geometry.rs

   1//! The GPUI geometry module is a collection of types and traits that
   2//! can be used to describe common units, concepts, and the relationships
   3//! between them.
   4
   5use core::fmt::Debug;
   6use derive_more::{Add, AddAssign, Div, DivAssign, Mul, Neg, Sub, SubAssign};
   7use refineable::Refineable;
   8use serde_derive::{Deserialize, Serialize};
   9use std::{
  10    cmp::{self, PartialOrd},
  11    fmt,
  12    hash::Hash,
  13    ops::{Add, Div, Mul, MulAssign, Neg, Sub},
  14};
  15
  16use crate::{App, DisplayId};
  17
  18/// Axis in a 2D cartesian space.
  19#[derive(Copy, Clone, PartialEq, Eq, Serialize, Deserialize, Debug)]
  20pub enum Axis {
  21    /// The y axis, or up and down
  22    Vertical,
  23    /// The x axis, or left and right
  24    Horizontal,
  25}
  26
  27impl Axis {
  28    /// Swap this axis to the opposite axis.
  29    pub fn invert(self) -> Self {
  30        match self {
  31            Axis::Vertical => Axis::Horizontal,
  32            Axis::Horizontal => Axis::Vertical,
  33        }
  34    }
  35}
  36
  37/// A trait for accessing the given unit along a certain axis.
  38pub trait Along {
  39    /// The unit associated with this type
  40    type Unit;
  41
  42    /// Returns the unit along the given axis.
  43    fn along(&self, axis: Axis) -> Self::Unit;
  44
  45    /// Applies the given function to the unit along the given axis and returns a new value.
  46    fn apply_along(&self, axis: Axis, f: impl FnOnce(Self::Unit) -> Self::Unit) -> Self;
  47}
  48
  49/// Describes a location in a 2D cartesian space.
  50///
  51/// It holds two public fields, `x` and `y`, which represent the coordinates in the space.
  52/// The type `T` for the coordinates can be any type that implements `Default`, `Clone`, and `Debug`.
  53///
  54/// # Examples
  55///
  56/// ```
  57/// # use gpui::Point;
  58/// let point = Point { x: 10, y: 20 };
  59/// println!("{:?}", point); // Outputs: Point { x: 10, y: 20 }
  60/// ```
  61#[derive(
  62    Refineable,
  63    Default,
  64    Add,
  65    AddAssign,
  66    Sub,
  67    SubAssign,
  68    Copy,
  69    Debug,
  70    PartialEq,
  71    Eq,
  72    Serialize,
  73    Deserialize,
  74    Hash,
  75)]
  76#[refineable(Debug)]
  77#[repr(C)]
  78pub struct Point<T: Default + Clone + Debug> {
  79    /// The x coordinate of the point.
  80    pub x: T,
  81    /// The y coordinate of the point.
  82    pub y: T,
  83}
  84
  85/// Constructs a new `Point<T>` with the given x and y coordinates.
  86///
  87/// # Arguments
  88///
  89/// * `x` - The x coordinate of the point.
  90/// * `y` - The y coordinate of the point.
  91///
  92/// # Returns
  93///
  94/// Returns a `Point<T>` with the specified coordinates.
  95///
  96/// # Examples
  97///
  98/// ```
  99/// # use gpui::Point;
 100/// let p = point(10, 20);
 101/// assert_eq!(p.x, 10);
 102/// assert_eq!(p.y, 20);
 103/// ```
 104pub const fn point<T: Clone + Debug + Default>(x: T, y: T) -> Point<T> {
 105    Point { x, y }
 106}
 107
 108impl<T: Clone + Debug + Default> Point<T> {
 109    /// Creates a new `Point` with the specified `x` and `y` coordinates.
 110    ///
 111    /// # Arguments
 112    ///
 113    /// * `x` - The horizontal coordinate of the point.
 114    /// * `y` - The vertical coordinate of the point.
 115    ///
 116    /// # Examples
 117    ///
 118    /// ```
 119    /// let p = Point::new(10, 20);
 120    /// assert_eq!(p.x, 10);
 121    /// assert_eq!(p.y, 20);
 122    /// ```
 123    pub const fn new(x: T, y: T) -> Self {
 124        Self { x, y }
 125    }
 126
 127    /// Transforms the point to a `Point<U>` by applying the given function to both coordinates.
 128    ///
 129    /// This method allows for converting a `Point<T>` to a `Point<U>` by specifying a closure
 130    /// that defines how to convert between the two types. The closure is applied to both the `x`
 131    /// and `y` coordinates, resulting in a new point of the desired type.
 132    ///
 133    /// # Arguments
 134    ///
 135    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 136    ///
 137    /// # Examples
 138    ///
 139    /// ```
 140    /// # use gpui::Point;
 141    /// let p = Point { x: 3, y: 4 };
 142    /// let p_float = p.map(|coord| coord as f32);
 143    /// assert_eq!(p_float, Point { x: 3.0, y: 4.0 });
 144    /// ```
 145    pub fn map<U: Clone + Default + Debug>(&self, f: impl Fn(T) -> U) -> Point<U> {
 146        Point {
 147            x: f(self.x.clone()),
 148            y: f(self.y.clone()),
 149        }
 150    }
 151}
 152
 153impl<T: Clone + Debug + Default> Along for Point<T> {
 154    type Unit = T;
 155
 156    fn along(&self, axis: Axis) -> T {
 157        match axis {
 158            Axis::Horizontal => self.x.clone(),
 159            Axis::Vertical => self.y.clone(),
 160        }
 161    }
 162
 163    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Point<T> {
 164        match axis {
 165            Axis::Horizontal => Point {
 166                x: f(self.x.clone()),
 167                y: self.y.clone(),
 168            },
 169            Axis::Vertical => Point {
 170                x: self.x.clone(),
 171                y: f(self.y.clone()),
 172            },
 173        }
 174    }
 175}
 176
 177impl<T: Clone + Debug + Default + Negate> Negate for Point<T> {
 178    fn negate(self) -> Self {
 179        self.map(Negate::negate)
 180    }
 181}
 182
 183impl Point<Pixels> {
 184    /// Scales the point by a given factor, which is typically derived from the resolution
 185    /// of a target display to ensure proper sizing of UI elements.
 186    ///
 187    /// # Arguments
 188    ///
 189    /// * `factor` - The scaling factor to apply to both the x and y coordinates.
 190    ///
 191    /// # Examples
 192    ///
 193    /// ```
 194    /// # use gpui::{Point, Pixels, ScaledPixels};
 195    /// let p = Point { x: Pixels(10.0), y: Pixels(20.0) };
 196    /// let scaled_p = p.scale(1.5);
 197    /// assert_eq!(scaled_p, Point { x: ScaledPixels(15.0), y: ScaledPixels(30.0) });
 198    /// ```
 199    pub fn scale(&self, factor: f32) -> Point<ScaledPixels> {
 200        Point {
 201            x: self.x.scale(factor),
 202            y: self.y.scale(factor),
 203        }
 204    }
 205
 206    /// Calculates the Euclidean distance from the origin (0, 0) to this point.
 207    ///
 208    /// # Examples
 209    ///
 210    /// ```
 211    /// # use gpui::{Pixels, Point};
 212    /// let p = Point { x: Pixels(3.0), y: Pixels(4.0) };
 213    /// assert_eq!(p.magnitude(), 5.0);
 214    /// ```
 215    pub fn magnitude(&self) -> f64 {
 216        ((self.x.0.powi(2) + self.y.0.powi(2)) as f64).sqrt()
 217    }
 218}
 219
 220impl<T> Point<T>
 221where
 222    T: Sub<T, Output = T> + Debug + Clone + Default,
 223{
 224    /// Get the position of this point, relative to the given origin
 225    pub fn relative_to(&self, origin: &Point<T>) -> Point<T> {
 226        point(
 227            self.x.clone() - origin.x.clone(),
 228            self.y.clone() - origin.y.clone(),
 229        )
 230    }
 231}
 232
 233impl<T, Rhs> Mul<Rhs> for Point<T>
 234where
 235    T: Mul<Rhs, Output = T> + Clone + Default + Debug,
 236    Rhs: Clone + Debug,
 237{
 238    type Output = Point<T>;
 239
 240    fn mul(self, rhs: Rhs) -> Self::Output {
 241        Point {
 242            x: self.x * rhs.clone(),
 243            y: self.y * rhs,
 244        }
 245    }
 246}
 247
 248impl<T, S> MulAssign<S> for Point<T>
 249where
 250    T: Clone + Mul<S, Output = T> + Default + Debug,
 251    S: Clone,
 252{
 253    fn mul_assign(&mut self, rhs: S) {
 254        self.x = self.x.clone() * rhs.clone();
 255        self.y = self.y.clone() * rhs;
 256    }
 257}
 258
 259impl<T, S> Div<S> for Point<T>
 260where
 261    T: Div<S, Output = T> + Clone + Default + Debug,
 262    S: Clone,
 263{
 264    type Output = Self;
 265
 266    fn div(self, rhs: S) -> Self::Output {
 267        Self {
 268            x: self.x / rhs.clone(),
 269            y: self.y / rhs,
 270        }
 271    }
 272}
 273
 274impl<T> Point<T>
 275where
 276    T: PartialOrd + Clone + Default + Debug,
 277{
 278    /// Returns a new point with the maximum values of each dimension from `self` and `other`.
 279    ///
 280    /// # Arguments
 281    ///
 282    /// * `other` - A reference to another `Point` to compare with `self`.
 283    ///
 284    /// # Examples
 285    ///
 286    /// ```
 287    /// # use gpui::Point;
 288    /// let p1 = Point { x: 3, y: 7 };
 289    /// let p2 = Point { x: 5, y: 2 };
 290    /// let max_point = p1.max(&p2);
 291    /// assert_eq!(max_point, Point { x: 5, y: 7 });
 292    /// ```
 293    pub fn max(&self, other: &Self) -> Self {
 294        Point {
 295            x: if self.x > other.x {
 296                self.x.clone()
 297            } else {
 298                other.x.clone()
 299            },
 300            y: if self.y > other.y {
 301                self.y.clone()
 302            } else {
 303                other.y.clone()
 304            },
 305        }
 306    }
 307
 308    /// Returns a new point with the minimum values of each dimension from `self` and `other`.
 309    ///
 310    /// # Arguments
 311    ///
 312    /// * `other` - A reference to another `Point` to compare with `self`.
 313    ///
 314    /// # Examples
 315    ///
 316    /// ```
 317    /// # use gpui::Point;
 318    /// let p1 = Point { x: 3, y: 7 };
 319    /// let p2 = Point { x: 5, y: 2 };
 320    /// let min_point = p1.min(&p2);
 321    /// assert_eq!(min_point, Point { x: 3, y: 2 });
 322    /// ```
 323    pub fn min(&self, other: &Self) -> Self {
 324        Point {
 325            x: if self.x <= other.x {
 326                self.x.clone()
 327            } else {
 328                other.x.clone()
 329            },
 330            y: if self.y <= other.y {
 331                self.y.clone()
 332            } else {
 333                other.y.clone()
 334            },
 335        }
 336    }
 337
 338    /// Clamps the point to a specified range.
 339    ///
 340    /// Given a minimum point and a maximum point, this method constrains the current point
 341    /// such that its coordinates do not exceed the range defined by the minimum and maximum points.
 342    /// If the current point's coordinates are less than the minimum, they are set to the minimum.
 343    /// If they are greater than the maximum, they are set to the maximum.
 344    ///
 345    /// # Arguments
 346    ///
 347    /// * `min` - A reference to a `Point` representing the minimum allowable coordinates.
 348    /// * `max` - A reference to a `Point` representing the maximum allowable coordinates.
 349    ///
 350    /// # Examples
 351    ///
 352    /// ```
 353    /// # use gpui::Point;
 354    /// let p = Point { x: 10, y: 20 };
 355    /// let min = Point { x: 0, y: 5 };
 356    /// let max = Point { x: 15, y: 25 };
 357    /// let clamped_p = p.clamp(&min, &max);
 358    /// assert_eq!(clamped_p, Point { x: 10, y: 20 });
 359    ///
 360    /// let p_out_of_bounds = Point { x: -5, y: 30 };
 361    /// let clamped_p_out_of_bounds = p_out_of_bounds.clamp(&min, &max);
 362    /// assert_eq!(clamped_p_out_of_bounds, Point { x: 0, y: 25 });
 363    /// ```
 364    pub fn clamp(&self, min: &Self, max: &Self) -> Self {
 365        self.max(min).min(max)
 366    }
 367}
 368
 369impl<T: Clone + Default + Debug> Clone for Point<T> {
 370    fn clone(&self) -> Self {
 371        Self {
 372            x: self.x.clone(),
 373            y: self.y.clone(),
 374        }
 375    }
 376}
 377
 378/// A structure representing a two-dimensional size with width and height in a given unit.
 379///
 380/// This struct is generic over the type `T`, which can be any type that implements `Clone`, `Default`, and `Debug`.
 381/// It is commonly used to specify dimensions for elements in a UI, such as a window or element.
 382#[derive(Refineable, Default, Clone, Copy, PartialEq, Div, Hash, Serialize, Deserialize)]
 383#[refineable(Debug)]
 384#[repr(C)]
 385pub struct Size<T: Clone + Default + Debug> {
 386    /// The width component of the size.
 387    pub width: T,
 388    /// The height component of the size.
 389    pub height: T,
 390}
 391
 392impl<T: Clone + Default + Debug> Size<T> {
 393    /// Create a new Size, a synonym for [`size`]
 394    pub fn new(width: T, height: T) -> Self {
 395        size(width, height)
 396    }
 397}
 398
 399/// Constructs a new `Size<T>` with the provided width and height.
 400///
 401/// # Arguments
 402///
 403/// * `width` - The width component of the `Size`.
 404/// * `height` - The height component of the `Size`.
 405///
 406/// # Examples
 407///
 408/// ```
 409/// # use gpui::Size;
 410/// let my_size = size(10, 20);
 411/// assert_eq!(my_size.width, 10);
 412/// assert_eq!(my_size.height, 20);
 413/// ```
 414pub const fn size<T>(width: T, height: T) -> Size<T>
 415where
 416    T: Clone + Default + Debug,
 417{
 418    Size { width, height }
 419}
 420
 421impl<T> Size<T>
 422where
 423    T: Clone + Default + Debug,
 424{
 425    /// Applies a function to the width and height of the size, producing a new `Size<U>`.
 426    ///
 427    /// This method allows for converting a `Size<T>` to a `Size<U>` by specifying a closure
 428    /// that defines how to convert between the two types. The closure is applied to both the `width`
 429    /// and `height`, resulting in a new size of the desired type.
 430    ///
 431    /// # Arguments
 432    ///
 433    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 434    ///
 435    /// # Examples
 436    ///
 437    /// ```
 438    /// # use gpui::Size;
 439    /// let my_size = Size { width: 10, height: 20 };
 440    /// let my_new_size = my_size.map(|dimension| dimension as f32 * 1.5);
 441    /// assert_eq!(my_new_size, Size { width: 15.0, height: 30.0 });
 442    /// ```
 443    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Size<U>
 444    where
 445        U: Clone + Default + Debug,
 446    {
 447        Size {
 448            width: f(self.width.clone()),
 449            height: f(self.height.clone()),
 450        }
 451    }
 452}
 453
 454impl<T> Size<T>
 455where
 456    T: Clone + Default + Debug + Half,
 457{
 458    /// Compute the center point of the size.g
 459    pub fn center(&self) -> Point<T> {
 460        Point {
 461            x: self.width.half(),
 462            y: self.height.half(),
 463        }
 464    }
 465}
 466
 467impl Size<Pixels> {
 468    /// Scales the size by a given factor.
 469    ///
 470    /// This method multiplies both the width and height by the provided scaling factor,
 471    /// resulting in a new `Size<ScaledPixels>` that is proportionally larger or smaller
 472    /// depending on the factor.
 473    ///
 474    /// # Arguments
 475    ///
 476    /// * `factor` - The scaling factor to apply to the width and height.
 477    ///
 478    /// # Examples
 479    ///
 480    /// ```
 481    /// # use gpui::{Size, Pixels, ScaledPixels};
 482    /// let size = Size { width: Pixels(100.0), height: Pixels(50.0) };
 483    /// let scaled_size = size.scale(2.0);
 484    /// assert_eq!(scaled_size, Size { width: ScaledPixels(200.0), height: ScaledPixels(100.0) });
 485    /// ```
 486    pub fn scale(&self, factor: f32) -> Size<ScaledPixels> {
 487        Size {
 488            width: self.width.scale(factor),
 489            height: self.height.scale(factor),
 490        }
 491    }
 492}
 493
 494impl<T> Along for Size<T>
 495where
 496    T: Clone + Default + Debug,
 497{
 498    type Unit = T;
 499
 500    fn along(&self, axis: Axis) -> T {
 501        match axis {
 502            Axis::Horizontal => self.width.clone(),
 503            Axis::Vertical => self.height.clone(),
 504        }
 505    }
 506
 507    /// Returns the value of this size along the given axis.
 508    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Self {
 509        match axis {
 510            Axis::Horizontal => Size {
 511                width: f(self.width.clone()),
 512                height: self.height.clone(),
 513            },
 514            Axis::Vertical => Size {
 515                width: self.width.clone(),
 516                height: f(self.height.clone()),
 517            },
 518        }
 519    }
 520}
 521
 522impl<T> Size<T>
 523where
 524    T: PartialOrd + Clone + Default + Debug,
 525{
 526    /// Returns a new `Size` with the maximum width and height from `self` and `other`.
 527    ///
 528    /// # Arguments
 529    ///
 530    /// * `other` - A reference to another `Size` to compare with `self`.
 531    ///
 532    /// # Examples
 533    ///
 534    /// ```
 535    /// # use gpui::Size;
 536    /// let size1 = Size { width: 30, height: 40 };
 537    /// let size2 = Size { width: 50, height: 20 };
 538    /// let max_size = size1.max(&size2);
 539    /// assert_eq!(max_size, Size { width: 50, height: 40 });
 540    /// ```
 541    pub fn max(&self, other: &Self) -> Self {
 542        Size {
 543            width: if self.width >= other.width {
 544                self.width.clone()
 545            } else {
 546                other.width.clone()
 547            },
 548            height: if self.height >= other.height {
 549                self.height.clone()
 550            } else {
 551                other.height.clone()
 552            },
 553        }
 554    }
 555
 556    /// Returns a new `Size` with the minimum width and height from `self` and `other`.
 557    ///
 558    /// # Arguments
 559    ///
 560    /// * `other` - A reference to another `Size` to compare with `self`.
 561    ///
 562    /// # Examples
 563    ///
 564    /// ```
 565    /// # use gpui::Size;
 566    /// let size1 = Size { width: 30, height: 40 };
 567    /// let size2 = Size { width: 50, height: 20 };
 568    /// let min_size = size1.min(&size2);
 569    /// assert_eq!(min_size, Size { width: 30, height: 20 });
 570    /// ```
 571    pub fn min(&self, other: &Self) -> Self {
 572        Size {
 573            width: if self.width >= other.width {
 574                other.width.clone()
 575            } else {
 576                self.width.clone()
 577            },
 578            height: if self.height >= other.height {
 579                other.height.clone()
 580            } else {
 581                self.height.clone()
 582            },
 583        }
 584    }
 585}
 586
 587impl<T> Sub for Size<T>
 588where
 589    T: Sub<Output = T> + Clone + Default + Debug,
 590{
 591    type Output = Size<T>;
 592
 593    fn sub(self, rhs: Self) -> Self::Output {
 594        Size {
 595            width: self.width - rhs.width,
 596            height: self.height - rhs.height,
 597        }
 598    }
 599}
 600
 601impl<T> Add for Size<T>
 602where
 603    T: Add<Output = T> + Clone + Default + Debug,
 604{
 605    type Output = Size<T>;
 606
 607    fn add(self, rhs: Self) -> Self::Output {
 608        Size {
 609            width: self.width + rhs.width,
 610            height: self.height + rhs.height,
 611        }
 612    }
 613}
 614
 615impl<T, Rhs> Mul<Rhs> for Size<T>
 616where
 617    T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
 618    Rhs: Clone + Default + Debug,
 619{
 620    type Output = Size<Rhs>;
 621
 622    fn mul(self, rhs: Rhs) -> Self::Output {
 623        Size {
 624            width: self.width * rhs.clone(),
 625            height: self.height * rhs,
 626        }
 627    }
 628}
 629
 630impl<T, S> MulAssign<S> for Size<T>
 631where
 632    T: Mul<S, Output = T> + Clone + Default + Debug,
 633    S: Clone,
 634{
 635    fn mul_assign(&mut self, rhs: S) {
 636        self.width = self.width.clone() * rhs.clone();
 637        self.height = self.height.clone() * rhs;
 638    }
 639}
 640
 641impl<T> Eq for Size<T> where T: Eq + Default + Debug + Clone {}
 642
 643impl<T> Debug for Size<T>
 644where
 645    T: Clone + Default + Debug,
 646{
 647    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 648        write!(f, "Size {{ {:?} × {:?} }}", self.width, self.height)
 649    }
 650}
 651
 652impl<T: Clone + Default + Debug> From<Point<T>> for Size<T> {
 653    fn from(point: Point<T>) -> Self {
 654        Self {
 655            width: point.x,
 656            height: point.y,
 657        }
 658    }
 659}
 660
 661impl From<Size<Pixels>> for Size<DefiniteLength> {
 662    fn from(size: Size<Pixels>) -> Self {
 663        Size {
 664            width: size.width.into(),
 665            height: size.height.into(),
 666        }
 667    }
 668}
 669
 670impl From<Size<Pixels>> for Size<AbsoluteLength> {
 671    fn from(size: Size<Pixels>) -> Self {
 672        Size {
 673            width: size.width.into(),
 674            height: size.height.into(),
 675        }
 676    }
 677}
 678
 679impl Size<Length> {
 680    /// Returns a `Size` with both width and height set to fill the available space.
 681    ///
 682    /// This function creates a `Size` instance where both the width and height are set to `Length::Definite(DefiniteLength::Fraction(1.0))`,
 683    /// which represents 100% of the available space in both dimensions.
 684    ///
 685    /// # Returns
 686    ///
 687    /// A `Size<Length>` that will fill the available space when used in a layout.
 688    pub fn full() -> Self {
 689        Self {
 690            width: relative(1.).into(),
 691            height: relative(1.).into(),
 692        }
 693    }
 694}
 695
 696impl Size<Length> {
 697    /// Returns a `Size` with both width and height set to `auto`, which allows the layout engine to determine the size.
 698    ///
 699    /// This function creates a `Size` instance where both the width and height are set to `Length::Auto`,
 700    /// indicating that their size should be computed based on the layout context, such as the content size or
 701    /// available space.
 702    ///
 703    /// # Returns
 704    ///
 705    /// A `Size<Length>` with width and height set to `Length::Auto`.
 706    pub fn auto() -> Self {
 707        Self {
 708            width: Length::Auto,
 709            height: Length::Auto,
 710        }
 711    }
 712}
 713
 714/// Represents a rectangular area in a 2D space with an origin point and a size.
 715///
 716/// The `Bounds` struct is generic over a type `T` which represents the type of the coordinate system.
 717/// The origin is represented as a `Point<T>` which defines the top left corner of the rectangle,
 718/// and the size is represented as a `Size<T>` which defines the width and height of the rectangle.
 719///
 720/// # Examples
 721///
 722/// ```
 723/// # use gpui::{Bounds, Point, Size};
 724/// let origin = Point { x: 0, y: 0 };
 725/// let size = Size { width: 10, height: 20 };
 726/// let bounds = Bounds::new(origin, size);
 727///
 728/// assert_eq!(bounds.origin, origin);
 729/// assert_eq!(bounds.size, size);
 730/// ```
 731#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq, Serialize, Deserialize, Hash)]
 732#[refineable(Debug)]
 733#[repr(C)]
 734pub struct Bounds<T: Clone + Default + Debug> {
 735    /// The origin point of this area.
 736    pub origin: Point<T>,
 737    /// The size of the rectangle.
 738    pub size: Size<T>,
 739}
 740
 741/// Create a bounds with the given origin and size
 742pub fn bounds<T: Clone + Default + Debug>(origin: Point<T>, size: Size<T>) -> Bounds<T> {
 743    Bounds { origin, size }
 744}
 745
 746impl Bounds<Pixels> {
 747    /// Generate a centered bounds for the given display or primary display if none is provided
 748    pub fn centered(display_id: Option<DisplayId>, size: Size<Pixels>, cx: &App) -> Self {
 749        let display = display_id
 750            .and_then(|id| cx.find_display(id))
 751            .or_else(|| cx.primary_display());
 752
 753        display
 754            .map(|display| Bounds::centered_at(display.bounds().center(), size))
 755            .unwrap_or_else(|| Bounds {
 756                origin: point(px(0.), px(0.)),
 757                size,
 758            })
 759    }
 760
 761    /// Generate maximized bounds for the given display or primary display if none is provided
 762    pub fn maximized(display_id: Option<DisplayId>, cx: &App) -> Self {
 763        let display = display_id
 764            .and_then(|id| cx.find_display(id))
 765            .or_else(|| cx.primary_display());
 766
 767        display
 768            .map(|display| display.bounds())
 769            .unwrap_or_else(|| Bounds {
 770                origin: point(px(0.), px(0.)),
 771                size: size(px(1024.), px(768.)),
 772            })
 773    }
 774}
 775
 776impl<T> Bounds<T>
 777where
 778    T: Clone + Debug + Default,
 779{
 780    /// Creates a new `Bounds` with the specified origin and size.
 781    ///
 782    /// # Arguments
 783    ///
 784    /// * `origin` - A `Point<T>` representing the origin of the bounds.
 785    /// * `size` - A `Size<T>` representing the size of the bounds.
 786    ///
 787    /// # Returns
 788    ///
 789    /// Returns a `Bounds<T>` that has the given origin and size.
 790    pub fn new(origin: Point<T>, size: Size<T>) -> Self {
 791        Bounds { origin, size }
 792    }
 793}
 794
 795impl<T> Bounds<T>
 796where
 797    T: Clone + Debug + Sub<Output = T> + Default,
 798{
 799    /// Constructs a `Bounds` from two corner points: the top left and bottom right corners.
 800    ///
 801    /// This function calculates the origin and size of the `Bounds` based on the provided corner points.
 802    /// The origin is set to the top left corner, and the size is determined by the difference between
 803    /// the x and y coordinates of the bottom right and top left points.
 804    ///
 805    /// # Arguments
 806    ///
 807    /// * `top_left` - A `Point<T>` representing the top left corner of the rectangle.
 808    /// * `bottom_right` - A `Point<T>` representing the bottom right corner of the rectangle.
 809    ///
 810    /// # Returns
 811    ///
 812    /// Returns a `Bounds<T>` that encompasses the area defined by the two corner points.
 813    ///
 814    /// # Examples
 815    ///
 816    /// ```
 817    /// # use gpui::{Bounds, Point};
 818    /// let top_left = Point { x: 0, y: 0 };
 819    /// let bottom_right = Point { x: 10, y: 10 };
 820    /// let bounds = Bounds::from_corners(top_left, bottom_right);
 821    ///
 822    /// assert_eq!(bounds.origin, top_left);
 823    /// assert_eq!(bounds.size.width, 10);
 824    /// assert_eq!(bounds.size.height, 10);
 825    /// ```
 826    pub fn from_corners(top_left: Point<T>, bottom_right: Point<T>) -> Self {
 827        let origin = Point {
 828            x: top_left.x.clone(),
 829            y: top_left.y.clone(),
 830        };
 831        let size = Size {
 832            width: bottom_right.x - top_left.x,
 833            height: bottom_right.y - top_left.y,
 834        };
 835        Bounds { origin, size }
 836    }
 837
 838    /// Constructs a `Bounds` from a corner point and size. The specified corner will be placed at
 839    /// the specified origin.
 840    pub fn from_corner_and_size(corner: Corner, origin: Point<T>, size: Size<T>) -> Bounds<T> {
 841        let origin = match corner {
 842            Corner::TopLeft => origin,
 843            Corner::TopRight => Point {
 844                x: origin.x - size.width.clone(),
 845                y: origin.y,
 846            },
 847            Corner::BottomLeft => Point {
 848                x: origin.x,
 849                y: origin.y - size.height.clone(),
 850            },
 851            Corner::BottomRight => Point {
 852                x: origin.x - size.width.clone(),
 853                y: origin.y - size.height.clone(),
 854            },
 855        };
 856
 857        Bounds { origin, size }
 858    }
 859}
 860
 861impl<T> Bounds<T>
 862where
 863    T: Clone + Debug + Sub<T, Output = T> + Default + Half,
 864{
 865    /// Creates a new bounds centered at the given point.
 866    pub fn centered_at(center: Point<T>, size: Size<T>) -> Self {
 867        let origin = Point {
 868            x: center.x - size.width.half(),
 869            y: center.y - size.height.half(),
 870        };
 871        Self::new(origin, size)
 872    }
 873}
 874
 875impl<T> Bounds<T>
 876where
 877    T: Clone + Debug + PartialOrd + Add<T, Output = T> + Default,
 878{
 879    /// Checks if this `Bounds` intersects with another `Bounds`.
 880    ///
 881    /// Two `Bounds` instances intersect if they overlap in the 2D space they occupy.
 882    /// This method checks if there is any overlapping area between the two bounds.
 883    ///
 884    /// # Arguments
 885    ///
 886    /// * `other` - A reference to another `Bounds` to check for intersection with.
 887    ///
 888    /// # Returns
 889    ///
 890    /// Returns `true` if there is any intersection between the two bounds, `false` otherwise.
 891    ///
 892    /// # Examples
 893    ///
 894    /// ```
 895    /// # use gpui::{Bounds, Point, Size};
 896    /// let bounds1 = Bounds {
 897    ///     origin: Point { x: 0, y: 0 },
 898    ///     size: Size { width: 10, height: 10 },
 899    /// };
 900    /// let bounds2 = Bounds {
 901    ///     origin: Point { x: 5, y: 5 },
 902    ///     size: Size { width: 10, height: 10 },
 903    /// };
 904    /// let bounds3 = Bounds {
 905    ///     origin: Point { x: 20, y: 20 },
 906    ///     size: Size { width: 10, height: 10 },
 907    /// };
 908    ///
 909    /// assert_eq!(bounds1.intersects(&bounds2), true); // Overlapping bounds
 910    /// assert_eq!(bounds1.intersects(&bounds3), false); // Non-overlapping bounds
 911    /// ```
 912    pub fn intersects(&self, other: &Bounds<T>) -> bool {
 913        let my_lower_right = self.bottom_right();
 914        let their_lower_right = other.bottom_right();
 915
 916        self.origin.x < their_lower_right.x
 917            && my_lower_right.x > other.origin.x
 918            && self.origin.y < their_lower_right.y
 919            && my_lower_right.y > other.origin.y
 920    }
 921}
 922
 923impl<T> Bounds<T>
 924where
 925    T: Clone + Debug + Add<T, Output = T> + Default + Half,
 926{
 927    /// Returns the center point of the bounds.
 928    ///
 929    /// Calculates the center by taking the origin's x and y coordinates and adding half the width and height
 930    /// of the bounds, respectively. The center is represented as a `Point<T>` where `T` is the type of the
 931    /// coordinate system.
 932    ///
 933    /// # Returns
 934    ///
 935    /// A `Point<T>` representing the center of the bounds.
 936    ///
 937    /// # Examples
 938    ///
 939    /// ```
 940    /// # use gpui::{Bounds, Point, Size};
 941    /// let bounds = Bounds {
 942    ///     origin: Point { x: 0, y: 0 },
 943    ///     size: Size { width: 10, height: 20 },
 944    /// };
 945    /// let center = bounds.center();
 946    /// assert_eq!(center, Point { x: 5, y: 10 });
 947    /// ```
 948    pub fn center(&self) -> Point<T> {
 949        Point {
 950            x: self.origin.x.clone() + self.size.width.clone().half(),
 951            y: self.origin.y.clone() + self.size.height.clone().half(),
 952        }
 953    }
 954}
 955
 956impl<T> Bounds<T>
 957where
 958    T: Clone + Debug + Add<T, Output = T> + Default,
 959{
 960    /// Calculates the half perimeter of a rectangle defined by the bounds.
 961    ///
 962    /// The half perimeter is calculated as the sum of the width and the height of the rectangle.
 963    /// This method is generic over the type `T` which must implement the `Sub` trait to allow
 964    /// calculation of the width and height from the bounds' origin and size, as well as the `Add` trait
 965    /// to sum the width and height for the half perimeter.
 966    ///
 967    /// # Examples
 968    ///
 969    /// ```
 970    /// # use gpui::{Bounds, Point, Size};
 971    /// let bounds = Bounds {
 972    ///     origin: Point { x: 0, y: 0 },
 973    ///     size: Size { width: 10, height: 20 },
 974    /// };
 975    /// let half_perimeter = bounds.half_perimeter();
 976    /// assert_eq!(half_perimeter, 30);
 977    /// ```
 978    pub fn half_perimeter(&self) -> T {
 979        self.size.width.clone() + self.size.height.clone()
 980    }
 981}
 982
 983impl<T> Bounds<T>
 984where
 985    T: Clone + Debug + Add<T, Output = T> + Sub<Output = T> + Default,
 986{
 987    /// Dilates the bounds by a specified amount in all directions.
 988    ///
 989    /// This method expands the bounds by the given `amount`, increasing the size
 990    /// and adjusting the origin so that the bounds grow outwards equally in all directions.
 991    /// The resulting bounds will have its width and height increased by twice the `amount`
 992    /// (since it grows in both directions), and the origin will be moved by `-amount`
 993    /// in both the x and y directions.
 994    ///
 995    /// # Arguments
 996    ///
 997    /// * `amount` - The amount by which to dilate the bounds.
 998    ///
 999    /// # Examples
1000    ///
1001    /// ```
1002    /// # use gpui::{Bounds, Point, Size};
1003    /// let mut bounds = Bounds {
1004    ///     origin: Point { x: 10, y: 10 },
1005    ///     size: Size { width: 10, height: 10 },
1006    /// };
1007    /// bounds.dilate(5);
1008    /// assert_eq!(bounds, Bounds {
1009    ///     origin: Point { x: 5, y: 5 },
1010    ///     size: Size { width: 20, height: 20 },
1011    /// });
1012    /// ```
1013    pub fn dilate(&self, amount: T) -> Bounds<T> {
1014        let double_amount = amount.clone() + amount.clone();
1015        Bounds {
1016            origin: self.origin.clone() - point(amount.clone(), amount),
1017            size: self.size.clone() + size(double_amount.clone(), double_amount),
1018        }
1019    }
1020
1021    /// Extends the bounds different amounts in each direction.
1022    pub fn extend(&self, amount: Edges<T>) -> Bounds<T> {
1023        Bounds {
1024            origin: self.origin.clone() - point(amount.left.clone(), amount.top.clone()),
1025            size: self.size.clone()
1026                + size(
1027                    amount.left.clone() + amount.right.clone(),
1028                    amount.top.clone() + amount.bottom.clone(),
1029                ),
1030        }
1031    }
1032}
1033
1034impl<T> Bounds<T>
1035where
1036    T: Clone + Debug + Add<T, Output = T> + Sub<T, Output = T> + Neg<Output = T> + Default,
1037{
1038    /// Inset the bounds by a specified amount. Equivalent to `dilate` with the amount negated.
1039    ///
1040    /// Note that this may panic if T does not support negative values.
1041    pub fn inset(&self, amount: T) -> Self {
1042        self.dilate(-amount)
1043    }
1044}
1045
1046impl<T: Clone + Default + Debug + PartialOrd + Add<T, Output = T> + Sub<Output = T>> Bounds<T> {
1047    /// Calculates the intersection of two `Bounds` objects.
1048    ///
1049    /// This method computes the overlapping region of two `Bounds`. If the bounds do not intersect,
1050    /// the resulting `Bounds` will have a size with width and height of zero.
1051    ///
1052    /// # Arguments
1053    ///
1054    /// * `other` - A reference to another `Bounds` to intersect with.
1055    ///
1056    /// # Returns
1057    ///
1058    /// Returns a `Bounds` representing the intersection area. If there is no intersection,
1059    /// the returned `Bounds` will have a size with width and height of zero.
1060    ///
1061    /// # Examples
1062    ///
1063    /// ```
1064    /// # use gpui::{Bounds, Point, Size};
1065    /// let bounds1 = Bounds {
1066    ///     origin: Point { x: 0, y: 0 },
1067    ///     size: Size { width: 10, height: 10 },
1068    /// };
1069    /// let bounds2 = Bounds {
1070    ///     origin: Point { x: 5, y: 5 },
1071    ///     size: Size { width: 10, height: 10 },
1072    /// };
1073    /// let intersection = bounds1.intersect(&bounds2);
1074    ///
1075    /// assert_eq!(intersection, Bounds {
1076    ///     origin: Point { x: 5, y: 5 },
1077    ///     size: Size { width: 5, height: 5 },
1078    /// });
1079    /// ```
1080    pub fn intersect(&self, other: &Self) -> Self {
1081        let upper_left = self.origin.max(&other.origin);
1082        let bottom_right = self.bottom_right().min(&other.bottom_right());
1083        Self::from_corners(upper_left, bottom_right)
1084    }
1085
1086    /// Computes the union of two `Bounds`.
1087    ///
1088    /// This method calculates the smallest `Bounds` that contains both the current `Bounds` and the `other` `Bounds`.
1089    /// The resulting `Bounds` will have an origin that is the minimum of the origins of the two `Bounds`,
1090    /// and a size that encompasses the furthest extents of both `Bounds`.
1091    ///
1092    /// # Arguments
1093    ///
1094    /// * `other` - A reference to another `Bounds` to create a union with.
1095    ///
1096    /// # Returns
1097    ///
1098    /// Returns a `Bounds` representing the union of the two `Bounds`.
1099    ///
1100    /// # Examples
1101    ///
1102    /// ```
1103    /// # use gpui::{Bounds, Point, Size};
1104    /// let bounds1 = Bounds {
1105    ///     origin: Point { x: 0, y: 0 },
1106    ///     size: Size { width: 10, height: 10 },
1107    /// };
1108    /// let bounds2 = Bounds {
1109    ///     origin: Point { x: 5, y: 5 },
1110    ///     size: Size { width: 15, height: 15 },
1111    /// };
1112    /// let union_bounds = bounds1.union(&bounds2);
1113    ///
1114    /// assert_eq!(union_bounds, Bounds {
1115    ///     origin: Point { x: 0, y: 0 },
1116    ///     size: Size { width: 20, height: 20 },
1117    /// });
1118    /// ```
1119    pub fn union(&self, other: &Self) -> Self {
1120        let top_left = self.origin.min(&other.origin);
1121        let bottom_right = self.bottom_right().max(&other.bottom_right());
1122        Bounds::from_corners(top_left, bottom_right)
1123    }
1124}
1125
1126impl<T> Bounds<T>
1127where
1128    T: Clone + Debug + Add<T, Output = T> + Sub<T, Output = T> + Default,
1129{
1130    /// Computes the space available within outer bounds.
1131    pub fn space_within(&self, outer: &Self) -> Edges<T> {
1132        Edges {
1133            top: self.top().clone() - outer.top().clone(),
1134            right: outer.right().clone() - self.right().clone(),
1135            bottom: outer.bottom().clone() - self.bottom().clone(),
1136            left: self.left().clone() - outer.left().clone(),
1137        }
1138    }
1139}
1140
1141impl<T, Rhs> Mul<Rhs> for Bounds<T>
1142where
1143    T: Mul<Rhs, Output = Rhs> + Clone + Default + Debug,
1144    Point<T>: Mul<Rhs, Output = Point<Rhs>>,
1145    Rhs: Clone + Default + Debug,
1146{
1147    type Output = Bounds<Rhs>;
1148
1149    fn mul(self, rhs: Rhs) -> Self::Output {
1150        Bounds {
1151            origin: self.origin * rhs.clone(),
1152            size: self.size * rhs,
1153        }
1154    }
1155}
1156
1157impl<T, S> MulAssign<S> for Bounds<T>
1158where
1159    T: Mul<S, Output = T> + Clone + Default + Debug,
1160    S: Clone,
1161{
1162    fn mul_assign(&mut self, rhs: S) {
1163        self.origin *= rhs.clone();
1164        self.size *= rhs;
1165    }
1166}
1167
1168impl<T, S> Div<S> for Bounds<T>
1169where
1170    Size<T>: Div<S, Output = Size<T>>,
1171    T: Div<S, Output = T> + Default + Clone + Debug,
1172    S: Clone,
1173{
1174    type Output = Self;
1175
1176    fn div(self, rhs: S) -> Self {
1177        Self {
1178            origin: self.origin / rhs.clone(),
1179            size: self.size / rhs,
1180        }
1181    }
1182}
1183
1184impl<T> Add<Point<T>> for Bounds<T>
1185where
1186    T: Add<T, Output = T> + Default + Clone + Debug,
1187{
1188    type Output = Self;
1189
1190    fn add(self, rhs: Point<T>) -> Self {
1191        Self {
1192            origin: self.origin + rhs,
1193            size: self.size,
1194        }
1195    }
1196}
1197
1198impl<T> Sub<Point<T>> for Bounds<T>
1199where
1200    T: Sub<T, Output = T> + Default + Clone + Debug,
1201{
1202    type Output = Self;
1203
1204    fn sub(self, rhs: Point<T>) -> Self {
1205        Self {
1206            origin: self.origin - rhs,
1207            size: self.size,
1208        }
1209    }
1210}
1211
1212impl<T> Bounds<T>
1213where
1214    T: Add<T, Output = T> + Clone + Default + Debug,
1215{
1216    /// Returns the top edge of the bounds.
1217    ///
1218    /// # Returns
1219    ///
1220    /// A value of type `T` representing the y-coordinate of the top edge of the bounds.
1221    pub fn top(&self) -> T {
1222        self.origin.y.clone()
1223    }
1224
1225    /// Returns the bottom edge of the bounds.
1226    ///
1227    /// # Returns
1228    ///
1229    /// A value of type `T` representing the y-coordinate of the bottom edge of the bounds.
1230    pub fn bottom(&self) -> T {
1231        self.origin.y.clone() + self.size.height.clone()
1232    }
1233
1234    /// Returns the left edge of the bounds.
1235    ///
1236    /// # Returns
1237    ///
1238    /// A value of type `T` representing the x-coordinate of the left edge of the bounds.
1239    pub fn left(&self) -> T {
1240        self.origin.x.clone()
1241    }
1242
1243    /// Returns the right edge of the bounds.
1244    ///
1245    /// # Returns
1246    ///
1247    /// A value of type `T` representing the x-coordinate of the right edge of the bounds.
1248    pub fn right(&self) -> T {
1249        self.origin.x.clone() + self.size.width.clone()
1250    }
1251
1252    /// Returns the top right corner point of the bounds.
1253    ///
1254    /// # Returns
1255    ///
1256    /// A `Point<T>` representing the top right corner of the bounds.
1257    ///
1258    /// # Examples
1259    ///
1260    /// ```
1261    /// # use gpui::{Bounds, Point, Size};
1262    /// let bounds = Bounds {
1263    ///     origin: Point { x: 0, y: 0 },
1264    ///     size: Size { width: 10, height: 20 },
1265    /// };
1266    /// let top_right = bounds.top_right();
1267    /// assert_eq!(top_right, Point { x: 10, y: 0 });
1268    /// ```
1269    pub fn top_right(&self) -> Point<T> {
1270        Point {
1271            x: self.origin.x.clone() + self.size.width.clone(),
1272            y: self.origin.y.clone(),
1273        }
1274    }
1275
1276    /// Returns the bottom right corner point of the bounds.
1277    ///
1278    /// # Returns
1279    ///
1280    /// A `Point<T>` representing the bottom right corner of the bounds.
1281    ///
1282    /// # Examples
1283    ///
1284    /// ```
1285    /// # use gpui::{Bounds, Point, Size};
1286    /// let bounds = Bounds {
1287    ///     origin: Point { x: 0, y: 0 },
1288    ///     size: Size { width: 10, height: 20 },
1289    /// };
1290    /// let bottom_right = bounds.bottom_right();
1291    /// assert_eq!(bottom_right, Point { x: 10, y: 20 });
1292    /// ```
1293    pub fn bottom_right(&self) -> Point<T> {
1294        Point {
1295            x: self.origin.x.clone() + self.size.width.clone(),
1296            y: self.origin.y.clone() + self.size.height.clone(),
1297        }
1298    }
1299
1300    /// Returns the bottom left corner point of the bounds.
1301    ///
1302    /// # Returns
1303    ///
1304    /// A `Point<T>` representing the bottom left corner of the bounds.
1305    ///
1306    /// # Examples
1307    ///
1308    /// ```
1309    /// # use gpui::{Bounds, Point, Size};
1310    /// let bounds = Bounds {
1311    ///     origin: Point { x: 0, y: 0 },
1312    ///     size: Size { width: 10, height: 20 },
1313    /// };
1314    /// let bottom_left = bounds.bottom_left();
1315    /// assert_eq!(bottom_left, Point { x: 0, y: 20 });
1316    /// ```
1317    pub fn bottom_left(&self) -> Point<T> {
1318        Point {
1319            x: self.origin.x.clone(),
1320            y: self.origin.y.clone() + self.size.height.clone(),
1321        }
1322    }
1323
1324    /// Returns the requested corner point of the bounds.
1325    ///
1326    /// # Returns
1327    ///
1328    /// A `Point<T>` representing the corner of the bounds requested by the parameter.
1329    ///
1330    /// # Examples
1331    ///
1332    /// ```
1333    /// # use zed::{Bounds, Corner, Point, Size};
1334    /// let bounds = Bounds {
1335    ///     origin: Point { x: 0, y: 0 },
1336    ///     size: Size { width: 10, height: 20 },
1337    /// };
1338    /// let bottom_left = bounds.corner(Corner::BottomLeft);
1339    /// assert_eq!(bottom_left, Point { x: 0, y: 20 });
1340    /// ```
1341    pub fn corner(&self, corner: Corner) -> Point<T> {
1342        match corner {
1343            Corner::TopLeft => self.origin.clone(),
1344            Corner::TopRight => self.top_right(),
1345            Corner::BottomLeft => self.bottom_left(),
1346            Corner::BottomRight => self.bottom_right(),
1347        }
1348    }
1349}
1350
1351impl<T> Bounds<T>
1352where
1353    T: Add<T, Output = T> + PartialOrd + Clone + Default + Debug,
1354{
1355    /// Checks if the given point is within the bounds.
1356    ///
1357    /// This method determines whether a point lies inside the rectangle defined by the bounds,
1358    /// including the edges. The point is considered inside if its x-coordinate is greater than
1359    /// or equal to the left edge and less than or equal to the right edge, and its y-coordinate
1360    /// is greater than or equal to the top edge and less than or equal to the bottom edge of the bounds.
1361    ///
1362    /// # Arguments
1363    ///
1364    /// * `point` - A reference to a `Point<T>` that represents the point to check.
1365    ///
1366    /// # Returns
1367    ///
1368    /// Returns `true` if the point is within the bounds, `false` otherwise.
1369    ///
1370    /// # Examples
1371    ///
1372    /// ```
1373    /// # use gpui::{Point, Bounds};
1374    /// let bounds = Bounds {
1375    ///     origin: Point { x: 0, y: 0 },
1376    ///     size: Size { width: 10, height: 10 },
1377    /// };
1378    /// let inside_point = Point { x: 5, y: 5 };
1379    /// let outside_point = Point { x: 15, y: 15 };
1380    ///
1381    /// assert!(bounds.contains_point(&inside_point));
1382    /// assert!(!bounds.contains_point(&outside_point));
1383    /// ```
1384    pub fn contains(&self, point: &Point<T>) -> bool {
1385        point.x >= self.origin.x
1386            && point.x <= self.origin.x.clone() + self.size.width.clone()
1387            && point.y >= self.origin.y
1388            && point.y <= self.origin.y.clone() + self.size.height.clone()
1389    }
1390
1391    /// Applies a function to the origin and size of the bounds, producing a new `Bounds<U>`.
1392    ///
1393    /// This method allows for converting a `Bounds<T>` to a `Bounds<U>` by specifying a closure
1394    /// that defines how to convert between the two types. The closure is applied to the `origin` and
1395    /// `size` fields, resulting in new bounds of the desired type.
1396    ///
1397    /// # Arguments
1398    ///
1399    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
1400    ///
1401    /// # Returns
1402    ///
1403    /// Returns a new `Bounds<U>` with the origin and size mapped by the provided function.
1404    ///
1405    /// # Examples
1406    ///
1407    /// ```
1408    /// # use gpui::{Bounds, Point, Size};
1409    /// let bounds = Bounds {
1410    ///     origin: Point { x: 10.0, y: 10.0 },
1411    ///     size: Size { width: 10.0, height: 20.0 },
1412    /// };
1413    /// let new_bounds = bounds.map(|value| value as f64 * 1.5);
1414    ///
1415    /// assert_eq!(new_bounds, Bounds {
1416    ///     origin: Point { x: 15.0, y: 15.0 },
1417    ///     size: Size { width: 15.0, height: 30.0 },
1418    /// });
1419    /// ```
1420    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Bounds<U>
1421    where
1422        U: Clone + Default + Debug,
1423    {
1424        Bounds {
1425            origin: self.origin.map(&f),
1426            size: self.size.map(f),
1427        }
1428    }
1429
1430    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1431    ///
1432    /// # Examples
1433    ///
1434    /// ```
1435    /// # use gpui::{Bounds, Point, Size};
1436    /// let bounds = Bounds {
1437    ///     origin: Point { x: 10.0, y: 10.0 },
1438    ///     size: Size { width: 10.0, height: 20.0 },
1439    /// };
1440    /// let new_bounds = bounds.map_origin(|value| value * 1.5);
1441    ///
1442    /// assert_eq!(new_bounds, Bounds {
1443    ///     origin: Point { x: 15.0, y: 15.0 },
1444    ///     size: Size { width: 10.0, height: 20.0 },
1445    /// });
1446    /// ```
1447    pub fn map_origin(self, f: impl Fn(T) -> T) -> Bounds<T> {
1448        Bounds {
1449            origin: self.origin.map(f),
1450            size: self.size,
1451        }
1452    }
1453
1454    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1455    ///
1456    /// # Examples
1457    ///
1458    /// ```
1459    /// # use gpui::{Bounds, Point, Size};
1460    /// let bounds = Bounds {
1461    ///     origin: Point { x: 10.0, y: 10.0 },
1462    ///     size: Size { width: 10.0, height: 20.0 },
1463    /// };
1464    /// let new_bounds = bounds.map_size(|value| value * 1.5);
1465    ///
1466    /// assert_eq!(new_bounds, Bounds {
1467    ///     origin: Point { x: 10.0, y: 10.0 },
1468    ///     size: Size { width: 15.0, height: 30.0 },
1469    /// });
1470    /// ```
1471    pub fn map_size(self, f: impl Fn(T) -> T) -> Bounds<T> {
1472        Bounds {
1473            origin: self.origin,
1474            size: self.size.map(f),
1475        }
1476    }
1477}
1478
1479impl<T> Bounds<T>
1480where
1481    T: Add<T, Output = T> + PartialOrd + Clone + Default + Debug + Sub<T, Output = T>,
1482{
1483    /// Convert a point to the coordinate space defined by this Bounds
1484    pub fn localize(&self, point: &Point<T>) -> Option<Point<T>> {
1485        self.contains(point)
1486            .then(|| point.relative_to(&self.origin))
1487    }
1488}
1489
1490/// Checks if the bounds represent an empty area.
1491///
1492/// # Returns
1493///
1494/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1495impl<T: PartialOrd + Default + Debug + Clone> Bounds<T> {
1496    /// Checks if the bounds represent an empty area.
1497    ///
1498    /// # Returns
1499    ///
1500    /// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1501    pub fn is_empty(&self) -> bool {
1502        self.size.width <= T::default() || self.size.height <= T::default()
1503    }
1504}
1505
1506impl Size<DevicePixels> {
1507    /// Converts the size from physical to logical pixels.
1508    pub(crate) fn to_pixels(self, scale_factor: f32) -> Size<Pixels> {
1509        size(
1510            px(self.width.0 as f32 / scale_factor),
1511            px(self.height.0 as f32 / scale_factor),
1512        )
1513    }
1514}
1515
1516impl Size<Pixels> {
1517    /// Converts the size from physical to logical pixels.
1518    pub(crate) fn to_device_pixels(self, scale_factor: f32) -> Size<DevicePixels> {
1519        size(
1520            DevicePixels((self.width.0 * scale_factor) as i32),
1521            DevicePixels((self.height.0 * scale_factor) as i32),
1522        )
1523    }
1524}
1525
1526impl Bounds<Pixels> {
1527    /// Scales the bounds by a given factor, typically used to adjust for display scaling.
1528    ///
1529    /// This method multiplies the origin and size of the bounds by the provided scaling factor,
1530    /// resulting in a new `Bounds<ScaledPixels>` that is proportionally larger or smaller
1531    /// depending on the scaling factor. This can be used to ensure that the bounds are properly
1532    /// scaled for different display densities.
1533    ///
1534    /// # Arguments
1535    ///
1536    /// * `factor` - The scaling factor to apply to the origin and size, typically the display's scaling factor.
1537    ///
1538    /// # Returns
1539    ///
1540    /// Returns a new `Bounds<ScaledPixels>` that represents the scaled bounds.
1541    ///
1542    /// # Examples
1543    ///
1544    /// ```
1545    /// # use gpui::{Bounds, Point, Size, Pixels};
1546    /// let bounds = Bounds {
1547    ///     origin: Point { x: Pixels(10.0), y: Pixels(20.0) },
1548    ///     size: Size { width: Pixels(30.0), height: Pixels(40.0) },
1549    /// };
1550    /// let display_scale_factor = 2.0;
1551    /// let scaled_bounds = bounds.scale(display_scale_factor);
1552    /// assert_eq!(scaled_bounds, Bounds {
1553    ///     origin: Point { x: ScaledPixels(20.0), y: ScaledPixels(40.0) },
1554    ///     size: Size { width: ScaledPixels(60.0), height: ScaledPixels(80.0) },
1555    /// });
1556    /// ```
1557    pub fn scale(&self, factor: f32) -> Bounds<ScaledPixels> {
1558        Bounds {
1559            origin: self.origin.scale(factor),
1560            size: self.size.scale(factor),
1561        }
1562    }
1563
1564    /// Convert the bounds from logical pixels to physical pixels
1565    pub fn to_device_pixels(&self, factor: f32) -> Bounds<DevicePixels> {
1566        Bounds {
1567            origin: point(
1568                DevicePixels((self.origin.x.0 * factor) as i32),
1569                DevicePixels((self.origin.y.0 * factor) as i32),
1570            ),
1571            size: self.size.to_device_pixels(factor),
1572        }
1573    }
1574}
1575
1576impl Bounds<DevicePixels> {
1577    /// Convert the bounds from physical pixels to logical pixels
1578    pub fn to_pixels(self, scale_factor: f32) -> Bounds<Pixels> {
1579        Bounds {
1580            origin: point(
1581                px(self.origin.x.0 as f32 / scale_factor),
1582                px(self.origin.y.0 as f32 / scale_factor),
1583            ),
1584            size: self.size.to_pixels(scale_factor),
1585        }
1586    }
1587}
1588
1589impl<T: Clone + Debug + Copy + Default> Copy for Bounds<T> {}
1590
1591/// Represents the edges of a box in a 2D space, such as padding or margin.
1592///
1593/// Each field represents the size of the edge on one side of the box: `top`, `right`, `bottom`, and `left`.
1594///
1595/// # Examples
1596///
1597/// ```
1598/// # use gpui::Edges;
1599/// let edges = Edges {
1600///     top: 10.0,
1601///     right: 20.0,
1602///     bottom: 30.0,
1603///     left: 40.0,
1604/// };
1605///
1606/// assert_eq!(edges.top, 10.0);
1607/// assert_eq!(edges.right, 20.0);
1608/// assert_eq!(edges.bottom, 30.0);
1609/// assert_eq!(edges.left, 40.0);
1610/// ```
1611#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1612#[refineable(Debug)]
1613#[repr(C)]
1614pub struct Edges<T: Clone + Default + Debug> {
1615    /// The size of the top edge.
1616    pub top: T,
1617    /// The size of the right edge.
1618    pub right: T,
1619    /// The size of the bottom edge.
1620    pub bottom: T,
1621    /// The size of the left edge.
1622    pub left: T,
1623}
1624
1625impl<T> Mul for Edges<T>
1626where
1627    T: Mul<Output = T> + Clone + Default + Debug,
1628{
1629    type Output = Self;
1630
1631    fn mul(self, rhs: Self) -> Self::Output {
1632        Self {
1633            top: self.top.clone() * rhs.top,
1634            right: self.right.clone() * rhs.right,
1635            bottom: self.bottom.clone() * rhs.bottom,
1636            left: self.left.clone() * rhs.left,
1637        }
1638    }
1639}
1640
1641impl<T, S> MulAssign<S> for Edges<T>
1642where
1643    T: Mul<S, Output = T> + Clone + Default + Debug,
1644    S: Clone,
1645{
1646    fn mul_assign(&mut self, rhs: S) {
1647        self.top = self.top.clone() * rhs.clone();
1648        self.right = self.right.clone() * rhs.clone();
1649        self.bottom = self.bottom.clone() * rhs.clone();
1650        self.left = self.left.clone() * rhs;
1651    }
1652}
1653
1654impl<T: Clone + Default + Debug + Copy> Copy for Edges<T> {}
1655
1656impl<T: Clone + Default + Debug> Edges<T> {
1657    /// Constructs `Edges` where all sides are set to the same specified value.
1658    ///
1659    /// This function creates an `Edges` instance with the `top`, `right`, `bottom`, and `left` fields all initialized
1660    /// to the same value provided as an argument. This is useful when you want to have uniform edges around a box,
1661    /// such as padding or margin with the same size on all sides.
1662    ///
1663    /// # Arguments
1664    ///
1665    /// * `value` - The value to set for all four sides of the edges.
1666    ///
1667    /// # Returns
1668    ///
1669    /// An `Edges` instance with all sides set to the given value.
1670    ///
1671    /// # Examples
1672    ///
1673    /// ```
1674    /// # use gpui::Edges;
1675    /// let uniform_edges = Edges::all(10.0);
1676    /// assert_eq!(uniform_edges.top, 10.0);
1677    /// assert_eq!(uniform_edges.right, 10.0);
1678    /// assert_eq!(uniform_edges.bottom, 10.0);
1679    /// assert_eq!(uniform_edges.left, 10.0);
1680    /// ```
1681    pub fn all(value: T) -> Self {
1682        Self {
1683            top: value.clone(),
1684            right: value.clone(),
1685            bottom: value.clone(),
1686            left: value,
1687        }
1688    }
1689
1690    /// Applies a function to each field of the `Edges`, producing a new `Edges<U>`.
1691    ///
1692    /// This method allows for converting an `Edges<T>` to an `Edges<U>` by specifying a closure
1693    /// that defines how to convert between the two types. The closure is applied to each field
1694    /// (`top`, `right`, `bottom`, `left`), resulting in new edges of the desired type.
1695    ///
1696    /// # Arguments
1697    ///
1698    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
1699    ///
1700    /// # Returns
1701    ///
1702    /// Returns a new `Edges<U>` with each field mapped by the provided function.
1703    ///
1704    /// # Examples
1705    ///
1706    /// ```
1707    /// # use gpui::Edges;
1708    /// let edges = Edges { top: 10, right: 20, bottom: 30, left: 40 };
1709    /// let edges_float = edges.map(|&value| value as f32 * 1.1);
1710    /// assert_eq!(edges_float, Edges { top: 11.0, right: 22.0, bottom: 33.0, left: 44.0 });
1711    /// ```
1712    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Edges<U>
1713    where
1714        U: Clone + Default + Debug,
1715    {
1716        Edges {
1717            top: f(&self.top),
1718            right: f(&self.right),
1719            bottom: f(&self.bottom),
1720            left: f(&self.left),
1721        }
1722    }
1723
1724    /// Checks if any of the edges satisfy a given predicate.
1725    ///
1726    /// This method applies a predicate function to each field of the `Edges` and returns `true` if any field satisfies the predicate.
1727    ///
1728    /// # Arguments
1729    ///
1730    /// * `predicate` - A closure that takes a reference to a value of type `T` and returns a `bool`.
1731    ///
1732    /// # Returns
1733    ///
1734    /// Returns `true` if the predicate returns `true` for any of the edge values, `false` otherwise.
1735    ///
1736    /// # Examples
1737    ///
1738    /// ```
1739    /// # use gpui::Edges;
1740    /// let edges = Edges {
1741    ///     top: 10,
1742    ///     right: 0,
1743    ///     bottom: 5,
1744    ///     left: 0,
1745    /// };
1746    ///
1747    /// assert!(edges.any(|value| *value == 0));
1748    /// assert!(edges.any(|value| *value > 0));
1749    /// assert!(!edges.any(|value| *value > 10));
1750    /// ```
1751    pub fn any<F: Fn(&T) -> bool>(&self, predicate: F) -> bool {
1752        predicate(&self.top)
1753            || predicate(&self.right)
1754            || predicate(&self.bottom)
1755            || predicate(&self.left)
1756    }
1757}
1758
1759impl Edges<Length> {
1760    /// Sets the edges of the `Edges` struct to `auto`, which is a special value that allows the layout engine to automatically determine the size of the edges.
1761    ///
1762    /// This is typically used in layout contexts where the exact size of the edges is not important, or when the size should be calculated based on the content or container.
1763    ///
1764    /// # Returns
1765    ///
1766    /// Returns an `Edges<Length>` with all edges set to `Length::Auto`.
1767    ///
1768    /// # Examples
1769    ///
1770    /// ```
1771    /// # use gpui::Edges;
1772    /// let auto_edges = Edges::auto();
1773    /// assert_eq!(auto_edges.top, Length::Auto);
1774    /// assert_eq!(auto_edges.right, Length::Auto);
1775    /// assert_eq!(auto_edges.bottom, Length::Auto);
1776    /// assert_eq!(auto_edges.left, Length::Auto);
1777    /// ```
1778    pub fn auto() -> Self {
1779        Self {
1780            top: Length::Auto,
1781            right: Length::Auto,
1782            bottom: Length::Auto,
1783            left: Length::Auto,
1784        }
1785    }
1786
1787    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1788    ///
1789    /// This is typically used when you want to specify that a box (like a padding or margin area)
1790    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1791    ///
1792    /// # Returns
1793    ///
1794    /// Returns an `Edges<Length>` with all edges set to zero length.
1795    ///
1796    /// # Examples
1797    ///
1798    /// ```
1799    /// # use gpui::Edges;
1800    /// let no_edges = Edges::zero();
1801    /// assert_eq!(no_edges.top, Length::Definite(DefiniteLength::from(Pixels(0.))));
1802    /// assert_eq!(no_edges.right, Length::Definite(DefiniteLength::from(Pixels(0.))));
1803    /// assert_eq!(no_edges.bottom, Length::Definite(DefiniteLength::from(Pixels(0.))));
1804    /// assert_eq!(no_edges.left, Length::Definite(DefiniteLength::from(Pixels(0.))));
1805    /// ```
1806    pub fn zero() -> Self {
1807        Self {
1808            top: px(0.).into(),
1809            right: px(0.).into(),
1810            bottom: px(0.).into(),
1811            left: px(0.).into(),
1812        }
1813    }
1814}
1815
1816impl Edges<DefiniteLength> {
1817    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1818    ///
1819    /// This is typically used when you want to specify that a box (like a padding or margin area)
1820    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1821    ///
1822    /// # Returns
1823    ///
1824    /// Returns an `Edges<DefiniteLength>` with all edges set to zero length.
1825    ///
1826    /// # Examples
1827    ///
1828    /// ```
1829    /// # use gpui::{px, Edges};
1830    /// let no_edges = Edges::zero();
1831    /// assert_eq!(no_edges.top, DefiniteLength::from(px(0.)));
1832    /// assert_eq!(no_edges.right, DefiniteLength::from(px(0.)));
1833    /// assert_eq!(no_edges.bottom, DefiniteLength::from(px(0.)));
1834    /// assert_eq!(no_edges.left, DefiniteLength::from(px(0.)));
1835    /// ```
1836    pub fn zero() -> Self {
1837        Self {
1838            top: px(0.).into(),
1839            right: px(0.).into(),
1840            bottom: px(0.).into(),
1841            left: px(0.).into(),
1842        }
1843    }
1844
1845    /// Converts the `DefiniteLength` to `Pixels` based on the parent size and the REM size.
1846    ///
1847    /// This method allows for a `DefiniteLength` value to be converted into pixels, taking into account
1848    /// the size of the parent element (for percentage-based lengths) and the size of a rem unit (for rem-based lengths).
1849    ///
1850    /// # Arguments
1851    ///
1852    /// * `parent_size` - `Size<AbsoluteLength>` representing the size of the parent element.
1853    /// * `rem_size` - `Pixels` representing the size of one REM unit.
1854    ///
1855    /// # Returns
1856    ///
1857    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1858    ///
1859    /// # Examples
1860    ///
1861    /// ```
1862    /// # use gpui::{Edges, DefiniteLength, px, AbsoluteLength, Size};
1863    /// let edges = Edges {
1864    ///     top: DefiniteLength::Absolute(AbsoluteLength::Pixels(px(10.0))),
1865    ///     right: DefiniteLength::Fraction(0.5),
1866    ///     bottom: DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0))),
1867    ///     left: DefiniteLength::Fraction(0.25),
1868    /// };
1869    /// let parent_size = Size {
1870    ///     width: AbsoluteLength::Pixels(px(200.0)),
1871    ///     height: AbsoluteLength::Pixels(px(100.0)),
1872    /// };
1873    /// let rem_size = px(16.0);
1874    /// let edges_in_pixels = edges.to_pixels(parent_size, rem_size);
1875    ///
1876    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Absolute length in pixels
1877    /// assert_eq!(edges_in_pixels.right, px(100.0)); // 50% of parent width
1878    /// assert_eq!(edges_in_pixels.bottom, px(32.0)); // 2 rems
1879    /// assert_eq!(edges_in_pixels.left, px(50.0)); // 25% of parent width
1880    /// ```
1881    pub fn to_pixels(&self, parent_size: Size<AbsoluteLength>, rem_size: Pixels) -> Edges<Pixels> {
1882        Edges {
1883            top: self.top.to_pixels(parent_size.height, rem_size),
1884            right: self.right.to_pixels(parent_size.width, rem_size),
1885            bottom: self.bottom.to_pixels(parent_size.height, rem_size),
1886            left: self.left.to_pixels(parent_size.width, rem_size),
1887        }
1888    }
1889}
1890
1891impl Edges<AbsoluteLength> {
1892    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1893    ///
1894    /// This is typically used when you want to specify that a box (like a padding or margin area)
1895    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1896    ///
1897    /// # Returns
1898    ///
1899    /// Returns an `Edges<AbsoluteLength>` with all edges set to zero length.
1900    ///
1901    /// # Examples
1902    ///
1903    /// ```
1904    /// # use gpui::Edges;
1905    /// let no_edges = Edges::zero();
1906    /// assert_eq!(no_edges.top, AbsoluteLength::Pixels(Pixels(0.0)));
1907    /// assert_eq!(no_edges.right, AbsoluteLength::Pixels(Pixels(0.0)));
1908    /// assert_eq!(no_edges.bottom, AbsoluteLength::Pixels(Pixels(0.0)));
1909    /// assert_eq!(no_edges.left, AbsoluteLength::Pixels(Pixels(0.0)));
1910    /// ```
1911    pub fn zero() -> Self {
1912        Self {
1913            top: px(0.).into(),
1914            right: px(0.).into(),
1915            bottom: px(0.).into(),
1916            left: px(0.).into(),
1917        }
1918    }
1919
1920    /// Converts the `AbsoluteLength` to `Pixels` based on the `rem_size`.
1921    ///
1922    /// If the `AbsoluteLength` is already in pixels, it simply returns the corresponding `Pixels` value.
1923    /// If the `AbsoluteLength` is in rems, it multiplies the number of rems by the `rem_size` to convert it to pixels.
1924    ///
1925    /// # Arguments
1926    ///
1927    /// * `rem_size` - The size of one rem unit in pixels.
1928    ///
1929    /// # Returns
1930    ///
1931    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1932    ///
1933    /// # Examples
1934    ///
1935    /// ```
1936    /// # use gpui::{Edges, AbsoluteLength, Pixels, px};
1937    /// let edges = Edges {
1938    ///     top: AbsoluteLength::Pixels(px(10.0)),
1939    ///     right: AbsoluteLength::Rems(rems(1.0)),
1940    ///     bottom: AbsoluteLength::Pixels(px(20.0)),
1941    ///     left: AbsoluteLength::Rems(rems(2.0)),
1942    /// };
1943    /// let rem_size = px(16.0);
1944    /// let edges_in_pixels = edges.to_pixels(rem_size);
1945    ///
1946    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Already in pixels
1947    /// assert_eq!(edges_in_pixels.right, px(16.0)); // 1 rem converted to pixels
1948    /// assert_eq!(edges_in_pixels.bottom, px(20.0)); // Already in pixels
1949    /// assert_eq!(edges_in_pixels.left, px(32.0)); // 2 rems converted to pixels
1950    /// ```
1951    pub fn to_pixels(&self, rem_size: Pixels) -> Edges<Pixels> {
1952        Edges {
1953            top: self.top.to_pixels(rem_size),
1954            right: self.right.to_pixels(rem_size),
1955            bottom: self.bottom.to_pixels(rem_size),
1956            left: self.left.to_pixels(rem_size),
1957        }
1958    }
1959}
1960
1961impl Edges<Pixels> {
1962    /// Scales the `Edges<Pixels>` by a given factor, returning `Edges<ScaledPixels>`.
1963    ///
1964    /// This method is typically used for adjusting the edge sizes for different display densities or scaling factors.
1965    ///
1966    /// # Arguments
1967    ///
1968    /// * `factor` - The scaling factor to apply to each edge.
1969    ///
1970    /// # Returns
1971    ///
1972    /// Returns a new `Edges<ScaledPixels>` where each edge is the result of scaling the original edge by the given factor.
1973    ///
1974    /// # Examples
1975    ///
1976    /// ```
1977    /// # use gpui::{Edges, Pixels};
1978    /// let edges = Edges {
1979    ///     top: Pixels(10.0),
1980    ///     right: Pixels(20.0),
1981    ///     bottom: Pixels(30.0),
1982    ///     left: Pixels(40.0),
1983    /// };
1984    /// let scaled_edges = edges.scale(2.0);
1985    /// assert_eq!(scaled_edges.top, ScaledPixels(20.0));
1986    /// assert_eq!(scaled_edges.right, ScaledPixels(40.0));
1987    /// assert_eq!(scaled_edges.bottom, ScaledPixels(60.0));
1988    /// assert_eq!(scaled_edges.left, ScaledPixels(80.0));
1989    /// ```
1990    pub fn scale(&self, factor: f32) -> Edges<ScaledPixels> {
1991        Edges {
1992            top: self.top.scale(factor),
1993            right: self.right.scale(factor),
1994            bottom: self.bottom.scale(factor),
1995            left: self.left.scale(factor),
1996        }
1997    }
1998
1999    /// Returns the maximum value of any edge.
2000    ///
2001    /// # Returns
2002    ///
2003    /// The maximum `Pixels` value among all four edges.
2004    pub fn max(&self) -> Pixels {
2005        self.top.max(self.right).max(self.bottom).max(self.left)
2006    }
2007}
2008
2009impl From<f32> for Edges<Pixels> {
2010    fn from(val: f32) -> Self {
2011        let val: Pixels = val.into();
2012        val.into()
2013    }
2014}
2015
2016impl From<Pixels> for Edges<Pixels> {
2017    fn from(val: Pixels) -> Self {
2018        Edges {
2019            top: val,
2020            right: val,
2021            bottom: val,
2022            left: val,
2023        }
2024    }
2025}
2026
2027/// Identifies a corner of a 2d box.
2028#[derive(Clone, Copy, PartialEq, Eq)]
2029pub enum Corner {
2030    /// The top left corner
2031    TopLeft,
2032    /// The top right corner
2033    TopRight,
2034    /// The bottom left corner
2035    BottomLeft,
2036    /// The bottom right corner
2037    BottomRight,
2038}
2039
2040impl Corner {
2041    /// Returns the directly opposite corner.
2042    ///
2043    /// # Examples
2044    ///
2045    /// ```
2046    /// # use zed::Corner;
2047    /// assert_eq!(Corner::TopLeft.opposite_corner(), Corner::BottomRight);
2048    /// ```
2049    pub fn opposite_corner(self) -> Self {
2050        match self {
2051            Corner::TopLeft => Corner::BottomRight,
2052            Corner::TopRight => Corner::BottomLeft,
2053            Corner::BottomLeft => Corner::TopRight,
2054            Corner::BottomRight => Corner::TopLeft,
2055        }
2056    }
2057
2058    /// Returns the corner across from this corner, moving along the specified axis.
2059    ///
2060    /// # Examples
2061    ///
2062    /// ```
2063    /// # use zed::Corner;
2064    /// let result = Corner::TopLeft.other_side_corner_along(Axis::Horizontal);
2065    /// assert_eq!(result, Corner::TopRight);
2066    /// ```
2067    pub fn other_side_corner_along(self, axis: Axis) -> Self {
2068        match axis {
2069            Axis::Vertical => match self {
2070                Corner::TopLeft => Corner::BottomLeft,
2071                Corner::TopRight => Corner::BottomRight,
2072                Corner::BottomLeft => Corner::TopLeft,
2073                Corner::BottomRight => Corner::TopRight,
2074            },
2075            Axis::Horizontal => match self {
2076                Corner::TopLeft => Corner::TopRight,
2077                Corner::TopRight => Corner::TopLeft,
2078                Corner::BottomLeft => Corner::BottomRight,
2079                Corner::BottomRight => Corner::BottomLeft,
2080            },
2081        }
2082    }
2083}
2084
2085/// Represents the corners of a box in a 2D space, such as border radius.
2086///
2087/// Each field represents the size of the corner on one side of the box: `top_left`, `top_right`, `bottom_right`, and `bottom_left`.
2088#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
2089#[refineable(Debug)]
2090#[repr(C)]
2091pub struct Corners<T: Clone + Default + Debug> {
2092    /// The value associated with the top left corner.
2093    pub top_left: T,
2094    /// The value associated with the top right corner.
2095    pub top_right: T,
2096    /// The value associated with the bottom right corner.
2097    pub bottom_right: T,
2098    /// The value associated with the bottom left corner.
2099    pub bottom_left: T,
2100}
2101
2102impl<T> Corners<T>
2103where
2104    T: Clone + Default + Debug,
2105{
2106    /// Constructs `Corners` where all sides are set to the same specified value.
2107    ///
2108    /// This function creates a `Corners` instance with the `top_left`, `top_right`, `bottom_right`, and `bottom_left` fields all initialized
2109    /// to the same value provided as an argument. This is useful when you want to have uniform corners around a box,
2110    /// such as a uniform border radius on a rectangle.
2111    ///
2112    /// # Arguments
2113    ///
2114    /// * `value` - The value to set for all four corners.
2115    ///
2116    /// # Returns
2117    ///
2118    /// An `Corners` instance with all corners set to the given value.
2119    ///
2120    /// # Examples
2121    ///
2122    /// ```
2123    /// # use gpui::Corners;
2124    /// let uniform_corners = Corners::all(5.0);
2125    /// assert_eq!(uniform_corners.top_left, 5.0);
2126    /// assert_eq!(uniform_corners.top_right, 5.0);
2127    /// assert_eq!(uniform_corners.bottom_right, 5.0);
2128    /// assert_eq!(uniform_corners.bottom_left, 5.0);
2129    /// ```
2130    pub fn all(value: T) -> Self {
2131        Self {
2132            top_left: value.clone(),
2133            top_right: value.clone(),
2134            bottom_right: value.clone(),
2135            bottom_left: value,
2136        }
2137    }
2138
2139    /// Returns the requested corner.
2140    ///
2141    /// # Returns
2142    ///
2143    /// A `Point<T>` representing the corner requested by the parameter.
2144    ///
2145    /// # Examples
2146    ///
2147    /// ```
2148    /// # use zed::{Corner, Corners};
2149    /// let corners = Corners {
2150    ///     top_left: 1,
2151    ///     top_right: 2,
2152    ///     bottom_left: 3,
2153    ///     bottom_right: 4
2154    /// };
2155    /// assert_eq!(corners.corner(Corner::BottomLeft), 3);
2156    /// ```
2157    pub fn corner(&self, corner: Corner) -> T {
2158        match corner {
2159            Corner::TopLeft => self.top_left.clone(),
2160            Corner::TopRight => self.top_right.clone(),
2161            Corner::BottomLeft => self.bottom_left.clone(),
2162            Corner::BottomRight => self.bottom_right.clone(),
2163        }
2164    }
2165}
2166
2167impl Corners<AbsoluteLength> {
2168    /// Converts the `AbsoluteLength` to `Pixels` based on the provided rem size.
2169    ///
2170    /// # Arguments
2171    ///
2172    /// * `rem_size` - The size of one REM unit in pixels, used for conversion if the `AbsoluteLength` is in REMs.
2173    ///
2174    /// # Returns
2175    ///
2176    /// Returns a `Corners<Pixels>` instance with each corner's length converted to pixels.
2177    ///
2178    /// # Examples
2179    ///
2180    /// ```
2181    /// # use gpui::{Corners, AbsoluteLength, Pixels, Size};
2182    /// let corners = Corners {
2183    ///     top_left: AbsoluteLength::Pixels(Pixels(15.0)),
2184    ///     top_right: AbsoluteLength::Rems(Rems(1.0)),
2185    ///     bottom_right: AbsoluteLength::Pixels(Pixels(30.0)),
2186    ///     bottom_left: AbsoluteLength::Rems(Rems(2.0)),
2187    /// };
2188    /// let rem_size = Pixels(16.0);
2189    /// let corners_in_pixels = corners.to_pixels(size, rem_size);
2190    ///
2191    /// assert_eq!(corners_in_pixels.top_left, Pixels(15.0));
2192    /// assert_eq!(corners_in_pixels.top_right, Pixels(16.0)); // 1 rem converted to pixels
2193    /// assert_eq!(corners_in_pixels.bottom_right, Pixels(30.0));
2194    /// assert_eq!(corners_in_pixels.bottom_left, Pixels(32.0)); // 2 rems converted to pixels
2195    /// ```
2196    pub fn to_pixels(&self, rem_size: Pixels) -> Corners<Pixels> {
2197        Corners {
2198            top_left: self.top_left.to_pixels(rem_size),
2199            top_right: self.top_right.to_pixels(rem_size),
2200            bottom_right: self.bottom_right.to_pixels(rem_size),
2201            bottom_left: self.bottom_left.to_pixels(rem_size),
2202        }
2203    }
2204}
2205
2206impl Corners<Pixels> {
2207    /// Scales the `Corners<Pixels>` by a given factor, returning `Corners<ScaledPixels>`.
2208    ///
2209    /// This method is typically used for adjusting the corner sizes for different display densities or scaling factors.
2210    ///
2211    /// # Arguments
2212    ///
2213    /// * `factor` - The scaling factor to apply to each corner.
2214    ///
2215    /// # Returns
2216    ///
2217    /// Returns a new `Corners<ScaledPixels>` where each corner is the result of scaling the original corner by the given factor.
2218    ///
2219    /// # Examples
2220    ///
2221    /// ```
2222    /// # use gpui::{Corners, Pixels};
2223    /// let corners = Corners {
2224    ///     top_left: Pixels(10.0),
2225    ///     top_right: Pixels(20.0),
2226    ///     bottom_right: Pixels(30.0),
2227    ///     bottom_left: Pixels(40.0),
2228    /// };
2229    /// let scaled_corners = corners.scale(2.0);
2230    /// assert_eq!(scaled_corners.top_left, ScaledPixels(20.0));
2231    /// assert_eq!(scaled_corners.top_right, ScaledPixels(40.0));
2232    /// assert_eq!(scaled_corners.bottom_right, ScaledPixels(60.0));
2233    /// assert_eq!(scaled_corners.bottom_left, ScaledPixels(80.0));
2234    /// ```
2235    pub fn scale(&self, factor: f32) -> Corners<ScaledPixels> {
2236        Corners {
2237            top_left: self.top_left.scale(factor),
2238            top_right: self.top_right.scale(factor),
2239            bottom_right: self.bottom_right.scale(factor),
2240            bottom_left: self.bottom_left.scale(factor),
2241        }
2242    }
2243
2244    /// Returns the maximum value of any corner.
2245    ///
2246    /// # Returns
2247    ///
2248    /// The maximum `Pixels` value among all four corners.
2249    pub fn max(&self) -> Pixels {
2250        self.top_left
2251            .max(self.top_right)
2252            .max(self.bottom_right)
2253            .max(self.bottom_left)
2254    }
2255}
2256
2257impl<T: Div<f32, Output = T> + Ord + Clone + Default + Debug> Corners<T> {
2258    /// Clamps corner radii to be less than or equal to half the shortest side of a quad.
2259    ///
2260    /// # Arguments
2261    ///
2262    /// * `size` - The size of the quad which limits the size of the corner radii.
2263    ///
2264    /// # Returns
2265    ///
2266    /// Corner radii values clamped to fit.
2267    pub fn clamp_radii_for_quad_size(self, size: Size<T>) -> Corners<T> {
2268        let max = cmp::min(size.width, size.height) / 2.;
2269        Corners {
2270            top_left: cmp::min(self.top_left, max.clone()),
2271            top_right: cmp::min(self.top_right, max.clone()),
2272            bottom_right: cmp::min(self.bottom_right, max.clone()),
2273            bottom_left: cmp::min(self.bottom_left, max),
2274        }
2275    }
2276}
2277
2278impl<T: Clone + Default + Debug> Corners<T> {
2279    /// Applies a function to each field of the `Corners`, producing a new `Corners<U>`.
2280    ///
2281    /// This method allows for converting a `Corners<T>` to a `Corners<U>` by specifying a closure
2282    /// that defines how to convert between the two types. The closure is applied to each field
2283    /// (`top_left`, `top_right`, `bottom_right`, `bottom_left`), resulting in new corners of the desired type.
2284    ///
2285    /// # Arguments
2286    ///
2287    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
2288    ///
2289    /// # Returns
2290    ///
2291    /// Returns a new `Corners<U>` with each field mapped by the provided function.
2292    ///
2293    /// # Examples
2294    ///
2295    /// ```
2296    /// # use gpui::{Corners, Pixels};
2297    /// let corners = Corners {
2298    ///     top_left: Pixels(10.0),
2299    ///     top_right: Pixels(20.0),
2300    ///     bottom_right: Pixels(30.0),
2301    ///     bottom_left: Pixels(40.0),
2302    /// };
2303    /// let corners_in_rems = corners.map(|&px| Rems(px.0 / 16.0));
2304    /// assert_eq!(corners_in_rems, Corners {
2305    ///     top_left: Rems(0.625),
2306    ///     top_right: Rems(1.25),
2307    ///     bottom_right: Rems(1.875),
2308    ///     bottom_left: Rems(2.5),
2309    /// });
2310    /// ```
2311    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Corners<U>
2312    where
2313        U: Clone + Default + Debug,
2314    {
2315        Corners {
2316            top_left: f(&self.top_left),
2317            top_right: f(&self.top_right),
2318            bottom_right: f(&self.bottom_right),
2319            bottom_left: f(&self.bottom_left),
2320        }
2321    }
2322}
2323
2324impl<T> Mul for Corners<T>
2325where
2326    T: Mul<Output = T> + Clone + Default + Debug,
2327{
2328    type Output = Self;
2329
2330    fn mul(self, rhs: Self) -> Self::Output {
2331        Self {
2332            top_left: self.top_left.clone() * rhs.top_left,
2333            top_right: self.top_right.clone() * rhs.top_right,
2334            bottom_right: self.bottom_right.clone() * rhs.bottom_right,
2335            bottom_left: self.bottom_left.clone() * rhs.bottom_left,
2336        }
2337    }
2338}
2339
2340impl<T, S> MulAssign<S> for Corners<T>
2341where
2342    T: Mul<S, Output = T> + Clone + Default + Debug,
2343    S: Clone,
2344{
2345    fn mul_assign(&mut self, rhs: S) {
2346        self.top_left = self.top_left.clone() * rhs.clone();
2347        self.top_right = self.top_right.clone() * rhs.clone();
2348        self.bottom_right = self.bottom_right.clone() * rhs.clone();
2349        self.bottom_left = self.bottom_left.clone() * rhs;
2350    }
2351}
2352
2353impl<T> Copy for Corners<T> where T: Copy + Clone + Default + Debug {}
2354
2355impl From<f32> for Corners<Pixels> {
2356    fn from(val: f32) -> Self {
2357        Corners {
2358            top_left: val.into(),
2359            top_right: val.into(),
2360            bottom_right: val.into(),
2361            bottom_left: val.into(),
2362        }
2363    }
2364}
2365
2366impl From<Pixels> for Corners<Pixels> {
2367    fn from(val: Pixels) -> Self {
2368        Corners {
2369            top_left: val,
2370            top_right: val,
2371            bottom_right: val,
2372            bottom_left: val,
2373        }
2374    }
2375}
2376
2377/// Represents an angle in Radians
2378#[derive(
2379    Clone,
2380    Copy,
2381    Default,
2382    Add,
2383    AddAssign,
2384    Sub,
2385    SubAssign,
2386    Neg,
2387    Div,
2388    DivAssign,
2389    PartialEq,
2390    Serialize,
2391    Deserialize,
2392    Debug,
2393)]
2394#[repr(transparent)]
2395pub struct Radians(pub f32);
2396
2397/// Create a `Radian` from a raw value
2398pub fn radians(value: f32) -> Radians {
2399    Radians(value)
2400}
2401
2402/// A type representing a percentage value.
2403#[derive(
2404    Clone,
2405    Copy,
2406    Default,
2407    Add,
2408    AddAssign,
2409    Sub,
2410    SubAssign,
2411    Neg,
2412    Div,
2413    DivAssign,
2414    PartialEq,
2415    Serialize,
2416    Deserialize,
2417    Debug,
2418)]
2419#[repr(transparent)]
2420pub struct Percentage(pub f32);
2421
2422/// Generate a `Radian` from a percentage of a full circle.
2423pub fn percentage(value: f32) -> Percentage {
2424    debug_assert!(
2425        (0.0..=1.0).contains(&value),
2426        "Percentage must be between 0 and 1"
2427    );
2428    Percentage(value)
2429}
2430
2431impl From<Percentage> for Radians {
2432    fn from(value: Percentage) -> Self {
2433        radians(value.0 * std::f32::consts::PI * 2.0)
2434    }
2435}
2436
2437/// Represents a length in pixels, the base unit of measurement in the UI framework.
2438///
2439/// `Pixels` is a value type that represents an absolute length in pixels, which is used
2440/// for specifying sizes, positions, and distances in the UI. It is the fundamental unit
2441/// of measurement for all visual elements and layout calculations.
2442///
2443/// The inner value is an `f32`, allowing for sub-pixel precision which can be useful for
2444/// anti-aliasing and animations. However, when applied to actual pixel grids, the value
2445/// is typically rounded to the nearest integer.
2446///
2447/// # Examples
2448///
2449/// ```
2450/// use gpui::Pixels;
2451///
2452/// // Define a length of 10 pixels
2453/// let length = Pixels(10.0);
2454///
2455/// // Define a length and scale it by a factor of 2
2456/// let scaled_length = length.scale(2.0);
2457/// assert_eq!(scaled_length, Pixels(20.0));
2458/// ```
2459#[derive(
2460    Clone,
2461    Copy,
2462    Default,
2463    Add,
2464    AddAssign,
2465    Sub,
2466    SubAssign,
2467    Neg,
2468    Div,
2469    DivAssign,
2470    PartialEq,
2471    Serialize,
2472    Deserialize,
2473)]
2474#[repr(transparent)]
2475pub struct Pixels(pub f32);
2476
2477impl std::fmt::Display for Pixels {
2478    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2479        f.write_fmt(format_args!("{}px", self.0))
2480    }
2481}
2482
2483impl Div for Pixels {
2484    type Output = f32;
2485
2486    fn div(self, rhs: Self) -> Self::Output {
2487        self.0 / rhs.0
2488    }
2489}
2490
2491impl std::ops::DivAssign for Pixels {
2492    fn div_assign(&mut self, rhs: Self) {
2493        *self = Self(self.0 / rhs.0);
2494    }
2495}
2496
2497impl std::ops::RemAssign for Pixels {
2498    fn rem_assign(&mut self, rhs: Self) {
2499        self.0 %= rhs.0;
2500    }
2501}
2502
2503impl std::ops::Rem for Pixels {
2504    type Output = Self;
2505
2506    fn rem(self, rhs: Self) -> Self {
2507        Self(self.0 % rhs.0)
2508    }
2509}
2510
2511impl Mul<f32> for Pixels {
2512    type Output = Self;
2513
2514    fn mul(self, rhs: f32) -> Self {
2515        Self(self.0 * rhs)
2516    }
2517}
2518
2519impl Mul<Pixels> for f32 {
2520    type Output = Pixels;
2521
2522    fn mul(self, rhs: Pixels) -> Self::Output {
2523        rhs * self
2524    }
2525}
2526
2527impl Mul<usize> for Pixels {
2528    type Output = Self;
2529
2530    fn mul(self, rhs: usize) -> Self {
2531        self * (rhs as f32)
2532    }
2533}
2534
2535impl Mul<Pixels> for usize {
2536    type Output = Pixels;
2537
2538    fn mul(self, rhs: Pixels) -> Pixels {
2539        rhs * self
2540    }
2541}
2542
2543impl MulAssign<f32> for Pixels {
2544    fn mul_assign(&mut self, rhs: f32) {
2545        self.0 *= rhs;
2546    }
2547}
2548
2549impl Pixels {
2550    /// Represents zero pixels.
2551    pub const ZERO: Pixels = Pixels(0.0);
2552    /// The maximum value that can be represented by `Pixels`.
2553    pub const MAX: Pixels = Pixels(f32::MAX);
2554    /// The minimum value that can be represented by `Pixels`.
2555    pub const MIN: Pixels = Pixels(f32::MIN);
2556
2557    /// Floors the `Pixels` value to the nearest whole number.
2558    ///
2559    /// # Returns
2560    ///
2561    /// Returns a new `Pixels` instance with the floored value.
2562    pub fn floor(&self) -> Self {
2563        Self(self.0.floor())
2564    }
2565
2566    /// Rounds the `Pixels` value to the nearest whole number.
2567    ///
2568    /// # Returns
2569    ///
2570    /// Returns a new `Pixels` instance with the rounded value.
2571    pub fn round(&self) -> Self {
2572        Self(self.0.round())
2573    }
2574
2575    /// Returns the ceiling of the `Pixels` value to the nearest whole number.
2576    ///
2577    /// # Returns
2578    ///
2579    /// Returns a new `Pixels` instance with the ceiling value.
2580    pub fn ceil(&self) -> Self {
2581        Self(self.0.ceil())
2582    }
2583
2584    /// Scales the `Pixels` value by a given factor, producing `ScaledPixels`.
2585    ///
2586    /// This method is used when adjusting pixel values for display scaling factors,
2587    /// such as high DPI (dots per inch) or Retina displays, where the pixel density is higher and
2588    /// thus requires scaling to maintain visual consistency and readability.
2589    ///
2590    /// The resulting `ScaledPixels` represent the scaled value which can be used for rendering
2591    /// calculations where display scaling is considered.
2592    pub fn scale(&self, factor: f32) -> ScaledPixels {
2593        ScaledPixels(self.0 * factor)
2594    }
2595
2596    /// Raises the `Pixels` value to a given power.
2597    ///
2598    /// # Arguments
2599    ///
2600    /// * `exponent` - The exponent to raise the `Pixels` value by.
2601    ///
2602    /// # Returns
2603    ///
2604    /// Returns a new `Pixels` instance with the value raised to the given exponent.
2605    pub fn pow(&self, exponent: f32) -> Self {
2606        Self(self.0.powf(exponent))
2607    }
2608
2609    /// Returns the absolute value of the `Pixels`.
2610    ///
2611    /// # Returns
2612    ///
2613    /// A new `Pixels` instance with the absolute value of the original `Pixels`.
2614    pub fn abs(&self) -> Self {
2615        Self(self.0.abs())
2616    }
2617
2618    /// Returns the sign of the `Pixels` value.
2619    ///
2620    /// # Returns
2621    ///
2622    /// Returns:
2623    /// * `1.0` if the value is positive
2624    /// * `-1.0` if the value is negative
2625    pub fn signum(&self) -> f32 {
2626        self.0.signum()
2627    }
2628
2629    /// Returns the f64 value of `Pixels`.
2630    ///
2631    /// # Returns
2632    ///
2633    /// A f64 value of the `Pixels`.
2634    pub fn to_f64(self) -> f64 {
2635        self.0 as f64
2636    }
2637}
2638
2639impl Eq for Pixels {}
2640
2641impl PartialOrd for Pixels {
2642    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2643        Some(self.cmp(other))
2644    }
2645}
2646
2647impl Ord for Pixels {
2648    fn cmp(&self, other: &Self) -> cmp::Ordering {
2649        self.0.total_cmp(&other.0)
2650    }
2651}
2652
2653impl std::hash::Hash for Pixels {
2654    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2655        self.0.to_bits().hash(state);
2656    }
2657}
2658
2659impl From<f64> for Pixels {
2660    fn from(pixels: f64) -> Self {
2661        Pixels(pixels as f32)
2662    }
2663}
2664
2665impl From<f32> for Pixels {
2666    fn from(pixels: f32) -> Self {
2667        Pixels(pixels)
2668    }
2669}
2670
2671impl Debug for Pixels {
2672    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2673        write!(f, "{} px", self.0)
2674    }
2675}
2676
2677impl From<Pixels> for f32 {
2678    fn from(pixels: Pixels) -> Self {
2679        pixels.0
2680    }
2681}
2682
2683impl From<&Pixels> for f32 {
2684    fn from(pixels: &Pixels) -> Self {
2685        pixels.0
2686    }
2687}
2688
2689impl From<Pixels> for f64 {
2690    fn from(pixels: Pixels) -> Self {
2691        pixels.0 as f64
2692    }
2693}
2694
2695impl From<Pixels> for u32 {
2696    fn from(pixels: Pixels) -> Self {
2697        pixels.0 as u32
2698    }
2699}
2700
2701impl From<u32> for Pixels {
2702    fn from(pixels: u32) -> Self {
2703        Pixels(pixels as f32)
2704    }
2705}
2706
2707impl From<Pixels> for usize {
2708    fn from(pixels: Pixels) -> Self {
2709        pixels.0 as usize
2710    }
2711}
2712
2713impl From<usize> for Pixels {
2714    fn from(pixels: usize) -> Self {
2715        Pixels(pixels as f32)
2716    }
2717}
2718
2719/// Represents physical pixels on the display.
2720///
2721/// `DevicePixels` is a unit of measurement that refers to the actual pixels on a device's screen.
2722/// This type is used when precise pixel manipulation is required, such as rendering graphics or
2723/// interfacing with hardware that operates on the pixel level. Unlike logical pixels that may be
2724/// affected by the device's scale factor, `DevicePixels` always correspond to real pixels on the
2725/// display.
2726#[derive(
2727    Add,
2728    AddAssign,
2729    Clone,
2730    Copy,
2731    Default,
2732    Div,
2733    Eq,
2734    Hash,
2735    Ord,
2736    PartialEq,
2737    PartialOrd,
2738    Sub,
2739    SubAssign,
2740    Serialize,
2741    Deserialize,
2742)]
2743#[repr(transparent)]
2744pub struct DevicePixels(pub i32);
2745
2746impl DevicePixels {
2747    /// Converts the `DevicePixels` value to the number of bytes needed to represent it in memory.
2748    ///
2749    /// This function is useful when working with graphical data that needs to be stored in a buffer,
2750    /// such as images or framebuffers, where each pixel may be represented by a specific number of bytes.
2751    ///
2752    /// # Arguments
2753    ///
2754    /// * `bytes_per_pixel` - The number of bytes used to represent a single pixel.
2755    ///
2756    /// # Returns
2757    ///
2758    /// The number of bytes required to represent the `DevicePixels` value in memory.
2759    ///
2760    /// # Examples
2761    ///
2762    /// ```
2763    /// # use gpui::DevicePixels;
2764    /// let pixels = DevicePixels(10); // 10 device pixels
2765    /// let bytes_per_pixel = 4; // Assume each pixel is represented by 4 bytes (e.g., RGBA)
2766    /// let total_bytes = pixels.to_bytes(bytes_per_pixel);
2767    /// assert_eq!(total_bytes, 40); // 10 pixels * 4 bytes/pixel = 40 bytes
2768    /// ```
2769    pub fn to_bytes(&self, bytes_per_pixel: u8) -> u32 {
2770        self.0 as u32 * bytes_per_pixel as u32
2771    }
2772}
2773
2774impl fmt::Debug for DevicePixels {
2775    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2776        write!(f, "{} px (device)", self.0)
2777    }
2778}
2779
2780impl From<DevicePixels> for i32 {
2781    fn from(device_pixels: DevicePixels) -> Self {
2782        device_pixels.0
2783    }
2784}
2785
2786impl From<i32> for DevicePixels {
2787    fn from(device_pixels: i32) -> Self {
2788        DevicePixels(device_pixels)
2789    }
2790}
2791
2792impl From<u32> for DevicePixels {
2793    fn from(device_pixels: u32) -> Self {
2794        DevicePixels(device_pixels as i32)
2795    }
2796}
2797
2798impl From<DevicePixels> for u32 {
2799    fn from(device_pixels: DevicePixels) -> Self {
2800        device_pixels.0 as u32
2801    }
2802}
2803
2804impl From<DevicePixels> for u64 {
2805    fn from(device_pixels: DevicePixels) -> Self {
2806        device_pixels.0 as u64
2807    }
2808}
2809
2810impl From<u64> for DevicePixels {
2811    fn from(device_pixels: u64) -> Self {
2812        DevicePixels(device_pixels as i32)
2813    }
2814}
2815
2816impl From<DevicePixels> for usize {
2817    fn from(device_pixels: DevicePixels) -> Self {
2818        device_pixels.0 as usize
2819    }
2820}
2821
2822impl From<usize> for DevicePixels {
2823    fn from(device_pixels: usize) -> Self {
2824        DevicePixels(device_pixels as i32)
2825    }
2826}
2827
2828/// Represents scaled pixels that take into account the device's scale factor.
2829///
2830/// `ScaledPixels` are used to ensure that UI elements appear at the correct size on devices
2831/// with different pixel densities. When a device has a higher scale factor (such as Retina displays),
2832/// a single logical pixel may correspond to multiple physical pixels. By using `ScaledPixels`,
2833/// dimensions and positions can be specified in a way that scales appropriately across different
2834/// display resolutions.
2835#[derive(Clone, Copy, Default, Add, AddAssign, Sub, SubAssign, Div, DivAssign, PartialEq)]
2836#[repr(transparent)]
2837pub struct ScaledPixels(pub(crate) f32);
2838
2839impl ScaledPixels {
2840    /// Floors the `ScaledPixels` value to the nearest whole number.
2841    ///
2842    /// # Returns
2843    ///
2844    /// Returns a new `ScaledPixels` instance with the floored value.
2845    pub fn floor(&self) -> Self {
2846        Self(self.0.floor())
2847    }
2848
2849    /// Rounds the `ScaledPixels` value to the nearest whole number.
2850    ///
2851    /// # Returns
2852    ///
2853    /// Returns a new `ScaledPixels` instance with the rounded value.
2854    pub fn ceil(&self) -> Self {
2855        Self(self.0.ceil())
2856    }
2857}
2858
2859impl Eq for ScaledPixels {}
2860
2861impl PartialOrd for ScaledPixels {
2862    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2863        Some(self.cmp(other))
2864    }
2865}
2866
2867impl Ord for ScaledPixels {
2868    fn cmp(&self, other: &Self) -> cmp::Ordering {
2869        self.0.total_cmp(&other.0)
2870    }
2871}
2872
2873impl Debug for ScaledPixels {
2874    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2875        write!(f, "{} px (scaled)", self.0)
2876    }
2877}
2878
2879impl From<ScaledPixels> for DevicePixels {
2880    fn from(scaled: ScaledPixels) -> Self {
2881        DevicePixels(scaled.0.ceil() as i32)
2882    }
2883}
2884
2885impl From<DevicePixels> for ScaledPixels {
2886    fn from(device: DevicePixels) -> Self {
2887        ScaledPixels(device.0 as f32)
2888    }
2889}
2890
2891impl From<ScaledPixels> for f64 {
2892    fn from(scaled_pixels: ScaledPixels) -> Self {
2893        scaled_pixels.0 as f64
2894    }
2895}
2896
2897impl From<ScaledPixels> for u32 {
2898    fn from(pixels: ScaledPixels) -> Self {
2899        pixels.0 as u32
2900    }
2901}
2902
2903impl Div for ScaledPixels {
2904    type Output = f32;
2905
2906    fn div(self, rhs: Self) -> Self::Output {
2907        self.0 / rhs.0
2908    }
2909}
2910
2911impl std::ops::DivAssign for ScaledPixels {
2912    fn div_assign(&mut self, rhs: Self) {
2913        *self = Self(self.0 / rhs.0);
2914    }
2915}
2916
2917impl std::ops::RemAssign for ScaledPixels {
2918    fn rem_assign(&mut self, rhs: Self) {
2919        self.0 %= rhs.0;
2920    }
2921}
2922
2923impl std::ops::Rem for ScaledPixels {
2924    type Output = Self;
2925
2926    fn rem(self, rhs: Self) -> Self {
2927        Self(self.0 % rhs.0)
2928    }
2929}
2930
2931impl Mul<f32> for ScaledPixels {
2932    type Output = Self;
2933
2934    fn mul(self, rhs: f32) -> Self {
2935        Self(self.0 * rhs)
2936    }
2937}
2938
2939impl Mul<ScaledPixels> for f32 {
2940    type Output = ScaledPixels;
2941
2942    fn mul(self, rhs: ScaledPixels) -> Self::Output {
2943        rhs * self
2944    }
2945}
2946
2947impl Mul<usize> for ScaledPixels {
2948    type Output = Self;
2949
2950    fn mul(self, rhs: usize) -> Self {
2951        self * (rhs as f32)
2952    }
2953}
2954
2955impl Mul<ScaledPixels> for usize {
2956    type Output = ScaledPixels;
2957
2958    fn mul(self, rhs: ScaledPixels) -> ScaledPixels {
2959        rhs * self
2960    }
2961}
2962
2963impl MulAssign<f32> for ScaledPixels {
2964    fn mul_assign(&mut self, rhs: f32) {
2965        self.0 *= rhs;
2966    }
2967}
2968
2969/// Represents a length in rems, a unit based on the font-size of the window, which can be assigned with [`Window::set_rem_size`][set_rem_size].
2970///
2971/// Rems are used for defining lengths that are scalable and consistent across different UI elements.
2972/// The value of `1rem` is typically equal to the font-size of the root element (often the `<html>` element in browsers),
2973/// making it a flexible unit that adapts to the user's text size preferences. In this framework, `rems` serve a similar
2974/// purpose, allowing for scalable and accessible design that can adjust to different display settings or user preferences.
2975///
2976/// For example, if the root element's font-size is `16px`, then `1rem` equals `16px`. A length of `2rems` would then be `32px`.
2977///
2978/// [set_rem_size]: crate::Window::set_rem_size
2979#[derive(Clone, Copy, Default, Add, Sub, Mul, Div, Neg, PartialEq)]
2980pub struct Rems(pub f32);
2981
2982impl Rems {
2983    /// Convert this Rem value to pixels.
2984    pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
2985        *self * rem_size
2986    }
2987}
2988
2989impl Mul<Pixels> for Rems {
2990    type Output = Pixels;
2991
2992    fn mul(self, other: Pixels) -> Pixels {
2993        Pixels(self.0 * other.0)
2994    }
2995}
2996
2997impl Debug for Rems {
2998    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2999        write!(f, "{} rem", self.0)
3000    }
3001}
3002
3003/// Represents an absolute length in pixels or rems.
3004///
3005/// `AbsoluteLength` can be either a fixed number of pixels, which is an absolute measurement not
3006/// affected by the current font size, or a number of rems, which is relative to the font size of
3007/// the root element. It is used for specifying dimensions that are either independent of or
3008/// related to the typographic scale.
3009#[derive(Clone, Copy, Debug, Neg, PartialEq)]
3010pub enum AbsoluteLength {
3011    /// A length in pixels.
3012    Pixels(Pixels),
3013    /// A length in rems.
3014    Rems(Rems),
3015}
3016
3017impl AbsoluteLength {
3018    /// Checks if the absolute length is zero.
3019    pub fn is_zero(&self) -> bool {
3020        match self {
3021            AbsoluteLength::Pixels(px) => px.0 == 0.0,
3022            AbsoluteLength::Rems(rems) => rems.0 == 0.0,
3023        }
3024    }
3025}
3026
3027impl From<Pixels> for AbsoluteLength {
3028    fn from(pixels: Pixels) -> Self {
3029        AbsoluteLength::Pixels(pixels)
3030    }
3031}
3032
3033impl From<Rems> for AbsoluteLength {
3034    fn from(rems: Rems) -> Self {
3035        AbsoluteLength::Rems(rems)
3036    }
3037}
3038
3039impl AbsoluteLength {
3040    /// Converts an `AbsoluteLength` to `Pixels` based on a given `rem_size`.
3041    ///
3042    /// # Arguments
3043    ///
3044    /// * `rem_size` - The size of one rem in pixels.
3045    ///
3046    /// # Returns
3047    ///
3048    /// Returns the `AbsoluteLength` as `Pixels`.
3049    ///
3050    /// # Examples
3051    ///
3052    /// ```
3053    /// # use gpui::{AbsoluteLength, Pixels};
3054    /// let length_in_pixels = AbsoluteLength::Pixels(Pixels(42.0));
3055    /// let length_in_rems = AbsoluteLength::Rems(Rems(2.0));
3056    /// let rem_size = Pixels(16.0);
3057    ///
3058    /// assert_eq!(length_in_pixels.to_pixels(rem_size), Pixels(42.0));
3059    /// assert_eq!(length_in_rems.to_pixels(rem_size), Pixels(32.0));
3060    /// ```
3061    pub fn to_pixels(&self, rem_size: Pixels) -> Pixels {
3062        match self {
3063            AbsoluteLength::Pixels(pixels) => *pixels,
3064            AbsoluteLength::Rems(rems) => rems.to_pixels(rem_size),
3065        }
3066    }
3067
3068    /// Converts an `AbsoluteLength` to `Rems` based on a given `rem_size`.
3069    ///
3070    /// # Arguments
3071    ///
3072    /// * `rem_size` - The size of one rem in pixels.
3073    ///
3074    /// # Returns
3075    ///
3076    /// Returns the `AbsoluteLength` as `Pixels`.
3077    pub fn to_rems(&self, rem_size: Pixels) -> Rems {
3078        match self {
3079            AbsoluteLength::Pixels(pixels) => Rems(pixels.0 / rem_size.0),
3080            AbsoluteLength::Rems(rems) => *rems,
3081        }
3082    }
3083}
3084
3085impl Default for AbsoluteLength {
3086    fn default() -> Self {
3087        px(0.).into()
3088    }
3089}
3090
3091/// A non-auto length that can be defined in pixels, rems, or percent of parent.
3092///
3093/// This enum represents lengths that have a specific value, as opposed to lengths that are automatically
3094/// determined by the context. It includes absolute lengths in pixels or rems, and relative lengths as a
3095/// fraction of the parent's size.
3096#[derive(Clone, Copy, Neg, PartialEq)]
3097pub enum DefiniteLength {
3098    /// An absolute length specified in pixels or rems.
3099    Absolute(AbsoluteLength),
3100    /// A relative length specified as a fraction of the parent's size, between 0 and 1.
3101    Fraction(f32),
3102}
3103
3104impl DefiniteLength {
3105    /// Converts the `DefiniteLength` to `Pixels` based on a given `base_size` and `rem_size`.
3106    ///
3107    /// If the `DefiniteLength` is an absolute length, it will be directly converted to `Pixels`.
3108    /// If it is a fraction, the fraction will be multiplied by the `base_size` to get the length in pixels.
3109    ///
3110    /// # Arguments
3111    ///
3112    /// * `base_size` - The base size in `AbsoluteLength` to which the fraction will be applied.
3113    /// * `rem_size` - The size of one rem in pixels, used to convert rems to pixels.
3114    ///
3115    /// # Returns
3116    ///
3117    /// Returns the `DefiniteLength` as `Pixels`.
3118    ///
3119    /// # Examples
3120    ///
3121    /// ```
3122    /// # use gpui::{DefiniteLength, AbsoluteLength, Pixels, px, rems};
3123    /// let length_in_pixels = DefiniteLength::Absolute(AbsoluteLength::Pixels(px(42.0)));
3124    /// let length_in_rems = DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0)));
3125    /// let length_as_fraction = DefiniteLength::Fraction(0.5);
3126    /// let base_size = AbsoluteLength::Pixels(px(100.0));
3127    /// let rem_size = px(16.0);
3128    ///
3129    /// assert_eq!(length_in_pixels.to_pixels(base_size, rem_size), Pixels(42.0));
3130    /// assert_eq!(length_in_rems.to_pixels(base_size, rem_size), Pixels(32.0));
3131    /// assert_eq!(length_as_fraction.to_pixels(base_size, rem_size), Pixels(50.0));
3132    /// ```
3133    pub fn to_pixels(&self, base_size: AbsoluteLength, rem_size: Pixels) -> Pixels {
3134        match self {
3135            DefiniteLength::Absolute(size) => size.to_pixels(rem_size),
3136            DefiniteLength::Fraction(fraction) => match base_size {
3137                AbsoluteLength::Pixels(px) => px * *fraction,
3138                AbsoluteLength::Rems(rems) => rems * rem_size * *fraction,
3139            },
3140        }
3141    }
3142}
3143
3144impl Debug for DefiniteLength {
3145    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3146        match self {
3147            DefiniteLength::Absolute(length) => Debug::fmt(length, f),
3148            DefiniteLength::Fraction(fract) => write!(f, "{}%", (fract * 100.0) as i32),
3149        }
3150    }
3151}
3152
3153impl From<Pixels> for DefiniteLength {
3154    fn from(pixels: Pixels) -> Self {
3155        Self::Absolute(pixels.into())
3156    }
3157}
3158
3159impl From<Rems> for DefiniteLength {
3160    fn from(rems: Rems) -> Self {
3161        Self::Absolute(rems.into())
3162    }
3163}
3164
3165impl From<AbsoluteLength> for DefiniteLength {
3166    fn from(length: AbsoluteLength) -> Self {
3167        Self::Absolute(length)
3168    }
3169}
3170
3171impl Default for DefiniteLength {
3172    fn default() -> Self {
3173        Self::Absolute(AbsoluteLength::default())
3174    }
3175}
3176
3177/// A length that can be defined in pixels, rems, percent of parent, or auto.
3178#[derive(Clone, Copy)]
3179pub enum Length {
3180    /// A definite length specified either in pixels, rems, or as a fraction of the parent's size.
3181    Definite(DefiniteLength),
3182    /// An automatic length that is determined by the context in which it is used.
3183    Auto,
3184}
3185
3186impl Debug for Length {
3187    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3188        match self {
3189            Length::Definite(definite_length) => write!(f, "{:?}", definite_length),
3190            Length::Auto => write!(f, "auto"),
3191        }
3192    }
3193}
3194
3195/// Constructs a `DefiniteLength` representing a relative fraction of a parent size.
3196///
3197/// This function creates a `DefiniteLength` that is a specified fraction of a parent's dimension.
3198/// The fraction should be a floating-point number between 0.0 and 1.0, where 1.0 represents 100% of the parent's size.
3199///
3200/// # Arguments
3201///
3202/// * `fraction` - The fraction of the parent's size, between 0.0 and 1.0.
3203///
3204/// # Returns
3205///
3206/// A `DefiniteLength` representing the relative length as a fraction of the parent's size.
3207pub fn relative(fraction: f32) -> DefiniteLength {
3208    DefiniteLength::Fraction(fraction)
3209}
3210
3211/// Returns the Golden Ratio, i.e. `~(1.0 + sqrt(5.0)) / 2.0`.
3212pub fn phi() -> DefiniteLength {
3213    relative(1.618_034)
3214}
3215
3216/// Constructs a `Rems` value representing a length in rems.
3217///
3218/// # Arguments
3219///
3220/// * `rems` - The number of rems for the length.
3221///
3222/// # Returns
3223///
3224/// A `Rems` representing the specified number of rems.
3225pub fn rems(rems: f32) -> Rems {
3226    Rems(rems)
3227}
3228
3229/// Constructs a `Pixels` value representing a length in pixels.
3230///
3231/// # Arguments
3232///
3233/// * `pixels` - The number of pixels for the length.
3234///
3235/// # Returns
3236///
3237/// A `Pixels` representing the specified number of pixels.
3238pub const fn px(pixels: f32) -> Pixels {
3239    Pixels(pixels)
3240}
3241
3242/// Returns a `Length` representing an automatic length.
3243///
3244/// The `auto` length is often used in layout calculations where the length should be determined
3245/// by the layout context itself rather than being explicitly set. This is commonly used in CSS
3246/// for properties like `width`, `height`, `margin`, `padding`, etc., where `auto` can be used
3247/// to instruct the layout engine to calculate the size based on other factors like the size of the
3248/// container or the intrinsic size of the content.
3249///
3250/// # Returns
3251///
3252/// A `Length` variant set to `Auto`.
3253pub fn auto() -> Length {
3254    Length::Auto
3255}
3256
3257impl From<Pixels> for Length {
3258    fn from(pixels: Pixels) -> Self {
3259        Self::Definite(pixels.into())
3260    }
3261}
3262
3263impl From<Rems> for Length {
3264    fn from(rems: Rems) -> Self {
3265        Self::Definite(rems.into())
3266    }
3267}
3268
3269impl From<DefiniteLength> for Length {
3270    fn from(length: DefiniteLength) -> Self {
3271        Self::Definite(length)
3272    }
3273}
3274
3275impl From<AbsoluteLength> for Length {
3276    fn from(length: AbsoluteLength) -> Self {
3277        Self::Definite(length.into())
3278    }
3279}
3280
3281impl Default for Length {
3282    fn default() -> Self {
3283        Self::Definite(DefiniteLength::default())
3284    }
3285}
3286
3287impl From<()> for Length {
3288    fn from(_: ()) -> Self {
3289        Self::Definite(DefiniteLength::default())
3290    }
3291}
3292
3293/// Provides a trait for types that can calculate half of their value.
3294///
3295/// The `Half` trait is used for types that can be evenly divided, returning a new instance of the same type
3296/// representing half of the original value. This is commonly used for types that represent measurements or sizes,
3297/// such as lengths or pixels, where halving is a frequent operation during layout calculations or animations.
3298pub trait Half {
3299    /// Returns half of the current value.
3300    ///
3301    /// # Returns
3302    ///
3303    /// A new instance of the implementing type, representing half of the original value.
3304    fn half(&self) -> Self;
3305}
3306
3307impl Half for i32 {
3308    fn half(&self) -> Self {
3309        self / 2
3310    }
3311}
3312
3313impl Half for f32 {
3314    fn half(&self) -> Self {
3315        self / 2.
3316    }
3317}
3318
3319impl Half for DevicePixels {
3320    fn half(&self) -> Self {
3321        Self(self.0 / 2)
3322    }
3323}
3324
3325impl Half for ScaledPixels {
3326    fn half(&self) -> Self {
3327        Self(self.0 / 2.)
3328    }
3329}
3330
3331impl Half for Pixels {
3332    fn half(&self) -> Self {
3333        Self(self.0 / 2.)
3334    }
3335}
3336
3337impl Half for Rems {
3338    fn half(&self) -> Self {
3339        Self(self.0 / 2.)
3340    }
3341}
3342
3343/// Provides a trait for types that can negate their values.
3344pub trait Negate {
3345    /// Returns the negation of the given value
3346    fn negate(self) -> Self;
3347}
3348
3349impl Negate for i32 {
3350    fn negate(self) -> Self {
3351        -self
3352    }
3353}
3354
3355impl Negate for f32 {
3356    fn negate(self) -> Self {
3357        -self
3358    }
3359}
3360
3361impl Negate for DevicePixels {
3362    fn negate(self) -> Self {
3363        Self(-self.0)
3364    }
3365}
3366
3367impl Negate for ScaledPixels {
3368    fn negate(self) -> Self {
3369        Self(-self.0)
3370    }
3371}
3372
3373impl Negate for Pixels {
3374    fn negate(self) -> Self {
3375        Self(-self.0)
3376    }
3377}
3378
3379impl Negate for Rems {
3380    fn negate(self) -> Self {
3381        Self(-self.0)
3382    }
3383}
3384
3385/// A trait for checking if a value is zero.
3386///
3387/// This trait provides a method to determine if a value is considered to be zero.
3388/// It is implemented for various numeric and length-related types where the concept
3389/// of zero is applicable. This can be useful for comparisons, optimizations, or
3390/// determining if an operation has a neutral effect.
3391pub trait IsZero {
3392    /// Determines if the value is zero.
3393    ///
3394    /// # Returns
3395    ///
3396    /// Returns `true` if the value is zero, `false` otherwise.
3397    fn is_zero(&self) -> bool;
3398}
3399
3400impl IsZero for DevicePixels {
3401    fn is_zero(&self) -> bool {
3402        self.0 == 0
3403    }
3404}
3405
3406impl IsZero for ScaledPixels {
3407    fn is_zero(&self) -> bool {
3408        self.0 == 0.
3409    }
3410}
3411
3412impl IsZero for Pixels {
3413    fn is_zero(&self) -> bool {
3414        self.0 == 0.
3415    }
3416}
3417
3418impl IsZero for Rems {
3419    fn is_zero(&self) -> bool {
3420        self.0 == 0.
3421    }
3422}
3423
3424impl IsZero for AbsoluteLength {
3425    fn is_zero(&self) -> bool {
3426        match self {
3427            AbsoluteLength::Pixels(pixels) => pixels.is_zero(),
3428            AbsoluteLength::Rems(rems) => rems.is_zero(),
3429        }
3430    }
3431}
3432
3433impl IsZero for DefiniteLength {
3434    fn is_zero(&self) -> bool {
3435        match self {
3436            DefiniteLength::Absolute(length) => length.is_zero(),
3437            DefiniteLength::Fraction(fraction) => *fraction == 0.,
3438        }
3439    }
3440}
3441
3442impl IsZero for Length {
3443    fn is_zero(&self) -> bool {
3444        match self {
3445            Length::Definite(length) => length.is_zero(),
3446            Length::Auto => false,
3447        }
3448    }
3449}
3450
3451impl<T: IsZero + Debug + Clone + Default> IsZero for Point<T> {
3452    fn is_zero(&self) -> bool {
3453        self.x.is_zero() && self.y.is_zero()
3454    }
3455}
3456
3457impl<T> IsZero for Size<T>
3458where
3459    T: IsZero + Default + Debug + Clone,
3460{
3461    fn is_zero(&self) -> bool {
3462        self.width.is_zero() || self.height.is_zero()
3463    }
3464}
3465
3466impl<T: IsZero + Debug + Clone + Default> IsZero for Bounds<T> {
3467    fn is_zero(&self) -> bool {
3468        self.size.is_zero()
3469    }
3470}
3471
3472impl<T> IsZero for Corners<T>
3473where
3474    T: IsZero + Clone + Default + Debug,
3475{
3476    fn is_zero(&self) -> bool {
3477        self.top_left.is_zero()
3478            && self.top_right.is_zero()
3479            && self.bottom_right.is_zero()
3480            && self.bottom_left.is_zero()
3481    }
3482}
3483
3484#[cfg(test)]
3485mod tests {
3486    use super::*;
3487
3488    #[test]
3489    fn test_bounds_intersects() {
3490        let bounds1 = Bounds {
3491            origin: Point { x: 0.0, y: 0.0 },
3492            size: Size {
3493                width: 5.0,
3494                height: 5.0,
3495            },
3496        };
3497        let bounds2 = Bounds {
3498            origin: Point { x: 4.0, y: 4.0 },
3499            size: Size {
3500                width: 5.0,
3501                height: 5.0,
3502            },
3503        };
3504        let bounds3 = Bounds {
3505            origin: Point { x: 10.0, y: 10.0 },
3506            size: Size {
3507                width: 5.0,
3508                height: 5.0,
3509            },
3510        };
3511
3512        // Test Case 1: Intersecting bounds
3513        assert!(bounds1.intersects(&bounds2));
3514
3515        // Test Case 2: Non-Intersecting bounds
3516        assert!(!bounds1.intersects(&bounds3));
3517
3518        // Test Case 3: Bounds intersecting with themselves
3519        assert!(bounds1.intersects(&bounds1));
3520    }
3521}