bounds_tree.rs

  1use crate::{Bounds, Half};
  2use std::{
  3    cmp,
  4    fmt::Debug,
  5    ops::{Add, Sub},
  6};
  7
  8#[derive(Debug)]
  9pub(crate) struct BoundsTree<U>
 10where
 11    U: Clone + Debug + Default + PartialEq,
 12{
 13    root: Option<usize>,
 14    nodes: Vec<Node<U>>,
 15    stack: Vec<usize>,
 16}
 17
 18impl<U> BoundsTree<U>
 19where
 20    U: Clone
 21        + Debug
 22        + PartialEq
 23        + PartialOrd
 24        + Add<U, Output = U>
 25        + Sub<Output = U>
 26        + Half
 27        + Default,
 28{
 29    pub fn clear(&mut self) {
 30        self.root = None;
 31        self.nodes.clear();
 32        self.stack.clear();
 33    }
 34
 35    pub fn insert(&mut self, new_bounds: Bounds<U>) -> u32 {
 36        // If the tree is empty, make the root the new leaf.
 37        if self.root.is_none() {
 38            let new_node = self.push_leaf(new_bounds, 1);
 39            self.root = Some(new_node);
 40            return 1;
 41        }
 42
 43        // Search for the best place to add the new leaf based on heuristics.
 44        let mut max_intersecting_ordering = 0;
 45        let mut index = self.root.unwrap();
 46        while let Node::Internal {
 47            left,
 48            right,
 49            bounds: node_bounds,
 50            ..
 51        } = &mut self.nodes[index]
 52        {
 53            let left = *left;
 54            let right = *right;
 55            *node_bounds = node_bounds.union(&new_bounds);
 56            self.stack.push(index);
 57
 58            // Descend to the best-fit child, based on which one would increase
 59            // the surface area the least. This attempts to keep the tree balanced
 60            // in terms of surface area. If there is an intersection with the other child,
 61            // add its keys to the intersections vector.
 62            let left_cost = new_bounds.union(self.nodes[left].bounds()).half_perimeter();
 63            let right_cost = new_bounds
 64                .union(self.nodes[right].bounds())
 65                .half_perimeter();
 66            if left_cost < right_cost {
 67                max_intersecting_ordering =
 68                    self.find_max_ordering(right, &new_bounds, max_intersecting_ordering);
 69                index = left;
 70            } else {
 71                max_intersecting_ordering =
 72                    self.find_max_ordering(left, &new_bounds, max_intersecting_ordering);
 73                index = right;
 74            }
 75        }
 76
 77        // We've found a leaf ('index' now refers to a leaf node).
 78        // We'll insert a new parent node above the leaf and attach our new leaf to it.
 79        let sibling = index;
 80
 81        // Check for collision with the located leaf node
 82        let Node::Leaf {
 83            bounds: sibling_bounds,
 84            order: sibling_ordering,
 85            ..
 86        } = &self.nodes[index]
 87        else {
 88            unreachable!();
 89        };
 90        if sibling_bounds.intersects(&new_bounds) {
 91            max_intersecting_ordering = cmp::max(max_intersecting_ordering, *sibling_ordering);
 92        }
 93
 94        let ordering = max_intersecting_ordering + 1;
 95        let new_node = self.push_leaf(new_bounds, ordering);
 96        let new_parent = self.push_internal(sibling, new_node);
 97
 98        // If there was an old parent, we need to update its children indices.
 99        if let Some(old_parent) = self.stack.last().copied() {
100            let Node::Internal { left, right, .. } = &mut self.nodes[old_parent] else {
101                unreachable!();
102            };
103
104            if *left == sibling {
105                *left = new_parent;
106            } else {
107                *right = new_parent;
108            }
109        } else {
110            // If the old parent was the root, the new parent is the new root.
111            self.root = Some(new_parent);
112        }
113
114        for node_index in self.stack.drain(..).rev() {
115            let Node::Internal {
116                max_order: max_ordering,
117                ..
118            } = &mut self.nodes[node_index]
119            else {
120                unreachable!()
121            };
122            if *max_ordering >= ordering {
123                break;
124            }
125            *max_ordering = ordering;
126        }
127
128        ordering
129    }
130
131    fn find_max_ordering(&self, index: usize, bounds: &Bounds<U>, mut max_ordering: u32) -> u32 {
132        match &self.nodes[index] {
133            Node::Leaf {
134                bounds: node_bounds,
135                order: ordering,
136                ..
137            } => {
138                if bounds.intersects(node_bounds) {
139                    max_ordering = cmp::max(*ordering, max_ordering);
140                }
141            }
142            Node::Internal {
143                left,
144                right,
145                bounds: node_bounds,
146                max_order: node_max_ordering,
147                ..
148            } => {
149                if bounds.intersects(node_bounds) && max_ordering < *node_max_ordering {
150                    let left_max_ordering = self.nodes[*left].max_ordering();
151                    let right_max_ordering = self.nodes[*right].max_ordering();
152                    if left_max_ordering > right_max_ordering {
153                        max_ordering = self.find_max_ordering(*left, bounds, max_ordering);
154                        max_ordering = self.find_max_ordering(*right, bounds, max_ordering);
155                    } else {
156                        max_ordering = self.find_max_ordering(*right, bounds, max_ordering);
157                        max_ordering = self.find_max_ordering(*left, bounds, max_ordering);
158                    }
159                }
160            }
161        }
162        max_ordering
163    }
164
165    fn push_leaf(&mut self, bounds: Bounds<U>, order: u32) -> usize {
166        self.nodes.push(Node::Leaf { bounds, order });
167        self.nodes.len() - 1
168    }
169
170    fn push_internal(&mut self, left: usize, right: usize) -> usize {
171        let left_node = &self.nodes[left];
172        let right_node = &self.nodes[right];
173        let new_bounds = left_node.bounds().union(right_node.bounds());
174        let max_ordering = cmp::max(left_node.max_ordering(), right_node.max_ordering());
175        self.nodes.push(Node::Internal {
176            bounds: new_bounds,
177            left,
178            right,
179            max_order: max_ordering,
180        });
181        self.nodes.len() - 1
182    }
183}
184
185impl<U> Default for BoundsTree<U>
186where
187    U: Clone + Debug + Default + PartialEq,
188{
189    fn default() -> Self {
190        BoundsTree {
191            root: None,
192            nodes: Vec::new(),
193            stack: Vec::new(),
194        }
195    }
196}
197
198#[derive(Debug, Clone)]
199enum Node<U>
200where
201    U: Clone + Debug + Default + PartialEq,
202{
203    Leaf {
204        bounds: Bounds<U>,
205        order: u32,
206    },
207    Internal {
208        left: usize,
209        right: usize,
210        bounds: Bounds<U>,
211        max_order: u32,
212    },
213}
214
215impl<U> Node<U>
216where
217    U: Clone + Debug + Default + PartialEq,
218{
219    const fn bounds(&self) -> &Bounds<U> {
220        match self {
221            Node::Leaf { bounds, .. } => bounds,
222            Node::Internal { bounds, .. } => bounds,
223        }
224    }
225
226    const fn max_ordering(&self) -> u32 {
227        match self {
228            Node::Leaf {
229                order: ordering, ..
230            } => *ordering,
231            Node::Internal {
232                max_order: max_ordering,
233                ..
234            } => *max_ordering,
235        }
236    }
237}
238
239#[cfg(test)]
240mod tests {
241    use super::*;
242    use crate::{Bounds, Point, Size};
243    use rand::{Rng, SeedableRng};
244
245    #[test]
246    fn test_insert() {
247        let mut tree = BoundsTree::<f32>::default();
248        let bounds1 = Bounds {
249            origin: Point { x: 0.0, y: 0.0 },
250            size: Size {
251                width: 10.0,
252                height: 10.0,
253            },
254        };
255        let bounds2 = Bounds {
256            origin: Point { x: 5.0, y: 5.0 },
257            size: Size {
258                width: 10.0,
259                height: 10.0,
260            },
261        };
262        let bounds3 = Bounds {
263            origin: Point { x: 10.0, y: 10.0 },
264            size: Size {
265                width: 10.0,
266                height: 10.0,
267            },
268        };
269
270        // Insert the bounds into the tree and verify the order is correct
271        assert_eq!(tree.insert(bounds1), 1);
272        assert_eq!(tree.insert(bounds2), 2);
273        assert_eq!(tree.insert(bounds3), 3);
274
275        // Insert non-overlapping bounds and verify they can reuse orders
276        let bounds4 = Bounds {
277            origin: Point { x: 20.0, y: 20.0 },
278            size: Size {
279                width: 10.0,
280                height: 10.0,
281            },
282        };
283        let bounds5 = Bounds {
284            origin: Point { x: 40.0, y: 40.0 },
285            size: Size {
286                width: 10.0,
287                height: 10.0,
288            },
289        };
290        let bounds6 = Bounds {
291            origin: Point { x: 25.0, y: 25.0 },
292            size: Size {
293                width: 10.0,
294                height: 10.0,
295            },
296        };
297        assert_eq!(tree.insert(bounds4), 1); // bounds4 does not overlap with bounds1, bounds2, or bounds3
298        assert_eq!(tree.insert(bounds5), 1); // bounds5 does not overlap with any other bounds
299        assert_eq!(tree.insert(bounds6), 2); // bounds6 overlaps with bounds4, so it should have a different order
300    }
301
302    #[test]
303    fn test_random_iterations() {
304        let max_bounds = 100;
305        for seed in 1..=1000 {
306            // let seed = 44;
307            let mut tree = BoundsTree::default();
308            let mut rng = rand::rngs::StdRng::seed_from_u64(seed as u64);
309            let mut expected_quads: Vec<(Bounds<f32>, u32)> = Vec::new();
310
311            // Insert a random number of random AABBs into the tree.
312            let num_bounds = rng.random_range(1..=max_bounds);
313            for _ in 0..num_bounds {
314                let min_x: f32 = rng.random_range(-100.0..100.0);
315                let min_y: f32 = rng.random_range(-100.0..100.0);
316                let width: f32 = rng.random_range(0.0..50.0);
317                let height: f32 = rng.random_range(0.0..50.0);
318                let bounds = Bounds {
319                    origin: Point { x: min_x, y: min_y },
320                    size: Size { width, height },
321                };
322
323                let expected_ordering = expected_quads
324                    .iter()
325                    .filter_map(|quad| quad.0.intersects(&bounds).then_some(quad.1))
326                    .max()
327                    .unwrap_or(0)
328                    + 1;
329                expected_quads.push((bounds, expected_ordering));
330
331                // Insert the AABB into the tree and collect intersections.
332                let actual_ordering = tree.insert(bounds);
333                assert_eq!(actual_ordering, expected_ordering);
334            }
335        }
336    }
337}