1use crate::{
2 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
3 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Context,
4 Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener, DispatchNodeId,
5 DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FontId,
6 Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero, KeyBinding, KeyContext,
7 KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId, LineLayoutIndex, Modifiers,
8 ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent, MouseUpEvent,
9 Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformInputHandler,
10 PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams,
11 RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR,
12 SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style,
13 SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
14 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
15 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
16 point, prelude::*, px, size, transparent_black,
17};
18use anyhow::{Context as _, Result, anyhow};
19use collections::{FxHashMap, FxHashSet};
20#[cfg(target_os = "macos")]
21use core_video::pixel_buffer::CVPixelBuffer;
22use derive_more::{Deref, DerefMut};
23use futures::FutureExt;
24use futures::channel::oneshot;
25use parking_lot::RwLock;
26use raw_window_handle::{HandleError, HasWindowHandle};
27use refineable::Refineable;
28use slotmap::SlotMap;
29use smallvec::SmallVec;
30use std::{
31 any::{Any, TypeId},
32 borrow::Cow,
33 cell::{Cell, RefCell},
34 cmp,
35 fmt::{Debug, Display},
36 hash::{Hash, Hasher},
37 marker::PhantomData,
38 mem,
39 ops::{DerefMut, Range},
40 rc::Rc,
41 sync::{
42 Arc, Weak,
43 atomic::{AtomicUsize, Ordering::SeqCst},
44 },
45 time::{Duration, Instant},
46};
47use util::post_inc;
48use util::{ResultExt, measure};
49use uuid::Uuid;
50
51mod prompts;
52
53pub use prompts::*;
54
55pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
56
57/// Represents the two different phases when dispatching events.
58#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
59pub enum DispatchPhase {
60 /// After the capture phase comes the bubble phase, in which mouse event listeners are
61 /// invoked front to back and keyboard event listeners are invoked from the focused element
62 /// to the root of the element tree. This is the phase you'll most commonly want to use when
63 /// registering event listeners.
64 #[default]
65 Bubble,
66 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
67 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
68 /// is used for special purposes such as clearing the "pressed" state for click events. If
69 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
70 /// outside of the immediate region may rely on detecting non-local events during this phase.
71 Capture,
72}
73
74impl DispatchPhase {
75 /// Returns true if this represents the "bubble" phase.
76 pub fn bubble(self) -> bool {
77 self == DispatchPhase::Bubble
78 }
79
80 /// Returns true if this represents the "capture" phase.
81 pub fn capture(self) -> bool {
82 self == DispatchPhase::Capture
83 }
84}
85
86struct WindowInvalidatorInner {
87 pub dirty: bool,
88 pub draw_phase: DrawPhase,
89 pub dirty_views: FxHashSet<EntityId>,
90}
91
92#[derive(Clone)]
93pub(crate) struct WindowInvalidator {
94 inner: Rc<RefCell<WindowInvalidatorInner>>,
95}
96
97impl WindowInvalidator {
98 pub fn new() -> Self {
99 WindowInvalidator {
100 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
101 dirty: true,
102 draw_phase: DrawPhase::None,
103 dirty_views: FxHashSet::default(),
104 })),
105 }
106 }
107
108 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
109 let mut inner = self.inner.borrow_mut();
110 inner.dirty_views.insert(entity);
111 if inner.draw_phase == DrawPhase::None {
112 inner.dirty = true;
113 cx.push_effect(Effect::Notify { emitter: entity });
114 true
115 } else {
116 false
117 }
118 }
119
120 pub fn is_dirty(&self) -> bool {
121 self.inner.borrow().dirty
122 }
123
124 pub fn set_dirty(&self, dirty: bool) {
125 self.inner.borrow_mut().dirty = dirty
126 }
127
128 pub fn set_phase(&self, phase: DrawPhase) {
129 self.inner.borrow_mut().draw_phase = phase
130 }
131
132 pub fn take_views(&self) -> FxHashSet<EntityId> {
133 mem::take(&mut self.inner.borrow_mut().dirty_views)
134 }
135
136 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
137 self.inner.borrow_mut().dirty_views = views;
138 }
139
140 pub fn not_drawing(&self) -> bool {
141 self.inner.borrow().draw_phase == DrawPhase::None
142 }
143
144 #[track_caller]
145 pub fn debug_assert_paint(&self) {
146 debug_assert!(
147 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
148 "this method can only be called during paint"
149 );
150 }
151
152 #[track_caller]
153 pub fn debug_assert_prepaint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
156 "this method can only be called during request_layout, or prepaint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint_or_prepaint(&self) {
162 debug_assert!(
163 matches!(
164 self.inner.borrow().draw_phase,
165 DrawPhase::Paint | DrawPhase::Prepaint
166 ),
167 "this method can only be called during request_layout, prepaint, or paint"
168 );
169 }
170}
171
172type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
173
174pub(crate) type AnyWindowFocusListener =
175 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
176
177pub(crate) struct WindowFocusEvent {
178 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
179 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
180}
181
182impl WindowFocusEvent {
183 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
184 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
185 }
186
187 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
188 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
189 }
190}
191
192/// This is provided when subscribing for `Context::on_focus_out` events.
193pub struct FocusOutEvent {
194 /// A weak focus handle representing what was blurred.
195 pub blurred: WeakFocusHandle,
196}
197
198slotmap::new_key_type! {
199 /// A globally unique identifier for a focusable element.
200 pub struct FocusId;
201}
202
203thread_local! {
204 /// 8MB wasn't quite enough...
205 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
206}
207
208pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
209
210impl FocusId {
211 /// Obtains whether the element associated with this handle is currently focused.
212 pub fn is_focused(&self, window: &Window) -> bool {
213 window.focus == Some(*self)
214 }
215
216 /// Obtains whether the element associated with this handle contains the focused
217 /// element or is itself focused.
218 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
219 window
220 .focused(cx)
221 .map_or(false, |focused| self.contains(focused.id, window))
222 }
223
224 /// Obtains whether the element associated with this handle is contained within the
225 /// focused element or is itself focused.
226 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
227 let focused = window.focused(cx);
228 focused.map_or(false, |focused| focused.id.contains(*self, window))
229 }
230
231 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
232 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
233 window
234 .rendered_frame
235 .dispatch_tree
236 .focus_contains(*self, other)
237 }
238}
239
240/// A handle which can be used to track and manipulate the focused element in a window.
241pub struct FocusHandle {
242 pub(crate) id: FocusId,
243 handles: Arc<FocusMap>,
244}
245
246impl std::fmt::Debug for FocusHandle {
247 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
248 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
249 }
250}
251
252impl FocusHandle {
253 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
254 let id = handles.write().insert(AtomicUsize::new(1));
255 Self {
256 id,
257 handles: handles.clone(),
258 }
259 }
260
261 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
262 let lock = handles.read();
263 let ref_count = lock.get(id)?;
264 if ref_count.load(SeqCst) == 0 {
265 None
266 } else {
267 ref_count.fetch_add(1, SeqCst);
268 Some(Self {
269 id,
270 handles: handles.clone(),
271 })
272 }
273 }
274
275 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
276 pub fn downgrade(&self) -> WeakFocusHandle {
277 WeakFocusHandle {
278 id: self.id,
279 handles: Arc::downgrade(&self.handles),
280 }
281 }
282
283 /// Moves the focus to the element associated with this handle.
284 pub fn focus(&self, window: &mut Window) {
285 window.focus(self)
286 }
287
288 /// Obtains whether the element associated with this handle is currently focused.
289 pub fn is_focused(&self, window: &Window) -> bool {
290 self.id.is_focused(window)
291 }
292
293 /// Obtains whether the element associated with this handle contains the focused
294 /// element or is itself focused.
295 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
296 self.id.contains_focused(window, cx)
297 }
298
299 /// Obtains whether the element associated with this handle is contained within the
300 /// focused element or is itself focused.
301 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
302 self.id.within_focused(window, cx)
303 }
304
305 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
306 pub fn contains(&self, other: &Self, window: &Window) -> bool {
307 self.id.contains(other.id, window)
308 }
309
310 /// Dispatch an action on the element that rendered this focus handle
311 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
312 if let Some(node_id) = window
313 .rendered_frame
314 .dispatch_tree
315 .focusable_node_id(self.id)
316 {
317 window.dispatch_action_on_node(node_id, action, cx)
318 }
319 }
320}
321
322impl Clone for FocusHandle {
323 fn clone(&self) -> Self {
324 Self::for_id(self.id, &self.handles).unwrap()
325 }
326}
327
328impl PartialEq for FocusHandle {
329 fn eq(&self, other: &Self) -> bool {
330 self.id == other.id
331 }
332}
333
334impl Eq for FocusHandle {}
335
336impl Drop for FocusHandle {
337 fn drop(&mut self) {
338 self.handles
339 .read()
340 .get(self.id)
341 .unwrap()
342 .fetch_sub(1, SeqCst);
343 }
344}
345
346/// A weak reference to a focus handle.
347#[derive(Clone, Debug)]
348pub struct WeakFocusHandle {
349 pub(crate) id: FocusId,
350 pub(crate) handles: Weak<FocusMap>,
351}
352
353impl WeakFocusHandle {
354 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
355 pub fn upgrade(&self) -> Option<FocusHandle> {
356 let handles = self.handles.upgrade()?;
357 FocusHandle::for_id(self.id, &handles)
358 }
359}
360
361impl PartialEq for WeakFocusHandle {
362 fn eq(&self, other: &WeakFocusHandle) -> bool {
363 self.id == other.id
364 }
365}
366
367impl Eq for WeakFocusHandle {}
368
369impl PartialEq<FocusHandle> for WeakFocusHandle {
370 fn eq(&self, other: &FocusHandle) -> bool {
371 self.id == other.id
372 }
373}
374
375impl PartialEq<WeakFocusHandle> for FocusHandle {
376 fn eq(&self, other: &WeakFocusHandle) -> bool {
377 self.id == other.id
378 }
379}
380
381/// Focusable allows users of your view to easily
382/// focus it (using window.focus_view(cx, view))
383pub trait Focusable: 'static {
384 /// Returns the focus handle associated with this view.
385 fn focus_handle(&self, cx: &App) -> FocusHandle;
386}
387
388impl<V: Focusable> Focusable for Entity<V> {
389 fn focus_handle(&self, cx: &App) -> FocusHandle {
390 self.read(cx).focus_handle(cx)
391 }
392}
393
394/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
395/// where the lifecycle of the view is handled by another view.
396pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
397
398impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
399
400/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
401pub struct DismissEvent;
402
403type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
404
405pub(crate) type AnyMouseListener =
406 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
407
408#[derive(Clone)]
409pub(crate) struct CursorStyleRequest {
410 pub(crate) hitbox_id: Option<HitboxId>, // None represents whole window
411 pub(crate) style: CursorStyle,
412}
413
414/// An identifier for a [Hitbox].
415#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
416pub struct HitboxId(usize);
417
418impl HitboxId {
419 /// Checks if the hitbox with this id is currently hovered.
420 pub fn is_hovered(&self, window: &Window) -> bool {
421 window.mouse_hit_test.0.contains(self)
422 }
423}
424
425/// A rectangular region that potentially blocks hitboxes inserted prior.
426/// See [Window::insert_hitbox] for more details.
427#[derive(Clone, Debug, Deref)]
428pub struct Hitbox {
429 /// A unique identifier for the hitbox.
430 pub id: HitboxId,
431 /// The bounds of the hitbox.
432 #[deref]
433 pub bounds: Bounds<Pixels>,
434 /// The content mask when the hitbox was inserted.
435 pub content_mask: ContentMask<Pixels>,
436 /// Whether the hitbox occludes other hitboxes inserted prior.
437 pub opaque: bool,
438}
439
440impl Hitbox {
441 /// Checks if the hitbox is currently hovered.
442 pub fn is_hovered(&self, window: &Window) -> bool {
443 self.id.is_hovered(window)
444 }
445}
446
447#[derive(Default, Eq, PartialEq)]
448pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
449
450/// An identifier for a tooltip.
451#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
452pub struct TooltipId(usize);
453
454impl TooltipId {
455 /// Checks if the tooltip is currently hovered.
456 pub fn is_hovered(&self, window: &Window) -> bool {
457 window
458 .tooltip_bounds
459 .as_ref()
460 .map_or(false, |tooltip_bounds| {
461 tooltip_bounds.id == *self
462 && tooltip_bounds.bounds.contains(&window.mouse_position())
463 })
464 }
465}
466
467pub(crate) struct TooltipBounds {
468 id: TooltipId,
469 bounds: Bounds<Pixels>,
470}
471
472#[derive(Clone)]
473pub(crate) struct TooltipRequest {
474 id: TooltipId,
475 tooltip: AnyTooltip,
476}
477
478pub(crate) struct DeferredDraw {
479 current_view: EntityId,
480 priority: usize,
481 parent_node: DispatchNodeId,
482 element_id_stack: SmallVec<[ElementId; 32]>,
483 text_style_stack: Vec<TextStyleRefinement>,
484 element: Option<AnyElement>,
485 absolute_offset: Point<Pixels>,
486 prepaint_range: Range<PrepaintStateIndex>,
487 paint_range: Range<PaintIndex>,
488}
489
490pub(crate) struct Frame {
491 pub(crate) focus: Option<FocusId>,
492 pub(crate) window_active: bool,
493 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
494 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
495 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
496 pub(crate) dispatch_tree: DispatchTree,
497 pub(crate) scene: Scene,
498 pub(crate) hitboxes: Vec<Hitbox>,
499 pub(crate) deferred_draws: Vec<DeferredDraw>,
500 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
501 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
502 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
503 #[cfg(any(test, feature = "test-support"))]
504 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
505}
506
507#[derive(Clone, Default)]
508pub(crate) struct PrepaintStateIndex {
509 hitboxes_index: usize,
510 tooltips_index: usize,
511 deferred_draws_index: usize,
512 dispatch_tree_index: usize,
513 accessed_element_states_index: usize,
514 line_layout_index: LineLayoutIndex,
515}
516
517#[derive(Clone, Default)]
518pub(crate) struct PaintIndex {
519 scene_index: usize,
520 mouse_listeners_index: usize,
521 input_handlers_index: usize,
522 cursor_styles_index: usize,
523 accessed_element_states_index: usize,
524 line_layout_index: LineLayoutIndex,
525}
526
527impl Frame {
528 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
529 Frame {
530 focus: None,
531 window_active: false,
532 element_states: FxHashMap::default(),
533 accessed_element_states: Vec::new(),
534 mouse_listeners: Vec::new(),
535 dispatch_tree,
536 scene: Scene::default(),
537 hitboxes: Vec::new(),
538 deferred_draws: Vec::new(),
539 input_handlers: Vec::new(),
540 tooltip_requests: Vec::new(),
541 cursor_styles: Vec::new(),
542
543 #[cfg(any(test, feature = "test-support"))]
544 debug_bounds: FxHashMap::default(),
545 }
546 }
547
548 pub(crate) fn clear(&mut self) {
549 self.element_states.clear();
550 self.accessed_element_states.clear();
551 self.mouse_listeners.clear();
552 self.dispatch_tree.clear();
553 self.scene.clear();
554 self.input_handlers.clear();
555 self.tooltip_requests.clear();
556 self.cursor_styles.clear();
557 self.hitboxes.clear();
558 self.deferred_draws.clear();
559 self.focus = None;
560 }
561
562 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
563 let mut hit_test = HitTest::default();
564 for hitbox in self.hitboxes.iter().rev() {
565 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
566 if bounds.contains(&position) {
567 hit_test.0.push(hitbox.id);
568 if hitbox.opaque {
569 break;
570 }
571 }
572 }
573 hit_test
574 }
575
576 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
577 self.focus
578 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
579 .unwrap_or_default()
580 }
581
582 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
583 for element_state_key in &self.accessed_element_states {
584 if let Some((element_state_key, element_state)) =
585 prev_frame.element_states.remove_entry(element_state_key)
586 {
587 self.element_states.insert(element_state_key, element_state);
588 }
589 }
590
591 self.scene.finish();
592 }
593}
594
595/// Holds the state for a specific window.
596pub struct Window {
597 pub(crate) handle: AnyWindowHandle,
598 pub(crate) invalidator: WindowInvalidator,
599 pub(crate) removed: bool,
600 pub(crate) platform_window: Box<dyn PlatformWindow>,
601 display_id: Option<DisplayId>,
602 sprite_atlas: Arc<dyn PlatformAtlas>,
603 text_system: Arc<WindowTextSystem>,
604 rem_size: Pixels,
605 /// The stack of override values for the window's rem size.
606 ///
607 /// This is used by `with_rem_size` to allow rendering an element tree with
608 /// a given rem size.
609 rem_size_override_stack: SmallVec<[Pixels; 8]>,
610 pub(crate) viewport_size: Size<Pixels>,
611 layout_engine: Option<TaffyLayoutEngine>,
612 pub(crate) root: Option<AnyView>,
613 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
614 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
615 pub(crate) rendered_entity_stack: Vec<EntityId>,
616 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
617 pub(crate) element_opacity: Option<f32>,
618 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
619 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
620 pub(crate) image_cache_stack: Vec<AnyImageCache>,
621 pub(crate) rendered_frame: Frame,
622 pub(crate) next_frame: Frame,
623 pub(crate) next_hitbox_id: HitboxId,
624 pub(crate) next_tooltip_id: TooltipId,
625 pub(crate) tooltip_bounds: Option<TooltipBounds>,
626 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
627 pub(crate) dirty_views: FxHashSet<EntityId>,
628 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
629 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
630 default_prevented: bool,
631 mouse_position: Point<Pixels>,
632 mouse_hit_test: HitTest,
633 modifiers: Modifiers,
634 scale_factor: f32,
635 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
636 appearance: WindowAppearance,
637 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
638 active: Rc<Cell<bool>>,
639 hovered: Rc<Cell<bool>>,
640 pub(crate) needs_present: Rc<Cell<bool>>,
641 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
642 pub(crate) refreshing: bool,
643 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
644 pub(crate) focus: Option<FocusId>,
645 focus_enabled: bool,
646 pending_input: Option<PendingInput>,
647 pending_modifier: ModifierState,
648 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
649 prompt: Option<RenderablePromptHandle>,
650 pub(crate) client_inset: Option<Pixels>,
651}
652
653#[derive(Clone, Debug, Default)]
654struct ModifierState {
655 modifiers: Modifiers,
656 saw_keystroke: bool,
657}
658
659#[derive(Clone, Copy, Debug, Eq, PartialEq)]
660pub(crate) enum DrawPhase {
661 None,
662 Prepaint,
663 Paint,
664 Focus,
665}
666
667#[derive(Default, Debug)]
668struct PendingInput {
669 keystrokes: SmallVec<[Keystroke; 1]>,
670 focus: Option<FocusId>,
671 timer: Option<Task<()>>,
672}
673
674pub(crate) struct ElementStateBox {
675 pub(crate) inner: Box<dyn Any>,
676 #[cfg(debug_assertions)]
677 pub(crate) type_name: &'static str,
678}
679
680fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
681 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
682
683 // TODO, BUG: if you open a window with the currently active window
684 // on the stack, this will erroneously select the 'unwrap_or_else'
685 // code path
686 cx.active_window()
687 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
688 .map(|mut bounds| {
689 bounds.origin += DEFAULT_WINDOW_OFFSET;
690 bounds
691 })
692 .unwrap_or_else(|| {
693 let display = display_id
694 .map(|id| cx.find_display(id))
695 .unwrap_or_else(|| cx.primary_display());
696
697 display
698 .map(|display| display.default_bounds())
699 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
700 })
701}
702
703impl Window {
704 pub(crate) fn new(
705 handle: AnyWindowHandle,
706 options: WindowOptions,
707 cx: &mut App,
708 ) -> Result<Self> {
709 let WindowOptions {
710 window_bounds,
711 titlebar,
712 focus,
713 show,
714 kind,
715 is_movable,
716 display_id,
717 window_background,
718 app_id,
719 window_min_size,
720 window_decorations,
721 } = options;
722
723 let bounds = window_bounds
724 .map(|bounds| bounds.get_bounds())
725 .unwrap_or_else(|| default_bounds(display_id, cx));
726 let mut platform_window = cx.platform.open_window(
727 handle,
728 WindowParams {
729 bounds,
730 titlebar,
731 kind,
732 is_movable,
733 focus,
734 show,
735 display_id,
736 window_min_size,
737 },
738 )?;
739 let display_id = platform_window.display().map(|display| display.id());
740 let sprite_atlas = platform_window.sprite_atlas();
741 let mouse_position = platform_window.mouse_position();
742 let modifiers = platform_window.modifiers();
743 let content_size = platform_window.content_size();
744 let scale_factor = platform_window.scale_factor();
745 let appearance = platform_window.appearance();
746 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
747 let invalidator = WindowInvalidator::new();
748 let active = Rc::new(Cell::new(platform_window.is_active()));
749 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
750 let needs_present = Rc::new(Cell::new(false));
751 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
752 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
753
754 platform_window
755 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
756 platform_window.set_background_appearance(window_background);
757
758 if let Some(ref window_open_state) = window_bounds {
759 match window_open_state {
760 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
761 WindowBounds::Maximized(_) => platform_window.zoom(),
762 WindowBounds::Windowed(_) => {}
763 }
764 }
765
766 platform_window.on_close(Box::new({
767 let mut cx = cx.to_async();
768 move || {
769 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
770 }
771 }));
772 platform_window.on_request_frame(Box::new({
773 let mut cx = cx.to_async();
774 let invalidator = invalidator.clone();
775 let active = active.clone();
776 let needs_present = needs_present.clone();
777 let next_frame_callbacks = next_frame_callbacks.clone();
778 let last_input_timestamp = last_input_timestamp.clone();
779 move |request_frame_options| {
780 let next_frame_callbacks = next_frame_callbacks.take();
781 if !next_frame_callbacks.is_empty() {
782 handle
783 .update(&mut cx, |_, window, cx| {
784 for callback in next_frame_callbacks {
785 callback(window, cx);
786 }
787 })
788 .log_err();
789 }
790
791 // Keep presenting the current scene for 1 extra second since the
792 // last input to prevent the display from underclocking the refresh rate.
793 let needs_present = request_frame_options.require_presentation
794 || needs_present.get()
795 || (active.get()
796 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
797
798 if invalidator.is_dirty() {
799 measure("frame duration", || {
800 handle
801 .update(&mut cx, |_, window, cx| {
802 window.draw(cx);
803 window.present();
804 })
805 .log_err();
806 })
807 } else if needs_present {
808 handle
809 .update(&mut cx, |_, window, _| window.present())
810 .log_err();
811 }
812
813 handle
814 .update(&mut cx, |_, window, _| {
815 window.complete_frame();
816 })
817 .log_err();
818 }
819 }));
820 platform_window.on_resize(Box::new({
821 let mut cx = cx.to_async();
822 move |_, _| {
823 handle
824 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
825 .log_err();
826 }
827 }));
828 platform_window.on_moved(Box::new({
829 let mut cx = cx.to_async();
830 move || {
831 handle
832 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
833 .log_err();
834 }
835 }));
836 platform_window.on_appearance_changed(Box::new({
837 let mut cx = cx.to_async();
838 move || {
839 handle
840 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
841 .log_err();
842 }
843 }));
844 platform_window.on_active_status_change(Box::new({
845 let mut cx = cx.to_async();
846 move |active| {
847 handle
848 .update(&mut cx, |_, window, cx| {
849 window.active.set(active);
850 window.modifiers = window.platform_window.modifiers();
851 window
852 .activation_observers
853 .clone()
854 .retain(&(), |callback| callback(window, cx));
855 window.refresh();
856 })
857 .log_err();
858 }
859 }));
860 platform_window.on_hover_status_change(Box::new({
861 let mut cx = cx.to_async();
862 move |active| {
863 handle
864 .update(&mut cx, |_, window, _| {
865 window.hovered.set(active);
866 window.refresh();
867 })
868 .log_err();
869 }
870 }));
871 platform_window.on_input({
872 let mut cx = cx.to_async();
873 Box::new(move |event| {
874 handle
875 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
876 .log_err()
877 .unwrap_or(DispatchEventResult::default())
878 })
879 });
880
881 if let Some(app_id) = app_id {
882 platform_window.set_app_id(&app_id);
883 }
884
885 platform_window.map_window().unwrap();
886
887 Ok(Window {
888 handle,
889 invalidator,
890 removed: false,
891 platform_window,
892 display_id,
893 sprite_atlas,
894 text_system,
895 rem_size: px(16.),
896 rem_size_override_stack: SmallVec::new(),
897 viewport_size: content_size,
898 layout_engine: Some(TaffyLayoutEngine::new()),
899 root: None,
900 element_id_stack: SmallVec::default(),
901 text_style_stack: Vec::new(),
902 rendered_entity_stack: Vec::new(),
903 element_offset_stack: Vec::new(),
904 content_mask_stack: Vec::new(),
905 element_opacity: None,
906 requested_autoscroll: None,
907 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
908 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
909 next_frame_callbacks,
910 next_hitbox_id: HitboxId::default(),
911 next_tooltip_id: TooltipId::default(),
912 tooltip_bounds: None,
913 dirty_views: FxHashSet::default(),
914 focus_listeners: SubscriberSet::new(),
915 focus_lost_listeners: SubscriberSet::new(),
916 default_prevented: true,
917 mouse_position,
918 mouse_hit_test: HitTest::default(),
919 modifiers,
920 scale_factor,
921 bounds_observers: SubscriberSet::new(),
922 appearance,
923 appearance_observers: SubscriberSet::new(),
924 active,
925 hovered,
926 needs_present,
927 last_input_timestamp,
928 refreshing: false,
929 activation_observers: SubscriberSet::new(),
930 focus: None,
931 focus_enabled: true,
932 pending_input: None,
933 pending_modifier: ModifierState::default(),
934 pending_input_observers: SubscriberSet::new(),
935 prompt: None,
936 client_inset: None,
937 image_cache_stack: Vec::new(),
938 })
939 }
940
941 pub(crate) fn new_focus_listener(
942 &self,
943 value: AnyWindowFocusListener,
944 ) -> (Subscription, impl FnOnce() + use<>) {
945 self.focus_listeners.insert((), value)
946 }
947}
948
949#[derive(Clone, Debug, Default, PartialEq, Eq)]
950pub(crate) struct DispatchEventResult {
951 pub propagate: bool,
952 pub default_prevented: bool,
953}
954
955/// Indicates which region of the window is visible. Content falling outside of this mask will not be
956/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
957/// to leave room to support more complex shapes in the future.
958#[derive(Clone, Debug, Default, PartialEq, Eq)]
959#[repr(C)]
960pub struct ContentMask<P: Clone + Default + Debug> {
961 /// The bounds
962 pub bounds: Bounds<P>,
963}
964
965impl ContentMask<Pixels> {
966 /// Scale the content mask's pixel units by the given scaling factor.
967 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
968 ContentMask {
969 bounds: self.bounds.scale(factor),
970 }
971 }
972
973 /// Intersect the content mask with the given content mask.
974 pub fn intersect(&self, other: &Self) -> Self {
975 let bounds = self.bounds.intersect(&other.bounds);
976 ContentMask { bounds }
977 }
978}
979
980impl Window {
981 fn mark_view_dirty(&mut self, view_id: EntityId) {
982 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
983 // should already be dirty.
984 for view_id in self
985 .rendered_frame
986 .dispatch_tree
987 .view_path(view_id)
988 .into_iter()
989 .rev()
990 {
991 if !self.dirty_views.insert(view_id) {
992 break;
993 }
994 }
995 }
996
997 /// Registers a callback to be invoked when the window appearance changes.
998 pub fn observe_window_appearance(
999 &self,
1000 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1001 ) -> Subscription {
1002 let (subscription, activate) = self.appearance_observers.insert(
1003 (),
1004 Box::new(move |window, cx| {
1005 callback(window, cx);
1006 true
1007 }),
1008 );
1009 activate();
1010 subscription
1011 }
1012
1013 /// Replaces the root entity of the window with a new one.
1014 pub fn replace_root<E>(
1015 &mut self,
1016 cx: &mut App,
1017 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1018 ) -> Entity<E>
1019 where
1020 E: 'static + Render,
1021 {
1022 let view = cx.new(|cx| build_view(self, cx));
1023 self.root = Some(view.clone().into());
1024 self.refresh();
1025 view
1026 }
1027
1028 /// Returns the root entity of the window, if it has one.
1029 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1030 where
1031 E: 'static + Render,
1032 {
1033 self.root
1034 .as_ref()
1035 .map(|view| view.clone().downcast::<E>().ok())
1036 }
1037
1038 /// Obtain a handle to the window that belongs to this context.
1039 pub fn window_handle(&self) -> AnyWindowHandle {
1040 self.handle
1041 }
1042
1043 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1044 pub fn refresh(&mut self) {
1045 if self.invalidator.not_drawing() {
1046 self.refreshing = true;
1047 self.invalidator.set_dirty(true);
1048 }
1049 }
1050
1051 /// Close this window.
1052 pub fn remove_window(&mut self) {
1053 self.removed = true;
1054 }
1055
1056 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1057 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1058 self.focus
1059 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1060 }
1061
1062 /// Move focus to the element associated with the given [`FocusHandle`].
1063 pub fn focus(&mut self, handle: &FocusHandle) {
1064 if !self.focus_enabled || self.focus == Some(handle.id) {
1065 return;
1066 }
1067
1068 self.focus = Some(handle.id);
1069 self.clear_pending_keystrokes();
1070 self.refresh();
1071 }
1072
1073 /// Remove focus from all elements within this context's window.
1074 pub fn blur(&mut self) {
1075 if !self.focus_enabled {
1076 return;
1077 }
1078
1079 self.focus = None;
1080 self.refresh();
1081 }
1082
1083 /// Blur the window and don't allow anything in it to be focused again.
1084 pub fn disable_focus(&mut self) {
1085 self.blur();
1086 self.focus_enabled = false;
1087 }
1088
1089 /// Accessor for the text system.
1090 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1091 &self.text_system
1092 }
1093
1094 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1095 pub fn text_style(&self) -> TextStyle {
1096 let mut style = TextStyle::default();
1097 for refinement in &self.text_style_stack {
1098 style.refine(refinement);
1099 }
1100 style
1101 }
1102
1103 /// Check if the platform window is maximized
1104 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1105 pub fn is_maximized(&self) -> bool {
1106 self.platform_window.is_maximized()
1107 }
1108
1109 /// request a certain window decoration (Wayland)
1110 pub fn request_decorations(&self, decorations: WindowDecorations) {
1111 self.platform_window.request_decorations(decorations);
1112 }
1113
1114 /// Start a window resize operation (Wayland)
1115 pub fn start_window_resize(&self, edge: ResizeEdge) {
1116 self.platform_window.start_window_resize(edge);
1117 }
1118
1119 /// Return the `WindowBounds` to indicate that how a window should be opened
1120 /// after it has been closed
1121 pub fn window_bounds(&self) -> WindowBounds {
1122 self.platform_window.window_bounds()
1123 }
1124
1125 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1126 pub fn inner_window_bounds(&self) -> WindowBounds {
1127 self.platform_window.inner_window_bounds()
1128 }
1129
1130 /// Dispatch the given action on the currently focused element.
1131 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1132 let focus_handle = self.focused(cx);
1133
1134 let window = self.handle;
1135 cx.defer(move |cx| {
1136 window
1137 .update(cx, |_, window, cx| {
1138 let node_id = focus_handle
1139 .and_then(|handle| {
1140 window
1141 .rendered_frame
1142 .dispatch_tree
1143 .focusable_node_id(handle.id)
1144 })
1145 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1146
1147 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1148 })
1149 .log_err();
1150 })
1151 }
1152
1153 pub(crate) fn dispatch_keystroke_observers(
1154 &mut self,
1155 event: &dyn Any,
1156 action: Option<Box<dyn Action>>,
1157 context_stack: Vec<KeyContext>,
1158 cx: &mut App,
1159 ) {
1160 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1161 return;
1162 };
1163
1164 cx.keystroke_observers.clone().retain(&(), move |callback| {
1165 (callback)(
1166 &KeystrokeEvent {
1167 keystroke: key_down_event.keystroke.clone(),
1168 action: action.as_ref().map(|action| action.boxed_clone()),
1169 context_stack: context_stack.clone(),
1170 },
1171 self,
1172 cx,
1173 )
1174 });
1175 }
1176
1177 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1178 /// that are currently on the stack to be returned to the app.
1179 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1180 let handle = self.handle;
1181 cx.defer(move |cx| {
1182 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1183 });
1184 }
1185
1186 /// Subscribe to events emitted by a entity.
1187 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1188 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1189 pub fn observe<T: 'static>(
1190 &mut self,
1191 observed: &Entity<T>,
1192 cx: &mut App,
1193 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1194 ) -> Subscription {
1195 let entity_id = observed.entity_id();
1196 let observed = observed.downgrade();
1197 let window_handle = self.handle;
1198 cx.new_observer(
1199 entity_id,
1200 Box::new(move |cx| {
1201 window_handle
1202 .update(cx, |_, window, cx| {
1203 if let Some(handle) = observed.upgrade() {
1204 on_notify(handle, window, cx);
1205 true
1206 } else {
1207 false
1208 }
1209 })
1210 .unwrap_or(false)
1211 }),
1212 )
1213 }
1214
1215 /// Subscribe to events emitted by a entity.
1216 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1217 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1218 pub fn subscribe<Emitter, Evt>(
1219 &mut self,
1220 entity: &Entity<Emitter>,
1221 cx: &mut App,
1222 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1223 ) -> Subscription
1224 where
1225 Emitter: EventEmitter<Evt>,
1226 Evt: 'static,
1227 {
1228 let entity_id = entity.entity_id();
1229 let handle = entity.downgrade();
1230 let window_handle = self.handle;
1231 cx.new_subscription(
1232 entity_id,
1233 (
1234 TypeId::of::<Evt>(),
1235 Box::new(move |event, cx| {
1236 window_handle
1237 .update(cx, |_, window, cx| {
1238 if let Some(entity) = handle.upgrade() {
1239 let event = event.downcast_ref().expect("invalid event type");
1240 on_event(entity, event, window, cx);
1241 true
1242 } else {
1243 false
1244 }
1245 })
1246 .unwrap_or(false)
1247 }),
1248 ),
1249 )
1250 }
1251
1252 /// Register a callback to be invoked when the given `Entity` is released.
1253 pub fn observe_release<T>(
1254 &self,
1255 entity: &Entity<T>,
1256 cx: &mut App,
1257 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1258 ) -> Subscription
1259 where
1260 T: 'static,
1261 {
1262 let entity_id = entity.entity_id();
1263 let window_handle = self.handle;
1264 let (subscription, activate) = cx.release_listeners.insert(
1265 entity_id,
1266 Box::new(move |entity, cx| {
1267 let entity = entity.downcast_mut().expect("invalid entity type");
1268 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1269 }),
1270 );
1271 activate();
1272 subscription
1273 }
1274
1275 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1276 /// await points in async code.
1277 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1278 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1279 }
1280
1281 /// Schedule the given closure to be run directly after the current frame is rendered.
1282 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1283 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1284 }
1285
1286 /// Schedule a frame to be drawn on the next animation frame.
1287 ///
1288 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1289 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1290 ///
1291 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1292 pub fn request_animation_frame(&self) {
1293 let entity = self.current_view();
1294 self.on_next_frame(move |_, cx| cx.notify(entity));
1295 }
1296
1297 /// Spawn the future returned by the given closure on the application thread pool.
1298 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1299 /// use within your future.
1300 #[track_caller]
1301 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1302 where
1303 R: 'static,
1304 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1305 {
1306 let handle = self.handle;
1307 cx.spawn(async move |app| {
1308 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1309 f(&mut async_window_cx).await
1310 })
1311 }
1312
1313 fn bounds_changed(&mut self, cx: &mut App) {
1314 self.scale_factor = self.platform_window.scale_factor();
1315 self.viewport_size = self.platform_window.content_size();
1316 self.display_id = self.platform_window.display().map(|display| display.id());
1317
1318 self.refresh();
1319
1320 self.bounds_observers
1321 .clone()
1322 .retain(&(), |callback| callback(self, cx));
1323 }
1324
1325 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1326 pub fn bounds(&self) -> Bounds<Pixels> {
1327 self.platform_window.bounds()
1328 }
1329
1330 /// Set the content size of the window.
1331 pub fn resize(&mut self, size: Size<Pixels>) {
1332 self.platform_window.resize(size);
1333 }
1334
1335 /// Returns whether or not the window is currently fullscreen
1336 pub fn is_fullscreen(&self) -> bool {
1337 self.platform_window.is_fullscreen()
1338 }
1339
1340 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1341 self.appearance = self.platform_window.appearance();
1342
1343 self.appearance_observers
1344 .clone()
1345 .retain(&(), |callback| callback(self, cx));
1346 }
1347
1348 /// Returns the appearance of the current window.
1349 pub fn appearance(&self) -> WindowAppearance {
1350 self.appearance
1351 }
1352
1353 /// Returns the size of the drawable area within the window.
1354 pub fn viewport_size(&self) -> Size<Pixels> {
1355 self.viewport_size
1356 }
1357
1358 /// Returns whether this window is focused by the operating system (receiving key events).
1359 pub fn is_window_active(&self) -> bool {
1360 self.active.get()
1361 }
1362
1363 /// Returns whether this window is considered to be the window
1364 /// that currently owns the mouse cursor.
1365 /// On mac, this is equivalent to `is_window_active`.
1366 pub fn is_window_hovered(&self) -> bool {
1367 if cfg!(any(
1368 target_os = "windows",
1369 target_os = "linux",
1370 target_os = "freebsd"
1371 )) {
1372 self.hovered.get()
1373 } else {
1374 self.is_window_active()
1375 }
1376 }
1377
1378 /// Toggle zoom on the window.
1379 pub fn zoom_window(&self) {
1380 self.platform_window.zoom();
1381 }
1382
1383 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1384 pub fn show_window_menu(&self, position: Point<Pixels>) {
1385 self.platform_window.show_window_menu(position)
1386 }
1387
1388 /// Tells the compositor to take control of window movement (Wayland and X11)
1389 ///
1390 /// Events may not be received during a move operation.
1391 pub fn start_window_move(&self) {
1392 self.platform_window.start_window_move()
1393 }
1394
1395 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1396 pub fn set_client_inset(&mut self, inset: Pixels) {
1397 self.client_inset = Some(inset);
1398 self.platform_window.set_client_inset(inset);
1399 }
1400
1401 /// Returns the client_inset value by [`Self::set_client_inset`].
1402 pub fn client_inset(&self) -> Option<Pixels> {
1403 self.client_inset
1404 }
1405
1406 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1407 pub fn window_decorations(&self) -> Decorations {
1408 self.platform_window.window_decorations()
1409 }
1410
1411 /// Returns which window controls are currently visible (Wayland)
1412 pub fn window_controls(&self) -> WindowControls {
1413 self.platform_window.window_controls()
1414 }
1415
1416 /// Updates the window's title at the platform level.
1417 pub fn set_window_title(&mut self, title: &str) {
1418 self.platform_window.set_title(title);
1419 }
1420
1421 /// Sets the application identifier.
1422 pub fn set_app_id(&mut self, app_id: &str) {
1423 self.platform_window.set_app_id(app_id);
1424 }
1425
1426 /// Sets the window background appearance.
1427 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1428 self.platform_window
1429 .set_background_appearance(background_appearance);
1430 }
1431
1432 /// Mark the window as dirty at the platform level.
1433 pub fn set_window_edited(&mut self, edited: bool) {
1434 self.platform_window.set_edited(edited);
1435 }
1436
1437 /// Determine the display on which the window is visible.
1438 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1439 cx.platform
1440 .displays()
1441 .into_iter()
1442 .find(|display| Some(display.id()) == self.display_id)
1443 }
1444
1445 /// Show the platform character palette.
1446 pub fn show_character_palette(&self) {
1447 self.platform_window.show_character_palette();
1448 }
1449
1450 /// The scale factor of the display associated with the window. For example, it could
1451 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1452 /// be rendered as two pixels on screen.
1453 pub fn scale_factor(&self) -> f32 {
1454 self.scale_factor
1455 }
1456
1457 /// The size of an em for the base font of the application. Adjusting this value allows the
1458 /// UI to scale, just like zooming a web page.
1459 pub fn rem_size(&self) -> Pixels {
1460 self.rem_size_override_stack
1461 .last()
1462 .copied()
1463 .unwrap_or(self.rem_size)
1464 }
1465
1466 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1467 /// UI to scale, just like zooming a web page.
1468 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1469 self.rem_size = rem_size.into();
1470 }
1471
1472 /// Acquire a globally unique identifier for the given ElementId.
1473 /// Only valid for the duration of the provided closure.
1474 pub fn with_global_id<R>(
1475 &mut self,
1476 element_id: ElementId,
1477 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1478 ) -> R {
1479 self.element_id_stack.push(element_id);
1480 let global_id = GlobalElementId(self.element_id_stack.clone());
1481 let result = f(&global_id, self);
1482 self.element_id_stack.pop();
1483 result
1484 }
1485
1486 /// Executes the provided function with the specified rem size.
1487 ///
1488 /// This method must only be called as part of element drawing.
1489 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1490 where
1491 F: FnOnce(&mut Self) -> R,
1492 {
1493 self.invalidator.debug_assert_paint_or_prepaint();
1494
1495 if let Some(rem_size) = rem_size {
1496 self.rem_size_override_stack.push(rem_size.into());
1497 let result = f(self);
1498 self.rem_size_override_stack.pop();
1499 result
1500 } else {
1501 f(self)
1502 }
1503 }
1504
1505 /// The line height associated with the current text style.
1506 pub fn line_height(&self) -> Pixels {
1507 self.text_style().line_height_in_pixels(self.rem_size())
1508 }
1509
1510 /// Call to prevent the default action of an event. Currently only used to prevent
1511 /// parent elements from becoming focused on mouse down.
1512 pub fn prevent_default(&mut self) {
1513 self.default_prevented = true;
1514 }
1515
1516 /// Obtain whether default has been prevented for the event currently being dispatched.
1517 pub fn default_prevented(&self) -> bool {
1518 self.default_prevented
1519 }
1520
1521 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1522 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1523 let target = self
1524 .focused(cx)
1525 .and_then(|focused_handle| {
1526 self.rendered_frame
1527 .dispatch_tree
1528 .focusable_node_id(focused_handle.id)
1529 })
1530 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1531 self.rendered_frame
1532 .dispatch_tree
1533 .is_action_available(action, target)
1534 }
1535
1536 /// The position of the mouse relative to the window.
1537 pub fn mouse_position(&self) -> Point<Pixels> {
1538 self.mouse_position
1539 }
1540
1541 /// The current state of the keyboard's modifiers
1542 pub fn modifiers(&self) -> Modifiers {
1543 self.modifiers
1544 }
1545
1546 fn complete_frame(&self) {
1547 self.platform_window.completed_frame();
1548 }
1549
1550 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1551 /// the contents of the new [Scene], use [present].
1552 #[profiling::function]
1553 pub fn draw(&mut self, cx: &mut App) {
1554 self.invalidate_entities();
1555 cx.entities.clear_accessed();
1556 debug_assert!(self.rendered_entity_stack.is_empty());
1557 self.invalidator.set_dirty(false);
1558 self.requested_autoscroll = None;
1559
1560 // Restore the previously-used input handler.
1561 if let Some(input_handler) = self.platform_window.take_input_handler() {
1562 self.rendered_frame.input_handlers.push(Some(input_handler));
1563 }
1564 self.draw_roots(cx);
1565 self.dirty_views.clear();
1566 self.next_frame.window_active = self.active.get();
1567
1568 // Register requested input handler with the platform window.
1569 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1570 self.platform_window
1571 .set_input_handler(input_handler.unwrap());
1572 }
1573
1574 self.layout_engine.as_mut().unwrap().clear();
1575 self.text_system().finish_frame();
1576 self.next_frame.finish(&mut self.rendered_frame);
1577 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1578 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1579 if percentage >= 80. {
1580 log::warn!("elevated element arena occupation: {}.", percentage);
1581 }
1582 element_arena.clear();
1583 });
1584
1585 self.invalidator.set_phase(DrawPhase::Focus);
1586 let previous_focus_path = self.rendered_frame.focus_path();
1587 let previous_window_active = self.rendered_frame.window_active;
1588 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1589 self.next_frame.clear();
1590 let current_focus_path = self.rendered_frame.focus_path();
1591 let current_window_active = self.rendered_frame.window_active;
1592
1593 if previous_focus_path != current_focus_path
1594 || previous_window_active != current_window_active
1595 {
1596 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1597 self.focus_lost_listeners
1598 .clone()
1599 .retain(&(), |listener| listener(self, cx));
1600 }
1601
1602 let event = WindowFocusEvent {
1603 previous_focus_path: if previous_window_active {
1604 previous_focus_path
1605 } else {
1606 Default::default()
1607 },
1608 current_focus_path: if current_window_active {
1609 current_focus_path
1610 } else {
1611 Default::default()
1612 },
1613 };
1614 self.focus_listeners
1615 .clone()
1616 .retain(&(), |listener| listener(&event, self, cx));
1617 }
1618
1619 debug_assert!(self.rendered_entity_stack.is_empty());
1620 self.record_entities_accessed(cx);
1621 self.reset_cursor_style(cx);
1622 self.refreshing = false;
1623 self.invalidator.set_phase(DrawPhase::None);
1624 self.needs_present.set(true);
1625 }
1626
1627 fn record_entities_accessed(&mut self, cx: &mut App) {
1628 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1629 let mut entities = mem::take(entities_ref.deref_mut());
1630 drop(entities_ref);
1631 let handle = self.handle;
1632 cx.record_entities_accessed(
1633 handle,
1634 // Try moving window invalidator into the Window
1635 self.invalidator.clone(),
1636 &entities,
1637 );
1638 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1639 mem::swap(&mut entities, entities_ref.deref_mut());
1640 }
1641
1642 fn invalidate_entities(&mut self) {
1643 let mut views = self.invalidator.take_views();
1644 for entity in views.drain() {
1645 self.mark_view_dirty(entity);
1646 }
1647 self.invalidator.replace_views(views);
1648 }
1649
1650 #[profiling::function]
1651 fn present(&self) {
1652 self.platform_window.draw(&self.rendered_frame.scene);
1653 self.needs_present.set(false);
1654 profiling::finish_frame!();
1655 }
1656
1657 fn draw_roots(&mut self, cx: &mut App) {
1658 self.invalidator.set_phase(DrawPhase::Prepaint);
1659 self.tooltip_bounds.take();
1660
1661 // Layout all root elements.
1662 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1663 root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1664
1665 let mut sorted_deferred_draws =
1666 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1667 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1668 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1669
1670 let mut prompt_element = None;
1671 let mut active_drag_element = None;
1672 let mut tooltip_element = None;
1673 if let Some(prompt) = self.prompt.take() {
1674 let mut element = prompt.view.any_view().into_any();
1675 element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1676 prompt_element = Some(element);
1677 self.prompt = Some(prompt);
1678 } else if let Some(active_drag) = cx.active_drag.take() {
1679 let mut element = active_drag.view.clone().into_any();
1680 let offset = self.mouse_position() - active_drag.cursor_offset;
1681 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1682 active_drag_element = Some(element);
1683 cx.active_drag = Some(active_drag);
1684 } else {
1685 tooltip_element = self.prepaint_tooltip(cx);
1686 }
1687
1688 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1689
1690 // Now actually paint the elements.
1691 self.invalidator.set_phase(DrawPhase::Paint);
1692 root_element.paint(self, cx);
1693
1694 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1695
1696 if let Some(mut prompt_element) = prompt_element {
1697 prompt_element.paint(self, cx);
1698 } else if let Some(mut drag_element) = active_drag_element {
1699 drag_element.paint(self, cx);
1700 } else if let Some(mut tooltip_element) = tooltip_element {
1701 tooltip_element.paint(self, cx);
1702 }
1703 }
1704
1705 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1706 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1707 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1708 let Some(Some(tooltip_request)) = self
1709 .next_frame
1710 .tooltip_requests
1711 .get(tooltip_request_index)
1712 .cloned()
1713 else {
1714 log::error!("Unexpectedly absent TooltipRequest");
1715 continue;
1716 };
1717 let mut element = tooltip_request.tooltip.view.clone().into_any();
1718 let mouse_position = tooltip_request.tooltip.mouse_position;
1719 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1720
1721 let mut tooltip_bounds =
1722 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1723 let window_bounds = Bounds {
1724 origin: Point::default(),
1725 size: self.viewport_size(),
1726 };
1727
1728 if tooltip_bounds.right() > window_bounds.right() {
1729 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1730 if new_x >= Pixels::ZERO {
1731 tooltip_bounds.origin.x = new_x;
1732 } else {
1733 tooltip_bounds.origin.x = cmp::max(
1734 Pixels::ZERO,
1735 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1736 );
1737 }
1738 }
1739
1740 if tooltip_bounds.bottom() > window_bounds.bottom() {
1741 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1742 if new_y >= Pixels::ZERO {
1743 tooltip_bounds.origin.y = new_y;
1744 } else {
1745 tooltip_bounds.origin.y = cmp::max(
1746 Pixels::ZERO,
1747 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1748 );
1749 }
1750 }
1751
1752 // It's possible for an element to have an active tooltip while not being painted (e.g.
1753 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1754 // case, instead update the tooltip's visibility here.
1755 let is_visible =
1756 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1757 if !is_visible {
1758 continue;
1759 }
1760
1761 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1762 element.prepaint(window, cx)
1763 });
1764
1765 self.tooltip_bounds = Some(TooltipBounds {
1766 id: tooltip_request.id,
1767 bounds: tooltip_bounds,
1768 });
1769 return Some(element);
1770 }
1771 None
1772 }
1773
1774 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1775 assert_eq!(self.element_id_stack.len(), 0);
1776
1777 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1778 for deferred_draw_ix in deferred_draw_indices {
1779 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1780 self.element_id_stack
1781 .clone_from(&deferred_draw.element_id_stack);
1782 self.text_style_stack
1783 .clone_from(&deferred_draw.text_style_stack);
1784 self.next_frame
1785 .dispatch_tree
1786 .set_active_node(deferred_draw.parent_node);
1787
1788 let prepaint_start = self.prepaint_index();
1789 if let Some(element) = deferred_draw.element.as_mut() {
1790 self.with_rendered_view(deferred_draw.current_view, |window| {
1791 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1792 element.prepaint(window, cx)
1793 });
1794 })
1795 } else {
1796 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1797 }
1798 let prepaint_end = self.prepaint_index();
1799 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1800 }
1801 assert_eq!(
1802 self.next_frame.deferred_draws.len(),
1803 0,
1804 "cannot call defer_draw during deferred drawing"
1805 );
1806 self.next_frame.deferred_draws = deferred_draws;
1807 self.element_id_stack.clear();
1808 self.text_style_stack.clear();
1809 }
1810
1811 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1812 assert_eq!(self.element_id_stack.len(), 0);
1813
1814 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1815 for deferred_draw_ix in deferred_draw_indices {
1816 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1817 self.element_id_stack
1818 .clone_from(&deferred_draw.element_id_stack);
1819 self.next_frame
1820 .dispatch_tree
1821 .set_active_node(deferred_draw.parent_node);
1822
1823 let paint_start = self.paint_index();
1824 if let Some(element) = deferred_draw.element.as_mut() {
1825 self.with_rendered_view(deferred_draw.current_view, |window| {
1826 element.paint(window, cx);
1827 })
1828 } else {
1829 self.reuse_paint(deferred_draw.paint_range.clone());
1830 }
1831 let paint_end = self.paint_index();
1832 deferred_draw.paint_range = paint_start..paint_end;
1833 }
1834 self.next_frame.deferred_draws = deferred_draws;
1835 self.element_id_stack.clear();
1836 }
1837
1838 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1839 PrepaintStateIndex {
1840 hitboxes_index: self.next_frame.hitboxes.len(),
1841 tooltips_index: self.next_frame.tooltip_requests.len(),
1842 deferred_draws_index: self.next_frame.deferred_draws.len(),
1843 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1844 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1845 line_layout_index: self.text_system.layout_index(),
1846 }
1847 }
1848
1849 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1850 self.next_frame.hitboxes.extend(
1851 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1852 .iter()
1853 .cloned(),
1854 );
1855 self.next_frame.tooltip_requests.extend(
1856 self.rendered_frame.tooltip_requests
1857 [range.start.tooltips_index..range.end.tooltips_index]
1858 .iter_mut()
1859 .map(|request| request.take()),
1860 );
1861 self.next_frame.accessed_element_states.extend(
1862 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1863 ..range.end.accessed_element_states_index]
1864 .iter()
1865 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1866 );
1867 self.text_system
1868 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1869
1870 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1871 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1872 &mut self.rendered_frame.dispatch_tree,
1873 self.focus,
1874 );
1875
1876 if reused_subtree.contains_focus() {
1877 self.next_frame.focus = self.focus;
1878 }
1879
1880 self.next_frame.deferred_draws.extend(
1881 self.rendered_frame.deferred_draws
1882 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1883 .iter()
1884 .map(|deferred_draw| DeferredDraw {
1885 current_view: deferred_draw.current_view,
1886 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1887 element_id_stack: deferred_draw.element_id_stack.clone(),
1888 text_style_stack: deferred_draw.text_style_stack.clone(),
1889 priority: deferred_draw.priority,
1890 element: None,
1891 absolute_offset: deferred_draw.absolute_offset,
1892 prepaint_range: deferred_draw.prepaint_range.clone(),
1893 paint_range: deferred_draw.paint_range.clone(),
1894 }),
1895 );
1896 }
1897
1898 pub(crate) fn paint_index(&self) -> PaintIndex {
1899 PaintIndex {
1900 scene_index: self.next_frame.scene.len(),
1901 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1902 input_handlers_index: self.next_frame.input_handlers.len(),
1903 cursor_styles_index: self.next_frame.cursor_styles.len(),
1904 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1905 line_layout_index: self.text_system.layout_index(),
1906 }
1907 }
1908
1909 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1910 self.next_frame.cursor_styles.extend(
1911 self.rendered_frame.cursor_styles
1912 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1913 .iter()
1914 .cloned(),
1915 );
1916 self.next_frame.input_handlers.extend(
1917 self.rendered_frame.input_handlers
1918 [range.start.input_handlers_index..range.end.input_handlers_index]
1919 .iter_mut()
1920 .map(|handler| handler.take()),
1921 );
1922 self.next_frame.mouse_listeners.extend(
1923 self.rendered_frame.mouse_listeners
1924 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1925 .iter_mut()
1926 .map(|listener| listener.take()),
1927 );
1928 self.next_frame.accessed_element_states.extend(
1929 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1930 ..range.end.accessed_element_states_index]
1931 .iter()
1932 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1933 );
1934
1935 self.text_system
1936 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1937 self.next_frame.scene.replay(
1938 range.start.scene_index..range.end.scene_index,
1939 &self.rendered_frame.scene,
1940 );
1941 }
1942
1943 /// Push a text style onto the stack, and call a function with that style active.
1944 /// Use [`Window::text_style`] to get the current, combined text style. This method
1945 /// should only be called as part of element drawing.
1946 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1947 where
1948 F: FnOnce(&mut Self) -> R,
1949 {
1950 self.invalidator.debug_assert_paint_or_prepaint();
1951 if let Some(style) = style {
1952 self.text_style_stack.push(style);
1953 let result = f(self);
1954 self.text_style_stack.pop();
1955 result
1956 } else {
1957 f(self)
1958 }
1959 }
1960
1961 /// Updates the cursor style at the platform level. This method should only be called
1962 /// during the prepaint phase of element drawing.
1963 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: Option<&Hitbox>) {
1964 self.invalidator.debug_assert_paint();
1965 self.next_frame.cursor_styles.push(CursorStyleRequest {
1966 hitbox_id: hitbox.map(|hitbox| hitbox.id),
1967 style,
1968 });
1969 }
1970
1971 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
1972 /// during the paint phase of element drawing.
1973 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
1974 self.invalidator.debug_assert_prepaint();
1975 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
1976 self.next_frame
1977 .tooltip_requests
1978 .push(Some(TooltipRequest { id, tooltip }));
1979 id
1980 }
1981
1982 /// Invoke the given function with the given content mask after intersecting it
1983 /// with the current mask. This method should only be called during element drawing.
1984 pub fn with_content_mask<R>(
1985 &mut self,
1986 mask: Option<ContentMask<Pixels>>,
1987 f: impl FnOnce(&mut Self) -> R,
1988 ) -> R {
1989 self.invalidator.debug_assert_paint_or_prepaint();
1990 if let Some(mask) = mask {
1991 let mask = mask.intersect(&self.content_mask());
1992 self.content_mask_stack.push(mask);
1993 let result = f(self);
1994 self.content_mask_stack.pop();
1995 result
1996 } else {
1997 f(self)
1998 }
1999 }
2000
2001 /// Updates the global element offset relative to the current offset. This is used to implement
2002 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2003 pub fn with_element_offset<R>(
2004 &mut self,
2005 offset: Point<Pixels>,
2006 f: impl FnOnce(&mut Self) -> R,
2007 ) -> R {
2008 self.invalidator.debug_assert_prepaint();
2009
2010 if offset.is_zero() {
2011 return f(self);
2012 };
2013
2014 let abs_offset = self.element_offset() + offset;
2015 self.with_absolute_element_offset(abs_offset, f)
2016 }
2017
2018 /// Updates the global element offset based on the given offset. This is used to implement
2019 /// drag handles and other manual painting of elements. This method should only be called during
2020 /// the prepaint phase of element drawing.
2021 pub fn with_absolute_element_offset<R>(
2022 &mut self,
2023 offset: Point<Pixels>,
2024 f: impl FnOnce(&mut Self) -> R,
2025 ) -> R {
2026 self.invalidator.debug_assert_prepaint();
2027 self.element_offset_stack.push(offset);
2028 let result = f(self);
2029 self.element_offset_stack.pop();
2030 result
2031 }
2032
2033 pub(crate) fn with_element_opacity<R>(
2034 &mut self,
2035 opacity: Option<f32>,
2036 f: impl FnOnce(&mut Self) -> R,
2037 ) -> R {
2038 if opacity.is_none() {
2039 return f(self);
2040 }
2041
2042 self.invalidator.debug_assert_paint_or_prepaint();
2043 self.element_opacity = opacity;
2044 let result = f(self);
2045 self.element_opacity = None;
2046 result
2047 }
2048
2049 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2050 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2051 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2052 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2053 /// called during the prepaint phase of element drawing.
2054 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2055 self.invalidator.debug_assert_prepaint();
2056 let index = self.prepaint_index();
2057 let result = f(self);
2058 if result.is_err() {
2059 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2060 self.next_frame
2061 .tooltip_requests
2062 .truncate(index.tooltips_index);
2063 self.next_frame
2064 .deferred_draws
2065 .truncate(index.deferred_draws_index);
2066 self.next_frame
2067 .dispatch_tree
2068 .truncate(index.dispatch_tree_index);
2069 self.next_frame
2070 .accessed_element_states
2071 .truncate(index.accessed_element_states_index);
2072 self.text_system.truncate_layouts(index.line_layout_index);
2073 }
2074 result
2075 }
2076
2077 /// When you call this method during [`prepaint`], containing elements will attempt to
2078 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2079 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2080 /// that supports this method being called on the elements it contains. This method should only be
2081 /// called during the prepaint phase of element drawing.
2082 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2083 self.invalidator.debug_assert_prepaint();
2084 self.requested_autoscroll = Some(bounds);
2085 }
2086
2087 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2088 /// described in [`request_autoscroll`].
2089 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2090 self.invalidator.debug_assert_prepaint();
2091 self.requested_autoscroll.take()
2092 }
2093
2094 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2095 /// Your view will be re-drawn once the asset has finished loading.
2096 ///
2097 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2098 /// time.
2099 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2100 let (task, is_first) = cx.fetch_asset::<A>(source);
2101 task.clone().now_or_never().or_else(|| {
2102 if is_first {
2103 let entity_id = self.current_view();
2104 self.spawn(cx, {
2105 let task = task.clone();
2106 async move |cx| {
2107 task.await;
2108
2109 cx.on_next_frame(move |_, cx| {
2110 cx.notify(entity_id);
2111 });
2112 }
2113 })
2114 .detach();
2115 }
2116
2117 None
2118 })
2119 }
2120
2121 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2122 /// Your view will not be re-drawn once the asset has finished loading.
2123 ///
2124 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2125 /// time.
2126 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2127 let (task, _) = cx.fetch_asset::<A>(source);
2128 task.clone().now_or_never()
2129 }
2130 /// Obtain the current element offset. This method should only be called during the
2131 /// prepaint phase of element drawing.
2132 pub fn element_offset(&self) -> Point<Pixels> {
2133 self.invalidator.debug_assert_prepaint();
2134 self.element_offset_stack
2135 .last()
2136 .copied()
2137 .unwrap_or_default()
2138 }
2139
2140 /// Obtain the current element opacity. This method should only be called during the
2141 /// prepaint phase of element drawing.
2142 pub(crate) fn element_opacity(&self) -> f32 {
2143 self.invalidator.debug_assert_paint_or_prepaint();
2144 self.element_opacity.unwrap_or(1.0)
2145 }
2146
2147 /// Obtain the current content mask. This method should only be called during element drawing.
2148 pub fn content_mask(&self) -> ContentMask<Pixels> {
2149 self.invalidator.debug_assert_paint_or_prepaint();
2150 self.content_mask_stack
2151 .last()
2152 .cloned()
2153 .unwrap_or_else(|| ContentMask {
2154 bounds: Bounds {
2155 origin: Point::default(),
2156 size: self.viewport_size,
2157 },
2158 })
2159 }
2160
2161 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2162 /// This can be used within a custom element to distinguish multiple sets of child elements.
2163 pub fn with_element_namespace<R>(
2164 &mut self,
2165 element_id: impl Into<ElementId>,
2166 f: impl FnOnce(&mut Self) -> R,
2167 ) -> R {
2168 self.element_id_stack.push(element_id.into());
2169 let result = f(self);
2170 self.element_id_stack.pop();
2171 result
2172 }
2173
2174 /// Updates or initializes state for an element with the given id that lives across multiple
2175 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2176 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2177 /// when drawing the next frame. This method should only be called as part of element drawing.
2178 pub fn with_element_state<S, R>(
2179 &mut self,
2180 global_id: &GlobalElementId,
2181 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2182 ) -> R
2183 where
2184 S: 'static,
2185 {
2186 self.invalidator.debug_assert_paint_or_prepaint();
2187
2188 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2189 self.next_frame
2190 .accessed_element_states
2191 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2192
2193 if let Some(any) = self
2194 .next_frame
2195 .element_states
2196 .remove(&key)
2197 .or_else(|| self.rendered_frame.element_states.remove(&key))
2198 {
2199 let ElementStateBox {
2200 inner,
2201 #[cfg(debug_assertions)]
2202 type_name,
2203 } = any;
2204 // Using the extra inner option to avoid needing to reallocate a new box.
2205 let mut state_box = inner
2206 .downcast::<Option<S>>()
2207 .map_err(|_| {
2208 #[cfg(debug_assertions)]
2209 {
2210 anyhow::anyhow!(
2211 "invalid element state type for id, requested {:?}, actual: {:?}",
2212 std::any::type_name::<S>(),
2213 type_name
2214 )
2215 }
2216
2217 #[cfg(not(debug_assertions))]
2218 {
2219 anyhow::anyhow!(
2220 "invalid element state type for id, requested {:?}",
2221 std::any::type_name::<S>(),
2222 )
2223 }
2224 })
2225 .unwrap();
2226
2227 let state = state_box.take().expect(
2228 "reentrant call to with_element_state for the same state type and element id",
2229 );
2230 let (result, state) = f(Some(state), self);
2231 state_box.replace(state);
2232 self.next_frame.element_states.insert(
2233 key,
2234 ElementStateBox {
2235 inner: state_box,
2236 #[cfg(debug_assertions)]
2237 type_name,
2238 },
2239 );
2240 result
2241 } else {
2242 let (result, state) = f(None, self);
2243 self.next_frame.element_states.insert(
2244 key,
2245 ElementStateBox {
2246 inner: Box::new(Some(state)),
2247 #[cfg(debug_assertions)]
2248 type_name: std::any::type_name::<S>(),
2249 },
2250 );
2251 result
2252 }
2253 }
2254
2255 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2256 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2257 /// when the element is guaranteed to have an id.
2258 ///
2259 /// The first option means 'no ID provided'
2260 /// The second option means 'not yet initialized'
2261 pub fn with_optional_element_state<S, R>(
2262 &mut self,
2263 global_id: Option<&GlobalElementId>,
2264 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2265 ) -> R
2266 where
2267 S: 'static,
2268 {
2269 self.invalidator.debug_assert_paint_or_prepaint();
2270
2271 if let Some(global_id) = global_id {
2272 self.with_element_state(global_id, |state, cx| {
2273 let (result, state) = f(Some(state), cx);
2274 let state =
2275 state.expect("you must return some state when you pass some element id");
2276 (result, state)
2277 })
2278 } else {
2279 let (result, state) = f(None, self);
2280 debug_assert!(
2281 state.is_none(),
2282 "you must not return an element state when passing None for the global id"
2283 );
2284 result
2285 }
2286 }
2287
2288 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2289 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2290 /// with higher values being drawn on top.
2291 ///
2292 /// This method should only be called as part of the prepaint phase of element drawing.
2293 pub fn defer_draw(
2294 &mut self,
2295 element: AnyElement,
2296 absolute_offset: Point<Pixels>,
2297 priority: usize,
2298 ) {
2299 self.invalidator.debug_assert_prepaint();
2300 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2301 self.next_frame.deferred_draws.push(DeferredDraw {
2302 current_view: self.current_view(),
2303 parent_node,
2304 element_id_stack: self.element_id_stack.clone(),
2305 text_style_stack: self.text_style_stack.clone(),
2306 priority,
2307 element: Some(element),
2308 absolute_offset,
2309 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2310 paint_range: PaintIndex::default()..PaintIndex::default(),
2311 });
2312 }
2313
2314 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2315 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2316 /// for performance reasons.
2317 ///
2318 /// This method should only be called as part of the paint phase of element drawing.
2319 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2320 self.invalidator.debug_assert_paint();
2321
2322 let scale_factor = self.scale_factor();
2323 let content_mask = self.content_mask();
2324 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2325 if !clipped_bounds.is_empty() {
2326 self.next_frame
2327 .scene
2328 .push_layer(clipped_bounds.scale(scale_factor));
2329 }
2330
2331 let result = f(self);
2332
2333 if !clipped_bounds.is_empty() {
2334 self.next_frame.scene.pop_layer();
2335 }
2336
2337 result
2338 }
2339
2340 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2341 ///
2342 /// This method should only be called as part of the paint phase of element drawing.
2343 pub fn paint_shadows(
2344 &mut self,
2345 bounds: Bounds<Pixels>,
2346 corner_radii: Corners<Pixels>,
2347 shadows: &[BoxShadow],
2348 ) {
2349 self.invalidator.debug_assert_paint();
2350
2351 let scale_factor = self.scale_factor();
2352 let content_mask = self.content_mask();
2353 let opacity = self.element_opacity();
2354 for shadow in shadows {
2355 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2356 self.next_frame.scene.insert_primitive(Shadow {
2357 order: 0,
2358 blur_radius: shadow.blur_radius.scale(scale_factor),
2359 bounds: shadow_bounds.scale(scale_factor),
2360 content_mask: content_mask.scale(scale_factor),
2361 corner_radii: corner_radii.scale(scale_factor),
2362 color: shadow.color.opacity(opacity),
2363 });
2364 }
2365 }
2366
2367 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2368 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2369 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2370 ///
2371 /// This method should only be called as part of the paint phase of element drawing.
2372 ///
2373 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2374 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2375 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2376 pub fn paint_quad(&mut self, quad: PaintQuad) {
2377 self.invalidator.debug_assert_paint();
2378
2379 let scale_factor = self.scale_factor();
2380 let content_mask = self.content_mask();
2381 let opacity = self.element_opacity();
2382 self.next_frame.scene.insert_primitive(Quad {
2383 order: 0,
2384 bounds: quad.bounds.scale(scale_factor),
2385 content_mask: content_mask.scale(scale_factor),
2386 background: quad.background.opacity(opacity),
2387 border_color: quad.border_color.opacity(opacity),
2388 corner_radii: quad.corner_radii.scale(scale_factor),
2389 border_widths: quad.border_widths.scale(scale_factor),
2390 border_style: quad.border_style,
2391 });
2392 }
2393
2394 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2395 ///
2396 /// This method should only be called as part of the paint phase of element drawing.
2397 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2398 self.invalidator.debug_assert_paint();
2399
2400 let scale_factor = self.scale_factor();
2401 let content_mask = self.content_mask();
2402 let opacity = self.element_opacity();
2403 path.content_mask = content_mask;
2404 let color: Background = color.into();
2405 path.color = color.opacity(opacity);
2406 self.next_frame
2407 .scene
2408 .insert_primitive(path.scale(scale_factor));
2409 }
2410
2411 /// Paint an underline into the scene for the next frame at the current z-index.
2412 ///
2413 /// This method should only be called as part of the paint phase of element drawing.
2414 pub fn paint_underline(
2415 &mut self,
2416 origin: Point<Pixels>,
2417 width: Pixels,
2418 style: &UnderlineStyle,
2419 ) {
2420 self.invalidator.debug_assert_paint();
2421
2422 let scale_factor = self.scale_factor();
2423 let height = if style.wavy {
2424 style.thickness * 3.
2425 } else {
2426 style.thickness
2427 };
2428 let bounds = Bounds {
2429 origin,
2430 size: size(width, height),
2431 };
2432 let content_mask = self.content_mask();
2433 let element_opacity = self.element_opacity();
2434
2435 self.next_frame.scene.insert_primitive(Underline {
2436 order: 0,
2437 pad: 0,
2438 bounds: bounds.scale(scale_factor),
2439 content_mask: content_mask.scale(scale_factor),
2440 color: style.color.unwrap_or_default().opacity(element_opacity),
2441 thickness: style.thickness.scale(scale_factor),
2442 wavy: style.wavy,
2443 });
2444 }
2445
2446 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2447 ///
2448 /// This method should only be called as part of the paint phase of element drawing.
2449 pub fn paint_strikethrough(
2450 &mut self,
2451 origin: Point<Pixels>,
2452 width: Pixels,
2453 style: &StrikethroughStyle,
2454 ) {
2455 self.invalidator.debug_assert_paint();
2456
2457 let scale_factor = self.scale_factor();
2458 let height = style.thickness;
2459 let bounds = Bounds {
2460 origin,
2461 size: size(width, height),
2462 };
2463 let content_mask = self.content_mask();
2464 let opacity = self.element_opacity();
2465
2466 self.next_frame.scene.insert_primitive(Underline {
2467 order: 0,
2468 pad: 0,
2469 bounds: bounds.scale(scale_factor),
2470 content_mask: content_mask.scale(scale_factor),
2471 thickness: style.thickness.scale(scale_factor),
2472 color: style.color.unwrap_or_default().opacity(opacity),
2473 wavy: false,
2474 });
2475 }
2476
2477 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2478 ///
2479 /// The y component of the origin is the baseline of the glyph.
2480 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2481 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2482 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2483 ///
2484 /// This method should only be called as part of the paint phase of element drawing.
2485 pub fn paint_glyph(
2486 &mut self,
2487 origin: Point<Pixels>,
2488 font_id: FontId,
2489 glyph_id: GlyphId,
2490 font_size: Pixels,
2491 color: Hsla,
2492 ) -> Result<()> {
2493 self.invalidator.debug_assert_paint();
2494
2495 let element_opacity = self.element_opacity();
2496 let scale_factor = self.scale_factor();
2497 let glyph_origin = origin.scale(scale_factor);
2498 let subpixel_variant = Point {
2499 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2500 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2501 };
2502 let params = RenderGlyphParams {
2503 font_id,
2504 glyph_id,
2505 font_size,
2506 subpixel_variant,
2507 scale_factor,
2508 is_emoji: false,
2509 };
2510
2511 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2512 if !raster_bounds.is_zero() {
2513 let tile = self
2514 .sprite_atlas
2515 .get_or_insert_with(¶ms.clone().into(), &mut || {
2516 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2517 Ok(Some((size, Cow::Owned(bytes))))
2518 })?
2519 .expect("Callback above only errors or returns Some");
2520 let bounds = Bounds {
2521 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2522 size: tile.bounds.size.map(Into::into),
2523 };
2524 let content_mask = self.content_mask().scale(scale_factor);
2525 self.next_frame.scene.insert_primitive(MonochromeSprite {
2526 order: 0,
2527 pad: 0,
2528 bounds,
2529 content_mask,
2530 color: color.opacity(element_opacity),
2531 tile,
2532 transformation: TransformationMatrix::unit(),
2533 });
2534 }
2535 Ok(())
2536 }
2537
2538 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2539 ///
2540 /// The y component of the origin is the baseline of the glyph.
2541 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2542 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2543 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2544 ///
2545 /// This method should only be called as part of the paint phase of element drawing.
2546 pub fn paint_emoji(
2547 &mut self,
2548 origin: Point<Pixels>,
2549 font_id: FontId,
2550 glyph_id: GlyphId,
2551 font_size: Pixels,
2552 ) -> Result<()> {
2553 self.invalidator.debug_assert_paint();
2554
2555 let scale_factor = self.scale_factor();
2556 let glyph_origin = origin.scale(scale_factor);
2557 let params = RenderGlyphParams {
2558 font_id,
2559 glyph_id,
2560 font_size,
2561 // We don't render emojis with subpixel variants.
2562 subpixel_variant: Default::default(),
2563 scale_factor,
2564 is_emoji: true,
2565 };
2566
2567 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2568 if !raster_bounds.is_zero() {
2569 let tile = self
2570 .sprite_atlas
2571 .get_or_insert_with(¶ms.clone().into(), &mut || {
2572 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2573 Ok(Some((size, Cow::Owned(bytes))))
2574 })?
2575 .expect("Callback above only errors or returns Some");
2576
2577 let bounds = Bounds {
2578 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2579 size: tile.bounds.size.map(Into::into),
2580 };
2581 let content_mask = self.content_mask().scale(scale_factor);
2582 let opacity = self.element_opacity();
2583
2584 self.next_frame.scene.insert_primitive(PolychromeSprite {
2585 order: 0,
2586 pad: 0,
2587 grayscale: false,
2588 bounds,
2589 corner_radii: Default::default(),
2590 content_mask,
2591 tile,
2592 opacity,
2593 });
2594 }
2595 Ok(())
2596 }
2597
2598 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2599 ///
2600 /// This method should only be called as part of the paint phase of element drawing.
2601 pub fn paint_svg(
2602 &mut self,
2603 bounds: Bounds<Pixels>,
2604 path: SharedString,
2605 transformation: TransformationMatrix,
2606 color: Hsla,
2607 cx: &App,
2608 ) -> Result<()> {
2609 self.invalidator.debug_assert_paint();
2610
2611 let element_opacity = self.element_opacity();
2612 let scale_factor = self.scale_factor();
2613 let bounds = bounds.scale(scale_factor);
2614 let params = RenderSvgParams {
2615 path,
2616 size: bounds.size.map(|pixels| {
2617 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2618 }),
2619 };
2620
2621 let Some(tile) =
2622 self.sprite_atlas
2623 .get_or_insert_with(¶ms.clone().into(), &mut || {
2624 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2625 return Ok(None);
2626 };
2627 Ok(Some((params.size, Cow::Owned(bytes))))
2628 })?
2629 else {
2630 return Ok(());
2631 };
2632 let content_mask = self.content_mask().scale(scale_factor);
2633
2634 self.next_frame.scene.insert_primitive(MonochromeSprite {
2635 order: 0,
2636 pad: 0,
2637 bounds: bounds
2638 .map_origin(|origin| origin.floor())
2639 .map_size(|size| size.ceil()),
2640 content_mask,
2641 color: color.opacity(element_opacity),
2642 tile,
2643 transformation,
2644 });
2645
2646 Ok(())
2647 }
2648
2649 /// Paint an image into the scene for the next frame at the current z-index.
2650 /// This method will panic if the frame_index is not valid
2651 ///
2652 /// This method should only be called as part of the paint phase of element drawing.
2653 pub fn paint_image(
2654 &mut self,
2655 bounds: Bounds<Pixels>,
2656 corner_radii: Corners<Pixels>,
2657 data: Arc<RenderImage>,
2658 frame_index: usize,
2659 grayscale: bool,
2660 ) -> Result<()> {
2661 self.invalidator.debug_assert_paint();
2662
2663 let scale_factor = self.scale_factor();
2664 let bounds = bounds.scale(scale_factor);
2665 let params = RenderImageParams {
2666 image_id: data.id,
2667 frame_index,
2668 };
2669
2670 let tile = self
2671 .sprite_atlas
2672 .get_or_insert_with(¶ms.clone().into(), &mut || {
2673 Ok(Some((
2674 data.size(frame_index),
2675 Cow::Borrowed(
2676 data.as_bytes(frame_index)
2677 .expect("It's the caller's job to pass a valid frame index"),
2678 ),
2679 )))
2680 })?
2681 .expect("Callback above only returns Some");
2682 let content_mask = self.content_mask().scale(scale_factor);
2683 let corner_radii = corner_radii.scale(scale_factor);
2684 let opacity = self.element_opacity();
2685
2686 self.next_frame.scene.insert_primitive(PolychromeSprite {
2687 order: 0,
2688 pad: 0,
2689 grayscale,
2690 bounds: bounds
2691 .map_origin(|origin| origin.floor())
2692 .map_size(|size| size.ceil()),
2693 content_mask,
2694 corner_radii,
2695 tile,
2696 opacity,
2697 });
2698 Ok(())
2699 }
2700
2701 /// Paint a surface into the scene for the next frame at the current z-index.
2702 ///
2703 /// This method should only be called as part of the paint phase of element drawing.
2704 #[cfg(target_os = "macos")]
2705 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2706 use crate::PaintSurface;
2707
2708 self.invalidator.debug_assert_paint();
2709
2710 let scale_factor = self.scale_factor();
2711 let bounds = bounds.scale(scale_factor);
2712 let content_mask = self.content_mask().scale(scale_factor);
2713 self.next_frame.scene.insert_primitive(PaintSurface {
2714 order: 0,
2715 bounds,
2716 content_mask,
2717 image_buffer,
2718 });
2719 }
2720
2721 /// Removes an image from the sprite atlas.
2722 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2723 for frame_index in 0..data.frame_count() {
2724 let params = RenderImageParams {
2725 image_id: data.id,
2726 frame_index,
2727 };
2728
2729 self.sprite_atlas.remove(¶ms.clone().into());
2730 }
2731
2732 Ok(())
2733 }
2734
2735 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2736 /// layout is being requested, along with the layout ids of any children. This method is called during
2737 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2738 ///
2739 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2740 #[must_use]
2741 pub fn request_layout(
2742 &mut self,
2743 style: Style,
2744 children: impl IntoIterator<Item = LayoutId>,
2745 cx: &mut App,
2746 ) -> LayoutId {
2747 self.invalidator.debug_assert_prepaint();
2748
2749 cx.layout_id_buffer.clear();
2750 cx.layout_id_buffer.extend(children);
2751 let rem_size = self.rem_size();
2752
2753 self.layout_engine
2754 .as_mut()
2755 .unwrap()
2756 .request_layout(style, rem_size, &cx.layout_id_buffer)
2757 }
2758
2759 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2760 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2761 /// determine the element's size. One place this is used internally is when measuring text.
2762 ///
2763 /// The given closure is invoked at layout time with the known dimensions and available space and
2764 /// returns a `Size`.
2765 ///
2766 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2767 pub fn request_measured_layout<
2768 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2769 + 'static,
2770 >(
2771 &mut self,
2772 style: Style,
2773 measure: F,
2774 ) -> LayoutId {
2775 self.invalidator.debug_assert_prepaint();
2776
2777 let rem_size = self.rem_size();
2778 self.layout_engine
2779 .as_mut()
2780 .unwrap()
2781 .request_measured_layout(style, rem_size, measure)
2782 }
2783
2784 /// Compute the layout for the given id within the given available space.
2785 /// This method is called for its side effect, typically by the framework prior to painting.
2786 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2787 ///
2788 /// This method should only be called as part of the prepaint phase of element drawing.
2789 pub fn compute_layout(
2790 &mut self,
2791 layout_id: LayoutId,
2792 available_space: Size<AvailableSpace>,
2793 cx: &mut App,
2794 ) {
2795 self.invalidator.debug_assert_prepaint();
2796
2797 let mut layout_engine = self.layout_engine.take().unwrap();
2798 layout_engine.compute_layout(layout_id, available_space, self, cx);
2799 self.layout_engine = Some(layout_engine);
2800 }
2801
2802 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2803 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2804 ///
2805 /// This method should only be called as part of element drawing.
2806 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2807 self.invalidator.debug_assert_prepaint();
2808
2809 let mut bounds = self
2810 .layout_engine
2811 .as_mut()
2812 .unwrap()
2813 .layout_bounds(layout_id)
2814 .map(Into::into);
2815 bounds.origin += self.element_offset();
2816 bounds
2817 }
2818
2819 /// This method should be called during `prepaint`. You can use
2820 /// the returned [Hitbox] during `paint` or in an event handler
2821 /// to determine whether the inserted hitbox was the topmost.
2822 ///
2823 /// This method should only be called as part of the prepaint phase of element drawing.
2824 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2825 self.invalidator.debug_assert_prepaint();
2826
2827 let content_mask = self.content_mask();
2828 let id = self.next_hitbox_id;
2829 self.next_hitbox_id.0 += 1;
2830 let hitbox = Hitbox {
2831 id,
2832 bounds,
2833 content_mask,
2834 opaque,
2835 };
2836 self.next_frame.hitboxes.push(hitbox.clone());
2837 hitbox
2838 }
2839
2840 /// Sets the key context for the current element. This context will be used to translate
2841 /// keybindings into actions.
2842 ///
2843 /// This method should only be called as part of the paint phase of element drawing.
2844 pub fn set_key_context(&mut self, context: KeyContext) {
2845 self.invalidator.debug_assert_paint();
2846 self.next_frame.dispatch_tree.set_key_context(context);
2847 }
2848
2849 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2850 /// and keyboard event dispatch for the element.
2851 ///
2852 /// This method should only be called as part of the prepaint phase of element drawing.
2853 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2854 self.invalidator.debug_assert_prepaint();
2855 if focus_handle.is_focused(self) {
2856 self.next_frame.focus = Some(focus_handle.id);
2857 }
2858 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2859 }
2860
2861 /// Sets the view id for the current element, which will be used to manage view caching.
2862 ///
2863 /// This method should only be called as part of element prepaint. We plan on removing this
2864 /// method eventually when we solve some issues that require us to construct editor elements
2865 /// directly instead of always using editors via views.
2866 pub fn set_view_id(&mut self, view_id: EntityId) {
2867 self.invalidator.debug_assert_prepaint();
2868 self.next_frame.dispatch_tree.set_view_id(view_id);
2869 }
2870
2871 /// Get the entity ID for the currently rendering view
2872 pub fn current_view(&self) -> EntityId {
2873 self.invalidator.debug_assert_paint_or_prepaint();
2874 self.rendered_entity_stack.last().copied().unwrap()
2875 }
2876
2877 pub(crate) fn with_rendered_view<R>(
2878 &mut self,
2879 id: EntityId,
2880 f: impl FnOnce(&mut Self) -> R,
2881 ) -> R {
2882 self.rendered_entity_stack.push(id);
2883 let result = f(self);
2884 self.rendered_entity_stack.pop();
2885 result
2886 }
2887
2888 /// Executes the provided function with the specified image cache.
2889 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
2890 where
2891 F: FnOnce(&mut Self) -> R,
2892 {
2893 if let Some(image_cache) = image_cache {
2894 self.image_cache_stack.push(image_cache);
2895 let result = f(self);
2896 self.image_cache_stack.pop();
2897 result
2898 } else {
2899 f(self)
2900 }
2901 }
2902
2903 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2904 /// platform to receive textual input with proper integration with concerns such
2905 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2906 /// rendered.
2907 ///
2908 /// This method should only be called as part of the paint phase of element drawing.
2909 ///
2910 /// [element_input_handler]: crate::ElementInputHandler
2911 pub fn handle_input(
2912 &mut self,
2913 focus_handle: &FocusHandle,
2914 input_handler: impl InputHandler,
2915 cx: &App,
2916 ) {
2917 self.invalidator.debug_assert_paint();
2918
2919 if focus_handle.is_focused(self) {
2920 let cx = self.to_async(cx);
2921 self.next_frame
2922 .input_handlers
2923 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2924 }
2925 }
2926
2927 /// Register a mouse event listener on the window for the next frame. The type of event
2928 /// is determined by the first parameter of the given listener. When the next frame is rendered
2929 /// the listener will be cleared.
2930 ///
2931 /// This method should only be called as part of the paint phase of element drawing.
2932 pub fn on_mouse_event<Event: MouseEvent>(
2933 &mut self,
2934 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2935 ) {
2936 self.invalidator.debug_assert_paint();
2937
2938 self.next_frame.mouse_listeners.push(Some(Box::new(
2939 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2940 if let Some(event) = event.downcast_ref() {
2941 handler(event, phase, window, cx)
2942 }
2943 },
2944 )));
2945 }
2946
2947 /// Register a key event listener on the window for the next frame. The type of event
2948 /// is determined by the first parameter of the given listener. When the next frame is rendered
2949 /// the listener will be cleared.
2950 ///
2951 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2952 /// a specific need to register a global listener.
2953 ///
2954 /// This method should only be called as part of the paint phase of element drawing.
2955 pub fn on_key_event<Event: KeyEvent>(
2956 &mut self,
2957 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2958 ) {
2959 self.invalidator.debug_assert_paint();
2960
2961 self.next_frame.dispatch_tree.on_key_event(Rc::new(
2962 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
2963 if let Some(event) = event.downcast_ref::<Event>() {
2964 listener(event, phase, window, cx)
2965 }
2966 },
2967 ));
2968 }
2969
2970 /// Register a modifiers changed event listener on the window for the next frame.
2971 ///
2972 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2973 /// a specific need to register a global listener.
2974 ///
2975 /// This method should only be called as part of the paint phase of element drawing.
2976 pub fn on_modifiers_changed(
2977 &mut self,
2978 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
2979 ) {
2980 self.invalidator.debug_assert_paint();
2981
2982 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
2983 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
2984 listener(event, window, cx)
2985 },
2986 ));
2987 }
2988
2989 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2990 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
2991 /// Returns a subscription and persists until the subscription is dropped.
2992 pub fn on_focus_in(
2993 &mut self,
2994 handle: &FocusHandle,
2995 cx: &mut App,
2996 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
2997 ) -> Subscription {
2998 let focus_id = handle.id;
2999 let (subscription, activate) =
3000 self.new_focus_listener(Box::new(move |event, window, cx| {
3001 if event.is_focus_in(focus_id) {
3002 listener(window, cx);
3003 }
3004 true
3005 }));
3006 cx.defer(move |_| activate());
3007 subscription
3008 }
3009
3010 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3011 /// Returns a subscription and persists until the subscription is dropped.
3012 pub fn on_focus_out(
3013 &mut self,
3014 handle: &FocusHandle,
3015 cx: &mut App,
3016 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3017 ) -> Subscription {
3018 let focus_id = handle.id;
3019 let (subscription, activate) =
3020 self.new_focus_listener(Box::new(move |event, window, cx| {
3021 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3022 if event.is_focus_out(focus_id) {
3023 let event = FocusOutEvent {
3024 blurred: WeakFocusHandle {
3025 id: blurred_id,
3026 handles: Arc::downgrade(&cx.focus_handles),
3027 },
3028 };
3029 listener(event, window, cx)
3030 }
3031 }
3032 true
3033 }));
3034 cx.defer(move |_| activate());
3035 subscription
3036 }
3037
3038 fn reset_cursor_style(&self, cx: &mut App) {
3039 // Set the cursor only if we're the active window.
3040 if self.is_window_hovered() {
3041 let style = self
3042 .rendered_frame
3043 .cursor_styles
3044 .iter()
3045 .rev()
3046 .find(|request| {
3047 request
3048 .hitbox_id
3049 .map_or(true, |hitbox_id| hitbox_id.is_hovered(self))
3050 })
3051 .map(|request| request.style)
3052 .unwrap_or(CursorStyle::Arrow);
3053 cx.platform.set_cursor_style(style);
3054 }
3055 }
3056
3057 /// Dispatch a given keystroke as though the user had typed it.
3058 /// You can create a keystroke with Keystroke::parse("").
3059 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3060 let keystroke = keystroke.with_simulated_ime();
3061 let result = self.dispatch_event(
3062 PlatformInput::KeyDown(KeyDownEvent {
3063 keystroke: keystroke.clone(),
3064 is_held: false,
3065 }),
3066 cx,
3067 );
3068 if !result.propagate {
3069 return true;
3070 }
3071
3072 if let Some(input) = keystroke.key_char {
3073 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3074 input_handler.dispatch_input(&input, self, cx);
3075 self.platform_window.set_input_handler(input_handler);
3076 return true;
3077 }
3078 }
3079
3080 false
3081 }
3082
3083 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3084 /// binding for the action (last binding added to the keymap).
3085 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3086 self.bindings_for_action(action)
3087 .last()
3088 .map(|binding| {
3089 binding
3090 .keystrokes()
3091 .iter()
3092 .map(ToString::to_string)
3093 .collect::<Vec<_>>()
3094 .join(" ")
3095 })
3096 .unwrap_or_else(|| action.name().to_string())
3097 }
3098
3099 /// Dispatch a mouse or keyboard event on the window.
3100 #[profiling::function]
3101 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3102 self.last_input_timestamp.set(Instant::now());
3103 // Handlers may set this to false by calling `stop_propagation`.
3104 cx.propagate_event = true;
3105 // Handlers may set this to true by calling `prevent_default`.
3106 self.default_prevented = false;
3107
3108 let event = match event {
3109 // Track the mouse position with our own state, since accessing the platform
3110 // API for the mouse position can only occur on the main thread.
3111 PlatformInput::MouseMove(mouse_move) => {
3112 self.mouse_position = mouse_move.position;
3113 self.modifiers = mouse_move.modifiers;
3114 PlatformInput::MouseMove(mouse_move)
3115 }
3116 PlatformInput::MouseDown(mouse_down) => {
3117 self.mouse_position = mouse_down.position;
3118 self.modifiers = mouse_down.modifiers;
3119 PlatformInput::MouseDown(mouse_down)
3120 }
3121 PlatformInput::MouseUp(mouse_up) => {
3122 self.mouse_position = mouse_up.position;
3123 self.modifiers = mouse_up.modifiers;
3124 PlatformInput::MouseUp(mouse_up)
3125 }
3126 PlatformInput::MouseExited(mouse_exited) => {
3127 self.modifiers = mouse_exited.modifiers;
3128 PlatformInput::MouseExited(mouse_exited)
3129 }
3130 PlatformInput::ModifiersChanged(modifiers_changed) => {
3131 self.modifiers = modifiers_changed.modifiers;
3132 PlatformInput::ModifiersChanged(modifiers_changed)
3133 }
3134 PlatformInput::ScrollWheel(scroll_wheel) => {
3135 self.mouse_position = scroll_wheel.position;
3136 self.modifiers = scroll_wheel.modifiers;
3137 PlatformInput::ScrollWheel(scroll_wheel)
3138 }
3139 // Translate dragging and dropping of external files from the operating system
3140 // to internal drag and drop events.
3141 PlatformInput::FileDrop(file_drop) => match file_drop {
3142 FileDropEvent::Entered { position, paths } => {
3143 self.mouse_position = position;
3144 if cx.active_drag.is_none() {
3145 cx.active_drag = Some(AnyDrag {
3146 value: Arc::new(paths.clone()),
3147 view: cx.new(|_| paths).into(),
3148 cursor_offset: position,
3149 cursor_style: None,
3150 });
3151 }
3152 PlatformInput::MouseMove(MouseMoveEvent {
3153 position,
3154 pressed_button: Some(MouseButton::Left),
3155 modifiers: Modifiers::default(),
3156 })
3157 }
3158 FileDropEvent::Pending { position } => {
3159 self.mouse_position = position;
3160 PlatformInput::MouseMove(MouseMoveEvent {
3161 position,
3162 pressed_button: Some(MouseButton::Left),
3163 modifiers: Modifiers::default(),
3164 })
3165 }
3166 FileDropEvent::Submit { position } => {
3167 cx.activate(true);
3168 self.mouse_position = position;
3169 PlatformInput::MouseUp(MouseUpEvent {
3170 button: MouseButton::Left,
3171 position,
3172 modifiers: Modifiers::default(),
3173 click_count: 1,
3174 })
3175 }
3176 FileDropEvent::Exited => {
3177 cx.active_drag.take();
3178 PlatformInput::FileDrop(FileDropEvent::Exited)
3179 }
3180 },
3181 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3182 };
3183
3184 if let Some(any_mouse_event) = event.mouse_event() {
3185 self.dispatch_mouse_event(any_mouse_event, cx);
3186 } else if let Some(any_key_event) = event.keyboard_event() {
3187 self.dispatch_key_event(any_key_event, cx);
3188 }
3189
3190 DispatchEventResult {
3191 propagate: cx.propagate_event,
3192 default_prevented: self.default_prevented,
3193 }
3194 }
3195
3196 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3197 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3198 if hit_test != self.mouse_hit_test {
3199 self.mouse_hit_test = hit_test;
3200 self.reset_cursor_style(cx);
3201 }
3202
3203 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3204
3205 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3206 // special purposes, such as detecting events outside of a given Bounds.
3207 for listener in &mut mouse_listeners {
3208 let listener = listener.as_mut().unwrap();
3209 listener(event, DispatchPhase::Capture, self, cx);
3210 if !cx.propagate_event {
3211 break;
3212 }
3213 }
3214
3215 // Bubble phase, where most normal handlers do their work.
3216 if cx.propagate_event {
3217 for listener in mouse_listeners.iter_mut().rev() {
3218 let listener = listener.as_mut().unwrap();
3219 listener(event, DispatchPhase::Bubble, self, cx);
3220 if !cx.propagate_event {
3221 break;
3222 }
3223 }
3224 }
3225
3226 self.rendered_frame.mouse_listeners = mouse_listeners;
3227
3228 if cx.has_active_drag() {
3229 if event.is::<MouseMoveEvent>() {
3230 // If this was a mouse move event, redraw the window so that the
3231 // active drag can follow the mouse cursor.
3232 self.refresh();
3233 } else if event.is::<MouseUpEvent>() {
3234 // If this was a mouse up event, cancel the active drag and redraw
3235 // the window.
3236 cx.active_drag = None;
3237 self.refresh();
3238 }
3239 }
3240 }
3241
3242 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3243 if self.invalidator.is_dirty() {
3244 self.draw(cx);
3245 }
3246
3247 let node_id = self
3248 .focus
3249 .and_then(|focus_id| {
3250 self.rendered_frame
3251 .dispatch_tree
3252 .focusable_node_id(focus_id)
3253 })
3254 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3255
3256 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3257
3258 let mut keystroke: Option<Keystroke> = None;
3259
3260 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3261 if event.modifiers.number_of_modifiers() == 0
3262 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3263 && !self.pending_modifier.saw_keystroke
3264 {
3265 let key = match self.pending_modifier.modifiers {
3266 modifiers if modifiers.shift => Some("shift"),
3267 modifiers if modifiers.control => Some("control"),
3268 modifiers if modifiers.alt => Some("alt"),
3269 modifiers if modifiers.platform => Some("platform"),
3270 modifiers if modifiers.function => Some("function"),
3271 _ => None,
3272 };
3273 if let Some(key) = key {
3274 keystroke = Some(Keystroke {
3275 key: key.to_string(),
3276 key_char: None,
3277 modifiers: Modifiers::default(),
3278 });
3279 }
3280 }
3281
3282 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3283 && event.modifiers.number_of_modifiers() == 1
3284 {
3285 self.pending_modifier.saw_keystroke = false
3286 }
3287 self.pending_modifier.modifiers = event.modifiers
3288 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3289 self.pending_modifier.saw_keystroke = true;
3290 keystroke = Some(key_down_event.keystroke.clone());
3291 }
3292
3293 let Some(keystroke) = keystroke else {
3294 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3295 return;
3296 };
3297
3298 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3299 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3300 currently_pending = PendingInput::default();
3301 }
3302
3303 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3304 currently_pending.keystrokes,
3305 keystroke,
3306 &dispatch_path,
3307 );
3308
3309 if !match_result.to_replay.is_empty() {
3310 self.replay_pending_input(match_result.to_replay, cx)
3311 }
3312
3313 if !match_result.pending.is_empty() {
3314 currently_pending.keystrokes = match_result.pending;
3315 currently_pending.focus = self.focus;
3316 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3317 cx.background_executor.timer(Duration::from_secs(1)).await;
3318 cx.update(move |window, cx| {
3319 let Some(currently_pending) = window
3320 .pending_input
3321 .take()
3322 .filter(|pending| pending.focus == window.focus)
3323 else {
3324 return;
3325 };
3326
3327 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3328
3329 let to_replay = window
3330 .rendered_frame
3331 .dispatch_tree
3332 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3333
3334 window.replay_pending_input(to_replay, cx)
3335 })
3336 .log_err();
3337 }));
3338 self.pending_input = Some(currently_pending);
3339 self.pending_input_changed(cx);
3340 cx.propagate_event = false;
3341 return;
3342 }
3343
3344 cx.propagate_event = true;
3345 for binding in match_result.bindings {
3346 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3347 if !cx.propagate_event {
3348 self.dispatch_keystroke_observers(
3349 event,
3350 Some(binding.action),
3351 match_result.context_stack.clone(),
3352 cx,
3353 );
3354 self.pending_input_changed(cx);
3355 return;
3356 }
3357 }
3358
3359 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3360 self.pending_input_changed(cx);
3361 }
3362
3363 fn finish_dispatch_key_event(
3364 &mut self,
3365 event: &dyn Any,
3366 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3367 context_stack: Vec<KeyContext>,
3368 cx: &mut App,
3369 ) {
3370 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3371 if !cx.propagate_event {
3372 return;
3373 }
3374
3375 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3376 if !cx.propagate_event {
3377 return;
3378 }
3379
3380 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3381 }
3382
3383 fn pending_input_changed(&mut self, cx: &mut App) {
3384 self.pending_input_observers
3385 .clone()
3386 .retain(&(), |callback| callback(self, cx));
3387 }
3388
3389 fn dispatch_key_down_up_event(
3390 &mut self,
3391 event: &dyn Any,
3392 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3393 cx: &mut App,
3394 ) {
3395 // Capture phase
3396 for node_id in dispatch_path {
3397 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3398
3399 for key_listener in node.key_listeners.clone() {
3400 key_listener(event, DispatchPhase::Capture, self, cx);
3401 if !cx.propagate_event {
3402 return;
3403 }
3404 }
3405 }
3406
3407 // Bubble phase
3408 for node_id in dispatch_path.iter().rev() {
3409 // Handle low level key events
3410 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3411 for key_listener in node.key_listeners.clone() {
3412 key_listener(event, DispatchPhase::Bubble, self, cx);
3413 if !cx.propagate_event {
3414 return;
3415 }
3416 }
3417 }
3418 }
3419
3420 fn dispatch_modifiers_changed_event(
3421 &mut self,
3422 event: &dyn Any,
3423 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3424 cx: &mut App,
3425 ) {
3426 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3427 return;
3428 };
3429 for node_id in dispatch_path.iter().rev() {
3430 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3431 for listener in node.modifiers_changed_listeners.clone() {
3432 listener(event, self, cx);
3433 if !cx.propagate_event {
3434 return;
3435 }
3436 }
3437 }
3438 }
3439
3440 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3441 pub fn has_pending_keystrokes(&self) -> bool {
3442 self.pending_input.is_some()
3443 }
3444
3445 pub(crate) fn clear_pending_keystrokes(&mut self) {
3446 self.pending_input.take();
3447 }
3448
3449 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3450 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3451 self.pending_input
3452 .as_ref()
3453 .map(|pending_input| pending_input.keystrokes.as_slice())
3454 }
3455
3456 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3457 let node_id = self
3458 .focus
3459 .and_then(|focus_id| {
3460 self.rendered_frame
3461 .dispatch_tree
3462 .focusable_node_id(focus_id)
3463 })
3464 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3465
3466 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3467
3468 'replay: for replay in replays {
3469 let event = KeyDownEvent {
3470 keystroke: replay.keystroke.clone(),
3471 is_held: false,
3472 };
3473
3474 cx.propagate_event = true;
3475 for binding in replay.bindings {
3476 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3477 if !cx.propagate_event {
3478 self.dispatch_keystroke_observers(
3479 &event,
3480 Some(binding.action),
3481 Vec::default(),
3482 cx,
3483 );
3484 continue 'replay;
3485 }
3486 }
3487
3488 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3489 if !cx.propagate_event {
3490 continue 'replay;
3491 }
3492 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3493 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3494 input_handler.dispatch_input(&input, self, cx);
3495 self.platform_window.set_input_handler(input_handler)
3496 }
3497 }
3498 }
3499 }
3500
3501 fn dispatch_action_on_node(
3502 &mut self,
3503 node_id: DispatchNodeId,
3504 action: &dyn Action,
3505 cx: &mut App,
3506 ) {
3507 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3508
3509 // Capture phase for global actions.
3510 cx.propagate_event = true;
3511 if let Some(mut global_listeners) = cx
3512 .global_action_listeners
3513 .remove(&action.as_any().type_id())
3514 {
3515 for listener in &global_listeners {
3516 listener(action.as_any(), DispatchPhase::Capture, cx);
3517 if !cx.propagate_event {
3518 break;
3519 }
3520 }
3521
3522 global_listeners.extend(
3523 cx.global_action_listeners
3524 .remove(&action.as_any().type_id())
3525 .unwrap_or_default(),
3526 );
3527
3528 cx.global_action_listeners
3529 .insert(action.as_any().type_id(), global_listeners);
3530 }
3531
3532 if !cx.propagate_event {
3533 return;
3534 }
3535
3536 // Capture phase for window actions.
3537 for node_id in &dispatch_path {
3538 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3539 for DispatchActionListener {
3540 action_type,
3541 listener,
3542 } in node.action_listeners.clone()
3543 {
3544 let any_action = action.as_any();
3545 if action_type == any_action.type_id() {
3546 listener(any_action, DispatchPhase::Capture, self, cx);
3547
3548 if !cx.propagate_event {
3549 return;
3550 }
3551 }
3552 }
3553 }
3554
3555 // Bubble phase for window actions.
3556 for node_id in dispatch_path.iter().rev() {
3557 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3558 for DispatchActionListener {
3559 action_type,
3560 listener,
3561 } in node.action_listeners.clone()
3562 {
3563 let any_action = action.as_any();
3564 if action_type == any_action.type_id() {
3565 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3566 listener(any_action, DispatchPhase::Bubble, self, cx);
3567
3568 if !cx.propagate_event {
3569 return;
3570 }
3571 }
3572 }
3573 }
3574
3575 // Bubble phase for global actions.
3576 if let Some(mut global_listeners) = cx
3577 .global_action_listeners
3578 .remove(&action.as_any().type_id())
3579 {
3580 for listener in global_listeners.iter().rev() {
3581 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3582
3583 listener(action.as_any(), DispatchPhase::Bubble, cx);
3584 if !cx.propagate_event {
3585 break;
3586 }
3587 }
3588
3589 global_listeners.extend(
3590 cx.global_action_listeners
3591 .remove(&action.as_any().type_id())
3592 .unwrap_or_default(),
3593 );
3594
3595 cx.global_action_listeners
3596 .insert(action.as_any().type_id(), global_listeners);
3597 }
3598 }
3599
3600 /// Register the given handler to be invoked whenever the global of the given type
3601 /// is updated.
3602 pub fn observe_global<G: Global>(
3603 &mut self,
3604 cx: &mut App,
3605 f: impl Fn(&mut Window, &mut App) + 'static,
3606 ) -> Subscription {
3607 let window_handle = self.handle;
3608 let (subscription, activate) = cx.global_observers.insert(
3609 TypeId::of::<G>(),
3610 Box::new(move |cx| {
3611 window_handle
3612 .update(cx, |_, window, cx| f(window, cx))
3613 .is_ok()
3614 }),
3615 );
3616 cx.defer(move |_| activate());
3617 subscription
3618 }
3619
3620 /// Focus the current window and bring it to the foreground at the platform level.
3621 pub fn activate_window(&self) {
3622 self.platform_window.activate();
3623 }
3624
3625 /// Minimize the current window at the platform level.
3626 pub fn minimize_window(&self) {
3627 self.platform_window.minimize();
3628 }
3629
3630 /// Toggle full screen status on the current window at the platform level.
3631 pub fn toggle_fullscreen(&self) {
3632 self.platform_window.toggle_fullscreen();
3633 }
3634
3635 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3636 pub fn invalidate_character_coordinates(&self) {
3637 self.on_next_frame(|window, cx| {
3638 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3639 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3640 window
3641 .platform_window
3642 .update_ime_position(bounds.scale(window.scale_factor()));
3643 }
3644 window.platform_window.set_input_handler(input_handler);
3645 }
3646 });
3647 }
3648
3649 /// Present a platform dialog.
3650 /// The provided message will be presented, along with buttons for each answer.
3651 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3652 pub fn prompt(
3653 &mut self,
3654 level: PromptLevel,
3655 message: &str,
3656 detail: Option<&str>,
3657 answers: &[&str],
3658 cx: &mut App,
3659 ) -> oneshot::Receiver<usize> {
3660 let prompt_builder = cx.prompt_builder.take();
3661 let Some(prompt_builder) = prompt_builder else {
3662 unreachable!("Re-entrant window prompting is not supported by GPUI");
3663 };
3664
3665 let receiver = match &prompt_builder {
3666 PromptBuilder::Default => self
3667 .platform_window
3668 .prompt(level, message, detail, answers)
3669 .unwrap_or_else(|| {
3670 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3671 }),
3672 PromptBuilder::Custom(_) => {
3673 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3674 }
3675 };
3676
3677 cx.prompt_builder = Some(prompt_builder);
3678
3679 receiver
3680 }
3681
3682 fn build_custom_prompt(
3683 &mut self,
3684 prompt_builder: &PromptBuilder,
3685 level: PromptLevel,
3686 message: &str,
3687 detail: Option<&str>,
3688 answers: &[&str],
3689 cx: &mut App,
3690 ) -> oneshot::Receiver<usize> {
3691 let (sender, receiver) = oneshot::channel();
3692 let handle = PromptHandle::new(sender);
3693 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3694 self.prompt = Some(handle);
3695 receiver
3696 }
3697
3698 /// Returns the current context stack.
3699 pub fn context_stack(&self) -> Vec<KeyContext> {
3700 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3701 let node_id = self
3702 .focus
3703 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3704 .unwrap_or_else(|| dispatch_tree.root_node_id());
3705
3706 dispatch_tree
3707 .dispatch_path(node_id)
3708 .iter()
3709 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3710 .collect()
3711 }
3712
3713 /// Returns all available actions for the focused element.
3714 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3715 let node_id = self
3716 .focus
3717 .and_then(|focus_id| {
3718 self.rendered_frame
3719 .dispatch_tree
3720 .focusable_node_id(focus_id)
3721 })
3722 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3723
3724 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3725 for action_type in cx.global_action_listeners.keys() {
3726 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3727 let action = cx.actions.build_action_type(action_type).ok();
3728 if let Some(action) = action {
3729 actions.insert(ix, action);
3730 }
3731 }
3732 }
3733 actions
3734 }
3735
3736 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3737 /// returned in the order they were added. For display, the last binding should take precedence.
3738 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3739 self.rendered_frame
3740 .dispatch_tree
3741 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3742 }
3743
3744 /// Returns any bindings that would invoke an action on the given focus handle if it were
3745 /// focused. Bindings are returned in the order they were added. For display, the last binding
3746 /// should take precedence.
3747 pub fn bindings_for_action_in(
3748 &self,
3749 action: &dyn Action,
3750 focus_handle: &FocusHandle,
3751 ) -> Vec<KeyBinding> {
3752 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3753
3754 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3755 return vec![];
3756 };
3757 let context_stack: Vec<_> = dispatch_tree
3758 .dispatch_path(node_id)
3759 .into_iter()
3760 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3761 .collect();
3762 dispatch_tree.bindings_for_action(action, &context_stack)
3763 }
3764
3765 /// Returns the key bindings for the given action in the given context.
3766 pub fn bindings_for_action_in_context(
3767 &self,
3768 action: &dyn Action,
3769 context: KeyContext,
3770 ) -> Vec<KeyBinding> {
3771 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3772 dispatch_tree.bindings_for_action(action, &[context])
3773 }
3774
3775 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3776 pub fn listener_for<V: Render, E>(
3777 &self,
3778 view: &Entity<V>,
3779 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3780 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3781 let view = view.downgrade();
3782 move |e: &E, window: &mut Window, cx: &mut App| {
3783 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3784 }
3785 }
3786
3787 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3788 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
3789 &self,
3790 view: &Entity<V>,
3791 f: Callback,
3792 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
3793 let view = view.downgrade();
3794 move |window: &mut Window, cx: &mut App| {
3795 view.update(cx, |view, cx| f(view, window, cx)).ok();
3796 }
3797 }
3798
3799 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3800 /// If the callback returns false, the window won't be closed.
3801 pub fn on_window_should_close(
3802 &self,
3803 cx: &App,
3804 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3805 ) {
3806 let mut cx = self.to_async(cx);
3807 self.platform_window.on_should_close(Box::new(move || {
3808 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3809 }))
3810 }
3811
3812 /// Register an action listener on the window for the next frame. The type of action
3813 /// is determined by the first parameter of the given listener. When the next frame is rendered
3814 /// the listener will be cleared.
3815 ///
3816 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3817 /// a specific need to register a global listener.
3818 pub fn on_action(
3819 &mut self,
3820 action_type: TypeId,
3821 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3822 ) {
3823 self.next_frame
3824 .dispatch_tree
3825 .on_action(action_type, Rc::new(listener));
3826 }
3827
3828 /// Read information about the GPU backing this window.
3829 /// Currently returns None on Mac and Windows.
3830 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3831 self.platform_window.gpu_specs()
3832 }
3833}
3834
3835// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3836slotmap::new_key_type! {
3837 /// A unique identifier for a window.
3838 pub struct WindowId;
3839}
3840
3841impl WindowId {
3842 /// Converts this window ID to a `u64`.
3843 pub fn as_u64(&self) -> u64 {
3844 self.0.as_ffi()
3845 }
3846}
3847
3848impl From<u64> for WindowId {
3849 fn from(value: u64) -> Self {
3850 WindowId(slotmap::KeyData::from_ffi(value))
3851 }
3852}
3853
3854/// A handle to a window with a specific root view type.
3855/// Note that this does not keep the window alive on its own.
3856#[derive(Deref, DerefMut)]
3857pub struct WindowHandle<V> {
3858 #[deref]
3859 #[deref_mut]
3860 pub(crate) any_handle: AnyWindowHandle,
3861 state_type: PhantomData<V>,
3862}
3863
3864impl<V: 'static + Render> WindowHandle<V> {
3865 /// Creates a new handle from a window ID.
3866 /// This does not check if the root type of the window is `V`.
3867 pub fn new(id: WindowId) -> Self {
3868 WindowHandle {
3869 any_handle: AnyWindowHandle {
3870 id,
3871 state_type: TypeId::of::<V>(),
3872 },
3873 state_type: PhantomData,
3874 }
3875 }
3876
3877 /// Get the root view out of this window.
3878 ///
3879 /// This will fail if the window is closed or if the root view's type does not match `V`.
3880 #[cfg(any(test, feature = "test-support"))]
3881 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
3882 where
3883 C: AppContext,
3884 {
3885 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
3886 root_view
3887 .downcast::<V>()
3888 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3889 }))
3890 }
3891
3892 /// Updates the root view of this window.
3893 ///
3894 /// This will fail if the window has been closed or if the root view's type does not match
3895 pub fn update<C, R>(
3896 &self,
3897 cx: &mut C,
3898 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
3899 ) -> Result<R>
3900 where
3901 C: AppContext,
3902 {
3903 cx.update_window(self.any_handle, |root_view, window, cx| {
3904 let view = root_view
3905 .downcast::<V>()
3906 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3907
3908 Ok(view.update(cx, |view, cx| update(view, window, cx)))
3909 })?
3910 }
3911
3912 /// Read the root view out of this window.
3913 ///
3914 /// This will fail if the window is closed or if the root view's type does not match `V`.
3915 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
3916 let x = cx
3917 .windows
3918 .get(self.id)
3919 .and_then(|window| {
3920 window
3921 .as_ref()
3922 .and_then(|window| window.root.clone())
3923 .map(|root_view| root_view.downcast::<V>())
3924 })
3925 .context("window not found")?
3926 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3927
3928 Ok(x.read(cx))
3929 }
3930
3931 /// Read the root view out of this window, with a callback
3932 ///
3933 /// This will fail if the window is closed or if the root view's type does not match `V`.
3934 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
3935 where
3936 C: AppContext,
3937 {
3938 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3939 }
3940
3941 /// Read the root view pointer off of this window.
3942 ///
3943 /// This will fail if the window is closed or if the root view's type does not match `V`.
3944 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
3945 where
3946 C: AppContext,
3947 {
3948 cx.read_window(self, |root_view, _cx| root_view.clone())
3949 }
3950
3951 /// Check if this window is 'active'.
3952 ///
3953 /// Will return `None` if the window is closed or currently
3954 /// borrowed.
3955 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
3956 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
3957 .ok()
3958 }
3959}
3960
3961impl<V> Copy for WindowHandle<V> {}
3962
3963impl<V> Clone for WindowHandle<V> {
3964 fn clone(&self) -> Self {
3965 *self
3966 }
3967}
3968
3969impl<V> PartialEq for WindowHandle<V> {
3970 fn eq(&self, other: &Self) -> bool {
3971 self.any_handle == other.any_handle
3972 }
3973}
3974
3975impl<V> Eq for WindowHandle<V> {}
3976
3977impl<V> Hash for WindowHandle<V> {
3978 fn hash<H: Hasher>(&self, state: &mut H) {
3979 self.any_handle.hash(state);
3980 }
3981}
3982
3983impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3984 fn from(val: WindowHandle<V>) -> Self {
3985 val.any_handle
3986 }
3987}
3988
3989unsafe impl<V> Send for WindowHandle<V> {}
3990unsafe impl<V> Sync for WindowHandle<V> {}
3991
3992/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3993#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3994pub struct AnyWindowHandle {
3995 pub(crate) id: WindowId,
3996 state_type: TypeId,
3997}
3998
3999impl AnyWindowHandle {
4000 /// Get the ID of this window.
4001 pub fn window_id(&self) -> WindowId {
4002 self.id
4003 }
4004
4005 /// Attempt to convert this handle to a window handle with a specific root view type.
4006 /// If the types do not match, this will return `None`.
4007 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4008 if TypeId::of::<T>() == self.state_type {
4009 Some(WindowHandle {
4010 any_handle: *self,
4011 state_type: PhantomData,
4012 })
4013 } else {
4014 None
4015 }
4016 }
4017
4018 /// Updates the state of the root view of this window.
4019 ///
4020 /// This will fail if the window has been closed.
4021 pub fn update<C, R>(
4022 self,
4023 cx: &mut C,
4024 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4025 ) -> Result<R>
4026 where
4027 C: AppContext,
4028 {
4029 cx.update_window(self, update)
4030 }
4031
4032 /// Read the state of the root view of this window.
4033 ///
4034 /// This will fail if the window has been closed.
4035 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4036 where
4037 C: AppContext,
4038 T: 'static,
4039 {
4040 let view = self
4041 .downcast::<T>()
4042 .context("the type of the window's root view has changed")?;
4043
4044 cx.read_window(&view, read)
4045 }
4046}
4047
4048impl HasWindowHandle for Window {
4049 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4050 self.platform_window.window_handle()
4051 }
4052}
4053
4054/// An identifier for an [`Element`](crate::Element).
4055///
4056/// Can be constructed with a string, a number, or both, as well
4057/// as other internal representations.
4058#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4059pub enum ElementId {
4060 /// The ID of a View element
4061 View(EntityId),
4062 /// An integer ID.
4063 Integer(u64),
4064 /// A string based ID.
4065 Name(SharedString),
4066 /// A UUID.
4067 Uuid(Uuid),
4068 /// An ID that's equated with a focus handle.
4069 FocusHandle(FocusId),
4070 /// A combination of a name and an integer.
4071 NamedInteger(SharedString, u64),
4072 /// A path
4073 Path(Arc<std::path::Path>),
4074}
4075
4076impl ElementId {
4077 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4078 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4079 Self::NamedInteger(name.into(), integer as u64)
4080 }
4081}
4082
4083impl Display for ElementId {
4084 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4085 match self {
4086 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4087 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4088 ElementId::Name(name) => write!(f, "{}", name)?,
4089 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4090 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4091 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4092 ElementId::Path(path) => write!(f, "{}", path.display())?,
4093 }
4094
4095 Ok(())
4096 }
4097}
4098
4099impl TryInto<SharedString> for ElementId {
4100 type Error = anyhow::Error;
4101
4102 fn try_into(self) -> anyhow::Result<SharedString> {
4103 if let ElementId::Name(name) = self {
4104 Ok(name)
4105 } else {
4106 anyhow::bail!("element id is not string")
4107 }
4108 }
4109}
4110
4111impl From<usize> for ElementId {
4112 fn from(id: usize) -> Self {
4113 ElementId::Integer(id as u64)
4114 }
4115}
4116
4117impl From<i32> for ElementId {
4118 fn from(id: i32) -> Self {
4119 Self::Integer(id as u64)
4120 }
4121}
4122
4123impl From<SharedString> for ElementId {
4124 fn from(name: SharedString) -> Self {
4125 ElementId::Name(name)
4126 }
4127}
4128
4129impl From<Arc<std::path::Path>> for ElementId {
4130 fn from(path: Arc<std::path::Path>) -> Self {
4131 ElementId::Path(path)
4132 }
4133}
4134
4135impl From<&'static str> for ElementId {
4136 fn from(name: &'static str) -> Self {
4137 ElementId::Name(name.into())
4138 }
4139}
4140
4141impl<'a> From<&'a FocusHandle> for ElementId {
4142 fn from(handle: &'a FocusHandle) -> Self {
4143 ElementId::FocusHandle(handle.id)
4144 }
4145}
4146
4147impl From<(&'static str, EntityId)> for ElementId {
4148 fn from((name, id): (&'static str, EntityId)) -> Self {
4149 ElementId::NamedInteger(name.into(), id.as_u64())
4150 }
4151}
4152
4153impl From<(&'static str, usize)> for ElementId {
4154 fn from((name, id): (&'static str, usize)) -> Self {
4155 ElementId::NamedInteger(name.into(), id as u64)
4156 }
4157}
4158
4159impl From<(SharedString, usize)> for ElementId {
4160 fn from((name, id): (SharedString, usize)) -> Self {
4161 ElementId::NamedInteger(name, id as u64)
4162 }
4163}
4164
4165impl From<(&'static str, u64)> for ElementId {
4166 fn from((name, id): (&'static str, u64)) -> Self {
4167 ElementId::NamedInteger(name.into(), id)
4168 }
4169}
4170
4171impl From<Uuid> for ElementId {
4172 fn from(value: Uuid) -> Self {
4173 Self::Uuid(value)
4174 }
4175}
4176
4177impl From<(&'static str, u32)> for ElementId {
4178 fn from((name, id): (&'static str, u32)) -> Self {
4179 ElementId::NamedInteger(name.into(), id.into())
4180 }
4181}
4182
4183/// A rectangle to be rendered in the window at the given position and size.
4184/// Passed as an argument [`Window::paint_quad`].
4185#[derive(Clone)]
4186pub struct PaintQuad {
4187 /// The bounds of the quad within the window.
4188 pub bounds: Bounds<Pixels>,
4189 /// The radii of the quad's corners.
4190 pub corner_radii: Corners<Pixels>,
4191 /// The background color of the quad.
4192 pub background: Background,
4193 /// The widths of the quad's borders.
4194 pub border_widths: Edges<Pixels>,
4195 /// The color of the quad's borders.
4196 pub border_color: Hsla,
4197 /// The style of the quad's borders.
4198 pub border_style: BorderStyle,
4199}
4200
4201impl PaintQuad {
4202 /// Sets the corner radii of the quad.
4203 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4204 PaintQuad {
4205 corner_radii: corner_radii.into(),
4206 ..self
4207 }
4208 }
4209
4210 /// Sets the border widths of the quad.
4211 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4212 PaintQuad {
4213 border_widths: border_widths.into(),
4214 ..self
4215 }
4216 }
4217
4218 /// Sets the border color of the quad.
4219 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4220 PaintQuad {
4221 border_color: border_color.into(),
4222 ..self
4223 }
4224 }
4225
4226 /// Sets the background color of the quad.
4227 pub fn background(self, background: impl Into<Background>) -> Self {
4228 PaintQuad {
4229 background: background.into(),
4230 ..self
4231 }
4232 }
4233}
4234
4235/// Creates a quad with the given parameters.
4236pub fn quad(
4237 bounds: Bounds<Pixels>,
4238 corner_radii: impl Into<Corners<Pixels>>,
4239 background: impl Into<Background>,
4240 border_widths: impl Into<Edges<Pixels>>,
4241 border_color: impl Into<Hsla>,
4242 border_style: BorderStyle,
4243) -> PaintQuad {
4244 PaintQuad {
4245 bounds,
4246 corner_radii: corner_radii.into(),
4247 background: background.into(),
4248 border_widths: border_widths.into(),
4249 border_color: border_color.into(),
4250 border_style,
4251 }
4252}
4253
4254/// Creates a filled quad with the given bounds and background color.
4255pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4256 PaintQuad {
4257 bounds: bounds.into(),
4258 corner_radii: (0.).into(),
4259 background: background.into(),
4260 border_widths: (0.).into(),
4261 border_color: transparent_black(),
4262 border_style: BorderStyle::default(),
4263 }
4264}
4265
4266/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4267pub fn outline(
4268 bounds: impl Into<Bounds<Pixels>>,
4269 border_color: impl Into<Hsla>,
4270 border_style: BorderStyle,
4271) -> PaintQuad {
4272 PaintQuad {
4273 bounds: bounds.into(),
4274 corner_radii: (0.).into(),
4275 background: transparent_black().into(),
4276 border_widths: (1.).into(),
4277 border_color: border_color.into(),
4278 border_style,
4279 }
4280}