1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
13 PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
14 Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
15 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
16 Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
17 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
18 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
19 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
20 transparent_black,
21};
22use anyhow::{Context as _, Result, anyhow};
23use collections::{FxHashMap, FxHashSet};
24#[cfg(target_os = "macos")]
25use core_video::pixel_buffer::CVPixelBuffer;
26use derive_more::{Deref, DerefMut};
27use futures::FutureExt;
28use futures::channel::oneshot;
29use itertools::FoldWhile::{Continue, Done};
30use itertools::Itertools;
31use parking_lot::RwLock;
32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
33use refineable::Refineable;
34use slotmap::SlotMap;
35use smallvec::SmallVec;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
63
64/// A 6:5 aspect ratio minimum window size to be used for functional,
65/// additional-to-main-Zed windows, like the settings and rules library windows.
66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
67 width: Pixels(900.),
68 height: Pixels(750.),
69};
70
71/// Represents the two different phases when dispatching events.
72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
73pub enum DispatchPhase {
74 /// After the capture phase comes the bubble phase, in which mouse event listeners are
75 /// invoked front to back and keyboard event listeners are invoked from the focused element
76 /// to the root of the element tree. This is the phase you'll most commonly want to use when
77 /// registering event listeners.
78 #[default]
79 Bubble,
80 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
81 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
82 /// is used for special purposes such as clearing the "pressed" state for click events. If
83 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
84 /// outside of the immediate region may rely on detecting non-local events during this phase.
85 Capture,
86}
87
88impl DispatchPhase {
89 /// Returns true if this represents the "bubble" phase.
90 #[inline]
91 pub fn bubble(self) -> bool {
92 self == DispatchPhase::Bubble
93 }
94
95 /// Returns true if this represents the "capture" phase.
96 #[inline]
97 pub fn capture(self) -> bool {
98 self == DispatchPhase::Capture
99 }
100}
101
102struct WindowInvalidatorInner {
103 pub dirty: bool,
104 pub draw_phase: DrawPhase,
105 pub dirty_views: FxHashSet<EntityId>,
106}
107
108#[derive(Clone)]
109pub(crate) struct WindowInvalidator {
110 inner: Rc<RefCell<WindowInvalidatorInner>>,
111}
112
113impl WindowInvalidator {
114 pub fn new() -> Self {
115 WindowInvalidator {
116 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
117 dirty: true,
118 draw_phase: DrawPhase::None,
119 dirty_views: FxHashSet::default(),
120 })),
121 }
122 }
123
124 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
125 let mut inner = self.inner.borrow_mut();
126 inner.dirty_views.insert(entity);
127 if inner.draw_phase == DrawPhase::None {
128 inner.dirty = true;
129 cx.push_effect(Effect::Notify { emitter: entity });
130 true
131 } else {
132 false
133 }
134 }
135
136 pub fn is_dirty(&self) -> bool {
137 self.inner.borrow().dirty
138 }
139
140 pub fn set_dirty(&self, dirty: bool) {
141 self.inner.borrow_mut().dirty = dirty
142 }
143
144 pub fn set_phase(&self, phase: DrawPhase) {
145 self.inner.borrow_mut().draw_phase = phase
146 }
147
148 pub fn take_views(&self) -> FxHashSet<EntityId> {
149 mem::take(&mut self.inner.borrow_mut().dirty_views)
150 }
151
152 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
153 self.inner.borrow_mut().dirty_views = views;
154 }
155
156 pub fn not_drawing(&self) -> bool {
157 self.inner.borrow().draw_phase == DrawPhase::None
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
164 "this method can only be called during paint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_prepaint(&self) {
170 debug_assert!(
171 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
172 "this method can only be called during request_layout, or prepaint"
173 );
174 }
175
176 #[track_caller]
177 pub fn debug_assert_paint_or_prepaint(&self) {
178 debug_assert!(
179 matches!(
180 self.inner.borrow().draw_phase,
181 DrawPhase::Paint | DrawPhase::Prepaint
182 ),
183 "this method can only be called during request_layout, prepaint, or paint"
184 );
185 }
186}
187
188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
189
190pub(crate) type AnyWindowFocusListener =
191 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
192
193pub(crate) struct WindowFocusEvent {
194 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
195 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
196}
197
198impl WindowFocusEvent {
199 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
200 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
201 }
202
203 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
204 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
205 }
206}
207
208/// This is provided when subscribing for `Context::on_focus_out` events.
209pub struct FocusOutEvent {
210 /// A weak focus handle representing what was blurred.
211 pub blurred: WeakFocusHandle,
212}
213
214slotmap::new_key_type! {
215 /// A globally unique identifier for a focusable element.
216 pub struct FocusId;
217}
218
219thread_local! {
220 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
221}
222
223/// Returned when the element arena has been used and so must be cleared before the next draw.
224#[must_use]
225pub struct ArenaClearNeeded;
226
227impl ArenaClearNeeded {
228 /// Clear the element arena.
229 pub fn clear(self) {
230 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
231 element_arena.clear();
232 });
233 }
234}
235
236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
237pub(crate) struct FocusRef {
238 pub(crate) ref_count: AtomicUsize,
239 pub(crate) tab_index: isize,
240 pub(crate) tab_stop: bool,
241}
242
243impl FocusId {
244 /// Obtains whether the element associated with this handle is currently focused.
245 pub fn is_focused(&self, window: &Window) -> bool {
246 window.focus == Some(*self)
247 }
248
249 /// Obtains whether the element associated with this handle contains the focused
250 /// element or is itself focused.
251 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
252 window
253 .focused(cx)
254 .is_some_and(|focused| self.contains(focused.id, window))
255 }
256
257 /// Obtains whether the element associated with this handle is contained within the
258 /// focused element or is itself focused.
259 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
260 let focused = window.focused(cx);
261 focused.is_some_and(|focused| focused.id.contains(*self, window))
262 }
263
264 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
265 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
266 window
267 .rendered_frame
268 .dispatch_tree
269 .focus_contains(*self, other)
270 }
271}
272
273/// A handle which can be used to track and manipulate the focused element in a window.
274pub struct FocusHandle {
275 pub(crate) id: FocusId,
276 handles: Arc<FocusMap>,
277 /// The index of this element in the tab order.
278 pub tab_index: isize,
279 /// Whether this element can be focused by tab navigation.
280 pub tab_stop: bool,
281}
282
283impl std::fmt::Debug for FocusHandle {
284 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
285 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
286 }
287}
288
289impl FocusHandle {
290 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
291 let id = handles.write().insert(FocusRef {
292 ref_count: AtomicUsize::new(1),
293 tab_index: 0,
294 tab_stop: false,
295 });
296
297 Self {
298 id,
299 tab_index: 0,
300 tab_stop: false,
301 handles: handles.clone(),
302 }
303 }
304
305 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
306 let lock = handles.read();
307 let focus = lock.get(id)?;
308 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
309 return None;
310 }
311 Some(Self {
312 id,
313 tab_index: focus.tab_index,
314 tab_stop: focus.tab_stop,
315 handles: handles.clone(),
316 })
317 }
318
319 /// Sets the tab index of the element associated with this handle.
320 pub fn tab_index(mut self, index: isize) -> Self {
321 self.tab_index = index;
322 if let Some(focus) = self.handles.write().get_mut(self.id) {
323 focus.tab_index = index;
324 }
325 self
326 }
327
328 /// Sets whether the element associated with this handle is a tab stop.
329 ///
330 /// When `false`, the element will not be included in the tab order.
331 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
332 self.tab_stop = tab_stop;
333 if let Some(focus) = self.handles.write().get_mut(self.id) {
334 focus.tab_stop = tab_stop;
335 }
336 self
337 }
338
339 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
340 pub fn downgrade(&self) -> WeakFocusHandle {
341 WeakFocusHandle {
342 id: self.id,
343 handles: Arc::downgrade(&self.handles),
344 }
345 }
346
347 /// Moves the focus to the element associated with this handle.
348 pub fn focus(&self, window: &mut Window, cx: &mut App) {
349 window.focus(self, cx)
350 }
351
352 /// Obtains whether the element associated with this handle is currently focused.
353 pub fn is_focused(&self, window: &Window) -> bool {
354 self.id.is_focused(window)
355 }
356
357 /// Obtains whether the element associated with this handle contains the focused
358 /// element or is itself focused.
359 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
360 self.id.contains_focused(window, cx)
361 }
362
363 /// Obtains whether the element associated with this handle is contained within the
364 /// focused element or is itself focused.
365 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
366 self.id.within_focused(window, cx)
367 }
368
369 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
370 pub fn contains(&self, other: &Self, window: &Window) -> bool {
371 self.id.contains(other.id, window)
372 }
373
374 /// Dispatch an action on the element that rendered this focus handle
375 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
376 if let Some(node_id) = window
377 .rendered_frame
378 .dispatch_tree
379 .focusable_node_id(self.id)
380 {
381 window.dispatch_action_on_node(node_id, action, cx)
382 }
383 }
384}
385
386impl Clone for FocusHandle {
387 fn clone(&self) -> Self {
388 Self::for_id(self.id, &self.handles).unwrap()
389 }
390}
391
392impl PartialEq for FocusHandle {
393 fn eq(&self, other: &Self) -> bool {
394 self.id == other.id
395 }
396}
397
398impl Eq for FocusHandle {}
399
400impl Drop for FocusHandle {
401 fn drop(&mut self) {
402 self.handles
403 .read()
404 .get(self.id)
405 .unwrap()
406 .ref_count
407 .fetch_sub(1, SeqCst);
408 }
409}
410
411/// A weak reference to a focus handle.
412#[derive(Clone, Debug)]
413pub struct WeakFocusHandle {
414 pub(crate) id: FocusId,
415 pub(crate) handles: Weak<FocusMap>,
416}
417
418impl WeakFocusHandle {
419 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
420 pub fn upgrade(&self) -> Option<FocusHandle> {
421 let handles = self.handles.upgrade()?;
422 FocusHandle::for_id(self.id, &handles)
423 }
424}
425
426impl PartialEq for WeakFocusHandle {
427 fn eq(&self, other: &WeakFocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl Eq for WeakFocusHandle {}
433
434impl PartialEq<FocusHandle> for WeakFocusHandle {
435 fn eq(&self, other: &FocusHandle) -> bool {
436 self.id == other.id
437 }
438}
439
440impl PartialEq<WeakFocusHandle> for FocusHandle {
441 fn eq(&self, other: &WeakFocusHandle) -> bool {
442 self.id == other.id
443 }
444}
445
446/// Focusable allows users of your view to easily
447/// focus it (using window.focus_view(cx, view))
448pub trait Focusable: 'static {
449 /// Returns the focus handle associated with this view.
450 fn focus_handle(&self, cx: &App) -> FocusHandle;
451}
452
453impl<V: Focusable> Focusable for Entity<V> {
454 fn focus_handle(&self, cx: &App) -> FocusHandle {
455 self.read(cx).focus_handle(cx)
456 }
457}
458
459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
460/// where the lifecycle of the view is handled by another view.
461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
462
463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
464
465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
466pub struct DismissEvent;
467
468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
469
470pub(crate) type AnyMouseListener =
471 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
472
473#[derive(Clone)]
474pub(crate) struct CursorStyleRequest {
475 pub(crate) hitbox_id: Option<HitboxId>,
476 pub(crate) style: CursorStyle,
477}
478
479#[derive(Default, Eq, PartialEq)]
480pub(crate) struct HitTest {
481 pub(crate) ids: SmallVec<[HitboxId; 8]>,
482 pub(crate) hover_hitbox_count: usize,
483}
484
485/// A type of window control area that corresponds to the platform window.
486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
487pub enum WindowControlArea {
488 /// An area that allows dragging of the platform window.
489 Drag,
490 /// An area that allows closing of the platform window.
491 Close,
492 /// An area that allows maximizing of the platform window.
493 Max,
494 /// An area that allows minimizing of the platform window.
495 Min,
496}
497
498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
500pub struct HitboxId(u64);
501
502impl HitboxId {
503 /// Checks if the hitbox with this ID is currently hovered. Except when handling
504 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
505 /// events or paint hover styles.
506 ///
507 /// See [`Hitbox::is_hovered`] for details.
508 pub fn is_hovered(self, window: &Window) -> bool {
509 let hit_test = &window.mouse_hit_test;
510 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
511 if self == *id {
512 return true;
513 }
514 }
515 false
516 }
517
518 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
519 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
520 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
521 /// this distinction.
522 pub fn should_handle_scroll(self, window: &Window) -> bool {
523 window.mouse_hit_test.ids.contains(&self)
524 }
525
526 fn next(mut self) -> HitboxId {
527 HitboxId(self.0.wrapping_add(1))
528 }
529}
530
531/// A rectangular region that potentially blocks hitboxes inserted prior.
532/// See [Window::insert_hitbox] for more details.
533#[derive(Clone, Debug, Deref)]
534pub struct Hitbox {
535 /// A unique identifier for the hitbox.
536 pub id: HitboxId,
537 /// The bounds of the hitbox.
538 #[deref]
539 pub bounds: Bounds<Pixels>,
540 /// The content mask when the hitbox was inserted.
541 pub content_mask: ContentMask<Pixels>,
542 /// Flags that specify hitbox behavior.
543 pub behavior: HitboxBehavior,
544}
545
546impl Hitbox {
547 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
548 /// typically what you want when determining whether to handle mouse events or paint hover
549 /// styles.
550 ///
551 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
552 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
553 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
554 ///
555 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
556 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
557 /// non-interactive while still allowing scrolling. More abstractly, this is because
558 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
559 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
560 /// container.
561 pub fn is_hovered(&self, window: &Window) -> bool {
562 self.id.is_hovered(window)
563 }
564
565 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
566 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
567 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
568 ///
569 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
570 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
571 pub fn should_handle_scroll(&self, window: &Window) -> bool {
572 self.id.should_handle_scroll(window)
573 }
574}
575
576/// How the hitbox affects mouse behavior.
577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
578pub enum HitboxBehavior {
579 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
580 #[default]
581 Normal,
582
583 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
584 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
585 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
586 /// [`InteractiveElement::occlude`].
587 ///
588 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
589 /// bubble-phase handler for every mouse event type:
590 ///
591 /// ```ignore
592 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
593 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
594 /// cx.stop_propagation();
595 /// }
596 /// })
597 /// ```
598 ///
599 /// This has effects beyond event handling - any use of hitbox checking, such as hover
600 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
601 /// alternative might be to not affect mouse event handling - but this would allow
602 /// inconsistent UI where clicks and moves interact with elements that are not considered to
603 /// be hovered.
604 BlockMouse,
605
606 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
607 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
608 /// interaction except scroll events to be ignored - see the documentation of
609 /// [`Hitbox::is_hovered`] for details. This flag is set by
610 /// [`InteractiveElement::block_mouse_except_scroll`].
611 ///
612 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
613 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
614 ///
615 /// ```ignore
616 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
617 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
618 /// cx.stop_propagation();
619 /// }
620 /// })
621 /// ```
622 ///
623 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
624 /// handled differently than other mouse events. If also blocking these scroll events is
625 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
626 ///
627 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
628 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
629 /// An alternative might be to not affect mouse event handling - but this would allow
630 /// inconsistent UI where clicks and moves interact with elements that are not considered to
631 /// be hovered.
632 BlockMouseExceptScroll,
633}
634
635/// An identifier for a tooltip.
636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
637pub struct TooltipId(usize);
638
639impl TooltipId {
640 /// Checks if the tooltip is currently hovered.
641 pub fn is_hovered(&self, window: &Window) -> bool {
642 window
643 .tooltip_bounds
644 .as_ref()
645 .is_some_and(|tooltip_bounds| {
646 tooltip_bounds.id == *self
647 && tooltip_bounds.bounds.contains(&window.mouse_position())
648 })
649 }
650}
651
652pub(crate) struct TooltipBounds {
653 id: TooltipId,
654 bounds: Bounds<Pixels>,
655}
656
657#[derive(Clone)]
658pub(crate) struct TooltipRequest {
659 id: TooltipId,
660 tooltip: AnyTooltip,
661}
662
663pub(crate) struct DeferredDraw {
664 current_view: EntityId,
665 priority: usize,
666 parent_node: DispatchNodeId,
667 element_id_stack: SmallVec<[ElementId; 32]>,
668 text_style_stack: Vec<TextStyleRefinement>,
669 element: Option<AnyElement>,
670 absolute_offset: Point<Pixels>,
671 prepaint_range: Range<PrepaintStateIndex>,
672 paint_range: Range<PaintIndex>,
673}
674
675pub(crate) struct Frame {
676 pub(crate) focus: Option<FocusId>,
677 pub(crate) window_active: bool,
678 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
679 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
680 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
681 pub(crate) dispatch_tree: DispatchTree,
682 pub(crate) scene: Scene,
683 pub(crate) hitboxes: Vec<Hitbox>,
684 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
685 pub(crate) deferred_draws: Vec<DeferredDraw>,
686 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
687 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
688 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
689 #[cfg(any(test, feature = "test-support"))]
690 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
691 #[cfg(any(feature = "inspector", debug_assertions))]
692 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
693 #[cfg(any(feature = "inspector", debug_assertions))]
694 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
695 pub(crate) tab_stops: TabStopMap,
696}
697
698#[derive(Clone, Default)]
699pub(crate) struct PrepaintStateIndex {
700 hitboxes_index: usize,
701 tooltips_index: usize,
702 deferred_draws_index: usize,
703 dispatch_tree_index: usize,
704 accessed_element_states_index: usize,
705 line_layout_index: LineLayoutIndex,
706}
707
708#[derive(Clone, Default)]
709pub(crate) struct PaintIndex {
710 scene_index: usize,
711 mouse_listeners_index: usize,
712 input_handlers_index: usize,
713 cursor_styles_index: usize,
714 accessed_element_states_index: usize,
715 tab_handle_index: usize,
716 line_layout_index: LineLayoutIndex,
717}
718
719impl Frame {
720 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
721 Frame {
722 focus: None,
723 window_active: false,
724 element_states: FxHashMap::default(),
725 accessed_element_states: Vec::new(),
726 mouse_listeners: Vec::new(),
727 dispatch_tree,
728 scene: Scene::default(),
729 hitboxes: Vec::new(),
730 window_control_hitboxes: Vec::new(),
731 deferred_draws: Vec::new(),
732 input_handlers: Vec::new(),
733 tooltip_requests: Vec::new(),
734 cursor_styles: Vec::new(),
735
736 #[cfg(any(test, feature = "test-support"))]
737 debug_bounds: FxHashMap::default(),
738
739 #[cfg(any(feature = "inspector", debug_assertions))]
740 next_inspector_instance_ids: FxHashMap::default(),
741
742 #[cfg(any(feature = "inspector", debug_assertions))]
743 inspector_hitboxes: FxHashMap::default(),
744 tab_stops: TabStopMap::default(),
745 }
746 }
747
748 pub(crate) fn clear(&mut self) {
749 self.element_states.clear();
750 self.accessed_element_states.clear();
751 self.mouse_listeners.clear();
752 self.dispatch_tree.clear();
753 self.scene.clear();
754 self.input_handlers.clear();
755 self.tooltip_requests.clear();
756 self.cursor_styles.clear();
757 self.hitboxes.clear();
758 self.window_control_hitboxes.clear();
759 self.deferred_draws.clear();
760 self.tab_stops.clear();
761 self.focus = None;
762
763 #[cfg(any(feature = "inspector", debug_assertions))]
764 {
765 self.next_inspector_instance_ids.clear();
766 self.inspector_hitboxes.clear();
767 }
768 }
769
770 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
771 self.cursor_styles
772 .iter()
773 .rev()
774 .fold_while(None, |style, request| match request.hitbox_id {
775 None => Done(Some(request.style)),
776 Some(hitbox_id) => Continue(
777 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
778 ),
779 })
780 .into_inner()
781 }
782
783 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
784 let mut set_hover_hitbox_count = false;
785 let mut hit_test = HitTest::default();
786 for hitbox in self.hitboxes.iter().rev() {
787 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
788 if bounds.contains(&position) {
789 hit_test.ids.push(hitbox.id);
790 if !set_hover_hitbox_count
791 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
792 {
793 hit_test.hover_hitbox_count = hit_test.ids.len();
794 set_hover_hitbox_count = true;
795 }
796 if hitbox.behavior == HitboxBehavior::BlockMouse {
797 break;
798 }
799 }
800 }
801 if !set_hover_hitbox_count {
802 hit_test.hover_hitbox_count = hit_test.ids.len();
803 }
804 hit_test
805 }
806
807 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
808 self.focus
809 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
810 .unwrap_or_default()
811 }
812
813 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
814 for element_state_key in &self.accessed_element_states {
815 if let Some((element_state_key, element_state)) =
816 prev_frame.element_states.remove_entry(element_state_key)
817 {
818 self.element_states.insert(element_state_key, element_state);
819 }
820 }
821
822 self.scene.finish();
823 }
824}
825
826#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
827enum InputModality {
828 Mouse,
829 Keyboard,
830}
831
832/// Holds the state for a specific window.
833pub struct Window {
834 pub(crate) handle: AnyWindowHandle,
835 pub(crate) invalidator: WindowInvalidator,
836 pub(crate) removed: bool,
837 pub(crate) platform_window: Box<dyn PlatformWindow>,
838 display_id: Option<DisplayId>,
839 sprite_atlas: Arc<dyn PlatformAtlas>,
840 text_system: Arc<WindowTextSystem>,
841 rem_size: Pixels,
842 /// The stack of override values for the window's rem size.
843 ///
844 /// This is used by `with_rem_size` to allow rendering an element tree with
845 /// a given rem size.
846 rem_size_override_stack: SmallVec<[Pixels; 8]>,
847 pub(crate) viewport_size: Size<Pixels>,
848 layout_engine: Option<TaffyLayoutEngine>,
849 pub(crate) root: Option<AnyView>,
850 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
851 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
852 pub(crate) rendered_entity_stack: Vec<EntityId>,
853 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
854 pub(crate) element_opacity: f32,
855 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
856 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
857 pub(crate) image_cache_stack: Vec<AnyImageCache>,
858 pub(crate) rendered_frame: Frame,
859 pub(crate) next_frame: Frame,
860 next_hitbox_id: HitboxId,
861 pub(crate) next_tooltip_id: TooltipId,
862 pub(crate) tooltip_bounds: Option<TooltipBounds>,
863 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
864 pub(crate) dirty_views: FxHashSet<EntityId>,
865 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
866 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
867 default_prevented: bool,
868 mouse_position: Point<Pixels>,
869 mouse_hit_test: HitTest,
870 modifiers: Modifiers,
871 capslock: Capslock,
872 scale_factor: f32,
873 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
874 appearance: WindowAppearance,
875 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
876 active: Rc<Cell<bool>>,
877 hovered: Rc<Cell<bool>>,
878 pub(crate) needs_present: Rc<Cell<bool>>,
879 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
880 last_input_modality: InputModality,
881 pub(crate) refreshing: bool,
882 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
883 pub(crate) focus: Option<FocusId>,
884 focus_enabled: bool,
885 pending_input: Option<PendingInput>,
886 pending_modifier: ModifierState,
887 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
888 prompt: Option<RenderablePromptHandle>,
889 pub(crate) client_inset: Option<Pixels>,
890 #[cfg(any(feature = "inspector", debug_assertions))]
891 inspector: Option<Entity<Inspector>>,
892}
893
894#[derive(Clone, Debug, Default)]
895struct ModifierState {
896 modifiers: Modifiers,
897 saw_keystroke: bool,
898}
899
900#[derive(Clone, Copy, Debug, Eq, PartialEq)]
901pub(crate) enum DrawPhase {
902 None,
903 Prepaint,
904 Paint,
905 Focus,
906}
907
908#[derive(Default, Debug)]
909struct PendingInput {
910 keystrokes: SmallVec<[Keystroke; 1]>,
911 focus: Option<FocusId>,
912 timer: Option<Task<()>>,
913 needs_timeout: bool,
914}
915
916pub(crate) struct ElementStateBox {
917 pub(crate) inner: Box<dyn Any>,
918 #[cfg(debug_assertions)]
919 pub(crate) type_name: &'static str,
920}
921
922fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
923 // TODO, BUG: if you open a window with the currently active window
924 // on the stack, this will erroneously fallback to `None`
925 //
926 // TODO these should be the initial window bounds not considering maximized/fullscreen
927 let active_window_bounds = cx
928 .active_window()
929 .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
930
931 const CASCADE_OFFSET: f32 = 25.0;
932
933 let display = display_id
934 .map(|id| cx.find_display(id))
935 .unwrap_or_else(|| cx.primary_display());
936
937 let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
938
939 // Use visible_bounds to exclude taskbar/dock areas
940 let display_bounds = display
941 .as_ref()
942 .map(|d| d.visible_bounds())
943 .unwrap_or_else(default_placement);
944
945 let (
946 Bounds {
947 origin: base_origin,
948 size: base_size,
949 },
950 window_bounds_ctor,
951 ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
952 Some(bounds) => match bounds {
953 WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
954 WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
955 WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
956 },
957 None => (
958 display
959 .as_ref()
960 .map(|d| d.default_bounds())
961 .unwrap_or_else(default_placement),
962 WindowBounds::Windowed,
963 ),
964 };
965
966 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
967 let proposed_origin = base_origin + cascade_offset;
968 let proposed_bounds = Bounds::new(proposed_origin, base_size);
969
970 let display_right = display_bounds.origin.x + display_bounds.size.width;
971 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
972 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
973 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
974
975 let fits_horizontally = window_right <= display_right;
976 let fits_vertically = window_bottom <= display_bottom;
977
978 let final_origin = match (fits_horizontally, fits_vertically) {
979 (true, true) => proposed_origin,
980 (false, true) => point(display_bounds.origin.x, base_origin.y),
981 (true, false) => point(base_origin.x, display_bounds.origin.y),
982 (false, false) => display_bounds.origin,
983 };
984 window_bounds_ctor(Bounds::new(final_origin, base_size))
985}
986
987impl Window {
988 pub(crate) fn new(
989 handle: AnyWindowHandle,
990 options: WindowOptions,
991 cx: &mut App,
992 ) -> Result<Self> {
993 let WindowOptions {
994 window_bounds,
995 titlebar,
996 focus,
997 show,
998 kind,
999 is_movable,
1000 is_resizable,
1001 is_minimizable,
1002 display_id,
1003 window_background,
1004 app_id,
1005 window_min_size,
1006 window_decorations,
1007 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1008 tabbing_identifier,
1009 } = options;
1010
1011 let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1012 let mut platform_window = cx.platform.open_window(
1013 handle,
1014 WindowParams {
1015 bounds: window_bounds.get_bounds(),
1016 titlebar,
1017 kind,
1018 is_movable,
1019 is_resizable,
1020 is_minimizable,
1021 focus,
1022 show,
1023 display_id,
1024 window_min_size,
1025 #[cfg(target_os = "macos")]
1026 tabbing_identifier,
1027 },
1028 )?;
1029
1030 let tab_bar_visible = platform_window.tab_bar_visible();
1031 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1032 if let Some(tabs) = platform_window.tabbed_windows() {
1033 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1034 }
1035
1036 let display_id = platform_window.display().map(|display| display.id());
1037 let sprite_atlas = platform_window.sprite_atlas();
1038 let mouse_position = platform_window.mouse_position();
1039 let modifiers = platform_window.modifiers();
1040 let capslock = platform_window.capslock();
1041 let content_size = platform_window.content_size();
1042 let scale_factor = platform_window.scale_factor();
1043 let appearance = platform_window.appearance();
1044 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1045 let invalidator = WindowInvalidator::new();
1046 let active = Rc::new(Cell::new(platform_window.is_active()));
1047 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1048 let needs_present = Rc::new(Cell::new(false));
1049 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1050 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1051
1052 platform_window
1053 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1054 platform_window.set_background_appearance(window_background);
1055
1056 match window_bounds {
1057 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1058 WindowBounds::Maximized(_) => platform_window.zoom(),
1059 WindowBounds::Windowed(_) => {}
1060 }
1061
1062 platform_window.on_close(Box::new({
1063 let window_id = handle.window_id();
1064 let mut cx = cx.to_async();
1065 move || {
1066 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1067 let _ = cx.update(|cx| {
1068 SystemWindowTabController::remove_tab(cx, window_id);
1069 });
1070 }
1071 }));
1072 platform_window.on_request_frame(Box::new({
1073 let mut cx = cx.to_async();
1074 let invalidator = invalidator.clone();
1075 let active = active.clone();
1076 let needs_present = needs_present.clone();
1077 let next_frame_callbacks = next_frame_callbacks.clone();
1078 let last_input_timestamp = last_input_timestamp.clone();
1079 move |request_frame_options| {
1080 let next_frame_callbacks = next_frame_callbacks.take();
1081 if !next_frame_callbacks.is_empty() {
1082 handle
1083 .update(&mut cx, |_, window, cx| {
1084 for callback in next_frame_callbacks {
1085 callback(window, cx);
1086 }
1087 })
1088 .log_err();
1089 }
1090
1091 // Keep presenting the current scene for 1 extra second since the
1092 // last input to prevent the display from underclocking the refresh rate.
1093 let needs_present = request_frame_options.require_presentation
1094 || needs_present.get()
1095 || (active.get()
1096 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1097
1098 if invalidator.is_dirty() || request_frame_options.force_render {
1099 measure("frame duration", || {
1100 handle
1101 .update(&mut cx, |_, window, cx| {
1102 let arena_clear_needed = window.draw(cx);
1103 window.present();
1104 // drop the arena elements after present to reduce latency
1105 arena_clear_needed.clear();
1106 })
1107 .log_err();
1108 })
1109 } else if needs_present {
1110 handle
1111 .update(&mut cx, |_, window, _| window.present())
1112 .log_err();
1113 }
1114
1115 handle
1116 .update(&mut cx, |_, window, _| {
1117 window.complete_frame();
1118 })
1119 .log_err();
1120 }
1121 }));
1122 platform_window.on_resize(Box::new({
1123 let mut cx = cx.to_async();
1124 move |_, _| {
1125 handle
1126 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1127 .log_err();
1128 }
1129 }));
1130 platform_window.on_moved(Box::new({
1131 let mut cx = cx.to_async();
1132 move || {
1133 handle
1134 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1135 .log_err();
1136 }
1137 }));
1138 platform_window.on_appearance_changed(Box::new({
1139 let mut cx = cx.to_async();
1140 move || {
1141 handle
1142 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1143 .log_err();
1144 }
1145 }));
1146 platform_window.on_active_status_change(Box::new({
1147 let mut cx = cx.to_async();
1148 move |active| {
1149 handle
1150 .update(&mut cx, |_, window, cx| {
1151 window.active.set(active);
1152 window.modifiers = window.platform_window.modifiers();
1153 window.capslock = window.platform_window.capslock();
1154 window
1155 .activation_observers
1156 .clone()
1157 .retain(&(), |callback| callback(window, cx));
1158
1159 window.bounds_changed(cx);
1160 window.refresh();
1161
1162 SystemWindowTabController::update_last_active(cx, window.handle.id);
1163 })
1164 .log_err();
1165 }
1166 }));
1167 platform_window.on_hover_status_change(Box::new({
1168 let mut cx = cx.to_async();
1169 move |active| {
1170 handle
1171 .update(&mut cx, |_, window, _| {
1172 window.hovered.set(active);
1173 window.refresh();
1174 })
1175 .log_err();
1176 }
1177 }));
1178 platform_window.on_input({
1179 let mut cx = cx.to_async();
1180 Box::new(move |event| {
1181 handle
1182 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1183 .log_err()
1184 .unwrap_or(DispatchEventResult::default())
1185 })
1186 });
1187 platform_window.on_hit_test_window_control({
1188 let mut cx = cx.to_async();
1189 Box::new(move || {
1190 handle
1191 .update(&mut cx, |_, window, _cx| {
1192 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1193 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1194 return Some(*area);
1195 }
1196 }
1197 None
1198 })
1199 .log_err()
1200 .unwrap_or(None)
1201 })
1202 });
1203 platform_window.on_move_tab_to_new_window({
1204 let mut cx = cx.to_async();
1205 Box::new(move || {
1206 handle
1207 .update(&mut cx, |_, _window, cx| {
1208 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1209 })
1210 .log_err();
1211 })
1212 });
1213 platform_window.on_merge_all_windows({
1214 let mut cx = cx.to_async();
1215 Box::new(move || {
1216 handle
1217 .update(&mut cx, |_, _window, cx| {
1218 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1219 })
1220 .log_err();
1221 })
1222 });
1223 platform_window.on_select_next_tab({
1224 let mut cx = cx.to_async();
1225 Box::new(move || {
1226 handle
1227 .update(&mut cx, |_, _window, cx| {
1228 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1229 })
1230 .log_err();
1231 })
1232 });
1233 platform_window.on_select_previous_tab({
1234 let mut cx = cx.to_async();
1235 Box::new(move || {
1236 handle
1237 .update(&mut cx, |_, _window, cx| {
1238 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1239 })
1240 .log_err();
1241 })
1242 });
1243 platform_window.on_toggle_tab_bar({
1244 let mut cx = cx.to_async();
1245 Box::new(move || {
1246 handle
1247 .update(&mut cx, |_, window, cx| {
1248 let tab_bar_visible = window.platform_window.tab_bar_visible();
1249 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1250 })
1251 .log_err();
1252 })
1253 });
1254
1255 if let Some(app_id) = app_id {
1256 platform_window.set_app_id(&app_id);
1257 }
1258
1259 platform_window.map_window().unwrap();
1260
1261 Ok(Window {
1262 handle,
1263 invalidator,
1264 removed: false,
1265 platform_window,
1266 display_id,
1267 sprite_atlas,
1268 text_system,
1269 rem_size: px(16.),
1270 rem_size_override_stack: SmallVec::new(),
1271 viewport_size: content_size,
1272 layout_engine: Some(TaffyLayoutEngine::new()),
1273 root: None,
1274 element_id_stack: SmallVec::default(),
1275 text_style_stack: Vec::new(),
1276 rendered_entity_stack: Vec::new(),
1277 element_offset_stack: Vec::new(),
1278 content_mask_stack: Vec::new(),
1279 element_opacity: 1.0,
1280 requested_autoscroll: None,
1281 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1282 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1283 next_frame_callbacks,
1284 next_hitbox_id: HitboxId(0),
1285 next_tooltip_id: TooltipId::default(),
1286 tooltip_bounds: None,
1287 dirty_views: FxHashSet::default(),
1288 focus_listeners: SubscriberSet::new(),
1289 focus_lost_listeners: SubscriberSet::new(),
1290 default_prevented: true,
1291 mouse_position,
1292 mouse_hit_test: HitTest::default(),
1293 modifiers,
1294 capslock,
1295 scale_factor,
1296 bounds_observers: SubscriberSet::new(),
1297 appearance,
1298 appearance_observers: SubscriberSet::new(),
1299 active,
1300 hovered,
1301 needs_present,
1302 last_input_timestamp,
1303 last_input_modality: InputModality::Mouse,
1304 refreshing: false,
1305 activation_observers: SubscriberSet::new(),
1306 focus: None,
1307 focus_enabled: true,
1308 pending_input: None,
1309 pending_modifier: ModifierState::default(),
1310 pending_input_observers: SubscriberSet::new(),
1311 prompt: None,
1312 client_inset: None,
1313 image_cache_stack: Vec::new(),
1314 #[cfg(any(feature = "inspector", debug_assertions))]
1315 inspector: None,
1316 })
1317 }
1318
1319 pub(crate) fn new_focus_listener(
1320 &self,
1321 value: AnyWindowFocusListener,
1322 ) -> (Subscription, impl FnOnce() + use<>) {
1323 self.focus_listeners.insert((), value)
1324 }
1325}
1326
1327#[derive(Clone, Debug, Default, PartialEq, Eq)]
1328pub(crate) struct DispatchEventResult {
1329 pub propagate: bool,
1330 pub default_prevented: bool,
1331}
1332
1333/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1334/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1335/// to leave room to support more complex shapes in the future.
1336#[derive(Clone, Debug, Default, PartialEq, Eq)]
1337#[repr(C)]
1338pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1339 /// The bounds
1340 pub bounds: Bounds<P>,
1341}
1342
1343impl ContentMask<Pixels> {
1344 /// Scale the content mask's pixel units by the given scaling factor.
1345 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1346 ContentMask {
1347 bounds: self.bounds.scale(factor),
1348 }
1349 }
1350
1351 /// Intersect the content mask with the given content mask.
1352 pub fn intersect(&self, other: &Self) -> Self {
1353 let bounds = self.bounds.intersect(&other.bounds);
1354 ContentMask { bounds }
1355 }
1356}
1357
1358impl Window {
1359 fn mark_view_dirty(&mut self, view_id: EntityId) {
1360 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1361 // should already be dirty.
1362 for view_id in self
1363 .rendered_frame
1364 .dispatch_tree
1365 .view_path_reversed(view_id)
1366 {
1367 if !self.dirty_views.insert(view_id) {
1368 break;
1369 }
1370 }
1371 }
1372
1373 /// Registers a callback to be invoked when the window appearance changes.
1374 pub fn observe_window_appearance(
1375 &self,
1376 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1377 ) -> Subscription {
1378 let (subscription, activate) = self.appearance_observers.insert(
1379 (),
1380 Box::new(move |window, cx| {
1381 callback(window, cx);
1382 true
1383 }),
1384 );
1385 activate();
1386 subscription
1387 }
1388
1389 /// Replaces the root entity of the window with a new one.
1390 pub fn replace_root<E>(
1391 &mut self,
1392 cx: &mut App,
1393 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1394 ) -> Entity<E>
1395 where
1396 E: 'static + Render,
1397 {
1398 let view = cx.new(|cx| build_view(self, cx));
1399 self.root = Some(view.clone().into());
1400 self.refresh();
1401 view
1402 }
1403
1404 /// Returns the root entity of the window, if it has one.
1405 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1406 where
1407 E: 'static + Render,
1408 {
1409 self.root
1410 .as_ref()
1411 .map(|view| view.clone().downcast::<E>().ok())
1412 }
1413
1414 /// Obtain a handle to the window that belongs to this context.
1415 pub fn window_handle(&self) -> AnyWindowHandle {
1416 self.handle
1417 }
1418
1419 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1420 pub fn refresh(&mut self) {
1421 if self.invalidator.not_drawing() {
1422 self.refreshing = true;
1423 self.invalidator.set_dirty(true);
1424 }
1425 }
1426
1427 /// Close this window.
1428 pub fn remove_window(&mut self) {
1429 self.removed = true;
1430 }
1431
1432 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1433 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1434 self.focus
1435 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1436 }
1437
1438 /// Move focus to the element associated with the given [`FocusHandle`].
1439 pub fn focus(&mut self, handle: &FocusHandle, cx: &mut App) {
1440 if !self.focus_enabled || self.focus == Some(handle.id) {
1441 return;
1442 }
1443
1444 self.focus = Some(handle.id);
1445 self.clear_pending_keystrokes();
1446
1447 // Avoid re-entrant entity updates by deferring observer notifications to the end of the
1448 // current effect cycle, and only for this window.
1449 let window_handle = self.handle;
1450 cx.defer(move |cx| {
1451 window_handle
1452 .update(cx, |_, window, cx| {
1453 window.pending_input_changed(cx);
1454 })
1455 .ok();
1456 });
1457
1458 self.refresh();
1459 }
1460
1461 /// Remove focus from all elements within this context's window.
1462 pub fn blur(&mut self) {
1463 if !self.focus_enabled {
1464 return;
1465 }
1466
1467 self.focus = None;
1468 self.refresh();
1469 }
1470
1471 /// Blur the window and don't allow anything in it to be focused again.
1472 pub fn disable_focus(&mut self) {
1473 self.blur();
1474 self.focus_enabled = false;
1475 }
1476
1477 /// Move focus to next tab stop.
1478 pub fn focus_next(&mut self, cx: &mut App) {
1479 if !self.focus_enabled {
1480 return;
1481 }
1482
1483 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1484 self.focus(&handle, cx)
1485 }
1486 }
1487
1488 /// Move focus to previous tab stop.
1489 pub fn focus_prev(&mut self, cx: &mut App) {
1490 if !self.focus_enabled {
1491 return;
1492 }
1493
1494 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1495 self.focus(&handle, cx)
1496 }
1497 }
1498
1499 /// Accessor for the text system.
1500 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1501 &self.text_system
1502 }
1503
1504 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1505 pub fn text_style(&self) -> TextStyle {
1506 let mut style = TextStyle::default();
1507 for refinement in &self.text_style_stack {
1508 style.refine(refinement);
1509 }
1510 style
1511 }
1512
1513 /// Check if the platform window is maximized.
1514 ///
1515 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1516 pub fn is_maximized(&self) -> bool {
1517 self.platform_window.is_maximized()
1518 }
1519
1520 /// request a certain window decoration (Wayland)
1521 pub fn request_decorations(&self, decorations: WindowDecorations) {
1522 self.platform_window.request_decorations(decorations);
1523 }
1524
1525 /// Start a window resize operation (Wayland)
1526 pub fn start_window_resize(&self, edge: ResizeEdge) {
1527 self.platform_window.start_window_resize(edge);
1528 }
1529
1530 /// Return the `WindowBounds` to indicate that how a window should be opened
1531 /// after it has been closed
1532 pub fn window_bounds(&self) -> WindowBounds {
1533 self.platform_window.window_bounds()
1534 }
1535
1536 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1537 pub fn inner_window_bounds(&self) -> WindowBounds {
1538 self.platform_window.inner_window_bounds()
1539 }
1540
1541 /// Dispatch the given action on the currently focused element.
1542 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1543 let focus_id = self.focused(cx).map(|handle| handle.id);
1544
1545 let window = self.handle;
1546 cx.defer(move |cx| {
1547 window
1548 .update(cx, |_, window, cx| {
1549 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1550 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1551 })
1552 .log_err();
1553 })
1554 }
1555
1556 pub(crate) fn dispatch_keystroke_observers(
1557 &mut self,
1558 event: &dyn Any,
1559 action: Option<Box<dyn Action>>,
1560 context_stack: Vec<KeyContext>,
1561 cx: &mut App,
1562 ) {
1563 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1564 return;
1565 };
1566
1567 cx.keystroke_observers.clone().retain(&(), move |callback| {
1568 (callback)(
1569 &KeystrokeEvent {
1570 keystroke: key_down_event.keystroke.clone(),
1571 action: action.as_ref().map(|action| action.boxed_clone()),
1572 context_stack: context_stack.clone(),
1573 },
1574 self,
1575 cx,
1576 )
1577 });
1578 }
1579
1580 pub(crate) fn dispatch_keystroke_interceptors(
1581 &mut self,
1582 event: &dyn Any,
1583 context_stack: Vec<KeyContext>,
1584 cx: &mut App,
1585 ) {
1586 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1587 return;
1588 };
1589
1590 cx.keystroke_interceptors
1591 .clone()
1592 .retain(&(), move |callback| {
1593 (callback)(
1594 &KeystrokeEvent {
1595 keystroke: key_down_event.keystroke.clone(),
1596 action: None,
1597 context_stack: context_stack.clone(),
1598 },
1599 self,
1600 cx,
1601 )
1602 });
1603 }
1604
1605 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1606 /// that are currently on the stack to be returned to the app.
1607 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1608 let handle = self.handle;
1609 cx.defer(move |cx| {
1610 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1611 });
1612 }
1613
1614 /// Subscribe to events emitted by a entity.
1615 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1616 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1617 pub fn observe<T: 'static>(
1618 &mut self,
1619 observed: &Entity<T>,
1620 cx: &mut App,
1621 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1622 ) -> Subscription {
1623 let entity_id = observed.entity_id();
1624 let observed = observed.downgrade();
1625 let window_handle = self.handle;
1626 cx.new_observer(
1627 entity_id,
1628 Box::new(move |cx| {
1629 window_handle
1630 .update(cx, |_, window, cx| {
1631 if let Some(handle) = observed.upgrade() {
1632 on_notify(handle, window, cx);
1633 true
1634 } else {
1635 false
1636 }
1637 })
1638 .unwrap_or(false)
1639 }),
1640 )
1641 }
1642
1643 /// Subscribe to events emitted by a entity.
1644 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1645 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1646 pub fn subscribe<Emitter, Evt>(
1647 &mut self,
1648 entity: &Entity<Emitter>,
1649 cx: &mut App,
1650 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1651 ) -> Subscription
1652 where
1653 Emitter: EventEmitter<Evt>,
1654 Evt: 'static,
1655 {
1656 let entity_id = entity.entity_id();
1657 let handle = entity.downgrade();
1658 let window_handle = self.handle;
1659 cx.new_subscription(
1660 entity_id,
1661 (
1662 TypeId::of::<Evt>(),
1663 Box::new(move |event, cx| {
1664 window_handle
1665 .update(cx, |_, window, cx| {
1666 if let Some(entity) = handle.upgrade() {
1667 let event = event.downcast_ref().expect("invalid event type");
1668 on_event(entity, event, window, cx);
1669 true
1670 } else {
1671 false
1672 }
1673 })
1674 .unwrap_or(false)
1675 }),
1676 ),
1677 )
1678 }
1679
1680 /// Register a callback to be invoked when the given `Entity` is released.
1681 pub fn observe_release<T>(
1682 &self,
1683 entity: &Entity<T>,
1684 cx: &mut App,
1685 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1686 ) -> Subscription
1687 where
1688 T: 'static,
1689 {
1690 let entity_id = entity.entity_id();
1691 let window_handle = self.handle;
1692 let (subscription, activate) = cx.release_listeners.insert(
1693 entity_id,
1694 Box::new(move |entity, cx| {
1695 let entity = entity.downcast_mut().expect("invalid entity type");
1696 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1697 }),
1698 );
1699 activate();
1700 subscription
1701 }
1702
1703 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1704 /// await points in async code.
1705 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1706 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1707 }
1708
1709 /// Schedule the given closure to be run directly after the current frame is rendered.
1710 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1711 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1712 }
1713
1714 /// Schedule a frame to be drawn on the next animation frame.
1715 ///
1716 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1717 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1718 ///
1719 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1720 pub fn request_animation_frame(&self) {
1721 let entity = self.current_view();
1722 self.on_next_frame(move |_, cx| cx.notify(entity));
1723 }
1724
1725 /// Spawn the future returned by the given closure on the application thread pool.
1726 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1727 /// use within your future.
1728 #[track_caller]
1729 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1730 where
1731 R: 'static,
1732 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1733 {
1734 let handle = self.handle;
1735 cx.spawn(async move |app| {
1736 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1737 f(&mut async_window_cx).await
1738 })
1739 }
1740
1741 /// Spawn the future returned by the given closure on the application thread
1742 /// pool, with the given priority. The closure is provided a handle to the
1743 /// current window and an `AsyncWindowContext` for use within your future.
1744 #[track_caller]
1745 pub fn spawn_with_priority<AsyncFn, R>(
1746 &self,
1747 priority: Priority,
1748 cx: &App,
1749 f: AsyncFn,
1750 ) -> Task<R>
1751 where
1752 R: 'static,
1753 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1754 {
1755 let handle = self.handle;
1756 cx.spawn_with_priority(priority, async move |app| {
1757 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1758 f(&mut async_window_cx).await
1759 })
1760 }
1761
1762 fn bounds_changed(&mut self, cx: &mut App) {
1763 self.scale_factor = self.platform_window.scale_factor();
1764 self.viewport_size = self.platform_window.content_size();
1765 self.display_id = self.platform_window.display().map(|display| display.id());
1766
1767 self.refresh();
1768
1769 self.bounds_observers
1770 .clone()
1771 .retain(&(), |callback| callback(self, cx));
1772 }
1773
1774 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1775 pub fn bounds(&self) -> Bounds<Pixels> {
1776 self.platform_window.bounds()
1777 }
1778
1779 /// Returns the native window ID (CGWindowID on macOS) for window capture.
1780 /// This is used by visual testing infrastructure to capture window screenshots.
1781 /// Returns None on platforms that don't support this or in non-test builds.
1782 #[cfg(any(test, feature = "test-support"))]
1783 pub fn native_window_id(&self) -> Option<u32> {
1784 self.platform_window.native_window_id()
1785 }
1786
1787 /// Set the content size of the window.
1788 pub fn resize(&mut self, size: Size<Pixels>) {
1789 self.platform_window.resize(size);
1790 }
1791
1792 /// Returns whether or not the window is currently fullscreen
1793 pub fn is_fullscreen(&self) -> bool {
1794 self.platform_window.is_fullscreen()
1795 }
1796
1797 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1798 self.appearance = self.platform_window.appearance();
1799
1800 self.appearance_observers
1801 .clone()
1802 .retain(&(), |callback| callback(self, cx));
1803 }
1804
1805 /// Returns the appearance of the current window.
1806 pub fn appearance(&self) -> WindowAppearance {
1807 self.appearance
1808 }
1809
1810 /// Returns the size of the drawable area within the window.
1811 pub fn viewport_size(&self) -> Size<Pixels> {
1812 self.viewport_size
1813 }
1814
1815 /// Returns whether this window is focused by the operating system (receiving key events).
1816 pub fn is_window_active(&self) -> bool {
1817 self.active.get()
1818 }
1819
1820 /// Returns whether this window is considered to be the window
1821 /// that currently owns the mouse cursor.
1822 /// On mac, this is equivalent to `is_window_active`.
1823 pub fn is_window_hovered(&self) -> bool {
1824 if cfg!(any(
1825 target_os = "windows",
1826 target_os = "linux",
1827 target_os = "freebsd"
1828 )) {
1829 self.hovered.get()
1830 } else {
1831 self.is_window_active()
1832 }
1833 }
1834
1835 /// Toggle zoom on the window.
1836 pub fn zoom_window(&self) {
1837 self.platform_window.zoom();
1838 }
1839
1840 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1841 pub fn show_window_menu(&self, position: Point<Pixels>) {
1842 self.platform_window.show_window_menu(position)
1843 }
1844
1845 /// Handle window movement for Linux and macOS.
1846 /// Tells the compositor to take control of window movement (Wayland and X11)
1847 ///
1848 /// Events may not be received during a move operation.
1849 pub fn start_window_move(&self) {
1850 self.platform_window.start_window_move()
1851 }
1852
1853 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1854 pub fn set_client_inset(&mut self, inset: Pixels) {
1855 self.client_inset = Some(inset);
1856 self.platform_window.set_client_inset(inset);
1857 }
1858
1859 /// Returns the client_inset value by [`Self::set_client_inset`].
1860 pub fn client_inset(&self) -> Option<Pixels> {
1861 self.client_inset
1862 }
1863
1864 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1865 pub fn window_decorations(&self) -> Decorations {
1866 self.platform_window.window_decorations()
1867 }
1868
1869 /// Returns which window controls are currently visible (Wayland)
1870 pub fn window_controls(&self) -> WindowControls {
1871 self.platform_window.window_controls()
1872 }
1873
1874 /// Updates the window's title at the platform level.
1875 pub fn set_window_title(&mut self, title: &str) {
1876 self.platform_window.set_title(title);
1877 }
1878
1879 /// Sets the application identifier.
1880 pub fn set_app_id(&mut self, app_id: &str) {
1881 self.platform_window.set_app_id(app_id);
1882 }
1883
1884 /// Sets the window background appearance.
1885 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1886 self.platform_window
1887 .set_background_appearance(background_appearance);
1888 }
1889
1890 /// Mark the window as dirty at the platform level.
1891 pub fn set_window_edited(&mut self, edited: bool) {
1892 self.platform_window.set_edited(edited);
1893 }
1894
1895 /// Determine the display on which the window is visible.
1896 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1897 cx.platform
1898 .displays()
1899 .into_iter()
1900 .find(|display| Some(display.id()) == self.display_id)
1901 }
1902
1903 /// Show the platform character palette.
1904 pub fn show_character_palette(&self) {
1905 self.platform_window.show_character_palette();
1906 }
1907
1908 /// The scale factor of the display associated with the window. For example, it could
1909 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1910 /// be rendered as two pixels on screen.
1911 pub fn scale_factor(&self) -> f32 {
1912 self.scale_factor
1913 }
1914
1915 /// The size of an em for the base font of the application. Adjusting this value allows the
1916 /// UI to scale, just like zooming a web page.
1917 pub fn rem_size(&self) -> Pixels {
1918 self.rem_size_override_stack
1919 .last()
1920 .copied()
1921 .unwrap_or(self.rem_size)
1922 }
1923
1924 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1925 /// UI to scale, just like zooming a web page.
1926 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1927 self.rem_size = rem_size.into();
1928 }
1929
1930 /// Acquire a globally unique identifier for the given ElementId.
1931 /// Only valid for the duration of the provided closure.
1932 pub fn with_global_id<R>(
1933 &mut self,
1934 element_id: ElementId,
1935 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1936 ) -> R {
1937 self.element_id_stack.push(element_id);
1938 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1939
1940 let result = f(&global_id, self);
1941 self.element_id_stack.pop();
1942 result
1943 }
1944
1945 /// Executes the provided function with the specified rem size.
1946 ///
1947 /// This method must only be called as part of element drawing.
1948 // This function is called in a highly recursive manner in editor
1949 // prepainting, make sure its inlined to reduce the stack burden
1950 #[inline]
1951 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1952 where
1953 F: FnOnce(&mut Self) -> R,
1954 {
1955 self.invalidator.debug_assert_paint_or_prepaint();
1956
1957 if let Some(rem_size) = rem_size {
1958 self.rem_size_override_stack.push(rem_size.into());
1959 let result = f(self);
1960 self.rem_size_override_stack.pop();
1961 result
1962 } else {
1963 f(self)
1964 }
1965 }
1966
1967 /// The line height associated with the current text style.
1968 pub fn line_height(&self) -> Pixels {
1969 self.text_style().line_height_in_pixels(self.rem_size())
1970 }
1971
1972 /// Call to prevent the default action of an event. Currently only used to prevent
1973 /// parent elements from becoming focused on mouse down.
1974 pub fn prevent_default(&mut self) {
1975 self.default_prevented = true;
1976 }
1977
1978 /// Obtain whether default has been prevented for the event currently being dispatched.
1979 pub fn default_prevented(&self) -> bool {
1980 self.default_prevented
1981 }
1982
1983 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1984 pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
1985 let node_id =
1986 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1987 self.rendered_frame
1988 .dispatch_tree
1989 .is_action_available(action, node_id)
1990 }
1991
1992 /// Determine whether the given action is available along the dispatch path to the given focus_handle.
1993 pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
1994 let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
1995 self.rendered_frame
1996 .dispatch_tree
1997 .is_action_available(action, node_id)
1998 }
1999
2000 /// The position of the mouse relative to the window.
2001 pub fn mouse_position(&self) -> Point<Pixels> {
2002 self.mouse_position
2003 }
2004
2005 /// The current state of the keyboard's modifiers
2006 pub fn modifiers(&self) -> Modifiers {
2007 self.modifiers
2008 }
2009
2010 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
2011 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
2012 pub fn last_input_was_keyboard(&self) -> bool {
2013 self.last_input_modality == InputModality::Keyboard
2014 }
2015
2016 /// The current state of the keyboard's capslock
2017 pub fn capslock(&self) -> Capslock {
2018 self.capslock
2019 }
2020
2021 fn complete_frame(&self) {
2022 self.platform_window.completed_frame();
2023 }
2024
2025 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2026 /// the contents of the new [`Scene`], use [`Self::present`].
2027 #[profiling::function]
2028 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2029 self.invalidate_entities();
2030 cx.entities.clear_accessed();
2031 debug_assert!(self.rendered_entity_stack.is_empty());
2032 self.invalidator.set_dirty(false);
2033 self.requested_autoscroll = None;
2034
2035 // Restore the previously-used input handler.
2036 if let Some(input_handler) = self.platform_window.take_input_handler() {
2037 self.rendered_frame.input_handlers.push(Some(input_handler));
2038 }
2039 if !cx.mode.skip_drawing() {
2040 self.draw_roots(cx);
2041 }
2042 self.dirty_views.clear();
2043 self.next_frame.window_active = self.active.get();
2044
2045 // Register requested input handler with the platform window.
2046 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2047 self.platform_window
2048 .set_input_handler(input_handler.unwrap());
2049 }
2050
2051 self.layout_engine.as_mut().unwrap().clear();
2052 self.text_system().finish_frame();
2053 self.next_frame.finish(&mut self.rendered_frame);
2054
2055 self.invalidator.set_phase(DrawPhase::Focus);
2056 let previous_focus_path = self.rendered_frame.focus_path();
2057 let previous_window_active = self.rendered_frame.window_active;
2058 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2059 self.next_frame.clear();
2060 let current_focus_path = self.rendered_frame.focus_path();
2061 let current_window_active = self.rendered_frame.window_active;
2062
2063 if previous_focus_path != current_focus_path
2064 || previous_window_active != current_window_active
2065 {
2066 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2067 self.focus_lost_listeners
2068 .clone()
2069 .retain(&(), |listener| listener(self, cx));
2070 }
2071
2072 let event = WindowFocusEvent {
2073 previous_focus_path: if previous_window_active {
2074 previous_focus_path
2075 } else {
2076 Default::default()
2077 },
2078 current_focus_path: if current_window_active {
2079 current_focus_path
2080 } else {
2081 Default::default()
2082 },
2083 };
2084 self.focus_listeners
2085 .clone()
2086 .retain(&(), |listener| listener(&event, self, cx));
2087 }
2088
2089 debug_assert!(self.rendered_entity_stack.is_empty());
2090 self.record_entities_accessed(cx);
2091 self.reset_cursor_style(cx);
2092 self.refreshing = false;
2093 self.invalidator.set_phase(DrawPhase::None);
2094 self.needs_present.set(true);
2095
2096 ArenaClearNeeded
2097 }
2098
2099 fn record_entities_accessed(&mut self, cx: &mut App) {
2100 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2101 let mut entities = mem::take(entities_ref.deref_mut());
2102 drop(entities_ref);
2103 let handle = self.handle;
2104 cx.record_entities_accessed(
2105 handle,
2106 // Try moving window invalidator into the Window
2107 self.invalidator.clone(),
2108 &entities,
2109 );
2110 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2111 mem::swap(&mut entities, entities_ref.deref_mut());
2112 }
2113
2114 fn invalidate_entities(&mut self) {
2115 let mut views = self.invalidator.take_views();
2116 for entity in views.drain() {
2117 self.mark_view_dirty(entity);
2118 }
2119 self.invalidator.replace_views(views);
2120 }
2121
2122 #[profiling::function]
2123 fn present(&self) {
2124 self.platform_window.draw(&self.rendered_frame.scene);
2125 self.needs_present.set(false);
2126 profiling::finish_frame!();
2127 }
2128
2129 fn draw_roots(&mut self, cx: &mut App) {
2130 self.invalidator.set_phase(DrawPhase::Prepaint);
2131 self.tooltip_bounds.take();
2132
2133 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2134 let root_size = {
2135 #[cfg(any(feature = "inspector", debug_assertions))]
2136 {
2137 if self.inspector.is_some() {
2138 let mut size = self.viewport_size;
2139 size.width = (size.width - _inspector_width).max(px(0.0));
2140 size
2141 } else {
2142 self.viewport_size
2143 }
2144 }
2145 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2146 {
2147 self.viewport_size
2148 }
2149 };
2150
2151 // Layout all root elements.
2152 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2153 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2154
2155 #[cfg(any(feature = "inspector", debug_assertions))]
2156 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2157
2158 let mut sorted_deferred_draws =
2159 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2160 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2161 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2162
2163 let mut prompt_element = None;
2164 let mut active_drag_element = None;
2165 let mut tooltip_element = None;
2166 if let Some(prompt) = self.prompt.take() {
2167 let mut element = prompt.view.any_view().into_any();
2168 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2169 prompt_element = Some(element);
2170 self.prompt = Some(prompt);
2171 } else if let Some(active_drag) = cx.active_drag.take() {
2172 let mut element = active_drag.view.clone().into_any();
2173 let offset = self.mouse_position() - active_drag.cursor_offset;
2174 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2175 active_drag_element = Some(element);
2176 cx.active_drag = Some(active_drag);
2177 } else {
2178 tooltip_element = self.prepaint_tooltip(cx);
2179 }
2180
2181 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2182
2183 // Now actually paint the elements.
2184 self.invalidator.set_phase(DrawPhase::Paint);
2185 root_element.paint(self, cx);
2186
2187 #[cfg(any(feature = "inspector", debug_assertions))]
2188 self.paint_inspector(inspector_element, cx);
2189
2190 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2191
2192 if let Some(mut prompt_element) = prompt_element {
2193 prompt_element.paint(self, cx);
2194 } else if let Some(mut drag_element) = active_drag_element {
2195 drag_element.paint(self, cx);
2196 } else if let Some(mut tooltip_element) = tooltip_element {
2197 tooltip_element.paint(self, cx);
2198 }
2199
2200 #[cfg(any(feature = "inspector", debug_assertions))]
2201 self.paint_inspector_hitbox(cx);
2202 }
2203
2204 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2205 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2206 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2207 let Some(Some(tooltip_request)) = self
2208 .next_frame
2209 .tooltip_requests
2210 .get(tooltip_request_index)
2211 .cloned()
2212 else {
2213 log::error!("Unexpectedly absent TooltipRequest");
2214 continue;
2215 };
2216 let mut element = tooltip_request.tooltip.view.clone().into_any();
2217 let mouse_position = tooltip_request.tooltip.mouse_position;
2218 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2219
2220 let mut tooltip_bounds =
2221 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2222 let window_bounds = Bounds {
2223 origin: Point::default(),
2224 size: self.viewport_size(),
2225 };
2226
2227 if tooltip_bounds.right() > window_bounds.right() {
2228 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2229 if new_x >= Pixels::ZERO {
2230 tooltip_bounds.origin.x = new_x;
2231 } else {
2232 tooltip_bounds.origin.x = cmp::max(
2233 Pixels::ZERO,
2234 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2235 );
2236 }
2237 }
2238
2239 if tooltip_bounds.bottom() > window_bounds.bottom() {
2240 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2241 if new_y >= Pixels::ZERO {
2242 tooltip_bounds.origin.y = new_y;
2243 } else {
2244 tooltip_bounds.origin.y = cmp::max(
2245 Pixels::ZERO,
2246 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2247 );
2248 }
2249 }
2250
2251 // It's possible for an element to have an active tooltip while not being painted (e.g.
2252 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2253 // case, instead update the tooltip's visibility here.
2254 let is_visible =
2255 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2256 if !is_visible {
2257 continue;
2258 }
2259
2260 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2261 element.prepaint(window, cx)
2262 });
2263
2264 self.tooltip_bounds = Some(TooltipBounds {
2265 id: tooltip_request.id,
2266 bounds: tooltip_bounds,
2267 });
2268 return Some(element);
2269 }
2270 None
2271 }
2272
2273 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2274 assert_eq!(self.element_id_stack.len(), 0);
2275
2276 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2277 for deferred_draw_ix in deferred_draw_indices {
2278 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2279 self.element_id_stack
2280 .clone_from(&deferred_draw.element_id_stack);
2281 self.text_style_stack
2282 .clone_from(&deferred_draw.text_style_stack);
2283 self.next_frame
2284 .dispatch_tree
2285 .set_active_node(deferred_draw.parent_node);
2286
2287 let prepaint_start = self.prepaint_index();
2288 if let Some(element) = deferred_draw.element.as_mut() {
2289 self.with_rendered_view(deferred_draw.current_view, |window| {
2290 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2291 element.prepaint(window, cx)
2292 });
2293 })
2294 } else {
2295 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2296 }
2297 let prepaint_end = self.prepaint_index();
2298 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2299 }
2300 assert_eq!(
2301 self.next_frame.deferred_draws.len(),
2302 0,
2303 "cannot call defer_draw during deferred drawing"
2304 );
2305 self.next_frame.deferred_draws = deferred_draws;
2306 self.element_id_stack.clear();
2307 self.text_style_stack.clear();
2308 }
2309
2310 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2311 assert_eq!(self.element_id_stack.len(), 0);
2312
2313 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2314 for deferred_draw_ix in deferred_draw_indices {
2315 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2316 self.element_id_stack
2317 .clone_from(&deferred_draw.element_id_stack);
2318 self.next_frame
2319 .dispatch_tree
2320 .set_active_node(deferred_draw.parent_node);
2321
2322 let paint_start = self.paint_index();
2323 if let Some(element) = deferred_draw.element.as_mut() {
2324 self.with_rendered_view(deferred_draw.current_view, |window| {
2325 element.paint(window, cx);
2326 })
2327 } else {
2328 self.reuse_paint(deferred_draw.paint_range.clone());
2329 }
2330 let paint_end = self.paint_index();
2331 deferred_draw.paint_range = paint_start..paint_end;
2332 }
2333 self.next_frame.deferred_draws = deferred_draws;
2334 self.element_id_stack.clear();
2335 }
2336
2337 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2338 PrepaintStateIndex {
2339 hitboxes_index: self.next_frame.hitboxes.len(),
2340 tooltips_index: self.next_frame.tooltip_requests.len(),
2341 deferred_draws_index: self.next_frame.deferred_draws.len(),
2342 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2343 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2344 line_layout_index: self.text_system.layout_index(),
2345 }
2346 }
2347
2348 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2349 self.next_frame.hitboxes.extend(
2350 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2351 .iter()
2352 .cloned(),
2353 );
2354 self.next_frame.tooltip_requests.extend(
2355 self.rendered_frame.tooltip_requests
2356 [range.start.tooltips_index..range.end.tooltips_index]
2357 .iter_mut()
2358 .map(|request| request.take()),
2359 );
2360 self.next_frame.accessed_element_states.extend(
2361 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2362 ..range.end.accessed_element_states_index]
2363 .iter()
2364 .map(|(id, type_id)| (id.clone(), *type_id)),
2365 );
2366 self.text_system
2367 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2368
2369 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2370 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2371 &mut self.rendered_frame.dispatch_tree,
2372 self.focus,
2373 );
2374
2375 if reused_subtree.contains_focus() {
2376 self.next_frame.focus = self.focus;
2377 }
2378
2379 self.next_frame.deferred_draws.extend(
2380 self.rendered_frame.deferred_draws
2381 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2382 .iter()
2383 .map(|deferred_draw| DeferredDraw {
2384 current_view: deferred_draw.current_view,
2385 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2386 element_id_stack: deferred_draw.element_id_stack.clone(),
2387 text_style_stack: deferred_draw.text_style_stack.clone(),
2388 priority: deferred_draw.priority,
2389 element: None,
2390 absolute_offset: deferred_draw.absolute_offset,
2391 prepaint_range: deferred_draw.prepaint_range.clone(),
2392 paint_range: deferred_draw.paint_range.clone(),
2393 }),
2394 );
2395 }
2396
2397 pub(crate) fn paint_index(&self) -> PaintIndex {
2398 PaintIndex {
2399 scene_index: self.next_frame.scene.len(),
2400 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2401 input_handlers_index: self.next_frame.input_handlers.len(),
2402 cursor_styles_index: self.next_frame.cursor_styles.len(),
2403 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2404 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2405 line_layout_index: self.text_system.layout_index(),
2406 }
2407 }
2408
2409 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2410 self.next_frame.cursor_styles.extend(
2411 self.rendered_frame.cursor_styles
2412 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2413 .iter()
2414 .cloned(),
2415 );
2416 self.next_frame.input_handlers.extend(
2417 self.rendered_frame.input_handlers
2418 [range.start.input_handlers_index..range.end.input_handlers_index]
2419 .iter_mut()
2420 .map(|handler| handler.take()),
2421 );
2422 self.next_frame.mouse_listeners.extend(
2423 self.rendered_frame.mouse_listeners
2424 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2425 .iter_mut()
2426 .map(|listener| listener.take()),
2427 );
2428 self.next_frame.accessed_element_states.extend(
2429 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2430 ..range.end.accessed_element_states_index]
2431 .iter()
2432 .map(|(id, type_id)| (id.clone(), *type_id)),
2433 );
2434 self.next_frame.tab_stops.replay(
2435 &self.rendered_frame.tab_stops.insertion_history
2436 [range.start.tab_handle_index..range.end.tab_handle_index],
2437 );
2438
2439 self.text_system
2440 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2441 self.next_frame.scene.replay(
2442 range.start.scene_index..range.end.scene_index,
2443 &self.rendered_frame.scene,
2444 );
2445 }
2446
2447 /// Push a text style onto the stack, and call a function with that style active.
2448 /// Use [`Window::text_style`] to get the current, combined text style. This method
2449 /// should only be called as part of element drawing.
2450 // This function is called in a highly recursive manner in editor
2451 // prepainting, make sure its inlined to reduce the stack burden
2452 #[inline]
2453 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2454 where
2455 F: FnOnce(&mut Self) -> R,
2456 {
2457 self.invalidator.debug_assert_paint_or_prepaint();
2458 if let Some(style) = style {
2459 self.text_style_stack.push(style);
2460 let result = f(self);
2461 self.text_style_stack.pop();
2462 result
2463 } else {
2464 f(self)
2465 }
2466 }
2467
2468 /// Updates the cursor style at the platform level. This method should only be called
2469 /// during the paint phase of element drawing.
2470 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2471 self.invalidator.debug_assert_paint();
2472 self.next_frame.cursor_styles.push(CursorStyleRequest {
2473 hitbox_id: Some(hitbox.id),
2474 style,
2475 });
2476 }
2477
2478 /// Updates the cursor style for the entire window at the platform level. A cursor
2479 /// style using this method will have precedence over any cursor style set using
2480 /// `set_cursor_style`. This method should only be called during the paint
2481 /// phase of element drawing.
2482 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2483 self.invalidator.debug_assert_paint();
2484 self.next_frame.cursor_styles.push(CursorStyleRequest {
2485 hitbox_id: None,
2486 style,
2487 })
2488 }
2489
2490 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2491 /// during the paint phase of element drawing.
2492 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2493 self.invalidator.debug_assert_prepaint();
2494 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2495 self.next_frame
2496 .tooltip_requests
2497 .push(Some(TooltipRequest { id, tooltip }));
2498 id
2499 }
2500
2501 /// Invoke the given function with the given content mask after intersecting it
2502 /// with the current mask. This method should only be called during element drawing.
2503 // This function is called in a highly recursive manner in editor
2504 // prepainting, make sure its inlined to reduce the stack burden
2505 #[inline]
2506 pub fn with_content_mask<R>(
2507 &mut self,
2508 mask: Option<ContentMask<Pixels>>,
2509 f: impl FnOnce(&mut Self) -> R,
2510 ) -> R {
2511 self.invalidator.debug_assert_paint_or_prepaint();
2512 if let Some(mask) = mask {
2513 let mask = mask.intersect(&self.content_mask());
2514 self.content_mask_stack.push(mask);
2515 let result = f(self);
2516 self.content_mask_stack.pop();
2517 result
2518 } else {
2519 f(self)
2520 }
2521 }
2522
2523 /// Updates the global element offset relative to the current offset. This is used to implement
2524 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2525 pub fn with_element_offset<R>(
2526 &mut self,
2527 offset: Point<Pixels>,
2528 f: impl FnOnce(&mut Self) -> R,
2529 ) -> R {
2530 self.invalidator.debug_assert_prepaint();
2531
2532 if offset.is_zero() {
2533 return f(self);
2534 };
2535
2536 let abs_offset = self.element_offset() + offset;
2537 self.with_absolute_element_offset(abs_offset, f)
2538 }
2539
2540 /// Updates the global element offset based on the given offset. This is used to implement
2541 /// drag handles and other manual painting of elements. This method should only be called during
2542 /// the prepaint phase of element drawing.
2543 pub fn with_absolute_element_offset<R>(
2544 &mut self,
2545 offset: Point<Pixels>,
2546 f: impl FnOnce(&mut Self) -> R,
2547 ) -> R {
2548 self.invalidator.debug_assert_prepaint();
2549 self.element_offset_stack.push(offset);
2550 let result = f(self);
2551 self.element_offset_stack.pop();
2552 result
2553 }
2554
2555 pub(crate) fn with_element_opacity<R>(
2556 &mut self,
2557 opacity: Option<f32>,
2558 f: impl FnOnce(&mut Self) -> R,
2559 ) -> R {
2560 self.invalidator.debug_assert_paint_or_prepaint();
2561
2562 let Some(opacity) = opacity else {
2563 return f(self);
2564 };
2565
2566 let previous_opacity = self.element_opacity;
2567 self.element_opacity = previous_opacity * opacity;
2568 let result = f(self);
2569 self.element_opacity = previous_opacity;
2570 result
2571 }
2572
2573 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2574 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2575 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2576 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2577 /// called during the prepaint phase of element drawing.
2578 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2579 self.invalidator.debug_assert_prepaint();
2580 let index = self.prepaint_index();
2581 let result = f(self);
2582 if result.is_err() {
2583 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2584 self.next_frame
2585 .tooltip_requests
2586 .truncate(index.tooltips_index);
2587 self.next_frame
2588 .deferred_draws
2589 .truncate(index.deferred_draws_index);
2590 self.next_frame
2591 .dispatch_tree
2592 .truncate(index.dispatch_tree_index);
2593 self.next_frame
2594 .accessed_element_states
2595 .truncate(index.accessed_element_states_index);
2596 self.text_system.truncate_layouts(index.line_layout_index);
2597 }
2598 result
2599 }
2600
2601 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2602 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2603 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2604 /// that supports this method being called on the elements it contains. This method should only be
2605 /// called during the prepaint phase of element drawing.
2606 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2607 self.invalidator.debug_assert_prepaint();
2608 self.requested_autoscroll = Some(bounds);
2609 }
2610
2611 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2612 /// described in [`Self::request_autoscroll`].
2613 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2614 self.invalidator.debug_assert_prepaint();
2615 self.requested_autoscroll.take()
2616 }
2617
2618 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2619 /// Your view will be re-drawn once the asset has finished loading.
2620 ///
2621 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2622 /// time.
2623 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2624 let (task, is_first) = cx.fetch_asset::<A>(source);
2625 task.clone().now_or_never().or_else(|| {
2626 if is_first {
2627 let entity_id = self.current_view();
2628 self.spawn(cx, {
2629 let task = task.clone();
2630 async move |cx| {
2631 task.await;
2632
2633 cx.on_next_frame(move |_, cx| {
2634 cx.notify(entity_id);
2635 });
2636 }
2637 })
2638 .detach();
2639 }
2640
2641 None
2642 })
2643 }
2644
2645 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2646 /// Your view will not be re-drawn once the asset has finished loading.
2647 ///
2648 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2649 /// time.
2650 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2651 let (task, _) = cx.fetch_asset::<A>(source);
2652 task.now_or_never()
2653 }
2654 /// Obtain the current element offset. This method should only be called during the
2655 /// prepaint phase of element drawing.
2656 pub fn element_offset(&self) -> Point<Pixels> {
2657 self.invalidator.debug_assert_prepaint();
2658 self.element_offset_stack
2659 .last()
2660 .copied()
2661 .unwrap_or_default()
2662 }
2663
2664 /// Obtain the current element opacity. This method should only be called during the
2665 /// prepaint phase of element drawing.
2666 #[inline]
2667 pub(crate) fn element_opacity(&self) -> f32 {
2668 self.invalidator.debug_assert_paint_or_prepaint();
2669 self.element_opacity
2670 }
2671
2672 /// Obtain the current content mask. This method should only be called during element drawing.
2673 pub fn content_mask(&self) -> ContentMask<Pixels> {
2674 self.invalidator.debug_assert_paint_or_prepaint();
2675 self.content_mask_stack
2676 .last()
2677 .cloned()
2678 .unwrap_or_else(|| ContentMask {
2679 bounds: Bounds {
2680 origin: Point::default(),
2681 size: self.viewport_size,
2682 },
2683 })
2684 }
2685
2686 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2687 /// This can be used within a custom element to distinguish multiple sets of child elements.
2688 pub fn with_element_namespace<R>(
2689 &mut self,
2690 element_id: impl Into<ElementId>,
2691 f: impl FnOnce(&mut Self) -> R,
2692 ) -> R {
2693 self.element_id_stack.push(element_id.into());
2694 let result = f(self);
2695 self.element_id_stack.pop();
2696 result
2697 }
2698
2699 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2700 pub fn use_keyed_state<S: 'static>(
2701 &mut self,
2702 key: impl Into<ElementId>,
2703 cx: &mut App,
2704 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2705 ) -> Entity<S> {
2706 let current_view = self.current_view();
2707 self.with_global_id(key.into(), |global_id, window| {
2708 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2709 if let Some(state) = state {
2710 (state.clone(), state)
2711 } else {
2712 let new_state = cx.new(|cx| init(window, cx));
2713 cx.observe(&new_state, move |_, cx| {
2714 cx.notify(current_view);
2715 })
2716 .detach();
2717 (new_state.clone(), new_state)
2718 }
2719 })
2720 })
2721 }
2722
2723 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2724 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2725 self.with_global_id(id.into(), |_, window| f(window))
2726 }
2727
2728 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2729 ///
2730 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2731 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2732 /// you can provide a custom ElementID using the `use_keyed_state` method.
2733 #[track_caller]
2734 pub fn use_state<S: 'static>(
2735 &mut self,
2736 cx: &mut App,
2737 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2738 ) -> Entity<S> {
2739 self.use_keyed_state(
2740 ElementId::CodeLocation(*core::panic::Location::caller()),
2741 cx,
2742 init,
2743 )
2744 }
2745
2746 /// Updates or initializes state for an element with the given id that lives across multiple
2747 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2748 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2749 /// when drawing the next frame. This method should only be called as part of element drawing.
2750 pub fn with_element_state<S, R>(
2751 &mut self,
2752 global_id: &GlobalElementId,
2753 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2754 ) -> R
2755 where
2756 S: 'static,
2757 {
2758 self.invalidator.debug_assert_paint_or_prepaint();
2759
2760 let key = (global_id.clone(), TypeId::of::<S>());
2761 self.next_frame.accessed_element_states.push(key.clone());
2762
2763 if let Some(any) = self
2764 .next_frame
2765 .element_states
2766 .remove(&key)
2767 .or_else(|| self.rendered_frame.element_states.remove(&key))
2768 {
2769 let ElementStateBox {
2770 inner,
2771 #[cfg(debug_assertions)]
2772 type_name,
2773 } = any;
2774 // Using the extra inner option to avoid needing to reallocate a new box.
2775 let mut state_box = inner
2776 .downcast::<Option<S>>()
2777 .map_err(|_| {
2778 #[cfg(debug_assertions)]
2779 {
2780 anyhow::anyhow!(
2781 "invalid element state type for id, requested {:?}, actual: {:?}",
2782 std::any::type_name::<S>(),
2783 type_name
2784 )
2785 }
2786
2787 #[cfg(not(debug_assertions))]
2788 {
2789 anyhow::anyhow!(
2790 "invalid element state type for id, requested {:?}",
2791 std::any::type_name::<S>(),
2792 )
2793 }
2794 })
2795 .unwrap();
2796
2797 let state = state_box.take().expect(
2798 "reentrant call to with_element_state for the same state type and element id",
2799 );
2800 let (result, state) = f(Some(state), self);
2801 state_box.replace(state);
2802 self.next_frame.element_states.insert(
2803 key,
2804 ElementStateBox {
2805 inner: state_box,
2806 #[cfg(debug_assertions)]
2807 type_name,
2808 },
2809 );
2810 result
2811 } else {
2812 let (result, state) = f(None, self);
2813 self.next_frame.element_states.insert(
2814 key,
2815 ElementStateBox {
2816 inner: Box::new(Some(state)),
2817 #[cfg(debug_assertions)]
2818 type_name: std::any::type_name::<S>(),
2819 },
2820 );
2821 result
2822 }
2823 }
2824
2825 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2826 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2827 /// when the element is guaranteed to have an id.
2828 ///
2829 /// The first option means 'no ID provided'
2830 /// The second option means 'not yet initialized'
2831 pub fn with_optional_element_state<S, R>(
2832 &mut self,
2833 global_id: Option<&GlobalElementId>,
2834 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2835 ) -> R
2836 where
2837 S: 'static,
2838 {
2839 self.invalidator.debug_assert_paint_or_prepaint();
2840
2841 if let Some(global_id) = global_id {
2842 self.with_element_state(global_id, |state, cx| {
2843 let (result, state) = f(Some(state), cx);
2844 let state =
2845 state.expect("you must return some state when you pass some element id");
2846 (result, state)
2847 })
2848 } else {
2849 let (result, state) = f(None, self);
2850 debug_assert!(
2851 state.is_none(),
2852 "you must not return an element state when passing None for the global id"
2853 );
2854 result
2855 }
2856 }
2857
2858 /// Executes the given closure within the context of a tab group.
2859 #[inline]
2860 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2861 if let Some(index) = index {
2862 self.next_frame.tab_stops.begin_group(index);
2863 let result = f(self);
2864 self.next_frame.tab_stops.end_group();
2865 result
2866 } else {
2867 f(self)
2868 }
2869 }
2870
2871 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2872 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2873 /// with higher values being drawn on top.
2874 ///
2875 /// This method should only be called as part of the prepaint phase of element drawing.
2876 pub fn defer_draw(
2877 &mut self,
2878 element: AnyElement,
2879 absolute_offset: Point<Pixels>,
2880 priority: usize,
2881 ) {
2882 self.invalidator.debug_assert_prepaint();
2883 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2884 self.next_frame.deferred_draws.push(DeferredDraw {
2885 current_view: self.current_view(),
2886 parent_node,
2887 element_id_stack: self.element_id_stack.clone(),
2888 text_style_stack: self.text_style_stack.clone(),
2889 priority,
2890 element: Some(element),
2891 absolute_offset,
2892 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2893 paint_range: PaintIndex::default()..PaintIndex::default(),
2894 });
2895 }
2896
2897 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2898 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2899 /// for performance reasons.
2900 ///
2901 /// This method should only be called as part of the paint phase of element drawing.
2902 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2903 self.invalidator.debug_assert_paint();
2904
2905 let scale_factor = self.scale_factor();
2906 let content_mask = self.content_mask();
2907 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2908 if !clipped_bounds.is_empty() {
2909 self.next_frame
2910 .scene
2911 .push_layer(clipped_bounds.scale(scale_factor));
2912 }
2913
2914 let result = f(self);
2915
2916 if !clipped_bounds.is_empty() {
2917 self.next_frame.scene.pop_layer();
2918 }
2919
2920 result
2921 }
2922
2923 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2924 ///
2925 /// This method should only be called as part of the paint phase of element drawing.
2926 pub fn paint_shadows(
2927 &mut self,
2928 bounds: Bounds<Pixels>,
2929 corner_radii: Corners<Pixels>,
2930 shadows: &[BoxShadow],
2931 ) {
2932 self.invalidator.debug_assert_paint();
2933
2934 let scale_factor = self.scale_factor();
2935 let content_mask = self.content_mask();
2936 let opacity = self.element_opacity();
2937 for shadow in shadows {
2938 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2939 self.next_frame.scene.insert_primitive(Shadow {
2940 order: 0,
2941 blur_radius: shadow.blur_radius.scale(scale_factor),
2942 bounds: shadow_bounds.scale(scale_factor),
2943 content_mask: content_mask.scale(scale_factor),
2944 corner_radii: corner_radii.scale(scale_factor),
2945 color: shadow.color.opacity(opacity),
2946 });
2947 }
2948 }
2949
2950 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2951 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2952 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2953 ///
2954 /// This method should only be called as part of the paint phase of element drawing.
2955 ///
2956 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2957 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2958 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2959 pub fn paint_quad(&mut self, quad: PaintQuad) {
2960 self.invalidator.debug_assert_paint();
2961
2962 let scale_factor = self.scale_factor();
2963 let content_mask = self.content_mask();
2964 let opacity = self.element_opacity();
2965 self.next_frame.scene.insert_primitive(Quad {
2966 order: 0,
2967 bounds: quad.bounds.scale(scale_factor),
2968 content_mask: content_mask.scale(scale_factor),
2969 background: quad.background.opacity(opacity),
2970 border_color: quad.border_color.opacity(opacity),
2971 corner_radii: quad.corner_radii.scale(scale_factor),
2972 border_widths: quad.border_widths.scale(scale_factor),
2973 border_style: quad.border_style,
2974 });
2975 }
2976
2977 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2978 ///
2979 /// This method should only be called as part of the paint phase of element drawing.
2980 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2981 self.invalidator.debug_assert_paint();
2982
2983 let scale_factor = self.scale_factor();
2984 let content_mask = self.content_mask();
2985 let opacity = self.element_opacity();
2986 path.content_mask = content_mask;
2987 let color: Background = color.into();
2988 path.color = color.opacity(opacity);
2989 self.next_frame
2990 .scene
2991 .insert_primitive(path.scale(scale_factor));
2992 }
2993
2994 /// Paint an underline into the scene for the next frame at the current z-index.
2995 ///
2996 /// This method should only be called as part of the paint phase of element drawing.
2997 pub fn paint_underline(
2998 &mut self,
2999 origin: Point<Pixels>,
3000 width: Pixels,
3001 style: &UnderlineStyle,
3002 ) {
3003 self.invalidator.debug_assert_paint();
3004
3005 let scale_factor = self.scale_factor();
3006 let height = if style.wavy {
3007 style.thickness * 3.
3008 } else {
3009 style.thickness
3010 };
3011 let bounds = Bounds {
3012 origin,
3013 size: size(width, height),
3014 };
3015 let content_mask = self.content_mask();
3016 let element_opacity = self.element_opacity();
3017
3018 self.next_frame.scene.insert_primitive(Underline {
3019 order: 0,
3020 pad: 0,
3021 bounds: bounds.scale(scale_factor),
3022 content_mask: content_mask.scale(scale_factor),
3023 color: style.color.unwrap_or_default().opacity(element_opacity),
3024 thickness: style.thickness.scale(scale_factor),
3025 wavy: if style.wavy { 1 } else { 0 },
3026 });
3027 }
3028
3029 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3030 ///
3031 /// This method should only be called as part of the paint phase of element drawing.
3032 pub fn paint_strikethrough(
3033 &mut self,
3034 origin: Point<Pixels>,
3035 width: Pixels,
3036 style: &StrikethroughStyle,
3037 ) {
3038 self.invalidator.debug_assert_paint();
3039
3040 let scale_factor = self.scale_factor();
3041 let height = style.thickness;
3042 let bounds = Bounds {
3043 origin,
3044 size: size(width, height),
3045 };
3046 let content_mask = self.content_mask();
3047 let opacity = self.element_opacity();
3048
3049 self.next_frame.scene.insert_primitive(Underline {
3050 order: 0,
3051 pad: 0,
3052 bounds: bounds.scale(scale_factor),
3053 content_mask: content_mask.scale(scale_factor),
3054 thickness: style.thickness.scale(scale_factor),
3055 color: style.color.unwrap_or_default().opacity(opacity),
3056 wavy: 0,
3057 });
3058 }
3059
3060 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3061 ///
3062 /// The y component of the origin is the baseline of the glyph.
3063 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3064 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3065 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3066 ///
3067 /// This method should only be called as part of the paint phase of element drawing.
3068 pub fn paint_glyph(
3069 &mut self,
3070 origin: Point<Pixels>,
3071 font_id: FontId,
3072 glyph_id: GlyphId,
3073 font_size: Pixels,
3074 color: Hsla,
3075 ) -> Result<()> {
3076 self.invalidator.debug_assert_paint();
3077
3078 let element_opacity = self.element_opacity();
3079 let scale_factor = self.scale_factor();
3080 let glyph_origin = origin.scale(scale_factor);
3081
3082 let subpixel_variant = Point {
3083 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3084 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3085 };
3086 let params = RenderGlyphParams {
3087 font_id,
3088 glyph_id,
3089 font_size,
3090 subpixel_variant,
3091 scale_factor,
3092 is_emoji: false,
3093 };
3094
3095 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3096 if !raster_bounds.is_zero() {
3097 let tile = self
3098 .sprite_atlas
3099 .get_or_insert_with(¶ms.clone().into(), &mut || {
3100 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3101 Ok(Some((size, Cow::Owned(bytes))))
3102 })?
3103 .expect("Callback above only errors or returns Some");
3104 let bounds = Bounds {
3105 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3106 size: tile.bounds.size.map(Into::into),
3107 };
3108 let content_mask = self.content_mask().scale(scale_factor);
3109 self.next_frame.scene.insert_primitive(MonochromeSprite {
3110 order: 0,
3111 pad: 0,
3112 bounds,
3113 content_mask,
3114 color: color.opacity(element_opacity),
3115 tile,
3116 transformation: TransformationMatrix::unit(),
3117 });
3118 }
3119 Ok(())
3120 }
3121
3122 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3123 ///
3124 /// The y component of the origin is the baseline of the glyph.
3125 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3126 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3127 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3128 ///
3129 /// This method should only be called as part of the paint phase of element drawing.
3130 pub fn paint_emoji(
3131 &mut self,
3132 origin: Point<Pixels>,
3133 font_id: FontId,
3134 glyph_id: GlyphId,
3135 font_size: Pixels,
3136 ) -> Result<()> {
3137 self.invalidator.debug_assert_paint();
3138
3139 let scale_factor = self.scale_factor();
3140 let glyph_origin = origin.scale(scale_factor);
3141 let params = RenderGlyphParams {
3142 font_id,
3143 glyph_id,
3144 font_size,
3145 // We don't render emojis with subpixel variants.
3146 subpixel_variant: Default::default(),
3147 scale_factor,
3148 is_emoji: true,
3149 };
3150
3151 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3152 if !raster_bounds.is_zero() {
3153 let tile = self
3154 .sprite_atlas
3155 .get_or_insert_with(¶ms.clone().into(), &mut || {
3156 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3157 Ok(Some((size, Cow::Owned(bytes))))
3158 })?
3159 .expect("Callback above only errors or returns Some");
3160
3161 let bounds = Bounds {
3162 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3163 size: tile.bounds.size.map(Into::into),
3164 };
3165 let content_mask = self.content_mask().scale(scale_factor);
3166 let opacity = self.element_opacity();
3167
3168 self.next_frame.scene.insert_primitive(PolychromeSprite {
3169 order: 0,
3170 pad: 0,
3171 grayscale: false,
3172 bounds,
3173 corner_radii: Default::default(),
3174 content_mask,
3175 tile,
3176 opacity,
3177 });
3178 }
3179 Ok(())
3180 }
3181
3182 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3183 ///
3184 /// This method should only be called as part of the paint phase of element drawing.
3185 pub fn paint_svg(
3186 &mut self,
3187 bounds: Bounds<Pixels>,
3188 path: SharedString,
3189 mut data: Option<&[u8]>,
3190 transformation: TransformationMatrix,
3191 color: Hsla,
3192 cx: &App,
3193 ) -> Result<()> {
3194 self.invalidator.debug_assert_paint();
3195
3196 let element_opacity = self.element_opacity();
3197 let scale_factor = self.scale_factor();
3198
3199 let bounds = bounds.scale(scale_factor);
3200 let params = RenderSvgParams {
3201 path,
3202 size: bounds.size.map(|pixels| {
3203 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3204 }),
3205 };
3206
3207 let Some(tile) =
3208 self.sprite_atlas
3209 .get_or_insert_with(¶ms.clone().into(), &mut || {
3210 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3211 else {
3212 return Ok(None);
3213 };
3214 Ok(Some((size, Cow::Owned(bytes))))
3215 })?
3216 else {
3217 return Ok(());
3218 };
3219 let content_mask = self.content_mask().scale(scale_factor);
3220 let svg_bounds = Bounds {
3221 origin: bounds.center()
3222 - Point::new(
3223 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3224 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3225 ),
3226 size: tile
3227 .bounds
3228 .size
3229 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3230 };
3231
3232 self.next_frame.scene.insert_primitive(MonochromeSprite {
3233 order: 0,
3234 pad: 0,
3235 bounds: svg_bounds
3236 .map_origin(|origin| origin.round())
3237 .map_size(|size| size.ceil()),
3238 content_mask,
3239 color: color.opacity(element_opacity),
3240 tile,
3241 transformation,
3242 });
3243
3244 Ok(())
3245 }
3246
3247 /// Paint an image into the scene for the next frame at the current z-index.
3248 /// This method will panic if the frame_index is not valid
3249 ///
3250 /// This method should only be called as part of the paint phase of element drawing.
3251 pub fn paint_image(
3252 &mut self,
3253 bounds: Bounds<Pixels>,
3254 corner_radii: Corners<Pixels>,
3255 data: Arc<RenderImage>,
3256 frame_index: usize,
3257 grayscale: bool,
3258 ) -> Result<()> {
3259 self.invalidator.debug_assert_paint();
3260
3261 let scale_factor = self.scale_factor();
3262 let bounds = bounds.scale(scale_factor);
3263 let params = RenderImageParams {
3264 image_id: data.id,
3265 frame_index,
3266 };
3267
3268 let tile = self
3269 .sprite_atlas
3270 .get_or_insert_with(¶ms.into(), &mut || {
3271 Ok(Some((
3272 data.size(frame_index),
3273 Cow::Borrowed(
3274 data.as_bytes(frame_index)
3275 .expect("It's the caller's job to pass a valid frame index"),
3276 ),
3277 )))
3278 })?
3279 .expect("Callback above only returns Some");
3280 let content_mask = self.content_mask().scale(scale_factor);
3281 let corner_radii = corner_radii.scale(scale_factor);
3282 let opacity = self.element_opacity();
3283
3284 self.next_frame.scene.insert_primitive(PolychromeSprite {
3285 order: 0,
3286 pad: 0,
3287 grayscale,
3288 bounds: bounds
3289 .map_origin(|origin| origin.floor())
3290 .map_size(|size| size.ceil()),
3291 content_mask,
3292 corner_radii,
3293 tile,
3294 opacity,
3295 });
3296 Ok(())
3297 }
3298
3299 /// Paint a surface into the scene for the next frame at the current z-index.
3300 ///
3301 /// This method should only be called as part of the paint phase of element drawing.
3302 #[cfg(target_os = "macos")]
3303 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3304 use crate::PaintSurface;
3305
3306 self.invalidator.debug_assert_paint();
3307
3308 let scale_factor = self.scale_factor();
3309 let bounds = bounds.scale(scale_factor);
3310 let content_mask = self.content_mask().scale(scale_factor);
3311 self.next_frame.scene.insert_primitive(PaintSurface {
3312 order: 0,
3313 bounds,
3314 content_mask,
3315 image_buffer,
3316 });
3317 }
3318
3319 /// Removes an image from the sprite atlas.
3320 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3321 for frame_index in 0..data.frame_count() {
3322 let params = RenderImageParams {
3323 image_id: data.id,
3324 frame_index,
3325 };
3326
3327 self.sprite_atlas.remove(¶ms.clone().into());
3328 }
3329
3330 Ok(())
3331 }
3332
3333 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3334 /// layout is being requested, along with the layout ids of any children. This method is called during
3335 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3336 ///
3337 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3338 #[must_use]
3339 pub fn request_layout(
3340 &mut self,
3341 style: Style,
3342 children: impl IntoIterator<Item = LayoutId>,
3343 cx: &mut App,
3344 ) -> LayoutId {
3345 self.invalidator.debug_assert_prepaint();
3346
3347 cx.layout_id_buffer.clear();
3348 cx.layout_id_buffer.extend(children);
3349 let rem_size = self.rem_size();
3350 let scale_factor = self.scale_factor();
3351
3352 self.layout_engine.as_mut().unwrap().request_layout(
3353 style,
3354 rem_size,
3355 scale_factor,
3356 &cx.layout_id_buffer,
3357 )
3358 }
3359
3360 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3361 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3362 /// determine the element's size. One place this is used internally is when measuring text.
3363 ///
3364 /// The given closure is invoked at layout time with the known dimensions and available space and
3365 /// returns a `Size`.
3366 ///
3367 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3368 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3369 where
3370 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3371 + 'static,
3372 {
3373 self.invalidator.debug_assert_prepaint();
3374
3375 let rem_size = self.rem_size();
3376 let scale_factor = self.scale_factor();
3377 self.layout_engine
3378 .as_mut()
3379 .unwrap()
3380 .request_measured_layout(style, rem_size, scale_factor, measure)
3381 }
3382
3383 /// Compute the layout for the given id within the given available space.
3384 /// This method is called for its side effect, typically by the framework prior to painting.
3385 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3386 ///
3387 /// This method should only be called as part of the prepaint phase of element drawing.
3388 pub fn compute_layout(
3389 &mut self,
3390 layout_id: LayoutId,
3391 available_space: Size<AvailableSpace>,
3392 cx: &mut App,
3393 ) {
3394 self.invalidator.debug_assert_prepaint();
3395
3396 let mut layout_engine = self.layout_engine.take().unwrap();
3397 layout_engine.compute_layout(layout_id, available_space, self, cx);
3398 self.layout_engine = Some(layout_engine);
3399 }
3400
3401 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3402 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3403 ///
3404 /// This method should only be called as part of element drawing.
3405 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3406 self.invalidator.debug_assert_prepaint();
3407
3408 let scale_factor = self.scale_factor();
3409 let mut bounds = self
3410 .layout_engine
3411 .as_mut()
3412 .unwrap()
3413 .layout_bounds(layout_id, scale_factor)
3414 .map(Into::into);
3415 bounds.origin += self.element_offset();
3416 bounds
3417 }
3418
3419 /// This method should be called during `prepaint`. You can use
3420 /// the returned [Hitbox] during `paint` or in an event handler
3421 /// to determine whether the inserted hitbox was the topmost.
3422 ///
3423 /// This method should only be called as part of the prepaint phase of element drawing.
3424 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3425 self.invalidator.debug_assert_prepaint();
3426
3427 let content_mask = self.content_mask();
3428 let mut id = self.next_hitbox_id;
3429 self.next_hitbox_id = self.next_hitbox_id.next();
3430 let hitbox = Hitbox {
3431 id,
3432 bounds,
3433 content_mask,
3434 behavior,
3435 };
3436 self.next_frame.hitboxes.push(hitbox.clone());
3437 hitbox
3438 }
3439
3440 /// Set a hitbox which will act as a control area of the platform window.
3441 ///
3442 /// This method should only be called as part of the paint phase of element drawing.
3443 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3444 self.invalidator.debug_assert_paint();
3445 self.next_frame.window_control_hitboxes.push((area, hitbox));
3446 }
3447
3448 /// Sets the key context for the current element. This context will be used to translate
3449 /// keybindings into actions.
3450 ///
3451 /// This method should only be called as part of the paint phase of element drawing.
3452 pub fn set_key_context(&mut self, context: KeyContext) {
3453 self.invalidator.debug_assert_paint();
3454 self.next_frame.dispatch_tree.set_key_context(context);
3455 }
3456
3457 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3458 /// and keyboard event dispatch for the element.
3459 ///
3460 /// This method should only be called as part of the prepaint phase of element drawing.
3461 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3462 self.invalidator.debug_assert_prepaint();
3463 if focus_handle.is_focused(self) {
3464 self.next_frame.focus = Some(focus_handle.id);
3465 }
3466 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3467 }
3468
3469 /// Sets the view id for the current element, which will be used to manage view caching.
3470 ///
3471 /// This method should only be called as part of element prepaint. We plan on removing this
3472 /// method eventually when we solve some issues that require us to construct editor elements
3473 /// directly instead of always using editors via views.
3474 pub fn set_view_id(&mut self, view_id: EntityId) {
3475 self.invalidator.debug_assert_prepaint();
3476 self.next_frame.dispatch_tree.set_view_id(view_id);
3477 }
3478
3479 /// Get the entity ID for the currently rendering view
3480 pub fn current_view(&self) -> EntityId {
3481 self.invalidator.debug_assert_paint_or_prepaint();
3482 self.rendered_entity_stack.last().copied().unwrap()
3483 }
3484
3485 pub(crate) fn with_rendered_view<R>(
3486 &mut self,
3487 id: EntityId,
3488 f: impl FnOnce(&mut Self) -> R,
3489 ) -> R {
3490 self.rendered_entity_stack.push(id);
3491 let result = f(self);
3492 self.rendered_entity_stack.pop();
3493 result
3494 }
3495
3496 /// Executes the provided function with the specified image cache.
3497 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3498 where
3499 F: FnOnce(&mut Self) -> R,
3500 {
3501 if let Some(image_cache) = image_cache {
3502 self.image_cache_stack.push(image_cache);
3503 let result = f(self);
3504 self.image_cache_stack.pop();
3505 result
3506 } else {
3507 f(self)
3508 }
3509 }
3510
3511 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3512 /// platform to receive textual input with proper integration with concerns such
3513 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3514 /// rendered.
3515 ///
3516 /// This method should only be called as part of the paint phase of element drawing.
3517 ///
3518 /// [element_input_handler]: crate::ElementInputHandler
3519 pub fn handle_input(
3520 &mut self,
3521 focus_handle: &FocusHandle,
3522 input_handler: impl InputHandler,
3523 cx: &App,
3524 ) {
3525 self.invalidator.debug_assert_paint();
3526
3527 if focus_handle.is_focused(self) {
3528 let cx = self.to_async(cx);
3529 self.next_frame
3530 .input_handlers
3531 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3532 }
3533 }
3534
3535 /// Register a mouse event listener on the window for the next frame. The type of event
3536 /// is determined by the first parameter of the given listener. When the next frame is rendered
3537 /// the listener will be cleared.
3538 ///
3539 /// This method should only be called as part of the paint phase of element drawing.
3540 pub fn on_mouse_event<Event: MouseEvent>(
3541 &mut self,
3542 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3543 ) {
3544 self.invalidator.debug_assert_paint();
3545
3546 self.next_frame.mouse_listeners.push(Some(Box::new(
3547 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3548 if let Some(event) = event.downcast_ref() {
3549 listener(event, phase, window, cx)
3550 }
3551 },
3552 )));
3553 }
3554
3555 /// Register a key event listener on this node for the next frame. The type of event
3556 /// is determined by the first parameter of the given listener. When the next frame is rendered
3557 /// the listener will be cleared.
3558 ///
3559 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3560 /// a specific need to register a listener yourself.
3561 ///
3562 /// This method should only be called as part of the paint phase of element drawing.
3563 pub fn on_key_event<Event: KeyEvent>(
3564 &mut self,
3565 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3566 ) {
3567 self.invalidator.debug_assert_paint();
3568
3569 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3570 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3571 if let Some(event) = event.downcast_ref::<Event>() {
3572 listener(event, phase, window, cx)
3573 }
3574 },
3575 ));
3576 }
3577
3578 /// Register a modifiers changed event listener on the window for the next frame.
3579 ///
3580 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3581 /// a specific need to register a global listener.
3582 ///
3583 /// This method should only be called as part of the paint phase of element drawing.
3584 pub fn on_modifiers_changed(
3585 &mut self,
3586 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3587 ) {
3588 self.invalidator.debug_assert_paint();
3589
3590 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3591 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3592 listener(event, window, cx)
3593 },
3594 ));
3595 }
3596
3597 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3598 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3599 /// Returns a subscription and persists until the subscription is dropped.
3600 pub fn on_focus_in(
3601 &mut self,
3602 handle: &FocusHandle,
3603 cx: &mut App,
3604 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3605 ) -> Subscription {
3606 let focus_id = handle.id;
3607 let (subscription, activate) =
3608 self.new_focus_listener(Box::new(move |event, window, cx| {
3609 if event.is_focus_in(focus_id) {
3610 listener(window, cx);
3611 }
3612 true
3613 }));
3614 cx.defer(move |_| activate());
3615 subscription
3616 }
3617
3618 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3619 /// Returns a subscription and persists until the subscription is dropped.
3620 pub fn on_focus_out(
3621 &mut self,
3622 handle: &FocusHandle,
3623 cx: &mut App,
3624 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3625 ) -> Subscription {
3626 let focus_id = handle.id;
3627 let (subscription, activate) =
3628 self.new_focus_listener(Box::new(move |event, window, cx| {
3629 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3630 && event.is_focus_out(focus_id)
3631 {
3632 let event = FocusOutEvent {
3633 blurred: WeakFocusHandle {
3634 id: blurred_id,
3635 handles: Arc::downgrade(&cx.focus_handles),
3636 },
3637 };
3638 listener(event, window, cx)
3639 }
3640 true
3641 }));
3642 cx.defer(move |_| activate());
3643 subscription
3644 }
3645
3646 fn reset_cursor_style(&self, cx: &mut App) {
3647 // Set the cursor only if we're the active window.
3648 if self.is_window_hovered() {
3649 let style = self
3650 .rendered_frame
3651 .cursor_style(self)
3652 .unwrap_or(CursorStyle::Arrow);
3653 cx.platform.set_cursor_style(style);
3654 }
3655 }
3656
3657 /// Dispatch a given keystroke as though the user had typed it.
3658 /// You can create a keystroke with Keystroke::parse("").
3659 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3660 let keystroke = keystroke.with_simulated_ime();
3661 let result = self.dispatch_event(
3662 PlatformInput::KeyDown(KeyDownEvent {
3663 keystroke: keystroke.clone(),
3664 is_held: false,
3665 prefer_character_input: false,
3666 }),
3667 cx,
3668 );
3669 if !result.propagate {
3670 return true;
3671 }
3672
3673 if let Some(input) = keystroke.key_char
3674 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3675 {
3676 input_handler.dispatch_input(&input, self, cx);
3677 self.platform_window.set_input_handler(input_handler);
3678 return true;
3679 }
3680
3681 false
3682 }
3683
3684 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3685 /// binding for the action (last binding added to the keymap).
3686 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3687 self.highest_precedence_binding_for_action(action)
3688 .map(|binding| {
3689 binding
3690 .keystrokes()
3691 .iter()
3692 .map(ToString::to_string)
3693 .collect::<Vec<_>>()
3694 .join(" ")
3695 })
3696 .unwrap_or_else(|| action.name().to_string())
3697 }
3698
3699 /// Dispatch a mouse or keyboard event on the window.
3700 #[profiling::function]
3701 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3702 self.last_input_timestamp.set(Instant::now());
3703
3704 // Track whether this input was keyboard-based for focus-visible styling
3705 self.last_input_modality = match &event {
3706 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3707 InputModality::Keyboard
3708 }
3709 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3710 _ => self.last_input_modality,
3711 };
3712
3713 // Handlers may set this to false by calling `stop_propagation`.
3714 cx.propagate_event = true;
3715 // Handlers may set this to true by calling `prevent_default`.
3716 self.default_prevented = false;
3717
3718 let event = match event {
3719 // Track the mouse position with our own state, since accessing the platform
3720 // API for the mouse position can only occur on the main thread.
3721 PlatformInput::MouseMove(mouse_move) => {
3722 self.mouse_position = mouse_move.position;
3723 self.modifiers = mouse_move.modifiers;
3724 PlatformInput::MouseMove(mouse_move)
3725 }
3726 PlatformInput::MouseDown(mouse_down) => {
3727 self.mouse_position = mouse_down.position;
3728 self.modifiers = mouse_down.modifiers;
3729 PlatformInput::MouseDown(mouse_down)
3730 }
3731 PlatformInput::MouseUp(mouse_up) => {
3732 self.mouse_position = mouse_up.position;
3733 self.modifiers = mouse_up.modifiers;
3734 PlatformInput::MouseUp(mouse_up)
3735 }
3736 PlatformInput::MousePressure(mouse_pressure) => {
3737 PlatformInput::MousePressure(mouse_pressure)
3738 }
3739 PlatformInput::MouseExited(mouse_exited) => {
3740 self.modifiers = mouse_exited.modifiers;
3741 PlatformInput::MouseExited(mouse_exited)
3742 }
3743 PlatformInput::ModifiersChanged(modifiers_changed) => {
3744 self.modifiers = modifiers_changed.modifiers;
3745 self.capslock = modifiers_changed.capslock;
3746 PlatformInput::ModifiersChanged(modifiers_changed)
3747 }
3748 PlatformInput::ScrollWheel(scroll_wheel) => {
3749 self.mouse_position = scroll_wheel.position;
3750 self.modifiers = scroll_wheel.modifiers;
3751 PlatformInput::ScrollWheel(scroll_wheel)
3752 }
3753 // Translate dragging and dropping of external files from the operating system
3754 // to internal drag and drop events.
3755 PlatformInput::FileDrop(file_drop) => match file_drop {
3756 FileDropEvent::Entered { position, paths } => {
3757 self.mouse_position = position;
3758 if cx.active_drag.is_none() {
3759 cx.active_drag = Some(AnyDrag {
3760 value: Arc::new(paths.clone()),
3761 view: cx.new(|_| paths).into(),
3762 cursor_offset: position,
3763 cursor_style: None,
3764 });
3765 }
3766 PlatformInput::MouseMove(MouseMoveEvent {
3767 position,
3768 pressed_button: Some(MouseButton::Left),
3769 modifiers: Modifiers::default(),
3770 })
3771 }
3772 FileDropEvent::Pending { position } => {
3773 self.mouse_position = position;
3774 PlatformInput::MouseMove(MouseMoveEvent {
3775 position,
3776 pressed_button: Some(MouseButton::Left),
3777 modifiers: Modifiers::default(),
3778 })
3779 }
3780 FileDropEvent::Submit { position } => {
3781 cx.activate(true);
3782 self.mouse_position = position;
3783 PlatformInput::MouseUp(MouseUpEvent {
3784 button: MouseButton::Left,
3785 position,
3786 modifiers: Modifiers::default(),
3787 click_count: 1,
3788 })
3789 }
3790 FileDropEvent::Exited => {
3791 cx.active_drag.take();
3792 PlatformInput::FileDrop(FileDropEvent::Exited)
3793 }
3794 },
3795 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3796 };
3797
3798 if let Some(any_mouse_event) = event.mouse_event() {
3799 self.dispatch_mouse_event(any_mouse_event, cx);
3800 } else if let Some(any_key_event) = event.keyboard_event() {
3801 self.dispatch_key_event(any_key_event, cx);
3802 }
3803
3804 DispatchEventResult {
3805 propagate: cx.propagate_event,
3806 default_prevented: self.default_prevented,
3807 }
3808 }
3809
3810 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3811 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3812 if hit_test != self.mouse_hit_test {
3813 self.mouse_hit_test = hit_test;
3814 self.reset_cursor_style(cx);
3815 }
3816
3817 #[cfg(any(feature = "inspector", debug_assertions))]
3818 if self.is_inspector_picking(cx) {
3819 self.handle_inspector_mouse_event(event, cx);
3820 // When inspector is picking, all other mouse handling is skipped.
3821 return;
3822 }
3823
3824 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3825
3826 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3827 // special purposes, such as detecting events outside of a given Bounds.
3828 for listener in &mut mouse_listeners {
3829 let listener = listener.as_mut().unwrap();
3830 listener(event, DispatchPhase::Capture, self, cx);
3831 if !cx.propagate_event {
3832 break;
3833 }
3834 }
3835
3836 // Bubble phase, where most normal handlers do their work.
3837 if cx.propagate_event {
3838 for listener in mouse_listeners.iter_mut().rev() {
3839 let listener = listener.as_mut().unwrap();
3840 listener(event, DispatchPhase::Bubble, self, cx);
3841 if !cx.propagate_event {
3842 break;
3843 }
3844 }
3845 }
3846
3847 self.rendered_frame.mouse_listeners = mouse_listeners;
3848
3849 if cx.has_active_drag() {
3850 if event.is::<MouseMoveEvent>() {
3851 // If this was a mouse move event, redraw the window so that the
3852 // active drag can follow the mouse cursor.
3853 self.refresh();
3854 } else if event.is::<MouseUpEvent>() {
3855 // If this was a mouse up event, cancel the active drag and redraw
3856 // the window.
3857 cx.active_drag = None;
3858 self.refresh();
3859 }
3860 }
3861 }
3862
3863 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3864 if self.invalidator.is_dirty() {
3865 self.draw(cx).clear();
3866 }
3867
3868 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3869 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3870
3871 let mut keystroke: Option<Keystroke> = None;
3872
3873 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3874 if event.modifiers.number_of_modifiers() == 0
3875 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3876 && !self.pending_modifier.saw_keystroke
3877 {
3878 let key = match self.pending_modifier.modifiers {
3879 modifiers if modifiers.shift => Some("shift"),
3880 modifiers if modifiers.control => Some("control"),
3881 modifiers if modifiers.alt => Some("alt"),
3882 modifiers if modifiers.platform => Some("platform"),
3883 modifiers if modifiers.function => Some("function"),
3884 _ => None,
3885 };
3886 if let Some(key) = key {
3887 keystroke = Some(Keystroke {
3888 key: key.to_string(),
3889 key_char: None,
3890 modifiers: Modifiers::default(),
3891 });
3892 }
3893 }
3894
3895 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3896 && event.modifiers.number_of_modifiers() == 1
3897 {
3898 self.pending_modifier.saw_keystroke = false
3899 }
3900 self.pending_modifier.modifiers = event.modifiers
3901 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3902 self.pending_modifier.saw_keystroke = true;
3903 keystroke = Some(key_down_event.keystroke.clone());
3904 }
3905
3906 let Some(keystroke) = keystroke else {
3907 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3908 return;
3909 };
3910
3911 cx.propagate_event = true;
3912 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3913 if !cx.propagate_event {
3914 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3915 return;
3916 }
3917
3918 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3919 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3920 currently_pending = PendingInput::default();
3921 }
3922
3923 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3924 currently_pending.keystrokes,
3925 keystroke,
3926 &dispatch_path,
3927 );
3928
3929 if !match_result.to_replay.is_empty() {
3930 self.replay_pending_input(match_result.to_replay, cx);
3931 cx.propagate_event = true;
3932 }
3933
3934 if !match_result.pending.is_empty() {
3935 currently_pending.timer.take();
3936 currently_pending.keystrokes = match_result.pending;
3937 currently_pending.focus = self.focus;
3938
3939 let text_input_requires_timeout = event
3940 .downcast_ref::<KeyDownEvent>()
3941 .filter(|key_down| key_down.keystroke.key_char.is_some())
3942 .and_then(|_| self.platform_window.take_input_handler())
3943 .map_or(false, |mut input_handler| {
3944 let accepts = input_handler.accepts_text_input(self, cx);
3945 self.platform_window.set_input_handler(input_handler);
3946 accepts
3947 });
3948
3949 currently_pending.needs_timeout |=
3950 match_result.pending_has_binding || text_input_requires_timeout;
3951
3952 if currently_pending.needs_timeout {
3953 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3954 cx.background_executor.timer(Duration::from_secs(1)).await;
3955 cx.update(move |window, cx| {
3956 let Some(currently_pending) = window
3957 .pending_input
3958 .take()
3959 .filter(|pending| pending.focus == window.focus)
3960 else {
3961 return;
3962 };
3963
3964 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3965 let dispatch_path =
3966 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3967
3968 let to_replay = window
3969 .rendered_frame
3970 .dispatch_tree
3971 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3972
3973 window.pending_input_changed(cx);
3974 window.replay_pending_input(to_replay, cx)
3975 })
3976 .log_err();
3977 }));
3978 } else {
3979 currently_pending.timer = None;
3980 }
3981 self.pending_input = Some(currently_pending);
3982 self.pending_input_changed(cx);
3983 cx.propagate_event = false;
3984 return;
3985 }
3986
3987 let skip_bindings = event
3988 .downcast_ref::<KeyDownEvent>()
3989 .filter(|key_down_event| key_down_event.prefer_character_input)
3990 .map(|_| {
3991 self.platform_window
3992 .take_input_handler()
3993 .map_or(false, |mut input_handler| {
3994 let accepts = input_handler.accepts_text_input(self, cx);
3995 self.platform_window.set_input_handler(input_handler);
3996 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3997 // we prefer the text input over bindings.
3998 accepts
3999 })
4000 })
4001 .unwrap_or(false);
4002
4003 if !skip_bindings {
4004 for binding in match_result.bindings {
4005 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4006 if !cx.propagate_event {
4007 self.dispatch_keystroke_observers(
4008 event,
4009 Some(binding.action),
4010 match_result.context_stack,
4011 cx,
4012 );
4013 self.pending_input_changed(cx);
4014 return;
4015 }
4016 }
4017 }
4018
4019 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4020 self.pending_input_changed(cx);
4021 }
4022
4023 fn finish_dispatch_key_event(
4024 &mut self,
4025 event: &dyn Any,
4026 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4027 context_stack: Vec<KeyContext>,
4028 cx: &mut App,
4029 ) {
4030 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4031 if !cx.propagate_event {
4032 return;
4033 }
4034
4035 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4036 if !cx.propagate_event {
4037 return;
4038 }
4039
4040 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4041 }
4042
4043 pub(crate) fn pending_input_changed(&mut self, cx: &mut App) {
4044 self.pending_input_observers
4045 .clone()
4046 .retain(&(), |callback| callback(self, cx));
4047 }
4048
4049 fn dispatch_key_down_up_event(
4050 &mut self,
4051 event: &dyn Any,
4052 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4053 cx: &mut App,
4054 ) {
4055 // Capture phase
4056 for node_id in dispatch_path {
4057 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4058
4059 for key_listener in node.key_listeners.clone() {
4060 key_listener(event, DispatchPhase::Capture, self, cx);
4061 if !cx.propagate_event {
4062 return;
4063 }
4064 }
4065 }
4066
4067 // Bubble phase
4068 for node_id in dispatch_path.iter().rev() {
4069 // Handle low level key events
4070 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4071 for key_listener in node.key_listeners.clone() {
4072 key_listener(event, DispatchPhase::Bubble, self, cx);
4073 if !cx.propagate_event {
4074 return;
4075 }
4076 }
4077 }
4078 }
4079
4080 fn dispatch_modifiers_changed_event(
4081 &mut self,
4082 event: &dyn Any,
4083 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4084 cx: &mut App,
4085 ) {
4086 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4087 return;
4088 };
4089 for node_id in dispatch_path.iter().rev() {
4090 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4091 for listener in node.modifiers_changed_listeners.clone() {
4092 listener(event, self, cx);
4093 if !cx.propagate_event {
4094 return;
4095 }
4096 }
4097 }
4098 }
4099
4100 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4101 pub fn has_pending_keystrokes(&self) -> bool {
4102 self.pending_input.is_some()
4103 }
4104
4105 pub(crate) fn clear_pending_keystrokes(&mut self) {
4106 self.pending_input.take();
4107 }
4108
4109 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4110 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4111 self.pending_input
4112 .as_ref()
4113 .map(|pending_input| pending_input.keystrokes.as_slice())
4114 }
4115
4116 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4117 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4118 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4119
4120 'replay: for replay in replays {
4121 let event = KeyDownEvent {
4122 keystroke: replay.keystroke.clone(),
4123 is_held: false,
4124 prefer_character_input: true,
4125 };
4126
4127 cx.propagate_event = true;
4128 for binding in replay.bindings {
4129 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4130 if !cx.propagate_event {
4131 self.dispatch_keystroke_observers(
4132 &event,
4133 Some(binding.action),
4134 Vec::default(),
4135 cx,
4136 );
4137 continue 'replay;
4138 }
4139 }
4140
4141 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4142 if !cx.propagate_event {
4143 continue 'replay;
4144 }
4145 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4146 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4147 {
4148 input_handler.dispatch_input(&input, self, cx);
4149 self.platform_window.set_input_handler(input_handler)
4150 }
4151 }
4152 }
4153
4154 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4155 focus_id
4156 .and_then(|focus_id| {
4157 self.rendered_frame
4158 .dispatch_tree
4159 .focusable_node_id(focus_id)
4160 })
4161 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4162 }
4163
4164 fn dispatch_action_on_node(
4165 &mut self,
4166 node_id: DispatchNodeId,
4167 action: &dyn Action,
4168 cx: &mut App,
4169 ) {
4170 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4171
4172 // Capture phase for global actions.
4173 cx.propagate_event = true;
4174 if let Some(mut global_listeners) = cx
4175 .global_action_listeners
4176 .remove(&action.as_any().type_id())
4177 {
4178 for listener in &global_listeners {
4179 listener(action.as_any(), DispatchPhase::Capture, cx);
4180 if !cx.propagate_event {
4181 break;
4182 }
4183 }
4184
4185 global_listeners.extend(
4186 cx.global_action_listeners
4187 .remove(&action.as_any().type_id())
4188 .unwrap_or_default(),
4189 );
4190
4191 cx.global_action_listeners
4192 .insert(action.as_any().type_id(), global_listeners);
4193 }
4194
4195 if !cx.propagate_event {
4196 return;
4197 }
4198
4199 // Capture phase for window actions.
4200 for node_id in &dispatch_path {
4201 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4202 for DispatchActionListener {
4203 action_type,
4204 listener,
4205 } in node.action_listeners.clone()
4206 {
4207 let any_action = action.as_any();
4208 if action_type == any_action.type_id() {
4209 listener(any_action, DispatchPhase::Capture, self, cx);
4210
4211 if !cx.propagate_event {
4212 return;
4213 }
4214 }
4215 }
4216 }
4217
4218 // Bubble phase for window actions.
4219 for node_id in dispatch_path.iter().rev() {
4220 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4221 for DispatchActionListener {
4222 action_type,
4223 listener,
4224 } in node.action_listeners.clone()
4225 {
4226 let any_action = action.as_any();
4227 if action_type == any_action.type_id() {
4228 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4229 listener(any_action, DispatchPhase::Bubble, self, cx);
4230
4231 if !cx.propagate_event {
4232 return;
4233 }
4234 }
4235 }
4236 }
4237
4238 // Bubble phase for global actions.
4239 if let Some(mut global_listeners) = cx
4240 .global_action_listeners
4241 .remove(&action.as_any().type_id())
4242 {
4243 for listener in global_listeners.iter().rev() {
4244 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4245
4246 listener(action.as_any(), DispatchPhase::Bubble, cx);
4247 if !cx.propagate_event {
4248 break;
4249 }
4250 }
4251
4252 global_listeners.extend(
4253 cx.global_action_listeners
4254 .remove(&action.as_any().type_id())
4255 .unwrap_or_default(),
4256 );
4257
4258 cx.global_action_listeners
4259 .insert(action.as_any().type_id(), global_listeners);
4260 }
4261 }
4262
4263 /// Register the given handler to be invoked whenever the global of the given type
4264 /// is updated.
4265 pub fn observe_global<G: Global>(
4266 &mut self,
4267 cx: &mut App,
4268 f: impl Fn(&mut Window, &mut App) + 'static,
4269 ) -> Subscription {
4270 let window_handle = self.handle;
4271 let (subscription, activate) = cx.global_observers.insert(
4272 TypeId::of::<G>(),
4273 Box::new(move |cx| {
4274 window_handle
4275 .update(cx, |_, window, cx| f(window, cx))
4276 .is_ok()
4277 }),
4278 );
4279 cx.defer(move |_| activate());
4280 subscription
4281 }
4282
4283 /// Focus the current window and bring it to the foreground at the platform level.
4284 pub fn activate_window(&self) {
4285 self.platform_window.activate();
4286 }
4287
4288 /// Minimize the current window at the platform level.
4289 pub fn minimize_window(&self) {
4290 self.platform_window.minimize();
4291 }
4292
4293 /// Toggle full screen status on the current window at the platform level.
4294 pub fn toggle_fullscreen(&self) {
4295 self.platform_window.toggle_fullscreen();
4296 }
4297
4298 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4299 pub fn invalidate_character_coordinates(&self) {
4300 self.on_next_frame(|window, cx| {
4301 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4302 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4303 window.platform_window.update_ime_position(bounds);
4304 }
4305 window.platform_window.set_input_handler(input_handler);
4306 }
4307 });
4308 }
4309
4310 /// Present a platform dialog.
4311 /// The provided message will be presented, along with buttons for each answer.
4312 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4313 pub fn prompt<T>(
4314 &mut self,
4315 level: PromptLevel,
4316 message: &str,
4317 detail: Option<&str>,
4318 answers: &[T],
4319 cx: &mut App,
4320 ) -> oneshot::Receiver<usize>
4321 where
4322 T: Clone + Into<PromptButton>,
4323 {
4324 let prompt_builder = cx.prompt_builder.take();
4325 let Some(prompt_builder) = prompt_builder else {
4326 unreachable!("Re-entrant window prompting is not supported by GPUI");
4327 };
4328
4329 let answers = answers
4330 .iter()
4331 .map(|answer| answer.clone().into())
4332 .collect::<Vec<_>>();
4333
4334 let receiver = match &prompt_builder {
4335 PromptBuilder::Default => self
4336 .platform_window
4337 .prompt(level, message, detail, &answers)
4338 .unwrap_or_else(|| {
4339 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4340 }),
4341 PromptBuilder::Custom(_) => {
4342 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4343 }
4344 };
4345
4346 cx.prompt_builder = Some(prompt_builder);
4347
4348 receiver
4349 }
4350
4351 fn build_custom_prompt(
4352 &mut self,
4353 prompt_builder: &PromptBuilder,
4354 level: PromptLevel,
4355 message: &str,
4356 detail: Option<&str>,
4357 answers: &[PromptButton],
4358 cx: &mut App,
4359 ) -> oneshot::Receiver<usize> {
4360 let (sender, receiver) = oneshot::channel();
4361 let handle = PromptHandle::new(sender);
4362 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4363 self.prompt = Some(handle);
4364 receiver
4365 }
4366
4367 /// Returns the current context stack.
4368 pub fn context_stack(&self) -> Vec<KeyContext> {
4369 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4370 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4371 dispatch_tree
4372 .dispatch_path(node_id)
4373 .iter()
4374 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4375 .collect()
4376 }
4377
4378 /// Returns all available actions for the focused element.
4379 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4380 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4381 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4382 for action_type in cx.global_action_listeners.keys() {
4383 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4384 let action = cx.actions.build_action_type(action_type).ok();
4385 if let Some(action) = action {
4386 actions.insert(ix, action);
4387 }
4388 }
4389 }
4390 actions
4391 }
4392
4393 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4394 /// returned in the order they were added. For display, the last binding should take precedence.
4395 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4396 self.rendered_frame
4397 .dispatch_tree
4398 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4399 }
4400
4401 /// Returns the highest precedence key binding that invokes an action on the currently focused
4402 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4403 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4404 self.rendered_frame
4405 .dispatch_tree
4406 .highest_precedence_binding_for_action(
4407 action,
4408 &self.rendered_frame.dispatch_tree.context_stack,
4409 )
4410 }
4411
4412 /// Returns the key bindings for an action in a context.
4413 pub fn bindings_for_action_in_context(
4414 &self,
4415 action: &dyn Action,
4416 context: KeyContext,
4417 ) -> Vec<KeyBinding> {
4418 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4419 dispatch_tree.bindings_for_action(action, &[context])
4420 }
4421
4422 /// Returns the highest precedence key binding for an action in a context. This is more
4423 /// efficient than getting the last result of `bindings_for_action_in_context`.
4424 pub fn highest_precedence_binding_for_action_in_context(
4425 &self,
4426 action: &dyn Action,
4427 context: KeyContext,
4428 ) -> Option<KeyBinding> {
4429 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4430 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4431 }
4432
4433 /// Returns any bindings that would invoke an action on the given focus handle if it were
4434 /// focused. Bindings are returned in the order they were added. For display, the last binding
4435 /// should take precedence.
4436 pub fn bindings_for_action_in(
4437 &self,
4438 action: &dyn Action,
4439 focus_handle: &FocusHandle,
4440 ) -> Vec<KeyBinding> {
4441 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4442 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4443 return vec![];
4444 };
4445 dispatch_tree.bindings_for_action(action, &context_stack)
4446 }
4447
4448 /// Returns the highest precedence key binding that would invoke an action on the given focus
4449 /// handle if it were focused. This is more efficient than getting the last result of
4450 /// `bindings_for_action_in`.
4451 pub fn highest_precedence_binding_for_action_in(
4452 &self,
4453 action: &dyn Action,
4454 focus_handle: &FocusHandle,
4455 ) -> Option<KeyBinding> {
4456 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4457 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4458 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4459 }
4460
4461 /// Find the bindings that can follow the current input sequence for the current context stack.
4462 pub fn possible_bindings_for_input(&self, input: &[Keystroke]) -> Vec<KeyBinding> {
4463 self.rendered_frame
4464 .dispatch_tree
4465 .possible_next_bindings_for_input(input, &self.context_stack())
4466 }
4467
4468 fn context_stack_for_focus_handle(
4469 &self,
4470 focus_handle: &FocusHandle,
4471 ) -> Option<Vec<KeyContext>> {
4472 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4473 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4474 let context_stack: Vec<_> = dispatch_tree
4475 .dispatch_path(node_id)
4476 .into_iter()
4477 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4478 .collect();
4479 Some(context_stack)
4480 }
4481
4482 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4483 pub fn listener_for<T: 'static, E>(
4484 &self,
4485 view: &Entity<T>,
4486 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4487 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4488 let view = view.downgrade();
4489 move |e: &E, window: &mut Window, cx: &mut App| {
4490 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4491 }
4492 }
4493
4494 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4495 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4496 &self,
4497 entity: &Entity<E>,
4498 f: Callback,
4499 ) -> impl Fn(&mut Window, &mut App) + 'static {
4500 let entity = entity.downgrade();
4501 move |window: &mut Window, cx: &mut App| {
4502 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4503 }
4504 }
4505
4506 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4507 /// If the callback returns false, the window won't be closed.
4508 pub fn on_window_should_close(
4509 &self,
4510 cx: &App,
4511 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4512 ) {
4513 let mut cx = self.to_async(cx);
4514 self.platform_window.on_should_close(Box::new(move || {
4515 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4516 }))
4517 }
4518
4519 /// Register an action listener on this node for the next frame. The type of action
4520 /// is determined by the first parameter of the given listener. When the next frame is rendered
4521 /// the listener will be cleared.
4522 ///
4523 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4524 /// a specific need to register a listener yourself.
4525 ///
4526 /// This method should only be called as part of the paint phase of element drawing.
4527 pub fn on_action(
4528 &mut self,
4529 action_type: TypeId,
4530 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4531 ) {
4532 self.invalidator.debug_assert_paint();
4533
4534 self.next_frame
4535 .dispatch_tree
4536 .on_action(action_type, Rc::new(listener));
4537 }
4538
4539 /// Register a capturing action listener on this node for the next frame if the condition is true.
4540 /// The type of action is determined by the first parameter of the given listener. When the next
4541 /// frame is rendered the listener will be cleared.
4542 ///
4543 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4544 /// a specific need to register a listener yourself.
4545 ///
4546 /// This method should only be called as part of the paint phase of element drawing.
4547 pub fn on_action_when(
4548 &mut self,
4549 condition: bool,
4550 action_type: TypeId,
4551 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4552 ) {
4553 self.invalidator.debug_assert_paint();
4554
4555 if condition {
4556 self.next_frame
4557 .dispatch_tree
4558 .on_action(action_type, Rc::new(listener));
4559 }
4560 }
4561
4562 /// Read information about the GPU backing this window.
4563 /// Currently returns None on Mac and Windows.
4564 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4565 self.platform_window.gpu_specs()
4566 }
4567
4568 /// Perform titlebar double-click action.
4569 /// This is macOS specific.
4570 pub fn titlebar_double_click(&self) {
4571 self.platform_window.titlebar_double_click();
4572 }
4573
4574 /// Gets the window's title at the platform level.
4575 /// This is macOS specific.
4576 pub fn window_title(&self) -> String {
4577 self.platform_window.get_title()
4578 }
4579
4580 /// Returns a list of all tabbed windows and their titles.
4581 /// This is macOS specific.
4582 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4583 self.platform_window.tabbed_windows()
4584 }
4585
4586 /// Returns the tab bar visibility.
4587 /// This is macOS specific.
4588 pub fn tab_bar_visible(&self) -> bool {
4589 self.platform_window.tab_bar_visible()
4590 }
4591
4592 /// Merges all open windows into a single tabbed window.
4593 /// This is macOS specific.
4594 pub fn merge_all_windows(&self) {
4595 self.platform_window.merge_all_windows()
4596 }
4597
4598 /// Moves the tab to a new containing window.
4599 /// This is macOS specific.
4600 pub fn move_tab_to_new_window(&self) {
4601 self.platform_window.move_tab_to_new_window()
4602 }
4603
4604 /// Shows or hides the window tab overview.
4605 /// This is macOS specific.
4606 pub fn toggle_window_tab_overview(&self) {
4607 self.platform_window.toggle_window_tab_overview()
4608 }
4609
4610 /// Sets the tabbing identifier for the window.
4611 /// This is macOS specific.
4612 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4613 self.platform_window
4614 .set_tabbing_identifier(tabbing_identifier)
4615 }
4616
4617 /// Toggles the inspector mode on this window.
4618 #[cfg(any(feature = "inspector", debug_assertions))]
4619 pub fn toggle_inspector(&mut self, cx: &mut App) {
4620 self.inspector = match self.inspector {
4621 None => Some(cx.new(|_| Inspector::new())),
4622 Some(_) => None,
4623 };
4624 self.refresh();
4625 }
4626
4627 /// Returns true if the window is in inspector mode.
4628 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4629 #[cfg(any(feature = "inspector", debug_assertions))]
4630 {
4631 if let Some(inspector) = &self.inspector {
4632 return inspector.read(_cx).is_picking();
4633 }
4634 }
4635 false
4636 }
4637
4638 /// Executes the provided function with mutable access to an inspector state.
4639 #[cfg(any(feature = "inspector", debug_assertions))]
4640 pub fn with_inspector_state<T: 'static, R>(
4641 &mut self,
4642 _inspector_id: Option<&crate::InspectorElementId>,
4643 cx: &mut App,
4644 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4645 ) -> R {
4646 if let Some(inspector_id) = _inspector_id
4647 && let Some(inspector) = &self.inspector
4648 {
4649 let inspector = inspector.clone();
4650 let active_element_id = inspector.read(cx).active_element_id();
4651 if Some(inspector_id) == active_element_id {
4652 return inspector.update(cx, |inspector, _cx| {
4653 inspector.with_active_element_state(self, f)
4654 });
4655 }
4656 }
4657 f(&mut None, self)
4658 }
4659
4660 #[cfg(any(feature = "inspector", debug_assertions))]
4661 pub(crate) fn build_inspector_element_id(
4662 &mut self,
4663 path: crate::InspectorElementPath,
4664 ) -> crate::InspectorElementId {
4665 self.invalidator.debug_assert_paint_or_prepaint();
4666 let path = Rc::new(path);
4667 let next_instance_id = self
4668 .next_frame
4669 .next_inspector_instance_ids
4670 .entry(path.clone())
4671 .or_insert(0);
4672 let instance_id = *next_instance_id;
4673 *next_instance_id += 1;
4674 crate::InspectorElementId { path, instance_id }
4675 }
4676
4677 #[cfg(any(feature = "inspector", debug_assertions))]
4678 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4679 if let Some(inspector) = self.inspector.take() {
4680 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4681 inspector_element.prepaint_as_root(
4682 point(self.viewport_size.width - inspector_width, px(0.0)),
4683 size(inspector_width, self.viewport_size.height).into(),
4684 self,
4685 cx,
4686 );
4687 self.inspector = Some(inspector);
4688 Some(inspector_element)
4689 } else {
4690 None
4691 }
4692 }
4693
4694 #[cfg(any(feature = "inspector", debug_assertions))]
4695 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4696 if let Some(mut inspector_element) = inspector_element {
4697 inspector_element.paint(self, cx);
4698 };
4699 }
4700
4701 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4702 /// inspect UI elements by clicking on them.
4703 #[cfg(any(feature = "inspector", debug_assertions))]
4704 pub fn insert_inspector_hitbox(
4705 &mut self,
4706 hitbox_id: HitboxId,
4707 inspector_id: Option<&crate::InspectorElementId>,
4708 cx: &App,
4709 ) {
4710 self.invalidator.debug_assert_paint_or_prepaint();
4711 if !self.is_inspector_picking(cx) {
4712 return;
4713 }
4714 if let Some(inspector_id) = inspector_id {
4715 self.next_frame
4716 .inspector_hitboxes
4717 .insert(hitbox_id, inspector_id.clone());
4718 }
4719 }
4720
4721 #[cfg(any(feature = "inspector", debug_assertions))]
4722 fn paint_inspector_hitbox(&mut self, cx: &App) {
4723 if let Some(inspector) = self.inspector.as_ref() {
4724 let inspector = inspector.read(cx);
4725 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4726 && let Some(hitbox) = self
4727 .next_frame
4728 .hitboxes
4729 .iter()
4730 .find(|hitbox| hitbox.id == hitbox_id)
4731 {
4732 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4733 }
4734 }
4735 }
4736
4737 #[cfg(any(feature = "inspector", debug_assertions))]
4738 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4739 let Some(inspector) = self.inspector.clone() else {
4740 return;
4741 };
4742 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4743 inspector.update(cx, |inspector, _cx| {
4744 if let Some((_, inspector_id)) =
4745 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4746 {
4747 inspector.hover(inspector_id, self);
4748 }
4749 });
4750 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4751 inspector.update(cx, |inspector, _cx| {
4752 if let Some((_, inspector_id)) =
4753 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4754 {
4755 inspector.select(inspector_id, self);
4756 }
4757 });
4758 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4759 // This should be kept in sync with SCROLL_LINES in x11 platform.
4760 const SCROLL_LINES: f32 = 3.0;
4761 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4762 let delta_y = event
4763 .delta
4764 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4765 .y;
4766 if let Some(inspector) = self.inspector.clone() {
4767 inspector.update(cx, |inspector, _cx| {
4768 if let Some(depth) = inspector.pick_depth.as_mut() {
4769 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4770 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4771 if *depth < 0.0 {
4772 *depth = 0.0;
4773 } else if *depth > max_depth {
4774 *depth = max_depth;
4775 }
4776 if let Some((_, inspector_id)) =
4777 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4778 {
4779 inspector.set_active_element_id(inspector_id, self);
4780 }
4781 }
4782 });
4783 }
4784 }
4785 }
4786
4787 #[cfg(any(feature = "inspector", debug_assertions))]
4788 fn hovered_inspector_hitbox(
4789 &self,
4790 inspector: &Inspector,
4791 frame: &Frame,
4792 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4793 if let Some(pick_depth) = inspector.pick_depth {
4794 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4795 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4796 let skip_count = (depth as usize).min(max_skipped);
4797 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4798 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4799 return Some((*hitbox_id, inspector_id.clone()));
4800 }
4801 }
4802 }
4803 None
4804 }
4805
4806 /// For testing: set the current modifier keys state.
4807 /// This does not generate any events.
4808 #[cfg(any(test, feature = "test-support"))]
4809 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4810 self.modifiers = modifiers;
4811 }
4812}
4813
4814// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4815slotmap::new_key_type! {
4816 /// A unique identifier for a window.
4817 pub struct WindowId;
4818}
4819
4820impl WindowId {
4821 /// Converts this window ID to a `u64`.
4822 pub fn as_u64(&self) -> u64 {
4823 self.0.as_ffi()
4824 }
4825}
4826
4827impl From<u64> for WindowId {
4828 fn from(value: u64) -> Self {
4829 WindowId(slotmap::KeyData::from_ffi(value))
4830 }
4831}
4832
4833/// A handle to a window with a specific root view type.
4834/// Note that this does not keep the window alive on its own.
4835#[derive(Deref, DerefMut)]
4836pub struct WindowHandle<V> {
4837 #[deref]
4838 #[deref_mut]
4839 pub(crate) any_handle: AnyWindowHandle,
4840 state_type: PhantomData<fn(V) -> V>,
4841}
4842
4843impl<V> Debug for WindowHandle<V> {
4844 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4845 f.debug_struct("WindowHandle")
4846 .field("any_handle", &self.any_handle.id.as_u64())
4847 .finish()
4848 }
4849}
4850
4851impl<V: 'static + Render> WindowHandle<V> {
4852 /// Creates a new handle from a window ID.
4853 /// This does not check if the root type of the window is `V`.
4854 pub fn new(id: WindowId) -> Self {
4855 WindowHandle {
4856 any_handle: AnyWindowHandle {
4857 id,
4858 state_type: TypeId::of::<V>(),
4859 },
4860 state_type: PhantomData,
4861 }
4862 }
4863
4864 /// Get the root view out of this window.
4865 ///
4866 /// This will fail if the window is closed or if the root view's type does not match `V`.
4867 #[cfg(any(test, feature = "test-support"))]
4868 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4869 where
4870 C: AppContext,
4871 {
4872 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4873 root_view
4874 .downcast::<V>()
4875 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4876 }))
4877 }
4878
4879 /// Updates the root view of this window.
4880 ///
4881 /// This will fail if the window has been closed or if the root view's type does not match
4882 pub fn update<C, R>(
4883 &self,
4884 cx: &mut C,
4885 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4886 ) -> Result<R>
4887 where
4888 C: AppContext,
4889 {
4890 cx.update_window(self.any_handle, |root_view, window, cx| {
4891 let view = root_view
4892 .downcast::<V>()
4893 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4894
4895 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4896 })?
4897 }
4898
4899 /// Read the root view out of this window.
4900 ///
4901 /// This will fail if the window is closed or if the root view's type does not match `V`.
4902 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4903 let x = cx
4904 .windows
4905 .get(self.id)
4906 .and_then(|window| {
4907 window
4908 .as_deref()
4909 .and_then(|window| window.root.clone())
4910 .map(|root_view| root_view.downcast::<V>())
4911 })
4912 .context("window not found")?
4913 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4914
4915 Ok(x.read(cx))
4916 }
4917
4918 /// Read the root view out of this window, with a callback
4919 ///
4920 /// This will fail if the window is closed or if the root view's type does not match `V`.
4921 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4922 where
4923 C: AppContext,
4924 {
4925 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4926 }
4927
4928 /// Read the root view pointer off of this window.
4929 ///
4930 /// This will fail if the window is closed or if the root view's type does not match `V`.
4931 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4932 where
4933 C: AppContext,
4934 {
4935 cx.read_window(self, |root_view, _cx| root_view)
4936 }
4937
4938 /// Check if this window is 'active'.
4939 ///
4940 /// Will return `None` if the window is closed or currently
4941 /// borrowed.
4942 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4943 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4944 .ok()
4945 }
4946}
4947
4948impl<V> Copy for WindowHandle<V> {}
4949
4950impl<V> Clone for WindowHandle<V> {
4951 fn clone(&self) -> Self {
4952 *self
4953 }
4954}
4955
4956impl<V> PartialEq for WindowHandle<V> {
4957 fn eq(&self, other: &Self) -> bool {
4958 self.any_handle == other.any_handle
4959 }
4960}
4961
4962impl<V> Eq for WindowHandle<V> {}
4963
4964impl<V> Hash for WindowHandle<V> {
4965 fn hash<H: Hasher>(&self, state: &mut H) {
4966 self.any_handle.hash(state);
4967 }
4968}
4969
4970impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4971 fn from(val: WindowHandle<V>) -> Self {
4972 val.any_handle
4973 }
4974}
4975
4976/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4977#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
4978pub struct AnyWindowHandle {
4979 pub(crate) id: WindowId,
4980 state_type: TypeId,
4981}
4982
4983impl AnyWindowHandle {
4984 /// Get the ID of this window.
4985 pub fn window_id(&self) -> WindowId {
4986 self.id
4987 }
4988
4989 /// Attempt to convert this handle to a window handle with a specific root view type.
4990 /// If the types do not match, this will return `None`.
4991 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4992 if TypeId::of::<T>() == self.state_type {
4993 Some(WindowHandle {
4994 any_handle: *self,
4995 state_type: PhantomData,
4996 })
4997 } else {
4998 None
4999 }
5000 }
5001
5002 /// Updates the state of the root view of this window.
5003 ///
5004 /// This will fail if the window has been closed.
5005 pub fn update<C, R>(
5006 self,
5007 cx: &mut C,
5008 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
5009 ) -> Result<R>
5010 where
5011 C: AppContext,
5012 {
5013 cx.update_window(self, update)
5014 }
5015
5016 /// Read the state of the root view of this window.
5017 ///
5018 /// This will fail if the window has been closed.
5019 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
5020 where
5021 C: AppContext,
5022 T: 'static,
5023 {
5024 let view = self
5025 .downcast::<T>()
5026 .context("the type of the window's root view has changed")?;
5027
5028 cx.read_window(&view, read)
5029 }
5030}
5031
5032impl HasWindowHandle for Window {
5033 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5034 self.platform_window.window_handle()
5035 }
5036}
5037
5038impl HasDisplayHandle for Window {
5039 fn display_handle(
5040 &self,
5041 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5042 self.platform_window.display_handle()
5043 }
5044}
5045
5046/// An identifier for an [`Element`].
5047///
5048/// Can be constructed with a string, a number, or both, as well
5049/// as other internal representations.
5050#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5051pub enum ElementId {
5052 /// The ID of a View element
5053 View(EntityId),
5054 /// An integer ID.
5055 Integer(u64),
5056 /// A string based ID.
5057 Name(SharedString),
5058 /// A UUID.
5059 Uuid(Uuid),
5060 /// An ID that's equated with a focus handle.
5061 FocusHandle(FocusId),
5062 /// A combination of a name and an integer.
5063 NamedInteger(SharedString, u64),
5064 /// A path.
5065 Path(Arc<std::path::Path>),
5066 /// A code location.
5067 CodeLocation(core::panic::Location<'static>),
5068 /// A labeled child of an element.
5069 NamedChild(Arc<ElementId>, SharedString),
5070}
5071
5072impl ElementId {
5073 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5074 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5075 Self::NamedInteger(name.into(), integer as u64)
5076 }
5077}
5078
5079impl Display for ElementId {
5080 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5081 match self {
5082 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5083 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5084 ElementId::Name(name) => write!(f, "{}", name)?,
5085 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5086 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5087 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5088 ElementId::Path(path) => write!(f, "{}", path.display())?,
5089 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5090 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5091 }
5092
5093 Ok(())
5094 }
5095}
5096
5097impl TryInto<SharedString> for ElementId {
5098 type Error = anyhow::Error;
5099
5100 fn try_into(self) -> anyhow::Result<SharedString> {
5101 if let ElementId::Name(name) = self {
5102 Ok(name)
5103 } else {
5104 anyhow::bail!("element id is not string")
5105 }
5106 }
5107}
5108
5109impl From<usize> for ElementId {
5110 fn from(id: usize) -> Self {
5111 ElementId::Integer(id as u64)
5112 }
5113}
5114
5115impl From<i32> for ElementId {
5116 fn from(id: i32) -> Self {
5117 Self::Integer(id as u64)
5118 }
5119}
5120
5121impl From<SharedString> for ElementId {
5122 fn from(name: SharedString) -> Self {
5123 ElementId::Name(name)
5124 }
5125}
5126
5127impl From<String> for ElementId {
5128 fn from(name: String) -> Self {
5129 ElementId::Name(name.into())
5130 }
5131}
5132
5133impl From<Arc<str>> for ElementId {
5134 fn from(name: Arc<str>) -> Self {
5135 ElementId::Name(name.into())
5136 }
5137}
5138
5139impl From<Arc<std::path::Path>> for ElementId {
5140 fn from(path: Arc<std::path::Path>) -> Self {
5141 ElementId::Path(path)
5142 }
5143}
5144
5145impl From<&'static str> for ElementId {
5146 fn from(name: &'static str) -> Self {
5147 ElementId::Name(name.into())
5148 }
5149}
5150
5151impl<'a> From<&'a FocusHandle> for ElementId {
5152 fn from(handle: &'a FocusHandle) -> Self {
5153 ElementId::FocusHandle(handle.id)
5154 }
5155}
5156
5157impl From<(&'static str, EntityId)> for ElementId {
5158 fn from((name, id): (&'static str, EntityId)) -> Self {
5159 ElementId::NamedInteger(name.into(), id.as_u64())
5160 }
5161}
5162
5163impl From<(&'static str, usize)> for ElementId {
5164 fn from((name, id): (&'static str, usize)) -> Self {
5165 ElementId::NamedInteger(name.into(), id as u64)
5166 }
5167}
5168
5169impl From<(SharedString, usize)> for ElementId {
5170 fn from((name, id): (SharedString, usize)) -> Self {
5171 ElementId::NamedInteger(name, id as u64)
5172 }
5173}
5174
5175impl From<(&'static str, u64)> for ElementId {
5176 fn from((name, id): (&'static str, u64)) -> Self {
5177 ElementId::NamedInteger(name.into(), id)
5178 }
5179}
5180
5181impl From<Uuid> for ElementId {
5182 fn from(value: Uuid) -> Self {
5183 Self::Uuid(value)
5184 }
5185}
5186
5187impl From<(&'static str, u32)> for ElementId {
5188 fn from((name, id): (&'static str, u32)) -> Self {
5189 ElementId::NamedInteger(name.into(), id.into())
5190 }
5191}
5192
5193impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5194 fn from((id, name): (ElementId, T)) -> Self {
5195 ElementId::NamedChild(Arc::new(id), name.into())
5196 }
5197}
5198
5199impl From<&'static core::panic::Location<'static>> for ElementId {
5200 fn from(location: &'static core::panic::Location<'static>) -> Self {
5201 ElementId::CodeLocation(*location)
5202 }
5203}
5204
5205/// A rectangle to be rendered in the window at the given position and size.
5206/// Passed as an argument [`Window::paint_quad`].
5207#[derive(Clone)]
5208pub struct PaintQuad {
5209 /// The bounds of the quad within the window.
5210 pub bounds: Bounds<Pixels>,
5211 /// The radii of the quad's corners.
5212 pub corner_radii: Corners<Pixels>,
5213 /// The background color of the quad.
5214 pub background: Background,
5215 /// The widths of the quad's borders.
5216 pub border_widths: Edges<Pixels>,
5217 /// The color of the quad's borders.
5218 pub border_color: Hsla,
5219 /// The style of the quad's borders.
5220 pub border_style: BorderStyle,
5221}
5222
5223impl PaintQuad {
5224 /// Sets the corner radii of the quad.
5225 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5226 PaintQuad {
5227 corner_radii: corner_radii.into(),
5228 ..self
5229 }
5230 }
5231
5232 /// Sets the border widths of the quad.
5233 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5234 PaintQuad {
5235 border_widths: border_widths.into(),
5236 ..self
5237 }
5238 }
5239
5240 /// Sets the border color of the quad.
5241 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5242 PaintQuad {
5243 border_color: border_color.into(),
5244 ..self
5245 }
5246 }
5247
5248 /// Sets the background color of the quad.
5249 pub fn background(self, background: impl Into<Background>) -> Self {
5250 PaintQuad {
5251 background: background.into(),
5252 ..self
5253 }
5254 }
5255}
5256
5257/// Creates a quad with the given parameters.
5258pub fn quad(
5259 bounds: Bounds<Pixels>,
5260 corner_radii: impl Into<Corners<Pixels>>,
5261 background: impl Into<Background>,
5262 border_widths: impl Into<Edges<Pixels>>,
5263 border_color: impl Into<Hsla>,
5264 border_style: BorderStyle,
5265) -> PaintQuad {
5266 PaintQuad {
5267 bounds,
5268 corner_radii: corner_radii.into(),
5269 background: background.into(),
5270 border_widths: border_widths.into(),
5271 border_color: border_color.into(),
5272 border_style,
5273 }
5274}
5275
5276/// Creates a filled quad with the given bounds and background color.
5277pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5278 PaintQuad {
5279 bounds: bounds.into(),
5280 corner_radii: (0.).into(),
5281 background: background.into(),
5282 border_widths: (0.).into(),
5283 border_color: transparent_black(),
5284 border_style: BorderStyle::default(),
5285 }
5286}
5287
5288/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5289pub fn outline(
5290 bounds: impl Into<Bounds<Pixels>>,
5291 border_color: impl Into<Hsla>,
5292 border_style: BorderStyle,
5293) -> PaintQuad {
5294 PaintQuad {
5295 bounds: bounds.into(),
5296 corner_radii: (0.).into(),
5297 background: transparent_black().into(),
5298 border_widths: (1.).into(),
5299 border_color: border_color.into(),
5300 border_style,
5301 }
5302}