn({
645            let state = state.clone();
646            async move |this, cx| {
647                if let Some(task) = state
648                    .update(cx, |state, cx| state.authenticate(cx))
649                    .log_err()
650                {
651                    task.await.log_err();
652                }
653                this.update(cx, |this, cx| {
654                    this.loading_models_task = None;
655                    cx.notify();
656                })
657                .log_err();
658            }
659        }));
660
661        Self {
662            state,
663            loading_models_task,
664        }
665    }
666
667    fn retry_connection(&self, cx: &mut App) {
668        self.state
669            .update(cx, |state, cx| state.fetch_models(cx))
670            .detach_and_log_err(cx);
671    }
672}
673
674impl Render for ConfigurationView {
675    fn render(&mut self, _window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
676        let is_authenticated = self.state.read(cx).is_authenticated();
677
678        let lmstudio_intro = "Run local LLMs like Llama, Phi, and Qwen.";
679
680        if self.loading_models_task.is_some() {
681            div().child(Label::new("Loading models...")).into_any()
682        } else {
683            v_flex()
684                .gap_2()
685                .child(
686                    v_flex().gap_1().child(Label::new(lmstudio_intro)).child(
687                        List::new()
688                            .child(InstructionListItem::text_only(
689                                "LM Studio needs to be running with at least one model downloaded.",
690                            ))
691                            .child(InstructionListItem::text_only(
692                                "To get your first model, try running `lms get qwen2.5-coder-7b`",
693                            )),
694                    ),
695                )
696                .child(
697                    h_flex()
698                        .w_full()
699                        .justify_between()
700                        .gap_2()
701                        .child(
702                            h_flex()
703                                .w_full()
704                                .gap_2()
705                                .map(|this| {
706                                    if is_authenticated {
707                                        this.child(
708                                            Button::new("lmstudio-site", "LM Studio")
709                                                .style(ButtonStyle::Subtle)
710                                                .icon(IconName::ArrowUpRight)
711                                                .icon_size(IconSize::Small)
712                                                .icon_color(Color::Muted)
713                                                .on_click(move |_, _window, cx| {
714                                                    cx.open_url(LMSTUDIO_SITE)
715                                                })
716                                                .into_any_element(),
717                                        )
718                                    } else {
719                                        this.child(
720                                            Button::new(
721                                                "download_lmstudio_button",
722                                                "Download LM Studio",
723                                            )
724                                            .style(ButtonStyle::Subtle)
725                                            .icon(IconName::ArrowUpRight)
726                                            .icon_size(IconSize::Small)
727                                            .icon_color(Color::Muted)
728                                            .on_click(move |_, _window, cx| {
729                                                cx.open_url(LMSTUDIO_DOWNLOAD_URL)
730                                            })
731                                            .into_any_element(),
732                                        )
733                                    }
734                                })
735                                .child(
736                                    Button::new("view-models", "Model Catalog")
737                                        .style(ButtonStyle::Subtle)
738                                        .icon(IconName::ArrowUpRight)
739                                        .icon_size(IconSize::Small)
740                                        .icon_color(Color::Muted)
741                                        .on_click(move |_, _window, cx| {
742                                            cx.open_url(LMSTUDIO_CATALOG_URL)
743                                        }),
744                                ),
745                        )
746                        .map(|this| {
747                            if is_authenticated {
748                                this.child(
749                                    ButtonLike::new("connected")
750                                        .disabled(true)
751                                        .cursor_style(gpui::CursorStyle::Arrow)
752                                        .child(
753                                            h_flex()
754                                                .gap_2()
755                                                .child(Indicator::dot().color(Color::Success))
756                                                .child(Label::new("Connected"))
757                                                .into_any_element(),
758                                        ),
759                                )
760                            } else {
761                                this.child(
762                                    Button::new("retry_lmstudio_models", "Connect")
763                                        .icon_position(IconPosition::Start)
764                                        .icon_size(IconSize::XSmall)
765                                        .icon(IconName::PlayFilled)
766                                        .on_click(cx.listener(move |this, _, _window, cx| {
767                                            this.retry_connection(cx)
768                                        })),
769                                )
770                            }
771                        }),
772                )
773                .into_any()
774        }
775    }
776}