1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 /// Returns true if this represents the "bubble" phase.
82 #[inline]
83 pub fn bubble(self) -> bool {
84 self == DispatchPhase::Bubble
85 }
86
87 /// Returns true if this represents the "capture" phase.
88 #[inline]
89 pub fn capture(self) -> bool {
90 self == DispatchPhase::Capture
91 }
92}
93
94struct WindowInvalidatorInner {
95 pub dirty: bool,
96 pub draw_phase: DrawPhase,
97 pub dirty_views: FxHashSet<EntityId>,
98}
99
100#[derive(Clone)]
101pub(crate) struct WindowInvalidator {
102 inner: Rc<RefCell<WindowInvalidatorInner>>,
103}
104
105impl WindowInvalidator {
106 pub fn new() -> Self {
107 WindowInvalidator {
108 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
109 dirty: true,
110 draw_phase: DrawPhase::None,
111 dirty_views: FxHashSet::default(),
112 })),
113 }
114 }
115
116 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
117 let mut inner = self.inner.borrow_mut();
118 inner.dirty_views.insert(entity);
119 if inner.draw_phase == DrawPhase::None {
120 inner.dirty = true;
121 cx.push_effect(Effect::Notify { emitter: entity });
122 true
123 } else {
124 false
125 }
126 }
127
128 pub fn is_dirty(&self) -> bool {
129 self.inner.borrow().dirty
130 }
131
132 pub fn set_dirty(&self, dirty: bool) {
133 self.inner.borrow_mut().dirty = dirty
134 }
135
136 pub fn set_phase(&self, phase: DrawPhase) {
137 self.inner.borrow_mut().draw_phase = phase
138 }
139
140 pub fn take_views(&self) -> FxHashSet<EntityId> {
141 mem::take(&mut self.inner.borrow_mut().dirty_views)
142 }
143
144 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
145 self.inner.borrow_mut().dirty_views = views;
146 }
147
148 pub fn not_drawing(&self) -> bool {
149 self.inner.borrow().draw_phase == DrawPhase::None
150 }
151
152 #[track_caller]
153 pub fn debug_assert_paint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
156 "this method can only be called during paint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_prepaint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
164 "this method can only be called during request_layout, or prepaint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_paint_or_prepaint(&self) {
170 debug_assert!(
171 matches!(
172 self.inner.borrow().draw_phase,
173 DrawPhase::Paint | DrawPhase::Prepaint
174 ),
175 "this method can only be called during request_layout, prepaint, or paint"
176 );
177 }
178}
179
180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) type AnyWindowFocusListener =
183 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
184
185pub(crate) struct WindowFocusEvent {
186 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
187 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
188}
189
190impl WindowFocusEvent {
191 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
192 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
193 }
194
195 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
196 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
197 }
198}
199
200/// This is provided when subscribing for `Context::on_focus_out` events.
201pub struct FocusOutEvent {
202 /// A weak focus handle representing what was blurred.
203 pub blurred: WeakFocusHandle,
204}
205
206slotmap::new_key_type! {
207 /// A globally unique identifier for a focusable element.
208 pub struct FocusId;
209}
210
211thread_local! {
212 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
213}
214
215/// Returned when the element arena has been used and so must be cleared before the next draw.
216#[must_use]
217pub struct ArenaClearNeeded;
218
219impl ArenaClearNeeded {
220 /// Clear the element arena.
221 pub fn clear(self) {
222 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
223 element_arena.clear();
224 });
225 }
226}
227
228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
229pub(crate) struct FocusRef {
230 pub(crate) ref_count: AtomicUsize,
231 pub(crate) tab_index: isize,
232 pub(crate) tab_stop: bool,
233}
234
235impl FocusId {
236 /// Obtains whether the element associated with this handle is currently focused.
237 pub fn is_focused(&self, window: &Window) -> bool {
238 window.focus == Some(*self)
239 }
240
241 /// Obtains whether the element associated with this handle contains the focused
242 /// element or is itself focused.
243 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
244 window
245 .focused(cx)
246 .is_some_and(|focused| self.contains(focused.id, window))
247 }
248
249 /// Obtains whether the element associated with this handle is contained within the
250 /// focused element or is itself focused.
251 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
252 let focused = window.focused(cx);
253 focused.is_some_and(|focused| focused.id.contains(*self, window))
254 }
255
256 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
257 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
258 window
259 .rendered_frame
260 .dispatch_tree
261 .focus_contains(*self, other)
262 }
263}
264
265/// A handle which can be used to track and manipulate the focused element in a window.
266pub struct FocusHandle {
267 pub(crate) id: FocusId,
268 handles: Arc<FocusMap>,
269 /// The index of this element in the tab order.
270 pub tab_index: isize,
271 /// Whether this element can be focused by tab navigation.
272 pub tab_stop: bool,
273}
274
275impl std::fmt::Debug for FocusHandle {
276 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
278 }
279}
280
281impl FocusHandle {
282 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
283 let id = handles.write().insert(FocusRef {
284 ref_count: AtomicUsize::new(1),
285 tab_index: 0,
286 tab_stop: false,
287 });
288
289 Self {
290 id,
291 tab_index: 0,
292 tab_stop: false,
293 handles: handles.clone(),
294 }
295 }
296
297 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
298 let lock = handles.read();
299 let focus = lock.get(id)?;
300 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
301 return None;
302 }
303 Some(Self {
304 id,
305 tab_index: focus.tab_index,
306 tab_stop: focus.tab_stop,
307 handles: handles.clone(),
308 })
309 }
310
311 /// Sets the tab index of the element associated with this handle.
312 pub fn tab_index(mut self, index: isize) -> Self {
313 self.tab_index = index;
314 if let Some(focus) = self.handles.write().get_mut(self.id) {
315 focus.tab_index = index;
316 }
317 self
318 }
319
320 /// Sets whether the element associated with this handle is a tab stop.
321 ///
322 /// When `false`, the element will not be included in the tab order.
323 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
324 self.tab_stop = tab_stop;
325 if let Some(focus) = self.handles.write().get_mut(self.id) {
326 focus.tab_stop = tab_stop;
327 }
328 self
329 }
330
331 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
332 pub fn downgrade(&self) -> WeakFocusHandle {
333 WeakFocusHandle {
334 id: self.id,
335 handles: Arc::downgrade(&self.handles),
336 }
337 }
338
339 /// Moves the focus to the element associated with this handle.
340 pub fn focus(&self, window: &mut Window) {
341 window.focus(self)
342 }
343
344 /// Obtains whether the element associated with this handle is currently focused.
345 pub fn is_focused(&self, window: &Window) -> bool {
346 self.id.is_focused(window)
347 }
348
349 /// Obtains whether the element associated with this handle contains the focused
350 /// element or is itself focused.
351 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
352 self.id.contains_focused(window, cx)
353 }
354
355 /// Obtains whether the element associated with this handle is contained within the
356 /// focused element or is itself focused.
357 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
358 self.id.within_focused(window, cx)
359 }
360
361 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
362 pub fn contains(&self, other: &Self, window: &Window) -> bool {
363 self.id.contains(other.id, window)
364 }
365
366 /// Dispatch an action on the element that rendered this focus handle
367 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
368 if let Some(node_id) = window
369 .rendered_frame
370 .dispatch_tree
371 .focusable_node_id(self.id)
372 {
373 window.dispatch_action_on_node(node_id, action, cx)
374 }
375 }
376}
377
378impl Clone for FocusHandle {
379 fn clone(&self) -> Self {
380 Self::for_id(self.id, &self.handles).unwrap()
381 }
382}
383
384impl PartialEq for FocusHandle {
385 fn eq(&self, other: &Self) -> bool {
386 self.id == other.id
387 }
388}
389
390impl Eq for FocusHandle {}
391
392impl Drop for FocusHandle {
393 fn drop(&mut self) {
394 self.handles
395 .read()
396 .get(self.id)
397 .unwrap()
398 .ref_count
399 .fetch_sub(1, SeqCst);
400 }
401}
402
403/// A weak reference to a focus handle.
404#[derive(Clone, Debug)]
405pub struct WeakFocusHandle {
406 pub(crate) id: FocusId,
407 pub(crate) handles: Weak<FocusMap>,
408}
409
410impl WeakFocusHandle {
411 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
412 pub fn upgrade(&self) -> Option<FocusHandle> {
413 let handles = self.handles.upgrade()?;
414 FocusHandle::for_id(self.id, &handles)
415 }
416}
417
418impl PartialEq for WeakFocusHandle {
419 fn eq(&self, other: &WeakFocusHandle) -> bool {
420 self.id == other.id
421 }
422}
423
424impl Eq for WeakFocusHandle {}
425
426impl PartialEq<FocusHandle> for WeakFocusHandle {
427 fn eq(&self, other: &FocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl PartialEq<WeakFocusHandle> for FocusHandle {
433 fn eq(&self, other: &WeakFocusHandle) -> bool {
434 self.id == other.id
435 }
436}
437
438/// Focusable allows users of your view to easily
439/// focus it (using window.focus_view(cx, view))
440pub trait Focusable: 'static {
441 /// Returns the focus handle associated with this view.
442 fn focus_handle(&self, cx: &App) -> FocusHandle;
443}
444
445impl<V: Focusable> Focusable for Entity<V> {
446 fn focus_handle(&self, cx: &App) -> FocusHandle {
447 self.read(cx).focus_handle(cx)
448 }
449}
450
451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
452/// where the lifecycle of the view is handled by another view.
453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
454
455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
456
457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
458pub struct DismissEvent;
459
460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
461
462pub(crate) type AnyMouseListener =
463 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
464
465#[derive(Clone)]
466pub(crate) struct CursorStyleRequest {
467 pub(crate) hitbox_id: Option<HitboxId>,
468 pub(crate) style: CursorStyle,
469}
470
471#[derive(Default, Eq, PartialEq)]
472pub(crate) struct HitTest {
473 pub(crate) ids: SmallVec<[HitboxId; 8]>,
474 pub(crate) hover_hitbox_count: usize,
475}
476
477/// A type of window control area that corresponds to the platform window.
478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
479pub enum WindowControlArea {
480 /// An area that allows dragging of the platform window.
481 Drag,
482 /// An area that allows closing of the platform window.
483 Close,
484 /// An area that allows maximizing of the platform window.
485 Max,
486 /// An area that allows minimizing of the platform window.
487 Min,
488}
489
490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
492pub struct HitboxId(u64);
493
494impl HitboxId {
495 /// Checks if the hitbox with this ID is currently hovered. Except when handling
496 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
497 /// events or paint hover styles.
498 ///
499 /// See [`Hitbox::is_hovered`] for details.
500 pub fn is_hovered(self, window: &Window) -> bool {
501 let hit_test = &window.mouse_hit_test;
502 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
503 if self == *id {
504 return true;
505 }
506 }
507 false
508 }
509
510 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
511 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
512 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
513 /// this distinction.
514 pub fn should_handle_scroll(self, window: &Window) -> bool {
515 window.mouse_hit_test.ids.contains(&self)
516 }
517
518 const fn next(mut self) -> HitboxId {
519 HitboxId(self.0.wrapping_add(1))
520 }
521}
522
523/// A rectangular region that potentially blocks hitboxes inserted prior.
524/// See [Window::insert_hitbox] for more details.
525#[derive(Clone, Debug, Deref)]
526pub struct Hitbox {
527 /// A unique identifier for the hitbox.
528 pub id: HitboxId,
529 /// The bounds of the hitbox.
530 #[deref]
531 pub bounds: Bounds<Pixels>,
532 /// The content mask when the hitbox was inserted.
533 pub content_mask: ContentMask<Pixels>,
534 /// Flags that specify hitbox behavior.
535 pub behavior: HitboxBehavior,
536}
537
538impl Hitbox {
539 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
540 /// typically what you want when determining whether to handle mouse events or paint hover
541 /// styles.
542 ///
543 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
544 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
545 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
546 ///
547 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
548 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
549 /// non-interactive while still allowing scrolling. More abstractly, this is because
550 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
551 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
552 /// container.
553 pub fn is_hovered(&self, window: &Window) -> bool {
554 self.id.is_hovered(window)
555 }
556
557 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
558 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
559 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
560 ///
561 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
562 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
563 pub fn should_handle_scroll(&self, window: &Window) -> bool {
564 self.id.should_handle_scroll(window)
565 }
566}
567
568/// How the hitbox affects mouse behavior.
569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
570pub enum HitboxBehavior {
571 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
572 #[default]
573 Normal,
574
575 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
576 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
577 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
578 /// [`InteractiveElement::occlude`].
579 ///
580 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
581 /// bubble-phase handler for every mouse event type:
582 ///
583 /// ```ignore
584 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
585 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
586 /// cx.stop_propagation();
587 /// }
588 /// })
589 /// ```
590 ///
591 /// This has effects beyond event handling - any use of hitbox checking, such as hover
592 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
593 /// alternative might be to not affect mouse event handling - but this would allow
594 /// inconsistent UI where clicks and moves interact with elements that are not considered to
595 /// be hovered.
596 BlockMouse,
597
598 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
599 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
600 /// interaction except scroll events to be ignored - see the documentation of
601 /// [`Hitbox::is_hovered`] for details. This flag is set by
602 /// [`InteractiveElement::block_mouse_except_scroll`].
603 ///
604 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
605 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
606 ///
607 /// ```ignore
608 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
609 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
610 /// cx.stop_propagation();
611 /// }
612 /// })
613 /// ```
614 ///
615 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
616 /// handled differently than other mouse events. If also blocking these scroll events is
617 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
618 ///
619 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
620 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
621 /// An alternative might be to not affect mouse event handling - but this would allow
622 /// inconsistent UI where clicks and moves interact with elements that are not considered to
623 /// be hovered.
624 BlockMouseExceptScroll,
625}
626
627/// An identifier for a tooltip.
628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
629pub struct TooltipId(usize);
630
631impl TooltipId {
632 /// Checks if the tooltip is currently hovered.
633 pub fn is_hovered(&self, window: &Window) -> bool {
634 window
635 .tooltip_bounds
636 .as_ref()
637 .is_some_and(|tooltip_bounds| {
638 tooltip_bounds.id == *self
639 && tooltip_bounds.bounds.contains(&window.mouse_position())
640 })
641 }
642}
643
644pub(crate) struct TooltipBounds {
645 id: TooltipId,
646 bounds: Bounds<Pixels>,
647}
648
649#[derive(Clone)]
650pub(crate) struct TooltipRequest {
651 id: TooltipId,
652 tooltip: AnyTooltip,
653}
654
655pub(crate) struct DeferredDraw {
656 current_view: EntityId,
657 priority: usize,
658 parent_node: DispatchNodeId,
659 element_id_stack: SmallVec<[ElementId; 32]>,
660 text_style_stack: Vec<TextStyleRefinement>,
661 element: Option<AnyElement>,
662 absolute_offset: Point<Pixels>,
663 prepaint_range: Range<PrepaintStateIndex>,
664 paint_range: Range<PaintIndex>,
665}
666
667pub(crate) struct Frame {
668 pub(crate) focus: Option<FocusId>,
669 pub(crate) window_active: bool,
670 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
671 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
672 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
673 pub(crate) dispatch_tree: DispatchTree,
674 pub(crate) scene: Scene,
675 pub(crate) hitboxes: Vec<Hitbox>,
676 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
677 pub(crate) deferred_draws: Vec<DeferredDraw>,
678 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
679 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
680 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
681 #[cfg(any(test, feature = "test-support"))]
682 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
683 #[cfg(any(feature = "inspector", debug_assertions))]
684 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
685 #[cfg(any(feature = "inspector", debug_assertions))]
686 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
687 pub(crate) tab_stops: TabStopMap,
688}
689
690#[derive(Clone, Default)]
691pub(crate) struct PrepaintStateIndex {
692 hitboxes_index: usize,
693 tooltips_index: usize,
694 deferred_draws_index: usize,
695 dispatch_tree_index: usize,
696 accessed_element_states_index: usize,
697 line_layout_index: LineLayoutIndex,
698}
699
700#[derive(Clone, Default)]
701pub(crate) struct PaintIndex {
702 scene_index: usize,
703 mouse_listeners_index: usize,
704 input_handlers_index: usize,
705 cursor_styles_index: usize,
706 accessed_element_states_index: usize,
707 tab_handle_index: usize,
708 line_layout_index: LineLayoutIndex,
709}
710
711impl Frame {
712 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
713 Frame {
714 focus: None,
715 window_active: false,
716 element_states: FxHashMap::default(),
717 accessed_element_states: Vec::new(),
718 mouse_listeners: Vec::new(),
719 dispatch_tree,
720 scene: Scene::default(),
721 hitboxes: Vec::new(),
722 window_control_hitboxes: Vec::new(),
723 deferred_draws: Vec::new(),
724 input_handlers: Vec::new(),
725 tooltip_requests: Vec::new(),
726 cursor_styles: Vec::new(),
727
728 #[cfg(any(test, feature = "test-support"))]
729 debug_bounds: FxHashMap::default(),
730
731 #[cfg(any(feature = "inspector", debug_assertions))]
732 next_inspector_instance_ids: FxHashMap::default(),
733
734 #[cfg(any(feature = "inspector", debug_assertions))]
735 inspector_hitboxes: FxHashMap::default(),
736 tab_stops: TabStopMap::default(),
737 }
738 }
739
740 pub(crate) fn clear(&mut self) {
741 self.element_states.clear();
742 self.accessed_element_states.clear();
743 self.mouse_listeners.clear();
744 self.dispatch_tree.clear();
745 self.scene.clear();
746 self.input_handlers.clear();
747 self.tooltip_requests.clear();
748 self.cursor_styles.clear();
749 self.hitboxes.clear();
750 self.window_control_hitboxes.clear();
751 self.deferred_draws.clear();
752 self.tab_stops.clear();
753 self.focus = None;
754
755 #[cfg(any(feature = "inspector", debug_assertions))]
756 {
757 self.next_inspector_instance_ids.clear();
758 self.inspector_hitboxes.clear();
759 }
760 }
761
762 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
763 self.cursor_styles
764 .iter()
765 .rev()
766 .fold_while(None, |style, request| match request.hitbox_id {
767 None => Done(Some(request.style)),
768 Some(hitbox_id) => Continue(
769 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
770 ),
771 })
772 .into_inner()
773 }
774
775 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
776 let mut set_hover_hitbox_count = false;
777 let mut hit_test = HitTest::default();
778 for hitbox in self.hitboxes.iter().rev() {
779 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
780 if bounds.contains(&position) {
781 hit_test.ids.push(hitbox.id);
782 if !set_hover_hitbox_count
783 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
784 {
785 hit_test.hover_hitbox_count = hit_test.ids.len();
786 set_hover_hitbox_count = true;
787 }
788 if hitbox.behavior == HitboxBehavior::BlockMouse {
789 break;
790 }
791 }
792 }
793 if !set_hover_hitbox_count {
794 hit_test.hover_hitbox_count = hit_test.ids.len();
795 }
796 hit_test
797 }
798
799 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
800 self.focus
801 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
802 .unwrap_or_default()
803 }
804
805 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
806 for element_state_key in &self.accessed_element_states {
807 if let Some((element_state_key, element_state)) =
808 prev_frame.element_states.remove_entry(element_state_key)
809 {
810 self.element_states.insert(element_state_key, element_state);
811 }
812 }
813
814 self.scene.finish();
815 }
816}
817
818/// Holds the state for a specific window.
819pub struct Window {
820 pub(crate) handle: AnyWindowHandle,
821 pub(crate) invalidator: WindowInvalidator,
822 pub(crate) removed: bool,
823 pub(crate) platform_window: Box<dyn PlatformWindow>,
824 display_id: Option<DisplayId>,
825 sprite_atlas: Arc<dyn PlatformAtlas>,
826 text_system: Arc<WindowTextSystem>,
827 rem_size: Pixels,
828 /// The stack of override values for the window's rem size.
829 ///
830 /// This is used by `with_rem_size` to allow rendering an element tree with
831 /// a given rem size.
832 rem_size_override_stack: SmallVec<[Pixels; 8]>,
833 pub(crate) viewport_size: Size<Pixels>,
834 layout_engine: Option<TaffyLayoutEngine>,
835 pub(crate) root: Option<AnyView>,
836 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
837 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
838 pub(crate) rendered_entity_stack: Vec<EntityId>,
839 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
840 pub(crate) element_opacity: f32,
841 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
842 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
843 pub(crate) image_cache_stack: Vec<AnyImageCache>,
844 pub(crate) rendered_frame: Frame,
845 pub(crate) next_frame: Frame,
846 next_hitbox_id: HitboxId,
847 pub(crate) next_tooltip_id: TooltipId,
848 pub(crate) tooltip_bounds: Option<TooltipBounds>,
849 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
850 pub(crate) dirty_views: FxHashSet<EntityId>,
851 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
852 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
853 default_prevented: bool,
854 mouse_position: Point<Pixels>,
855 mouse_hit_test: HitTest,
856 modifiers: Modifiers,
857 capslock: Capslock,
858 scale_factor: f32,
859 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
860 appearance: WindowAppearance,
861 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
862 active: Rc<Cell<bool>>,
863 hovered: Rc<Cell<bool>>,
864 pub(crate) needs_present: Rc<Cell<bool>>,
865 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
866 pub(crate) refreshing: bool,
867 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
868 pub(crate) focus: Option<FocusId>,
869 focus_enabled: bool,
870 pending_input: Option<PendingInput>,
871 pending_modifier: ModifierState,
872 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
873 prompt: Option<RenderablePromptHandle>,
874 pub(crate) client_inset: Option<Pixels>,
875 #[cfg(any(feature = "inspector", debug_assertions))]
876 inspector: Option<Entity<Inspector>>,
877}
878
879#[derive(Clone, Debug, Default)]
880struct ModifierState {
881 modifiers: Modifiers,
882 saw_keystroke: bool,
883}
884
885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
886pub(crate) enum DrawPhase {
887 None,
888 Prepaint,
889 Paint,
890 Focus,
891}
892
893#[derive(Default, Debug)]
894struct PendingInput {
895 keystrokes: SmallVec<[Keystroke; 1]>,
896 focus: Option<FocusId>,
897 timer: Option<Task<()>>,
898}
899
900pub(crate) struct ElementStateBox {
901 pub(crate) inner: Box<dyn Any>,
902 #[cfg(debug_assertions)]
903 pub(crate) type_name: &'static str,
904}
905
906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
907 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
908
909 // TODO, BUG: if you open a window with the currently active window
910 // on the stack, this will erroneously select the 'unwrap_or_else'
911 // code path
912 cx.active_window()
913 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
914 .map(|mut bounds| {
915 bounds.origin += DEFAULT_WINDOW_OFFSET;
916 bounds
917 })
918 .unwrap_or_else(|| {
919 let display = display_id
920 .map(|id| cx.find_display(id))
921 .unwrap_or_else(|| cx.primary_display());
922
923 display
924 .map(|display| display.default_bounds())
925 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
926 })
927}
928
929impl Window {
930 pub(crate) fn new(
931 handle: AnyWindowHandle,
932 options: WindowOptions,
933 cx: &mut App,
934 ) -> Result<Self> {
935 let WindowOptions {
936 window_bounds,
937 titlebar,
938 focus,
939 show,
940 kind,
941 is_movable,
942 is_resizable,
943 is_minimizable,
944 display_id,
945 window_background,
946 app_id,
947 window_min_size,
948 window_decorations,
949 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
950 tabbing_identifier,
951 } = options;
952
953 let bounds = window_bounds
954 .map(|bounds| bounds.get_bounds())
955 .unwrap_or_else(|| default_bounds(display_id, cx));
956 let mut platform_window = cx.platform.open_window(
957 handle,
958 WindowParams {
959 bounds,
960 titlebar,
961 kind,
962 is_movable,
963 is_resizable,
964 is_minimizable,
965 focus,
966 show,
967 display_id,
968 window_min_size,
969 #[cfg(target_os = "macos")]
970 tabbing_identifier,
971 },
972 )?;
973
974 let tab_bar_visible = platform_window.tab_bar_visible();
975 SystemWindowTabController::init_visible(cx, tab_bar_visible);
976 if let Some(tabs) = platform_window.tabbed_windows() {
977 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
978 }
979
980 let display_id = platform_window.display().map(|display| display.id());
981 let sprite_atlas = platform_window.sprite_atlas();
982 let mouse_position = platform_window.mouse_position();
983 let modifiers = platform_window.modifiers();
984 let capslock = platform_window.capslock();
985 let content_size = platform_window.content_size();
986 let scale_factor = platform_window.scale_factor();
987 let appearance = platform_window.appearance();
988 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
989 let invalidator = WindowInvalidator::new();
990 let active = Rc::new(Cell::new(platform_window.is_active()));
991 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
992 let needs_present = Rc::new(Cell::new(false));
993 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
994 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
995
996 platform_window
997 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
998 platform_window.set_background_appearance(window_background);
999
1000 if let Some(ref window_open_state) = window_bounds {
1001 match window_open_state {
1002 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1003 WindowBounds::Maximized(_) => platform_window.zoom(),
1004 WindowBounds::Windowed(_) => {}
1005 }
1006 }
1007
1008 platform_window.on_close(Box::new({
1009 let window_id = handle.window_id();
1010 let mut cx = cx.to_async();
1011 move || {
1012 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1013 let _ = cx.update(|cx| {
1014 SystemWindowTabController::remove_tab(cx, window_id);
1015 });
1016 }
1017 }));
1018 platform_window.on_request_frame(Box::new({
1019 let mut cx = cx.to_async();
1020 let invalidator = invalidator.clone();
1021 let active = active.clone();
1022 let needs_present = needs_present.clone();
1023 let next_frame_callbacks = next_frame_callbacks.clone();
1024 let last_input_timestamp = last_input_timestamp.clone();
1025 move |request_frame_options| {
1026 let next_frame_callbacks = next_frame_callbacks.take();
1027 if !next_frame_callbacks.is_empty() {
1028 handle
1029 .update(&mut cx, |_, window, cx| {
1030 for callback in next_frame_callbacks {
1031 callback(window, cx);
1032 }
1033 })
1034 .log_err();
1035 }
1036
1037 // Keep presenting the current scene for 1 extra second since the
1038 // last input to prevent the display from underclocking the refresh rate.
1039 let needs_present = request_frame_options.require_presentation
1040 || needs_present.get()
1041 || (active.get()
1042 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1043
1044 if invalidator.is_dirty() || request_frame_options.force_render {
1045 measure("frame duration", || {
1046 handle
1047 .update(&mut cx, |_, window, cx| {
1048 let arena_clear_needed = window.draw(cx);
1049 window.present();
1050 // drop the arena elements after present to reduce latency
1051 arena_clear_needed.clear();
1052 })
1053 .log_err();
1054 })
1055 } else if needs_present {
1056 handle
1057 .update(&mut cx, |_, window, _| window.present())
1058 .log_err();
1059 }
1060
1061 handle
1062 .update(&mut cx, |_, window, _| {
1063 window.complete_frame();
1064 })
1065 .log_err();
1066 }
1067 }));
1068 platform_window.on_resize(Box::new({
1069 let mut cx = cx.to_async();
1070 move |_, _| {
1071 handle
1072 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1073 .log_err();
1074 }
1075 }));
1076 platform_window.on_moved(Box::new({
1077 let mut cx = cx.to_async();
1078 move || {
1079 handle
1080 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081 .log_err();
1082 }
1083 }));
1084 platform_window.on_appearance_changed(Box::new({
1085 let mut cx = cx.to_async();
1086 move || {
1087 handle
1088 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1089 .log_err();
1090 }
1091 }));
1092 platform_window.on_active_status_change(Box::new({
1093 let mut cx = cx.to_async();
1094 move |active| {
1095 handle
1096 .update(&mut cx, |_, window, cx| {
1097 window.active.set(active);
1098 window.modifiers = window.platform_window.modifiers();
1099 window.capslock = window.platform_window.capslock();
1100 window
1101 .activation_observers
1102 .clone()
1103 .retain(&(), |callback| callback(window, cx));
1104
1105 window.bounds_changed(cx);
1106 window.refresh();
1107
1108 SystemWindowTabController::update_last_active(cx, window.handle.id);
1109 })
1110 .log_err();
1111 }
1112 }));
1113 platform_window.on_hover_status_change(Box::new({
1114 let mut cx = cx.to_async();
1115 move |active| {
1116 handle
1117 .update(&mut cx, |_, window, _| {
1118 window.hovered.set(active);
1119 window.refresh();
1120 })
1121 .log_err();
1122 }
1123 }));
1124 platform_window.on_input({
1125 let mut cx = cx.to_async();
1126 Box::new(move |event| {
1127 handle
1128 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1129 .log_err()
1130 .unwrap_or(DispatchEventResult::default())
1131 })
1132 });
1133 platform_window.on_hit_test_window_control({
1134 let mut cx = cx.to_async();
1135 Box::new(move || {
1136 handle
1137 .update(&mut cx, |_, window, _cx| {
1138 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1139 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1140 return Some(*area);
1141 }
1142 }
1143 None
1144 })
1145 .log_err()
1146 .unwrap_or(None)
1147 })
1148 });
1149 platform_window.on_move_tab_to_new_window({
1150 let mut cx = cx.to_async();
1151 Box::new(move || {
1152 handle
1153 .update(&mut cx, |_, _window, cx| {
1154 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1155 })
1156 .log_err();
1157 })
1158 });
1159 platform_window.on_merge_all_windows({
1160 let mut cx = cx.to_async();
1161 Box::new(move || {
1162 handle
1163 .update(&mut cx, |_, _window, cx| {
1164 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1165 })
1166 .log_err();
1167 })
1168 });
1169 platform_window.on_select_next_tab({
1170 let mut cx = cx.to_async();
1171 Box::new(move || {
1172 handle
1173 .update(&mut cx, |_, _window, cx| {
1174 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1175 })
1176 .log_err();
1177 })
1178 });
1179 platform_window.on_select_previous_tab({
1180 let mut cx = cx.to_async();
1181 Box::new(move || {
1182 handle
1183 .update(&mut cx, |_, _window, cx| {
1184 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1185 })
1186 .log_err();
1187 })
1188 });
1189 platform_window.on_toggle_tab_bar({
1190 let mut cx = cx.to_async();
1191 Box::new(move || {
1192 handle
1193 .update(&mut cx, |_, window, cx| {
1194 let tab_bar_visible = window.platform_window.tab_bar_visible();
1195 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1196 })
1197 .log_err();
1198 })
1199 });
1200
1201 if let Some(app_id) = app_id {
1202 platform_window.set_app_id(&app_id);
1203 }
1204
1205 platform_window.map_window().unwrap();
1206
1207 Ok(Window {
1208 handle,
1209 invalidator,
1210 removed: false,
1211 platform_window,
1212 display_id,
1213 sprite_atlas,
1214 text_system,
1215 rem_size: px(16.),
1216 rem_size_override_stack: SmallVec::new(),
1217 viewport_size: content_size,
1218 layout_engine: Some(TaffyLayoutEngine::new()),
1219 root: None,
1220 element_id_stack: SmallVec::default(),
1221 text_style_stack: Vec::new(),
1222 rendered_entity_stack: Vec::new(),
1223 element_offset_stack: Vec::new(),
1224 content_mask_stack: Vec::new(),
1225 element_opacity: 1.0,
1226 requested_autoscroll: None,
1227 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1228 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1229 next_frame_callbacks,
1230 next_hitbox_id: HitboxId(0),
1231 next_tooltip_id: TooltipId::default(),
1232 tooltip_bounds: None,
1233 dirty_views: FxHashSet::default(),
1234 focus_listeners: SubscriberSet::new(),
1235 focus_lost_listeners: SubscriberSet::new(),
1236 default_prevented: true,
1237 mouse_position,
1238 mouse_hit_test: HitTest::default(),
1239 modifiers,
1240 capslock,
1241 scale_factor,
1242 bounds_observers: SubscriberSet::new(),
1243 appearance,
1244 appearance_observers: SubscriberSet::new(),
1245 active,
1246 hovered,
1247 needs_present,
1248 last_input_timestamp,
1249 refreshing: false,
1250 activation_observers: SubscriberSet::new(),
1251 focus: None,
1252 focus_enabled: true,
1253 pending_input: None,
1254 pending_modifier: ModifierState::default(),
1255 pending_input_observers: SubscriberSet::new(),
1256 prompt: None,
1257 client_inset: None,
1258 image_cache_stack: Vec::new(),
1259 #[cfg(any(feature = "inspector", debug_assertions))]
1260 inspector: None,
1261 })
1262 }
1263
1264 pub(crate) fn new_focus_listener(
1265 &self,
1266 value: AnyWindowFocusListener,
1267 ) -> (Subscription, impl FnOnce() + use<>) {
1268 self.focus_listeners.insert((), value)
1269 }
1270}
1271
1272#[derive(Clone, Debug, Default, PartialEq, Eq)]
1273pub(crate) struct DispatchEventResult {
1274 pub propagate: bool,
1275 pub default_prevented: bool,
1276}
1277
1278/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1279/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1280/// to leave room to support more complex shapes in the future.
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282#[repr(C)]
1283pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1284 /// The bounds
1285 pub bounds: Bounds<P>,
1286}
1287
1288impl ContentMask<Pixels> {
1289 /// Scale the content mask's pixel units by the given scaling factor.
1290 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1291 ContentMask {
1292 bounds: self.bounds.scale(factor),
1293 }
1294 }
1295
1296 /// Intersect the content mask with the given content mask.
1297 pub fn intersect(&self, other: &Self) -> Self {
1298 let bounds = self.bounds.intersect(&other.bounds);
1299 ContentMask { bounds }
1300 }
1301}
1302
1303impl Window {
1304 fn mark_view_dirty(&mut self, view_id: EntityId) {
1305 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1306 // should already be dirty.
1307 for view_id in self
1308 .rendered_frame
1309 .dispatch_tree
1310 .view_path(view_id)
1311 .into_iter()
1312 .rev()
1313 {
1314 if !self.dirty_views.insert(view_id) {
1315 break;
1316 }
1317 }
1318 }
1319
1320 /// Registers a callback to be invoked when the window appearance changes.
1321 pub fn observe_window_appearance(
1322 &self,
1323 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1324 ) -> Subscription {
1325 let (subscription, activate) = self.appearance_observers.insert(
1326 (),
1327 Box::new(move |window, cx| {
1328 callback(window, cx);
1329 true
1330 }),
1331 );
1332 activate();
1333 subscription
1334 }
1335
1336 /// Replaces the root entity of the window with a new one.
1337 pub fn replace_root<E>(
1338 &mut self,
1339 cx: &mut App,
1340 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1341 ) -> Entity<E>
1342 where
1343 E: 'static + Render,
1344 {
1345 let view = cx.new(|cx| build_view(self, cx));
1346 self.root = Some(view.clone().into());
1347 self.refresh();
1348 view
1349 }
1350
1351 /// Returns the root entity of the window, if it has one.
1352 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1353 where
1354 E: 'static + Render,
1355 {
1356 self.root
1357 .as_ref()
1358 .map(|view| view.clone().downcast::<E>().ok())
1359 }
1360
1361 /// Obtain a handle to the window that belongs to this context.
1362 pub const fn window_handle(&self) -> AnyWindowHandle {
1363 self.handle
1364 }
1365
1366 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1367 pub fn refresh(&mut self) {
1368 if self.invalidator.not_drawing() {
1369 self.refreshing = true;
1370 self.invalidator.set_dirty(true);
1371 }
1372 }
1373
1374 /// Close this window.
1375 pub const fn remove_window(&mut self) {
1376 self.removed = true;
1377 }
1378
1379 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1380 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1381 self.focus
1382 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1383 }
1384
1385 /// Move focus to the element associated with the given [`FocusHandle`].
1386 pub fn focus(&mut self, handle: &FocusHandle) {
1387 if !self.focus_enabled || self.focus == Some(handle.id) {
1388 return;
1389 }
1390
1391 self.focus = Some(handle.id);
1392 self.clear_pending_keystrokes();
1393 self.refresh();
1394 }
1395
1396 /// Remove focus from all elements within this context's window.
1397 pub fn blur(&mut self) {
1398 if !self.focus_enabled {
1399 return;
1400 }
1401
1402 self.focus = None;
1403 self.refresh();
1404 }
1405
1406 /// Blur the window and don't allow anything in it to be focused again.
1407 pub fn disable_focus(&mut self) {
1408 self.blur();
1409 self.focus_enabled = false;
1410 }
1411
1412 /// Move focus to next tab stop.
1413 pub fn focus_next(&mut self) {
1414 if !self.focus_enabled {
1415 return;
1416 }
1417
1418 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1419 self.focus(&handle)
1420 }
1421 }
1422
1423 /// Move focus to previous tab stop.
1424 pub fn focus_prev(&mut self) {
1425 if !self.focus_enabled {
1426 return;
1427 }
1428
1429 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1430 self.focus(&handle)
1431 }
1432 }
1433
1434 /// Accessor for the text system.
1435 pub const fn text_system(&self) -> &Arc<WindowTextSystem> {
1436 &self.text_system
1437 }
1438
1439 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1440 pub fn text_style(&self) -> TextStyle {
1441 let mut style = TextStyle::default();
1442 for refinement in &self.text_style_stack {
1443 style.refine(refinement);
1444 }
1445 style
1446 }
1447
1448 /// Check if the platform window is maximized
1449 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1450 pub fn is_maximized(&self) -> bool {
1451 self.platform_window.is_maximized()
1452 }
1453
1454 /// request a certain window decoration (Wayland)
1455 pub fn request_decorations(&self, decorations: WindowDecorations) {
1456 self.platform_window.request_decorations(decorations);
1457 }
1458
1459 /// Start a window resize operation (Wayland)
1460 pub fn start_window_resize(&self, edge: ResizeEdge) {
1461 self.platform_window.start_window_resize(edge);
1462 }
1463
1464 /// Return the `WindowBounds` to indicate that how a window should be opened
1465 /// after it has been closed
1466 pub fn window_bounds(&self) -> WindowBounds {
1467 self.platform_window.window_bounds()
1468 }
1469
1470 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1471 pub fn inner_window_bounds(&self) -> WindowBounds {
1472 self.platform_window.inner_window_bounds()
1473 }
1474
1475 /// Dispatch the given action on the currently focused element.
1476 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1477 let focus_id = self.focused(cx).map(|handle| handle.id);
1478
1479 let window = self.handle;
1480 cx.defer(move |cx| {
1481 window
1482 .update(cx, |_, window, cx| {
1483 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1484 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1485 })
1486 .log_err();
1487 })
1488 }
1489
1490 pub(crate) fn dispatch_keystroke_observers(
1491 &mut self,
1492 event: &dyn Any,
1493 action: Option<Box<dyn Action>>,
1494 context_stack: Vec<KeyContext>,
1495 cx: &mut App,
1496 ) {
1497 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1498 return;
1499 };
1500
1501 cx.keystroke_observers.clone().retain(&(), move |callback| {
1502 (callback)(
1503 &KeystrokeEvent {
1504 keystroke: key_down_event.keystroke.clone(),
1505 action: action.as_ref().map(|action| action.boxed_clone()),
1506 context_stack: context_stack.clone(),
1507 },
1508 self,
1509 cx,
1510 )
1511 });
1512 }
1513
1514 pub(crate) fn dispatch_keystroke_interceptors(
1515 &mut self,
1516 event: &dyn Any,
1517 context_stack: Vec<KeyContext>,
1518 cx: &mut App,
1519 ) {
1520 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1521 return;
1522 };
1523
1524 cx.keystroke_interceptors
1525 .clone()
1526 .retain(&(), move |callback| {
1527 (callback)(
1528 &KeystrokeEvent {
1529 keystroke: key_down_event.keystroke.clone(),
1530 action: None,
1531 context_stack: context_stack.clone(),
1532 },
1533 self,
1534 cx,
1535 )
1536 });
1537 }
1538
1539 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1540 /// that are currently on the stack to be returned to the app.
1541 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1542 let handle = self.handle;
1543 cx.defer(move |cx| {
1544 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1545 });
1546 }
1547
1548 /// Subscribe to events emitted by a entity.
1549 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1550 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1551 pub fn observe<T: 'static>(
1552 &mut self,
1553 observed: &Entity<T>,
1554 cx: &mut App,
1555 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1556 ) -> Subscription {
1557 let entity_id = observed.entity_id();
1558 let observed = observed.downgrade();
1559 let window_handle = self.handle;
1560 cx.new_observer(
1561 entity_id,
1562 Box::new(move |cx| {
1563 window_handle
1564 .update(cx, |_, window, cx| {
1565 if let Some(handle) = observed.upgrade() {
1566 on_notify(handle, window, cx);
1567 true
1568 } else {
1569 false
1570 }
1571 })
1572 .unwrap_or(false)
1573 }),
1574 )
1575 }
1576
1577 /// Subscribe to events emitted by a entity.
1578 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1579 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1580 pub fn subscribe<Emitter, Evt>(
1581 &mut self,
1582 entity: &Entity<Emitter>,
1583 cx: &mut App,
1584 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1585 ) -> Subscription
1586 where
1587 Emitter: EventEmitter<Evt>,
1588 Evt: 'static,
1589 {
1590 let entity_id = entity.entity_id();
1591 let handle = entity.downgrade();
1592 let window_handle = self.handle;
1593 cx.new_subscription(
1594 entity_id,
1595 (
1596 TypeId::of::<Evt>(),
1597 Box::new(move |event, cx| {
1598 window_handle
1599 .update(cx, |_, window, cx| {
1600 if let Some(entity) = handle.upgrade() {
1601 let event = event.downcast_ref().expect("invalid event type");
1602 on_event(entity, event, window, cx);
1603 true
1604 } else {
1605 false
1606 }
1607 })
1608 .unwrap_or(false)
1609 }),
1610 ),
1611 )
1612 }
1613
1614 /// Register a callback to be invoked when the given `Entity` is released.
1615 pub fn observe_release<T>(
1616 &self,
1617 entity: &Entity<T>,
1618 cx: &mut App,
1619 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1620 ) -> Subscription
1621 where
1622 T: 'static,
1623 {
1624 let entity_id = entity.entity_id();
1625 let window_handle = self.handle;
1626 let (subscription, activate) = cx.release_listeners.insert(
1627 entity_id,
1628 Box::new(move |entity, cx| {
1629 let entity = entity.downcast_mut().expect("invalid entity type");
1630 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1631 }),
1632 );
1633 activate();
1634 subscription
1635 }
1636
1637 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1638 /// await points in async code.
1639 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1640 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1641 }
1642
1643 /// Schedule the given closure to be run directly after the current frame is rendered.
1644 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1645 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1646 }
1647
1648 /// Schedule a frame to be drawn on the next animation frame.
1649 ///
1650 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1651 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1652 ///
1653 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1654 pub fn request_animation_frame(&self) {
1655 let entity = self.current_view();
1656 self.on_next_frame(move |_, cx| cx.notify(entity));
1657 }
1658
1659 /// Spawn the future returned by the given closure on the application thread pool.
1660 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1661 /// use within your future.
1662 #[track_caller]
1663 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1664 where
1665 R: 'static,
1666 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1667 {
1668 let handle = self.handle;
1669 cx.spawn(async move |app| {
1670 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1671 f(&mut async_window_cx).await
1672 })
1673 }
1674
1675 fn bounds_changed(&mut self, cx: &mut App) {
1676 self.scale_factor = self.platform_window.scale_factor();
1677 self.viewport_size = self.platform_window.content_size();
1678 self.display_id = self.platform_window.display().map(|display| display.id());
1679
1680 self.refresh();
1681
1682 self.bounds_observers
1683 .clone()
1684 .retain(&(), |callback| callback(self, cx));
1685 }
1686
1687 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1688 pub fn bounds(&self) -> Bounds<Pixels> {
1689 self.platform_window.bounds()
1690 }
1691
1692 /// Set the content size of the window.
1693 pub fn resize(&mut self, size: Size<Pixels>) {
1694 self.platform_window.resize(size);
1695 }
1696
1697 /// Returns whether or not the window is currently fullscreen
1698 pub fn is_fullscreen(&self) -> bool {
1699 self.platform_window.is_fullscreen()
1700 }
1701
1702 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1703 self.appearance = self.platform_window.appearance();
1704
1705 self.appearance_observers
1706 .clone()
1707 .retain(&(), |callback| callback(self, cx));
1708 }
1709
1710 /// Returns the appearance of the current window.
1711 pub const fn appearance(&self) -> WindowAppearance {
1712 self.appearance
1713 }
1714
1715 /// Returns the size of the drawable area within the window.
1716 pub const fn viewport_size(&self) -> Size<Pixels> {
1717 self.viewport_size
1718 }
1719
1720 /// Returns whether this window is focused by the operating system (receiving key events).
1721 pub fn is_window_active(&self) -> bool {
1722 self.active.get()
1723 }
1724
1725 /// Returns whether this window is considered to be the window
1726 /// that currently owns the mouse cursor.
1727 /// On mac, this is equivalent to `is_window_active`.
1728 pub fn is_window_hovered(&self) -> bool {
1729 if cfg!(any(
1730 target_os = "windows",
1731 target_os = "linux",
1732 target_os = "freebsd"
1733 )) {
1734 self.hovered.get()
1735 } else {
1736 self.is_window_active()
1737 }
1738 }
1739
1740 /// Toggle zoom on the window.
1741 pub fn zoom_window(&self) {
1742 self.platform_window.zoom();
1743 }
1744
1745 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1746 pub fn show_window_menu(&self, position: Point<Pixels>) {
1747 self.platform_window.show_window_menu(position)
1748 }
1749
1750 /// Tells the compositor to take control of window movement (Wayland and X11)
1751 ///
1752 /// Events may not be received during a move operation.
1753 pub fn start_window_move(&self) {
1754 self.platform_window.start_window_move()
1755 }
1756
1757 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1758 pub fn set_client_inset(&mut self, inset: Pixels) {
1759 self.client_inset = Some(inset);
1760 self.platform_window.set_client_inset(inset);
1761 }
1762
1763 /// Returns the client_inset value by [`Self::set_client_inset`].
1764 pub const fn client_inset(&self) -> Option<Pixels> {
1765 self.client_inset
1766 }
1767
1768 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1769 pub fn window_decorations(&self) -> Decorations {
1770 self.platform_window.window_decorations()
1771 }
1772
1773 /// Returns which window controls are currently visible (Wayland)
1774 pub fn window_controls(&self) -> WindowControls {
1775 self.platform_window.window_controls()
1776 }
1777
1778 /// Updates the window's title at the platform level.
1779 pub fn set_window_title(&mut self, title: &str) {
1780 self.platform_window.set_title(title);
1781 }
1782
1783 /// Sets the application identifier.
1784 pub fn set_app_id(&mut self, app_id: &str) {
1785 self.platform_window.set_app_id(app_id);
1786 }
1787
1788 /// Sets the window background appearance.
1789 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1790 self.platform_window
1791 .set_background_appearance(background_appearance);
1792 }
1793
1794 /// Mark the window as dirty at the platform level.
1795 pub fn set_window_edited(&mut self, edited: bool) {
1796 self.platform_window.set_edited(edited);
1797 }
1798
1799 /// Determine the display on which the window is visible.
1800 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1801 cx.platform
1802 .displays()
1803 .into_iter()
1804 .find(|display| Some(display.id()) == self.display_id)
1805 }
1806
1807 /// Show the platform character palette.
1808 pub fn show_character_palette(&self) {
1809 self.platform_window.show_character_palette();
1810 }
1811
1812 /// The scale factor of the display associated with the window. For example, it could
1813 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1814 /// be rendered as two pixels on screen.
1815 pub const fn scale_factor(&self) -> f32 {
1816 self.scale_factor
1817 }
1818
1819 /// The size of an em for the base font of the application. Adjusting this value allows the
1820 /// UI to scale, just like zooming a web page.
1821 pub fn rem_size(&self) -> Pixels {
1822 self.rem_size_override_stack
1823 .last()
1824 .copied()
1825 .unwrap_or(self.rem_size)
1826 }
1827
1828 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1829 /// UI to scale, just like zooming a web page.
1830 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1831 self.rem_size = rem_size.into();
1832 }
1833
1834 /// Acquire a globally unique identifier for the given ElementId.
1835 /// Only valid for the duration of the provided closure.
1836 pub fn with_global_id<R>(
1837 &mut self,
1838 element_id: ElementId,
1839 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1840 ) -> R {
1841 self.element_id_stack.push(element_id);
1842 let global_id = GlobalElementId(self.element_id_stack.clone());
1843 let result = f(&global_id, self);
1844 self.element_id_stack.pop();
1845 result
1846 }
1847
1848 /// Executes the provided function with the specified rem size.
1849 ///
1850 /// This method must only be called as part of element drawing.
1851 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1852 where
1853 F: FnOnce(&mut Self) -> R,
1854 {
1855 self.invalidator.debug_assert_paint_or_prepaint();
1856
1857 if let Some(rem_size) = rem_size {
1858 self.rem_size_override_stack.push(rem_size.into());
1859 let result = f(self);
1860 self.rem_size_override_stack.pop();
1861 result
1862 } else {
1863 f(self)
1864 }
1865 }
1866
1867 /// The line height associated with the current text style.
1868 pub fn line_height(&self) -> Pixels {
1869 self.text_style().line_height_in_pixels(self.rem_size())
1870 }
1871
1872 /// Call to prevent the default action of an event. Currently only used to prevent
1873 /// parent elements from becoming focused on mouse down.
1874 pub const fn prevent_default(&mut self) {
1875 self.default_prevented = true;
1876 }
1877
1878 /// Obtain whether default has been prevented for the event currently being dispatched.
1879 pub const fn default_prevented(&self) -> bool {
1880 self.default_prevented
1881 }
1882
1883 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1884 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1885 let node_id =
1886 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1887 self.rendered_frame
1888 .dispatch_tree
1889 .is_action_available(action, node_id)
1890 }
1891
1892 /// The position of the mouse relative to the window.
1893 pub const fn mouse_position(&self) -> Point<Pixels> {
1894 self.mouse_position
1895 }
1896
1897 /// The current state of the keyboard's modifiers
1898 pub const fn modifiers(&self) -> Modifiers {
1899 self.modifiers
1900 }
1901
1902 /// The current state of the keyboard's capslock
1903 pub const fn capslock(&self) -> Capslock {
1904 self.capslock
1905 }
1906
1907 fn complete_frame(&self) {
1908 self.platform_window.completed_frame();
1909 }
1910
1911 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1912 /// the contents of the new [`Scene`], use [`Self::present`].
1913 #[profiling::function]
1914 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1915 self.invalidate_entities();
1916 cx.entities.clear_accessed();
1917 debug_assert!(self.rendered_entity_stack.is_empty());
1918 self.invalidator.set_dirty(false);
1919 self.requested_autoscroll = None;
1920
1921 // Restore the previously-used input handler.
1922 if let Some(input_handler) = self.platform_window.take_input_handler() {
1923 self.rendered_frame.input_handlers.push(Some(input_handler));
1924 }
1925 self.draw_roots(cx);
1926 self.dirty_views.clear();
1927 self.next_frame.window_active = self.active.get();
1928
1929 // Register requested input handler with the platform window.
1930 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1931 self.platform_window
1932 .set_input_handler(input_handler.unwrap());
1933 }
1934
1935 self.layout_engine.as_mut().unwrap().clear();
1936 self.text_system().finish_frame();
1937 self.next_frame.finish(&mut self.rendered_frame);
1938
1939 self.invalidator.set_phase(DrawPhase::Focus);
1940 let previous_focus_path = self.rendered_frame.focus_path();
1941 let previous_window_active = self.rendered_frame.window_active;
1942 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1943 self.next_frame.clear();
1944 let current_focus_path = self.rendered_frame.focus_path();
1945 let current_window_active = self.rendered_frame.window_active;
1946
1947 if previous_focus_path != current_focus_path
1948 || previous_window_active != current_window_active
1949 {
1950 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1951 self.focus_lost_listeners
1952 .clone()
1953 .retain(&(), |listener| listener(self, cx));
1954 }
1955
1956 let event = WindowFocusEvent {
1957 previous_focus_path: if previous_window_active {
1958 previous_focus_path
1959 } else {
1960 Default::default()
1961 },
1962 current_focus_path: if current_window_active {
1963 current_focus_path
1964 } else {
1965 Default::default()
1966 },
1967 };
1968 self.focus_listeners
1969 .clone()
1970 .retain(&(), |listener| listener(&event, self, cx));
1971 }
1972
1973 debug_assert!(self.rendered_entity_stack.is_empty());
1974 self.record_entities_accessed(cx);
1975 self.reset_cursor_style(cx);
1976 self.refreshing = false;
1977 self.invalidator.set_phase(DrawPhase::None);
1978 self.needs_present.set(true);
1979
1980 ArenaClearNeeded
1981 }
1982
1983 fn record_entities_accessed(&mut self, cx: &mut App) {
1984 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1985 let mut entities = mem::take(entities_ref.deref_mut());
1986 drop(entities_ref);
1987 let handle = self.handle;
1988 cx.record_entities_accessed(
1989 handle,
1990 // Try moving window invalidator into the Window
1991 self.invalidator.clone(),
1992 &entities,
1993 );
1994 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1995 mem::swap(&mut entities, entities_ref.deref_mut());
1996 }
1997
1998 fn invalidate_entities(&mut self) {
1999 let mut views = self.invalidator.take_views();
2000 for entity in views.drain() {
2001 self.mark_view_dirty(entity);
2002 }
2003 self.invalidator.replace_views(views);
2004 }
2005
2006 #[profiling::function]
2007 fn present(&self) {
2008 self.platform_window.draw(&self.rendered_frame.scene);
2009 self.needs_present.set(false);
2010 profiling::finish_frame!();
2011 }
2012
2013 fn draw_roots(&mut self, cx: &mut App) {
2014 self.invalidator.set_phase(DrawPhase::Prepaint);
2015 self.tooltip_bounds.take();
2016
2017 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2018 let root_size = {
2019 #[cfg(any(feature = "inspector", debug_assertions))]
2020 {
2021 if self.inspector.is_some() {
2022 let mut size = self.viewport_size;
2023 size.width = (size.width - _inspector_width).max(px(0.0));
2024 size
2025 } else {
2026 self.viewport_size
2027 }
2028 }
2029 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2030 {
2031 self.viewport_size
2032 }
2033 };
2034
2035 // Layout all root elements.
2036 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2037 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2038
2039 #[cfg(any(feature = "inspector", debug_assertions))]
2040 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2041
2042 let mut sorted_deferred_draws =
2043 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2044 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2045 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2046
2047 let mut prompt_element = None;
2048 let mut active_drag_element = None;
2049 let mut tooltip_element = None;
2050 if let Some(prompt) = self.prompt.take() {
2051 let mut element = prompt.view.any_view().into_any();
2052 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2053 prompt_element = Some(element);
2054 self.prompt = Some(prompt);
2055 } else if let Some(active_drag) = cx.active_drag.take() {
2056 let mut element = active_drag.view.clone().into_any();
2057 let offset = self.mouse_position() - active_drag.cursor_offset;
2058 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2059 active_drag_element = Some(element);
2060 cx.active_drag = Some(active_drag);
2061 } else {
2062 tooltip_element = self.prepaint_tooltip(cx);
2063 }
2064
2065 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2066
2067 // Now actually paint the elements.
2068 self.invalidator.set_phase(DrawPhase::Paint);
2069 root_element.paint(self, cx);
2070
2071 #[cfg(any(feature = "inspector", debug_assertions))]
2072 self.paint_inspector(inspector_element, cx);
2073
2074 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2075
2076 if let Some(mut prompt_element) = prompt_element {
2077 prompt_element.paint(self, cx);
2078 } else if let Some(mut drag_element) = active_drag_element {
2079 drag_element.paint(self, cx);
2080 } else if let Some(mut tooltip_element) = tooltip_element {
2081 tooltip_element.paint(self, cx);
2082 }
2083
2084 #[cfg(any(feature = "inspector", debug_assertions))]
2085 self.paint_inspector_hitbox(cx);
2086 }
2087
2088 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2089 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2090 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2091 let Some(Some(tooltip_request)) = self
2092 .next_frame
2093 .tooltip_requests
2094 .get(tooltip_request_index)
2095 .cloned()
2096 else {
2097 log::error!("Unexpectedly absent TooltipRequest");
2098 continue;
2099 };
2100 let mut element = tooltip_request.tooltip.view.clone().into_any();
2101 let mouse_position = tooltip_request.tooltip.mouse_position;
2102 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2103
2104 let mut tooltip_bounds =
2105 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2106 let window_bounds = Bounds {
2107 origin: Point::default(),
2108 size: self.viewport_size(),
2109 };
2110
2111 if tooltip_bounds.right() > window_bounds.right() {
2112 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2113 if new_x >= Pixels::ZERO {
2114 tooltip_bounds.origin.x = new_x;
2115 } else {
2116 tooltip_bounds.origin.x = cmp::max(
2117 Pixels::ZERO,
2118 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2119 );
2120 }
2121 }
2122
2123 if tooltip_bounds.bottom() > window_bounds.bottom() {
2124 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2125 if new_y >= Pixels::ZERO {
2126 tooltip_bounds.origin.y = new_y;
2127 } else {
2128 tooltip_bounds.origin.y = cmp::max(
2129 Pixels::ZERO,
2130 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2131 );
2132 }
2133 }
2134
2135 // It's possible for an element to have an active tooltip while not being painted (e.g.
2136 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2137 // case, instead update the tooltip's visibility here.
2138 let is_visible =
2139 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2140 if !is_visible {
2141 continue;
2142 }
2143
2144 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2145 element.prepaint(window, cx)
2146 });
2147
2148 self.tooltip_bounds = Some(TooltipBounds {
2149 id: tooltip_request.id,
2150 bounds: tooltip_bounds,
2151 });
2152 return Some(element);
2153 }
2154 None
2155 }
2156
2157 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2158 assert_eq!(self.element_id_stack.len(), 0);
2159
2160 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2161 for deferred_draw_ix in deferred_draw_indices {
2162 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2163 self.element_id_stack
2164 .clone_from(&deferred_draw.element_id_stack);
2165 self.text_style_stack
2166 .clone_from(&deferred_draw.text_style_stack);
2167 self.next_frame
2168 .dispatch_tree
2169 .set_active_node(deferred_draw.parent_node);
2170
2171 let prepaint_start = self.prepaint_index();
2172 if let Some(element) = deferred_draw.element.as_mut() {
2173 self.with_rendered_view(deferred_draw.current_view, |window| {
2174 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2175 element.prepaint(window, cx)
2176 });
2177 })
2178 } else {
2179 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2180 }
2181 let prepaint_end = self.prepaint_index();
2182 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2183 }
2184 assert_eq!(
2185 self.next_frame.deferred_draws.len(),
2186 0,
2187 "cannot call defer_draw during deferred drawing"
2188 );
2189 self.next_frame.deferred_draws = deferred_draws;
2190 self.element_id_stack.clear();
2191 self.text_style_stack.clear();
2192 }
2193
2194 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2195 assert_eq!(self.element_id_stack.len(), 0);
2196
2197 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2198 for deferred_draw_ix in deferred_draw_indices {
2199 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2200 self.element_id_stack
2201 .clone_from(&deferred_draw.element_id_stack);
2202 self.next_frame
2203 .dispatch_tree
2204 .set_active_node(deferred_draw.parent_node);
2205
2206 let paint_start = self.paint_index();
2207 if let Some(element) = deferred_draw.element.as_mut() {
2208 self.with_rendered_view(deferred_draw.current_view, |window| {
2209 element.paint(window, cx);
2210 })
2211 } else {
2212 self.reuse_paint(deferred_draw.paint_range.clone());
2213 }
2214 let paint_end = self.paint_index();
2215 deferred_draw.paint_range = paint_start..paint_end;
2216 }
2217 self.next_frame.deferred_draws = deferred_draws;
2218 self.element_id_stack.clear();
2219 }
2220
2221 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2222 PrepaintStateIndex {
2223 hitboxes_index: self.next_frame.hitboxes.len(),
2224 tooltips_index: self.next_frame.tooltip_requests.len(),
2225 deferred_draws_index: self.next_frame.deferred_draws.len(),
2226 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2227 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2228 line_layout_index: self.text_system.layout_index(),
2229 }
2230 }
2231
2232 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2233 self.next_frame.hitboxes.extend(
2234 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2235 .iter()
2236 .cloned(),
2237 );
2238 self.next_frame.tooltip_requests.extend(
2239 self.rendered_frame.tooltip_requests
2240 [range.start.tooltips_index..range.end.tooltips_index]
2241 .iter_mut()
2242 .map(|request| request.take()),
2243 );
2244 self.next_frame.accessed_element_states.extend(
2245 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2246 ..range.end.accessed_element_states_index]
2247 .iter()
2248 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2249 );
2250 self.text_system
2251 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2252
2253 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2254 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2255 &mut self.rendered_frame.dispatch_tree,
2256 self.focus,
2257 );
2258
2259 if reused_subtree.contains_focus() {
2260 self.next_frame.focus = self.focus;
2261 }
2262
2263 self.next_frame.deferred_draws.extend(
2264 self.rendered_frame.deferred_draws
2265 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2266 .iter()
2267 .map(|deferred_draw| DeferredDraw {
2268 current_view: deferred_draw.current_view,
2269 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2270 element_id_stack: deferred_draw.element_id_stack.clone(),
2271 text_style_stack: deferred_draw.text_style_stack.clone(),
2272 priority: deferred_draw.priority,
2273 element: None,
2274 absolute_offset: deferred_draw.absolute_offset,
2275 prepaint_range: deferred_draw.prepaint_range.clone(),
2276 paint_range: deferred_draw.paint_range.clone(),
2277 }),
2278 );
2279 }
2280
2281 pub(crate) fn paint_index(&self) -> PaintIndex {
2282 PaintIndex {
2283 scene_index: self.next_frame.scene.len(),
2284 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2285 input_handlers_index: self.next_frame.input_handlers.len(),
2286 cursor_styles_index: self.next_frame.cursor_styles.len(),
2287 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2288 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2289 line_layout_index: self.text_system.layout_index(),
2290 }
2291 }
2292
2293 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2294 self.next_frame.cursor_styles.extend(
2295 self.rendered_frame.cursor_styles
2296 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2297 .iter()
2298 .cloned(),
2299 );
2300 self.next_frame.input_handlers.extend(
2301 self.rendered_frame.input_handlers
2302 [range.start.input_handlers_index..range.end.input_handlers_index]
2303 .iter_mut()
2304 .map(|handler| handler.take()),
2305 );
2306 self.next_frame.mouse_listeners.extend(
2307 self.rendered_frame.mouse_listeners
2308 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2309 .iter_mut()
2310 .map(|listener| listener.take()),
2311 );
2312 self.next_frame.accessed_element_states.extend(
2313 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2314 ..range.end.accessed_element_states_index]
2315 .iter()
2316 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2317 );
2318 self.next_frame.tab_stops.replay(
2319 &self.rendered_frame.tab_stops.insertion_history
2320 [range.start.tab_handle_index..range.end.tab_handle_index],
2321 );
2322
2323 self.text_system
2324 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2325 self.next_frame.scene.replay(
2326 range.start.scene_index..range.end.scene_index,
2327 &self.rendered_frame.scene,
2328 );
2329 }
2330
2331 /// Push a text style onto the stack, and call a function with that style active.
2332 /// Use [`Window::text_style`] to get the current, combined text style. This method
2333 /// should only be called as part of element drawing.
2334 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2335 where
2336 F: FnOnce(&mut Self) -> R,
2337 {
2338 self.invalidator.debug_assert_paint_or_prepaint();
2339 if let Some(style) = style {
2340 self.text_style_stack.push(style);
2341 let result = f(self);
2342 self.text_style_stack.pop();
2343 result
2344 } else {
2345 f(self)
2346 }
2347 }
2348
2349 /// Updates the cursor style at the platform level. This method should only be called
2350 /// during the prepaint phase of element drawing.
2351 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2352 self.invalidator.debug_assert_paint();
2353 self.next_frame.cursor_styles.push(CursorStyleRequest {
2354 hitbox_id: Some(hitbox.id),
2355 style,
2356 });
2357 }
2358
2359 /// Updates the cursor style for the entire window at the platform level. A cursor
2360 /// style using this method will have precedence over any cursor style set using
2361 /// `set_cursor_style`. This method should only be called during the prepaint
2362 /// phase of element drawing.
2363 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2364 self.invalidator.debug_assert_paint();
2365 self.next_frame.cursor_styles.push(CursorStyleRequest {
2366 hitbox_id: None,
2367 style,
2368 })
2369 }
2370
2371 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2372 /// during the paint phase of element drawing.
2373 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2374 self.invalidator.debug_assert_prepaint();
2375 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2376 self.next_frame
2377 .tooltip_requests
2378 .push(Some(TooltipRequest { id, tooltip }));
2379 id
2380 }
2381
2382 /// Invoke the given function with the given content mask after intersecting it
2383 /// with the current mask. This method should only be called during element drawing.
2384 pub fn with_content_mask<R>(
2385 &mut self,
2386 mask: Option<ContentMask<Pixels>>,
2387 f: impl FnOnce(&mut Self) -> R,
2388 ) -> R {
2389 self.invalidator.debug_assert_paint_or_prepaint();
2390 if let Some(mask) = mask {
2391 let mask = mask.intersect(&self.content_mask());
2392 self.content_mask_stack.push(mask);
2393 let result = f(self);
2394 self.content_mask_stack.pop();
2395 result
2396 } else {
2397 f(self)
2398 }
2399 }
2400
2401 /// Updates the global element offset relative to the current offset. This is used to implement
2402 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2403 pub fn with_element_offset<R>(
2404 &mut self,
2405 offset: Point<Pixels>,
2406 f: impl FnOnce(&mut Self) -> R,
2407 ) -> R {
2408 self.invalidator.debug_assert_prepaint();
2409
2410 if offset.is_zero() {
2411 return f(self);
2412 };
2413
2414 let abs_offset = self.element_offset() + offset;
2415 self.with_absolute_element_offset(abs_offset, f)
2416 }
2417
2418 /// Updates the global element offset based on the given offset. This is used to implement
2419 /// drag handles and other manual painting of elements. This method should only be called during
2420 /// the prepaint phase of element drawing.
2421 pub fn with_absolute_element_offset<R>(
2422 &mut self,
2423 offset: Point<Pixels>,
2424 f: impl FnOnce(&mut Self) -> R,
2425 ) -> R {
2426 self.invalidator.debug_assert_prepaint();
2427 self.element_offset_stack.push(offset);
2428 let result = f(self);
2429 self.element_offset_stack.pop();
2430 result
2431 }
2432
2433 pub(crate) fn with_element_opacity<R>(
2434 &mut self,
2435 opacity: Option<f32>,
2436 f: impl FnOnce(&mut Self) -> R,
2437 ) -> R {
2438 self.invalidator.debug_assert_paint_or_prepaint();
2439
2440 let Some(opacity) = opacity else {
2441 return f(self);
2442 };
2443
2444 let previous_opacity = self.element_opacity;
2445 self.element_opacity = previous_opacity * opacity;
2446 let result = f(self);
2447 self.element_opacity = previous_opacity;
2448 result
2449 }
2450
2451 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2452 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2453 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2454 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2455 /// called during the prepaint phase of element drawing.
2456 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2457 self.invalidator.debug_assert_prepaint();
2458 let index = self.prepaint_index();
2459 let result = f(self);
2460 if result.is_err() {
2461 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2462 self.next_frame
2463 .tooltip_requests
2464 .truncate(index.tooltips_index);
2465 self.next_frame
2466 .deferred_draws
2467 .truncate(index.deferred_draws_index);
2468 self.next_frame
2469 .dispatch_tree
2470 .truncate(index.dispatch_tree_index);
2471 self.next_frame
2472 .accessed_element_states
2473 .truncate(index.accessed_element_states_index);
2474 self.text_system.truncate_layouts(index.line_layout_index);
2475 }
2476 result
2477 }
2478
2479 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2480 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2481 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2482 /// that supports this method being called on the elements it contains. This method should only be
2483 /// called during the prepaint phase of element drawing.
2484 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2485 self.invalidator.debug_assert_prepaint();
2486 self.requested_autoscroll = Some(bounds);
2487 }
2488
2489 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2490 /// described in [`Self::request_autoscroll`].
2491 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2492 self.invalidator.debug_assert_prepaint();
2493 self.requested_autoscroll.take()
2494 }
2495
2496 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2497 /// Your view will be re-drawn once the asset has finished loading.
2498 ///
2499 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2500 /// time.
2501 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2502 let (task, is_first) = cx.fetch_asset::<A>(source);
2503 task.clone().now_or_never().or_else(|| {
2504 if is_first {
2505 let entity_id = self.current_view();
2506 self.spawn(cx, {
2507 let task = task.clone();
2508 async move |cx| {
2509 task.await;
2510
2511 cx.on_next_frame(move |_, cx| {
2512 cx.notify(entity_id);
2513 });
2514 }
2515 })
2516 .detach();
2517 }
2518
2519 None
2520 })
2521 }
2522
2523 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2524 /// Your view will not be re-drawn once the asset has finished loading.
2525 ///
2526 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2527 /// time.
2528 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2529 let (task, _) = cx.fetch_asset::<A>(source);
2530 task.now_or_never()
2531 }
2532 /// Obtain the current element offset. This method should only be called during the
2533 /// prepaint phase of element drawing.
2534 pub fn element_offset(&self) -> Point<Pixels> {
2535 self.invalidator.debug_assert_prepaint();
2536 self.element_offset_stack
2537 .last()
2538 .copied()
2539 .unwrap_or_default()
2540 }
2541
2542 /// Obtain the current element opacity. This method should only be called during the
2543 /// prepaint phase of element drawing.
2544 #[inline]
2545 pub(crate) fn element_opacity(&self) -> f32 {
2546 self.invalidator.debug_assert_paint_or_prepaint();
2547 self.element_opacity
2548 }
2549
2550 /// Obtain the current content mask. This method should only be called during element drawing.
2551 pub fn content_mask(&self) -> ContentMask<Pixels> {
2552 self.invalidator.debug_assert_paint_or_prepaint();
2553 self.content_mask_stack
2554 .last()
2555 .cloned()
2556 .unwrap_or_else(|| ContentMask {
2557 bounds: Bounds {
2558 origin: Point::default(),
2559 size: self.viewport_size,
2560 },
2561 })
2562 }
2563
2564 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2565 /// This can be used within a custom element to distinguish multiple sets of child elements.
2566 pub fn with_element_namespace<R>(
2567 &mut self,
2568 element_id: impl Into<ElementId>,
2569 f: impl FnOnce(&mut Self) -> R,
2570 ) -> R {
2571 self.element_id_stack.push(element_id.into());
2572 let result = f(self);
2573 self.element_id_stack.pop();
2574 result
2575 }
2576
2577 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2578 pub fn use_keyed_state<S: 'static>(
2579 &mut self,
2580 key: impl Into<ElementId>,
2581 cx: &mut App,
2582 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2583 ) -> Entity<S> {
2584 let current_view = self.current_view();
2585 self.with_global_id(key.into(), |global_id, window| {
2586 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2587 if let Some(state) = state {
2588 (state.clone(), state)
2589 } else {
2590 let new_state = cx.new(|cx| init(window, cx));
2591 cx.observe(&new_state, move |_, cx| {
2592 cx.notify(current_view);
2593 })
2594 .detach();
2595 (new_state.clone(), new_state)
2596 }
2597 })
2598 })
2599 }
2600
2601 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2602 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2603 self.with_global_id(id.into(), |_, window| f(window))
2604 }
2605
2606 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2607 ///
2608 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2609 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2610 /// you can provide a custom ElementID using the `use_keyed_state` method.
2611 #[track_caller]
2612 pub fn use_state<S: 'static>(
2613 &mut self,
2614 cx: &mut App,
2615 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2616 ) -> Entity<S> {
2617 self.use_keyed_state(
2618 ElementId::CodeLocation(*core::panic::Location::caller()),
2619 cx,
2620 init,
2621 )
2622 }
2623
2624 /// Updates or initializes state for an element with the given id that lives across multiple
2625 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2626 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2627 /// when drawing the next frame. This method should only be called as part of element drawing.
2628 pub fn with_element_state<S, R>(
2629 &mut self,
2630 global_id: &GlobalElementId,
2631 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2632 ) -> R
2633 where
2634 S: 'static,
2635 {
2636 self.invalidator.debug_assert_paint_or_prepaint();
2637
2638 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2639 self.next_frame
2640 .accessed_element_states
2641 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2642
2643 if let Some(any) = self
2644 .next_frame
2645 .element_states
2646 .remove(&key)
2647 .or_else(|| self.rendered_frame.element_states.remove(&key))
2648 {
2649 let ElementStateBox {
2650 inner,
2651 #[cfg(debug_assertions)]
2652 type_name,
2653 } = any;
2654 // Using the extra inner option to avoid needing to reallocate a new box.
2655 let mut state_box = inner
2656 .downcast::<Option<S>>()
2657 .map_err(|_| {
2658 #[cfg(debug_assertions)]
2659 {
2660 anyhow::anyhow!(
2661 "invalid element state type for id, requested {:?}, actual: {:?}",
2662 std::any::type_name::<S>(),
2663 type_name
2664 )
2665 }
2666
2667 #[cfg(not(debug_assertions))]
2668 {
2669 anyhow::anyhow!(
2670 "invalid element state type for id, requested {:?}",
2671 std::any::type_name::<S>(),
2672 )
2673 }
2674 })
2675 .unwrap();
2676
2677 let state = state_box.take().expect(
2678 "reentrant call to with_element_state for the same state type and element id",
2679 );
2680 let (result, state) = f(Some(state), self);
2681 state_box.replace(state);
2682 self.next_frame.element_states.insert(
2683 key,
2684 ElementStateBox {
2685 inner: state_box,
2686 #[cfg(debug_assertions)]
2687 type_name,
2688 },
2689 );
2690 result
2691 } else {
2692 let (result, state) = f(None, self);
2693 self.next_frame.element_states.insert(
2694 key,
2695 ElementStateBox {
2696 inner: Box::new(Some(state)),
2697 #[cfg(debug_assertions)]
2698 type_name: std::any::type_name::<S>(),
2699 },
2700 );
2701 result
2702 }
2703 }
2704
2705 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2706 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2707 /// when the element is guaranteed to have an id.
2708 ///
2709 /// The first option means 'no ID provided'
2710 /// The second option means 'not yet initialized'
2711 pub fn with_optional_element_state<S, R>(
2712 &mut self,
2713 global_id: Option<&GlobalElementId>,
2714 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2715 ) -> R
2716 where
2717 S: 'static,
2718 {
2719 self.invalidator.debug_assert_paint_or_prepaint();
2720
2721 if let Some(global_id) = global_id {
2722 self.with_element_state(global_id, |state, cx| {
2723 let (result, state) = f(Some(state), cx);
2724 let state =
2725 state.expect("you must return some state when you pass some element id");
2726 (result, state)
2727 })
2728 } else {
2729 let (result, state) = f(None, self);
2730 debug_assert!(
2731 state.is_none(),
2732 "you must not return an element state when passing None for the global id"
2733 );
2734 result
2735 }
2736 }
2737
2738 /// Executes the given closure within the context of a tab group.
2739 #[inline]
2740 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2741 if let Some(index) = index {
2742 self.next_frame.tab_stops.begin_group(index);
2743 let result = f(self);
2744 self.next_frame.tab_stops.end_group();
2745 result
2746 } else {
2747 f(self)
2748 }
2749 }
2750
2751 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2752 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2753 /// with higher values being drawn on top.
2754 ///
2755 /// This method should only be called as part of the prepaint phase of element drawing.
2756 pub fn defer_draw(
2757 &mut self,
2758 element: AnyElement,
2759 absolute_offset: Point<Pixels>,
2760 priority: usize,
2761 ) {
2762 self.invalidator.debug_assert_prepaint();
2763 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2764 self.next_frame.deferred_draws.push(DeferredDraw {
2765 current_view: self.current_view(),
2766 parent_node,
2767 element_id_stack: self.element_id_stack.clone(),
2768 text_style_stack: self.text_style_stack.clone(),
2769 priority,
2770 element: Some(element),
2771 absolute_offset,
2772 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2773 paint_range: PaintIndex::default()..PaintIndex::default(),
2774 });
2775 }
2776
2777 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2778 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2779 /// for performance reasons.
2780 ///
2781 /// This method should only be called as part of the paint phase of element drawing.
2782 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2783 self.invalidator.debug_assert_paint();
2784
2785 let scale_factor = self.scale_factor();
2786 let content_mask = self.content_mask();
2787 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2788 if !clipped_bounds.is_empty() {
2789 self.next_frame
2790 .scene
2791 .push_layer(clipped_bounds.scale(scale_factor));
2792 }
2793
2794 let result = f(self);
2795
2796 if !clipped_bounds.is_empty() {
2797 self.next_frame.scene.pop_layer();
2798 }
2799
2800 result
2801 }
2802
2803 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2804 ///
2805 /// This method should only be called as part of the paint phase of element drawing.
2806 pub fn paint_shadows(
2807 &mut self,
2808 bounds: Bounds<Pixels>,
2809 corner_radii: Corners<Pixels>,
2810 shadows: &[BoxShadow],
2811 ) {
2812 self.invalidator.debug_assert_paint();
2813
2814 let scale_factor = self.scale_factor();
2815 let content_mask = self.content_mask();
2816 let opacity = self.element_opacity();
2817 for shadow in shadows {
2818 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2819 self.next_frame.scene.insert_primitive(Shadow {
2820 order: 0,
2821 blur_radius: shadow.blur_radius.scale(scale_factor),
2822 bounds: shadow_bounds.scale(scale_factor),
2823 content_mask: content_mask.scale(scale_factor),
2824 corner_radii: corner_radii.scale(scale_factor),
2825 color: shadow.color.opacity(opacity),
2826 });
2827 }
2828 }
2829
2830 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2831 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2832 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2833 ///
2834 /// This method should only be called as part of the paint phase of element drawing.
2835 ///
2836 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2837 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2838 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2839 pub fn paint_quad(&mut self, quad: PaintQuad) {
2840 self.invalidator.debug_assert_paint();
2841
2842 let scale_factor = self.scale_factor();
2843 let content_mask = self.content_mask();
2844 let opacity = self.element_opacity();
2845 self.next_frame.scene.insert_primitive(Quad {
2846 order: 0,
2847 bounds: quad.bounds.scale(scale_factor),
2848 content_mask: content_mask.scale(scale_factor),
2849 background: quad.background.opacity(opacity),
2850 border_color: quad.border_color.opacity(opacity),
2851 corner_radii: quad.corner_radii.scale(scale_factor),
2852 border_widths: quad.border_widths.scale(scale_factor),
2853 border_style: quad.border_style,
2854 });
2855 }
2856
2857 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2858 ///
2859 /// This method should only be called as part of the paint phase of element drawing.
2860 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2861 self.invalidator.debug_assert_paint();
2862
2863 let scale_factor = self.scale_factor();
2864 let content_mask = self.content_mask();
2865 let opacity = self.element_opacity();
2866 path.content_mask = content_mask;
2867 let color: Background = color.into();
2868 path.color = color.opacity(opacity);
2869 self.next_frame
2870 .scene
2871 .insert_primitive(path.scale(scale_factor));
2872 }
2873
2874 /// Paint an underline into the scene for the next frame at the current z-index.
2875 ///
2876 /// This method should only be called as part of the paint phase of element drawing.
2877 pub fn paint_underline(
2878 &mut self,
2879 origin: Point<Pixels>,
2880 width: Pixels,
2881 style: &UnderlineStyle,
2882 ) {
2883 self.invalidator.debug_assert_paint();
2884
2885 let scale_factor = self.scale_factor();
2886 let height = if style.wavy {
2887 style.thickness * 3.
2888 } else {
2889 style.thickness
2890 };
2891 let bounds = Bounds {
2892 origin,
2893 size: size(width, height),
2894 };
2895 let content_mask = self.content_mask();
2896 let element_opacity = self.element_opacity();
2897
2898 self.next_frame.scene.insert_primitive(Underline {
2899 order: 0,
2900 pad: 0,
2901 bounds: bounds.scale(scale_factor),
2902 content_mask: content_mask.scale(scale_factor),
2903 color: style.color.unwrap_or_default().opacity(element_opacity),
2904 thickness: style.thickness.scale(scale_factor),
2905 wavy: if style.wavy { 1 } else { 0 },
2906 });
2907 }
2908
2909 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2910 ///
2911 /// This method should only be called as part of the paint phase of element drawing.
2912 pub fn paint_strikethrough(
2913 &mut self,
2914 origin: Point<Pixels>,
2915 width: Pixels,
2916 style: &StrikethroughStyle,
2917 ) {
2918 self.invalidator.debug_assert_paint();
2919
2920 let scale_factor = self.scale_factor();
2921 let height = style.thickness;
2922 let bounds = Bounds {
2923 origin,
2924 size: size(width, height),
2925 };
2926 let content_mask = self.content_mask();
2927 let opacity = self.element_opacity();
2928
2929 self.next_frame.scene.insert_primitive(Underline {
2930 order: 0,
2931 pad: 0,
2932 bounds: bounds.scale(scale_factor),
2933 content_mask: content_mask.scale(scale_factor),
2934 thickness: style.thickness.scale(scale_factor),
2935 color: style.color.unwrap_or_default().opacity(opacity),
2936 wavy: 0,
2937 });
2938 }
2939
2940 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2941 ///
2942 /// The y component of the origin is the baseline of the glyph.
2943 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2944 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2945 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2946 ///
2947 /// This method should only be called as part of the paint phase of element drawing.
2948 pub fn paint_glyph(
2949 &mut self,
2950 origin: Point<Pixels>,
2951 font_id: FontId,
2952 glyph_id: GlyphId,
2953 font_size: Pixels,
2954 color: Hsla,
2955 ) -> Result<()> {
2956 self.invalidator.debug_assert_paint();
2957
2958 let element_opacity = self.element_opacity();
2959 let scale_factor = self.scale_factor();
2960 let glyph_origin = origin.scale(scale_factor);
2961
2962 let subpixel_variant = Point {
2963 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
2964 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
2965 };
2966 let params = RenderGlyphParams {
2967 font_id,
2968 glyph_id,
2969 font_size,
2970 subpixel_variant,
2971 scale_factor,
2972 is_emoji: false,
2973 };
2974
2975 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2976 if !raster_bounds.is_zero() {
2977 let tile = self
2978 .sprite_atlas
2979 .get_or_insert_with(¶ms.clone().into(), &mut || {
2980 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2981 Ok(Some((size, Cow::Owned(bytes))))
2982 })?
2983 .expect("Callback above only errors or returns Some");
2984 let bounds = Bounds {
2985 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2986 size: tile.bounds.size.map(Into::into),
2987 };
2988 let content_mask = self.content_mask().scale(scale_factor);
2989 self.next_frame.scene.insert_primitive(MonochromeSprite {
2990 order: 0,
2991 pad: 0,
2992 bounds,
2993 content_mask,
2994 color: color.opacity(element_opacity),
2995 tile,
2996 transformation: TransformationMatrix::unit(),
2997 });
2998 }
2999 Ok(())
3000 }
3001
3002 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3003 ///
3004 /// The y component of the origin is the baseline of the glyph.
3005 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3006 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3007 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3008 ///
3009 /// This method should only be called as part of the paint phase of element drawing.
3010 pub fn paint_emoji(
3011 &mut self,
3012 origin: Point<Pixels>,
3013 font_id: FontId,
3014 glyph_id: GlyphId,
3015 font_size: Pixels,
3016 ) -> Result<()> {
3017 self.invalidator.debug_assert_paint();
3018
3019 let scale_factor = self.scale_factor();
3020 let glyph_origin = origin.scale(scale_factor);
3021 let params = RenderGlyphParams {
3022 font_id,
3023 glyph_id,
3024 font_size,
3025 // We don't render emojis with subpixel variants.
3026 subpixel_variant: Default::default(),
3027 scale_factor,
3028 is_emoji: true,
3029 };
3030
3031 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3032 if !raster_bounds.is_zero() {
3033 let tile = self
3034 .sprite_atlas
3035 .get_or_insert_with(¶ms.clone().into(), &mut || {
3036 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3037 Ok(Some((size, Cow::Owned(bytes))))
3038 })?
3039 .expect("Callback above only errors or returns Some");
3040
3041 let bounds = Bounds {
3042 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3043 size: tile.bounds.size.map(Into::into),
3044 };
3045 let content_mask = self.content_mask().scale(scale_factor);
3046 let opacity = self.element_opacity();
3047
3048 self.next_frame.scene.insert_primitive(PolychromeSprite {
3049 order: 0,
3050 pad: 0,
3051 grayscale: false,
3052 bounds,
3053 corner_radii: Default::default(),
3054 content_mask,
3055 tile,
3056 opacity,
3057 });
3058 }
3059 Ok(())
3060 }
3061
3062 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3063 ///
3064 /// This method should only be called as part of the paint phase of element drawing.
3065 pub fn paint_svg(
3066 &mut self,
3067 bounds: Bounds<Pixels>,
3068 path: SharedString,
3069 transformation: TransformationMatrix,
3070 color: Hsla,
3071 cx: &App,
3072 ) -> Result<()> {
3073 self.invalidator.debug_assert_paint();
3074
3075 let element_opacity = self.element_opacity();
3076 let scale_factor = self.scale_factor();
3077
3078 let bounds = bounds.scale(scale_factor);
3079 let params = RenderSvgParams {
3080 path,
3081 size: bounds.size.map(|pixels| {
3082 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3083 }),
3084 };
3085
3086 let Some(tile) =
3087 self.sprite_atlas
3088 .get_or_insert_with(¶ms.clone().into(), &mut || {
3089 let Some((size, bytes)) = cx.svg_renderer.render(¶ms)? else {
3090 return Ok(None);
3091 };
3092 Ok(Some((size, Cow::Owned(bytes))))
3093 })?
3094 else {
3095 return Ok(());
3096 };
3097 let content_mask = self.content_mask().scale(scale_factor);
3098 let svg_bounds = Bounds {
3099 origin: bounds.center()
3100 - Point::new(
3101 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3102 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3103 ),
3104 size: tile
3105 .bounds
3106 .size
3107 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3108 };
3109
3110 self.next_frame.scene.insert_primitive(MonochromeSprite {
3111 order: 0,
3112 pad: 0,
3113 bounds: svg_bounds
3114 .map_origin(|origin| origin.round())
3115 .map_size(|size| size.ceil()),
3116 content_mask,
3117 color: color.opacity(element_opacity),
3118 tile,
3119 transformation,
3120 });
3121
3122 Ok(())
3123 }
3124
3125 /// Paint an image into the scene for the next frame at the current z-index.
3126 /// This method will panic if the frame_index is not valid
3127 ///
3128 /// This method should only be called as part of the paint phase of element drawing.
3129 pub fn paint_image(
3130 &mut self,
3131 bounds: Bounds<Pixels>,
3132 corner_radii: Corners<Pixels>,
3133 data: Arc<RenderImage>,
3134 frame_index: usize,
3135 grayscale: bool,
3136 ) -> Result<()> {
3137 self.invalidator.debug_assert_paint();
3138
3139 let scale_factor = self.scale_factor();
3140 let bounds = bounds.scale(scale_factor);
3141 let params = RenderImageParams {
3142 image_id: data.id,
3143 frame_index,
3144 };
3145
3146 let tile = self
3147 .sprite_atlas
3148 .get_or_insert_with(¶ms.into(), &mut || {
3149 Ok(Some((
3150 data.size(frame_index),
3151 Cow::Borrowed(
3152 data.as_bytes(frame_index)
3153 .expect("It's the caller's job to pass a valid frame index"),
3154 ),
3155 )))
3156 })?
3157 .expect("Callback above only returns Some");
3158 let content_mask = self.content_mask().scale(scale_factor);
3159 let corner_radii = corner_radii.scale(scale_factor);
3160 let opacity = self.element_opacity();
3161
3162 self.next_frame.scene.insert_primitive(PolychromeSprite {
3163 order: 0,
3164 pad: 0,
3165 grayscale,
3166 bounds: bounds
3167 .map_origin(|origin| origin.floor())
3168 .map_size(|size| size.ceil()),
3169 content_mask,
3170 corner_radii,
3171 tile,
3172 opacity,
3173 });
3174 Ok(())
3175 }
3176
3177 /// Paint a surface into the scene for the next frame at the current z-index.
3178 ///
3179 /// This method should only be called as part of the paint phase of element drawing.
3180 #[cfg(target_os = "macos")]
3181 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3182 use crate::PaintSurface;
3183
3184 self.invalidator.debug_assert_paint();
3185
3186 let scale_factor = self.scale_factor();
3187 let bounds = bounds.scale(scale_factor);
3188 let content_mask = self.content_mask().scale(scale_factor);
3189 self.next_frame.scene.insert_primitive(PaintSurface {
3190 order: 0,
3191 bounds,
3192 content_mask,
3193 image_buffer,
3194 });
3195 }
3196
3197 /// Removes an image from the sprite atlas.
3198 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3199 for frame_index in 0..data.frame_count() {
3200 let params = RenderImageParams {
3201 image_id: data.id,
3202 frame_index,
3203 };
3204
3205 self.sprite_atlas.remove(¶ms.clone().into());
3206 }
3207
3208 Ok(())
3209 }
3210
3211 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3212 /// layout is being requested, along with the layout ids of any children. This method is called during
3213 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3214 ///
3215 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3216 #[must_use]
3217 pub fn request_layout(
3218 &mut self,
3219 style: Style,
3220 children: impl IntoIterator<Item = LayoutId>,
3221 cx: &mut App,
3222 ) -> LayoutId {
3223 self.invalidator.debug_assert_prepaint();
3224
3225 cx.layout_id_buffer.clear();
3226 cx.layout_id_buffer.extend(children);
3227 let rem_size = self.rem_size();
3228 let scale_factor = self.scale_factor();
3229
3230 self.layout_engine.as_mut().unwrap().request_layout(
3231 style,
3232 rem_size,
3233 scale_factor,
3234 &cx.layout_id_buffer,
3235 )
3236 }
3237
3238 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3239 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3240 /// determine the element's size. One place this is used internally is when measuring text.
3241 ///
3242 /// The given closure is invoked at layout time with the known dimensions and available space and
3243 /// returns a `Size`.
3244 ///
3245 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3246 pub fn request_measured_layout<
3247 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3248 + 'static,
3249 >(
3250 &mut self,
3251 style: Style,
3252 measure: F,
3253 ) -> LayoutId {
3254 self.invalidator.debug_assert_prepaint();
3255
3256 let rem_size = self.rem_size();
3257 let scale_factor = self.scale_factor();
3258 self.layout_engine
3259 .as_mut()
3260 .unwrap()
3261 .request_measured_layout(style, rem_size, scale_factor, measure)
3262 }
3263
3264 /// Compute the layout for the given id within the given available space.
3265 /// This method is called for its side effect, typically by the framework prior to painting.
3266 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3267 ///
3268 /// This method should only be called as part of the prepaint phase of element drawing.
3269 pub fn compute_layout(
3270 &mut self,
3271 layout_id: LayoutId,
3272 available_space: Size<AvailableSpace>,
3273 cx: &mut App,
3274 ) {
3275 self.invalidator.debug_assert_prepaint();
3276
3277 let mut layout_engine = self.layout_engine.take().unwrap();
3278 layout_engine.compute_layout(layout_id, available_space, self, cx);
3279 self.layout_engine = Some(layout_engine);
3280 }
3281
3282 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3283 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3284 ///
3285 /// This method should only be called as part of element drawing.
3286 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3287 self.invalidator.debug_assert_prepaint();
3288
3289 let scale_factor = self.scale_factor();
3290 let mut bounds = self
3291 .layout_engine
3292 .as_mut()
3293 .unwrap()
3294 .layout_bounds(layout_id, scale_factor)
3295 .map(Into::into);
3296 bounds.origin += self.element_offset();
3297 bounds
3298 }
3299
3300 /// This method should be called during `prepaint`. You can use
3301 /// the returned [Hitbox] during `paint` or in an event handler
3302 /// to determine whether the inserted hitbox was the topmost.
3303 ///
3304 /// This method should only be called as part of the prepaint phase of element drawing.
3305 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3306 self.invalidator.debug_assert_prepaint();
3307
3308 let content_mask = self.content_mask();
3309 let mut id = self.next_hitbox_id;
3310 self.next_hitbox_id = self.next_hitbox_id.next();
3311 let hitbox = Hitbox {
3312 id,
3313 bounds,
3314 content_mask,
3315 behavior,
3316 };
3317 self.next_frame.hitboxes.push(hitbox.clone());
3318 hitbox
3319 }
3320
3321 /// Set a hitbox which will act as a control area of the platform window.
3322 ///
3323 /// This method should only be called as part of the paint phase of element drawing.
3324 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3325 self.invalidator.debug_assert_paint();
3326 self.next_frame.window_control_hitboxes.push((area, hitbox));
3327 }
3328
3329 /// Sets the key context for the current element. This context will be used to translate
3330 /// keybindings into actions.
3331 ///
3332 /// This method should only be called as part of the paint phase of element drawing.
3333 pub fn set_key_context(&mut self, context: KeyContext) {
3334 self.invalidator.debug_assert_paint();
3335 self.next_frame.dispatch_tree.set_key_context(context);
3336 }
3337
3338 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3339 /// and keyboard event dispatch for the element.
3340 ///
3341 /// This method should only be called as part of the prepaint phase of element drawing.
3342 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3343 self.invalidator.debug_assert_prepaint();
3344 if focus_handle.is_focused(self) {
3345 self.next_frame.focus = Some(focus_handle.id);
3346 }
3347 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3348 }
3349
3350 /// Sets the view id for the current element, which will be used to manage view caching.
3351 ///
3352 /// This method should only be called as part of element prepaint. We plan on removing this
3353 /// method eventually when we solve some issues that require us to construct editor elements
3354 /// directly instead of always using editors via views.
3355 pub fn set_view_id(&mut self, view_id: EntityId) {
3356 self.invalidator.debug_assert_prepaint();
3357 self.next_frame.dispatch_tree.set_view_id(view_id);
3358 }
3359
3360 /// Get the entity ID for the currently rendering view
3361 pub fn current_view(&self) -> EntityId {
3362 self.invalidator.debug_assert_paint_or_prepaint();
3363 self.rendered_entity_stack.last().copied().unwrap()
3364 }
3365
3366 pub(crate) fn with_rendered_view<R>(
3367 &mut self,
3368 id: EntityId,
3369 f: impl FnOnce(&mut Self) -> R,
3370 ) -> R {
3371 self.rendered_entity_stack.push(id);
3372 let result = f(self);
3373 self.rendered_entity_stack.pop();
3374 result
3375 }
3376
3377 /// Executes the provided function with the specified image cache.
3378 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3379 where
3380 F: FnOnce(&mut Self) -> R,
3381 {
3382 if let Some(image_cache) = image_cache {
3383 self.image_cache_stack.push(image_cache);
3384 let result = f(self);
3385 self.image_cache_stack.pop();
3386 result
3387 } else {
3388 f(self)
3389 }
3390 }
3391
3392 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3393 /// platform to receive textual input with proper integration with concerns such
3394 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3395 /// rendered.
3396 ///
3397 /// This method should only be called as part of the paint phase of element drawing.
3398 ///
3399 /// [element_input_handler]: crate::ElementInputHandler
3400 pub fn handle_input(
3401 &mut self,
3402 focus_handle: &FocusHandle,
3403 input_handler: impl InputHandler,
3404 cx: &App,
3405 ) {
3406 self.invalidator.debug_assert_paint();
3407
3408 if focus_handle.is_focused(self) {
3409 let cx = self.to_async(cx);
3410 self.next_frame
3411 .input_handlers
3412 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3413 }
3414 }
3415
3416 /// Register a mouse event listener on the window for the next frame. The type of event
3417 /// is determined by the first parameter of the given listener. When the next frame is rendered
3418 /// the listener will be cleared.
3419 ///
3420 /// This method should only be called as part of the paint phase of element drawing.
3421 pub fn on_mouse_event<Event: MouseEvent>(
3422 &mut self,
3423 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3424 ) {
3425 self.invalidator.debug_assert_paint();
3426
3427 self.next_frame.mouse_listeners.push(Some(Box::new(
3428 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3429 if let Some(event) = event.downcast_ref() {
3430 handler(event, phase, window, cx)
3431 }
3432 },
3433 )));
3434 }
3435
3436 /// Register a key event listener on the window for the next frame. The type of event
3437 /// is determined by the first parameter of the given listener. When the next frame is rendered
3438 /// the listener will be cleared.
3439 ///
3440 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3441 /// a specific need to register a global listener.
3442 ///
3443 /// This method should only be called as part of the paint phase of element drawing.
3444 pub fn on_key_event<Event: KeyEvent>(
3445 &mut self,
3446 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3447 ) {
3448 self.invalidator.debug_assert_paint();
3449
3450 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3451 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3452 if let Some(event) = event.downcast_ref::<Event>() {
3453 listener(event, phase, window, cx)
3454 }
3455 },
3456 ));
3457 }
3458
3459 /// Register a modifiers changed event listener on the window for the next frame.
3460 ///
3461 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3462 /// a specific need to register a global listener.
3463 ///
3464 /// This method should only be called as part of the paint phase of element drawing.
3465 pub fn on_modifiers_changed(
3466 &mut self,
3467 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3468 ) {
3469 self.invalidator.debug_assert_paint();
3470
3471 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3472 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3473 listener(event, window, cx)
3474 },
3475 ));
3476 }
3477
3478 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3479 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3480 /// Returns a subscription and persists until the subscription is dropped.
3481 pub fn on_focus_in(
3482 &mut self,
3483 handle: &FocusHandle,
3484 cx: &mut App,
3485 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3486 ) -> Subscription {
3487 let focus_id = handle.id;
3488 let (subscription, activate) =
3489 self.new_focus_listener(Box::new(move |event, window, cx| {
3490 if event.is_focus_in(focus_id) {
3491 listener(window, cx);
3492 }
3493 true
3494 }));
3495 cx.defer(move |_| activate());
3496 subscription
3497 }
3498
3499 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3500 /// Returns a subscription and persists until the subscription is dropped.
3501 pub fn on_focus_out(
3502 &mut self,
3503 handle: &FocusHandle,
3504 cx: &mut App,
3505 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3506 ) -> Subscription {
3507 let focus_id = handle.id;
3508 let (subscription, activate) =
3509 self.new_focus_listener(Box::new(move |event, window, cx| {
3510 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3511 && event.is_focus_out(focus_id)
3512 {
3513 let event = FocusOutEvent {
3514 blurred: WeakFocusHandle {
3515 id: blurred_id,
3516 handles: Arc::downgrade(&cx.focus_handles),
3517 },
3518 };
3519 listener(event, window, cx)
3520 }
3521 true
3522 }));
3523 cx.defer(move |_| activate());
3524 subscription
3525 }
3526
3527 fn reset_cursor_style(&self, cx: &mut App) {
3528 // Set the cursor only if we're the active window.
3529 if self.is_window_hovered() {
3530 let style = self
3531 .rendered_frame
3532 .cursor_style(self)
3533 .unwrap_or(CursorStyle::Arrow);
3534 cx.platform.set_cursor_style(style);
3535 }
3536 }
3537
3538 /// Dispatch a given keystroke as though the user had typed it.
3539 /// You can create a keystroke with Keystroke::parse("").
3540 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3541 let keystroke = keystroke.with_simulated_ime();
3542 let result = self.dispatch_event(
3543 PlatformInput::KeyDown(KeyDownEvent {
3544 keystroke: keystroke.clone(),
3545 is_held: false,
3546 }),
3547 cx,
3548 );
3549 if !result.propagate {
3550 return true;
3551 }
3552
3553 if let Some(input) = keystroke.key_char
3554 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3555 {
3556 input_handler.dispatch_input(&input, self, cx);
3557 self.platform_window.set_input_handler(input_handler);
3558 return true;
3559 }
3560
3561 false
3562 }
3563
3564 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3565 /// binding for the action (last binding added to the keymap).
3566 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3567 self.highest_precedence_binding_for_action(action)
3568 .map(|binding| {
3569 binding
3570 .keystrokes()
3571 .iter()
3572 .map(ToString::to_string)
3573 .collect::<Vec<_>>()
3574 .join(" ")
3575 })
3576 .unwrap_or_else(|| action.name().to_string())
3577 }
3578
3579 /// Dispatch a mouse or keyboard event on the window.
3580 #[profiling::function]
3581 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3582 self.last_input_timestamp.set(Instant::now());
3583 // Handlers may set this to false by calling `stop_propagation`.
3584 cx.propagate_event = true;
3585 // Handlers may set this to true by calling `prevent_default`.
3586 self.default_prevented = false;
3587
3588 let event = match event {
3589 // Track the mouse position with our own state, since accessing the platform
3590 // API for the mouse position can only occur on the main thread.
3591 PlatformInput::MouseMove(mouse_move) => {
3592 self.mouse_position = mouse_move.position;
3593 self.modifiers = mouse_move.modifiers;
3594 PlatformInput::MouseMove(mouse_move)
3595 }
3596 PlatformInput::MouseDown(mouse_down) => {
3597 self.mouse_position = mouse_down.position;
3598 self.modifiers = mouse_down.modifiers;
3599 PlatformInput::MouseDown(mouse_down)
3600 }
3601 PlatformInput::MouseUp(mouse_up) => {
3602 self.mouse_position = mouse_up.position;
3603 self.modifiers = mouse_up.modifiers;
3604 PlatformInput::MouseUp(mouse_up)
3605 }
3606 PlatformInput::MouseExited(mouse_exited) => {
3607 self.modifiers = mouse_exited.modifiers;
3608 PlatformInput::MouseExited(mouse_exited)
3609 }
3610 PlatformInput::ModifiersChanged(modifiers_changed) => {
3611 self.modifiers = modifiers_changed.modifiers;
3612 self.capslock = modifiers_changed.capslock;
3613 PlatformInput::ModifiersChanged(modifiers_changed)
3614 }
3615 PlatformInput::ScrollWheel(scroll_wheel) => {
3616 self.mouse_position = scroll_wheel.position;
3617 self.modifiers = scroll_wheel.modifiers;
3618 PlatformInput::ScrollWheel(scroll_wheel)
3619 }
3620 // Translate dragging and dropping of external files from the operating system
3621 // to internal drag and drop events.
3622 PlatformInput::FileDrop(file_drop) => match file_drop {
3623 FileDropEvent::Entered { position, paths } => {
3624 self.mouse_position = position;
3625 if cx.active_drag.is_none() {
3626 cx.active_drag = Some(AnyDrag {
3627 value: Arc::new(paths.clone()),
3628 view: cx.new(|_| paths).into(),
3629 cursor_offset: position,
3630 cursor_style: None,
3631 });
3632 }
3633 PlatformInput::MouseMove(MouseMoveEvent {
3634 position,
3635 pressed_button: Some(MouseButton::Left),
3636 modifiers: Modifiers::default(),
3637 })
3638 }
3639 FileDropEvent::Pending { position } => {
3640 self.mouse_position = position;
3641 PlatformInput::MouseMove(MouseMoveEvent {
3642 position,
3643 pressed_button: Some(MouseButton::Left),
3644 modifiers: Modifiers::default(),
3645 })
3646 }
3647 FileDropEvent::Submit { position } => {
3648 cx.activate(true);
3649 self.mouse_position = position;
3650 PlatformInput::MouseUp(MouseUpEvent {
3651 button: MouseButton::Left,
3652 position,
3653 modifiers: Modifiers::default(),
3654 click_count: 1,
3655 })
3656 }
3657 FileDropEvent::Exited => {
3658 cx.active_drag.take();
3659 PlatformInput::FileDrop(FileDropEvent::Exited)
3660 }
3661 },
3662 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3663 };
3664
3665 if let Some(any_mouse_event) = event.mouse_event() {
3666 self.dispatch_mouse_event(any_mouse_event, cx);
3667 } else if let Some(any_key_event) = event.keyboard_event() {
3668 self.dispatch_key_event(any_key_event, cx);
3669 }
3670
3671 DispatchEventResult {
3672 propagate: cx.propagate_event,
3673 default_prevented: self.default_prevented,
3674 }
3675 }
3676
3677 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3678 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3679 if hit_test != self.mouse_hit_test {
3680 self.mouse_hit_test = hit_test;
3681 self.reset_cursor_style(cx);
3682 }
3683
3684 #[cfg(any(feature = "inspector", debug_assertions))]
3685 if self.is_inspector_picking(cx) {
3686 self.handle_inspector_mouse_event(event, cx);
3687 // When inspector is picking, all other mouse handling is skipped.
3688 return;
3689 }
3690
3691 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3692
3693 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3694 // special purposes, such as detecting events outside of a given Bounds.
3695 for listener in &mut mouse_listeners {
3696 let listener = listener.as_mut().unwrap();
3697 listener(event, DispatchPhase::Capture, self, cx);
3698 if !cx.propagate_event {
3699 break;
3700 }
3701 }
3702
3703 // Bubble phase, where most normal handlers do their work.
3704 if cx.propagate_event {
3705 for listener in mouse_listeners.iter_mut().rev() {
3706 let listener = listener.as_mut().unwrap();
3707 listener(event, DispatchPhase::Bubble, self, cx);
3708 if !cx.propagate_event {
3709 break;
3710 }
3711 }
3712 }
3713
3714 self.rendered_frame.mouse_listeners = mouse_listeners;
3715
3716 if cx.has_active_drag() {
3717 if event.is::<MouseMoveEvent>() {
3718 // If this was a mouse move event, redraw the window so that the
3719 // active drag can follow the mouse cursor.
3720 self.refresh();
3721 } else if event.is::<MouseUpEvent>() {
3722 // If this was a mouse up event, cancel the active drag and redraw
3723 // the window.
3724 cx.active_drag = None;
3725 self.refresh();
3726 }
3727 }
3728 }
3729
3730 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3731 if self.invalidator.is_dirty() {
3732 self.draw(cx).clear();
3733 }
3734
3735 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3736 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3737
3738 let mut keystroke: Option<Keystroke> = None;
3739
3740 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3741 if event.modifiers.number_of_modifiers() == 0
3742 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3743 && !self.pending_modifier.saw_keystroke
3744 {
3745 let key = match self.pending_modifier.modifiers {
3746 modifiers if modifiers.shift => Some("shift"),
3747 modifiers if modifiers.control => Some("control"),
3748 modifiers if modifiers.alt => Some("alt"),
3749 modifiers if modifiers.platform => Some("platform"),
3750 modifiers if modifiers.function => Some("function"),
3751 _ => None,
3752 };
3753 if let Some(key) = key {
3754 keystroke = Some(Keystroke {
3755 key: key.to_string(),
3756 key_char: None,
3757 modifiers: Modifiers::default(),
3758 });
3759 }
3760 }
3761
3762 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3763 && event.modifiers.number_of_modifiers() == 1
3764 {
3765 self.pending_modifier.saw_keystroke = false
3766 }
3767 self.pending_modifier.modifiers = event.modifiers
3768 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3769 self.pending_modifier.saw_keystroke = true;
3770 keystroke = Some(key_down_event.keystroke.clone());
3771 }
3772
3773 let Some(keystroke) = keystroke else {
3774 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3775 return;
3776 };
3777
3778 cx.propagate_event = true;
3779 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3780 if !cx.propagate_event {
3781 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3782 return;
3783 }
3784
3785 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3786 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3787 currently_pending = PendingInput::default();
3788 }
3789
3790 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3791 currently_pending.keystrokes,
3792 keystroke,
3793 &dispatch_path,
3794 );
3795
3796 if !match_result.to_replay.is_empty() {
3797 self.replay_pending_input(match_result.to_replay, cx);
3798 cx.propagate_event = true;
3799 }
3800
3801 if !match_result.pending.is_empty() {
3802 currently_pending.keystrokes = match_result.pending;
3803 currently_pending.focus = self.focus;
3804 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3805 cx.background_executor.timer(Duration::from_secs(1)).await;
3806 cx.update(move |window, cx| {
3807 let Some(currently_pending) = window
3808 .pending_input
3809 .take()
3810 .filter(|pending| pending.focus == window.focus)
3811 else {
3812 return;
3813 };
3814
3815 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3816 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3817
3818 let to_replay = window
3819 .rendered_frame
3820 .dispatch_tree
3821 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3822
3823 window.pending_input_changed(cx);
3824 window.replay_pending_input(to_replay, cx)
3825 })
3826 .log_err();
3827 }));
3828 self.pending_input = Some(currently_pending);
3829 self.pending_input_changed(cx);
3830 cx.propagate_event = false;
3831 return;
3832 }
3833
3834 for binding in match_result.bindings {
3835 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3836 if !cx.propagate_event {
3837 self.dispatch_keystroke_observers(
3838 event,
3839 Some(binding.action),
3840 match_result.context_stack,
3841 cx,
3842 );
3843 self.pending_input_changed(cx);
3844 return;
3845 }
3846 }
3847
3848 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3849 self.pending_input_changed(cx);
3850 }
3851
3852 fn finish_dispatch_key_event(
3853 &mut self,
3854 event: &dyn Any,
3855 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3856 context_stack: Vec<KeyContext>,
3857 cx: &mut App,
3858 ) {
3859 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3860 if !cx.propagate_event {
3861 return;
3862 }
3863
3864 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3865 if !cx.propagate_event {
3866 return;
3867 }
3868
3869 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3870 }
3871
3872 fn pending_input_changed(&mut self, cx: &mut App) {
3873 self.pending_input_observers
3874 .clone()
3875 .retain(&(), |callback| callback(self, cx));
3876 }
3877
3878 fn dispatch_key_down_up_event(
3879 &mut self,
3880 event: &dyn Any,
3881 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3882 cx: &mut App,
3883 ) {
3884 // Capture phase
3885 for node_id in dispatch_path {
3886 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3887
3888 for key_listener in node.key_listeners.clone() {
3889 key_listener(event, DispatchPhase::Capture, self, cx);
3890 if !cx.propagate_event {
3891 return;
3892 }
3893 }
3894 }
3895
3896 // Bubble phase
3897 for node_id in dispatch_path.iter().rev() {
3898 // Handle low level key events
3899 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3900 for key_listener in node.key_listeners.clone() {
3901 key_listener(event, DispatchPhase::Bubble, self, cx);
3902 if !cx.propagate_event {
3903 return;
3904 }
3905 }
3906 }
3907 }
3908
3909 fn dispatch_modifiers_changed_event(
3910 &mut self,
3911 event: &dyn Any,
3912 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3913 cx: &mut App,
3914 ) {
3915 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3916 return;
3917 };
3918 for node_id in dispatch_path.iter().rev() {
3919 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3920 for listener in node.modifiers_changed_listeners.clone() {
3921 listener(event, self, cx);
3922 if !cx.propagate_event {
3923 return;
3924 }
3925 }
3926 }
3927 }
3928
3929 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3930 pub const fn has_pending_keystrokes(&self) -> bool {
3931 self.pending_input.is_some()
3932 }
3933
3934 pub(crate) fn clear_pending_keystrokes(&mut self) {
3935 self.pending_input.take();
3936 }
3937
3938 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3939 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3940 self.pending_input
3941 .as_ref()
3942 .map(|pending_input| pending_input.keystrokes.as_slice())
3943 }
3944
3945 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3946 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3947 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3948
3949 'replay: for replay in replays {
3950 let event = KeyDownEvent {
3951 keystroke: replay.keystroke.clone(),
3952 is_held: false,
3953 };
3954
3955 cx.propagate_event = true;
3956 for binding in replay.bindings {
3957 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3958 if !cx.propagate_event {
3959 self.dispatch_keystroke_observers(
3960 &event,
3961 Some(binding.action),
3962 Vec::default(),
3963 cx,
3964 );
3965 continue 'replay;
3966 }
3967 }
3968
3969 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3970 if !cx.propagate_event {
3971 continue 'replay;
3972 }
3973 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3974 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3975 {
3976 input_handler.dispatch_input(&input, self, cx);
3977 self.platform_window.set_input_handler(input_handler)
3978 }
3979 }
3980 }
3981
3982 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3983 focus_id
3984 .and_then(|focus_id| {
3985 self.rendered_frame
3986 .dispatch_tree
3987 .focusable_node_id(focus_id)
3988 })
3989 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3990 }
3991
3992 fn dispatch_action_on_node(
3993 &mut self,
3994 node_id: DispatchNodeId,
3995 action: &dyn Action,
3996 cx: &mut App,
3997 ) {
3998 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3999
4000 // Capture phase for global actions.
4001 cx.propagate_event = true;
4002 if let Some(mut global_listeners) = cx
4003 .global_action_listeners
4004 .remove(&action.as_any().type_id())
4005 {
4006 for listener in &global_listeners {
4007 listener(action.as_any(), DispatchPhase::Capture, cx);
4008 if !cx.propagate_event {
4009 break;
4010 }
4011 }
4012
4013 global_listeners.extend(
4014 cx.global_action_listeners
4015 .remove(&action.as_any().type_id())
4016 .unwrap_or_default(),
4017 );
4018
4019 cx.global_action_listeners
4020 .insert(action.as_any().type_id(), global_listeners);
4021 }
4022
4023 if !cx.propagate_event {
4024 return;
4025 }
4026
4027 // Capture phase for window actions.
4028 for node_id in &dispatch_path {
4029 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4030 for DispatchActionListener {
4031 action_type,
4032 listener,
4033 } in node.action_listeners.clone()
4034 {
4035 let any_action = action.as_any();
4036 if action_type == any_action.type_id() {
4037 listener(any_action, DispatchPhase::Capture, self, cx);
4038
4039 if !cx.propagate_event {
4040 return;
4041 }
4042 }
4043 }
4044 }
4045
4046 // Bubble phase for window actions.
4047 for node_id in dispatch_path.iter().rev() {
4048 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4049 for DispatchActionListener {
4050 action_type,
4051 listener,
4052 } in node.action_listeners.clone()
4053 {
4054 let any_action = action.as_any();
4055 if action_type == any_action.type_id() {
4056 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4057 listener(any_action, DispatchPhase::Bubble, self, cx);
4058
4059 if !cx.propagate_event {
4060 return;
4061 }
4062 }
4063 }
4064 }
4065
4066 // Bubble phase for global actions.
4067 if let Some(mut global_listeners) = cx
4068 .global_action_listeners
4069 .remove(&action.as_any().type_id())
4070 {
4071 for listener in global_listeners.iter().rev() {
4072 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4073
4074 listener(action.as_any(), DispatchPhase::Bubble, cx);
4075 if !cx.propagate_event {
4076 break;
4077 }
4078 }
4079
4080 global_listeners.extend(
4081 cx.global_action_listeners
4082 .remove(&action.as_any().type_id())
4083 .unwrap_or_default(),
4084 );
4085
4086 cx.global_action_listeners
4087 .insert(action.as_any().type_id(), global_listeners);
4088 }
4089 }
4090
4091 /// Register the given handler to be invoked whenever the global of the given type
4092 /// is updated.
4093 pub fn observe_global<G: Global>(
4094 &mut self,
4095 cx: &mut App,
4096 f: impl Fn(&mut Window, &mut App) + 'static,
4097 ) -> Subscription {
4098 let window_handle = self.handle;
4099 let (subscription, activate) = cx.global_observers.insert(
4100 TypeId::of::<G>(),
4101 Box::new(move |cx| {
4102 window_handle
4103 .update(cx, |_, window, cx| f(window, cx))
4104 .is_ok()
4105 }),
4106 );
4107 cx.defer(move |_| activate());
4108 subscription
4109 }
4110
4111 /// Focus the current window and bring it to the foreground at the platform level.
4112 pub fn activate_window(&self) {
4113 self.platform_window.activate();
4114 }
4115
4116 /// Minimize the current window at the platform level.
4117 pub fn minimize_window(&self) {
4118 self.platform_window.minimize();
4119 }
4120
4121 /// Toggle full screen status on the current window at the platform level.
4122 pub fn toggle_fullscreen(&self) {
4123 self.platform_window.toggle_fullscreen();
4124 }
4125
4126 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4127 pub fn invalidate_character_coordinates(&self) {
4128 self.on_next_frame(|window, cx| {
4129 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4130 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4131 window.platform_window.update_ime_position(bounds);
4132 }
4133 window.platform_window.set_input_handler(input_handler);
4134 }
4135 });
4136 }
4137
4138 /// Present a platform dialog.
4139 /// The provided message will be presented, along with buttons for each answer.
4140 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4141 pub fn prompt<T>(
4142 &mut self,
4143 level: PromptLevel,
4144 message: &str,
4145 detail: Option<&str>,
4146 answers: &[T],
4147 cx: &mut App,
4148 ) -> oneshot::Receiver<usize>
4149 where
4150 T: Clone + Into<PromptButton>,
4151 {
4152 let prompt_builder = cx.prompt_builder.take();
4153 let Some(prompt_builder) = prompt_builder else {
4154 unreachable!("Re-entrant window prompting is not supported by GPUI");
4155 };
4156
4157 let answers = answers
4158 .iter()
4159 .map(|answer| answer.clone().into())
4160 .collect::<Vec<_>>();
4161
4162 let receiver = match &prompt_builder {
4163 PromptBuilder::Default => self
4164 .platform_window
4165 .prompt(level, message, detail, &answers)
4166 .unwrap_or_else(|| {
4167 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4168 }),
4169 PromptBuilder::Custom(_) => {
4170 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4171 }
4172 };
4173
4174 cx.prompt_builder = Some(prompt_builder);
4175
4176 receiver
4177 }
4178
4179 fn build_custom_prompt(
4180 &mut self,
4181 prompt_builder: &PromptBuilder,
4182 level: PromptLevel,
4183 message: &str,
4184 detail: Option<&str>,
4185 answers: &[PromptButton],
4186 cx: &mut App,
4187 ) -> oneshot::Receiver<usize> {
4188 let (sender, receiver) = oneshot::channel();
4189 let handle = PromptHandle::new(sender);
4190 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4191 self.prompt = Some(handle);
4192 receiver
4193 }
4194
4195 /// Returns the current context stack.
4196 pub fn context_stack(&self) -> Vec<KeyContext> {
4197 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4198 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4199 dispatch_tree
4200 .dispatch_path(node_id)
4201 .iter()
4202 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4203 .collect()
4204 }
4205
4206 /// Returns all available actions for the focused element.
4207 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4208 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4209 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4210 for action_type in cx.global_action_listeners.keys() {
4211 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4212 let action = cx.actions.build_action_type(action_type).ok();
4213 if let Some(action) = action {
4214 actions.insert(ix, action);
4215 }
4216 }
4217 }
4218 actions
4219 }
4220
4221 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4222 /// returned in the order they were added. For display, the last binding should take precedence.
4223 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4224 self.rendered_frame
4225 .dispatch_tree
4226 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4227 }
4228
4229 /// Returns the highest precedence key binding that invokes an action on the currently focused
4230 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4231 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4232 self.rendered_frame
4233 .dispatch_tree
4234 .highest_precedence_binding_for_action(
4235 action,
4236 &self.rendered_frame.dispatch_tree.context_stack,
4237 )
4238 }
4239
4240 /// Returns the key bindings for an action in a context.
4241 pub fn bindings_for_action_in_context(
4242 &self,
4243 action: &dyn Action,
4244 context: KeyContext,
4245 ) -> Vec<KeyBinding> {
4246 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4247 dispatch_tree.bindings_for_action(action, &[context])
4248 }
4249
4250 /// Returns the highest precedence key binding for an action in a context. This is more
4251 /// efficient than getting the last result of `bindings_for_action_in_context`.
4252 pub fn highest_precedence_binding_for_action_in_context(
4253 &self,
4254 action: &dyn Action,
4255 context: KeyContext,
4256 ) -> Option<KeyBinding> {
4257 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4258 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4259 }
4260
4261 /// Returns any bindings that would invoke an action on the given focus handle if it were
4262 /// focused. Bindings are returned in the order they were added. For display, the last binding
4263 /// should take precedence.
4264 pub fn bindings_for_action_in(
4265 &self,
4266 action: &dyn Action,
4267 focus_handle: &FocusHandle,
4268 ) -> Vec<KeyBinding> {
4269 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4270 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4271 return vec![];
4272 };
4273 dispatch_tree.bindings_for_action(action, &context_stack)
4274 }
4275
4276 /// Returns the highest precedence key binding that would invoke an action on the given focus
4277 /// handle if it were focused. This is more efficient than getting the last result of
4278 /// `bindings_for_action_in`.
4279 pub fn highest_precedence_binding_for_action_in(
4280 &self,
4281 action: &dyn Action,
4282 focus_handle: &FocusHandle,
4283 ) -> Option<KeyBinding> {
4284 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4285 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4286 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4287 }
4288
4289 fn context_stack_for_focus_handle(
4290 &self,
4291 focus_handle: &FocusHandle,
4292 ) -> Option<Vec<KeyContext>> {
4293 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4294 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4295 let context_stack: Vec<_> = dispatch_tree
4296 .dispatch_path(node_id)
4297 .into_iter()
4298 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4299 .collect();
4300 Some(context_stack)
4301 }
4302
4303 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4304 pub fn listener_for<V: Render, E>(
4305 &self,
4306 view: &Entity<V>,
4307 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4308 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4309 let view = view.downgrade();
4310 move |e: &E, window: &mut Window, cx: &mut App| {
4311 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4312 }
4313 }
4314
4315 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4316 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4317 &self,
4318 view: &Entity<V>,
4319 f: Callback,
4320 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4321 let view = view.downgrade();
4322 move |window: &mut Window, cx: &mut App| {
4323 view.update(cx, |view, cx| f(view, window, cx)).ok();
4324 }
4325 }
4326
4327 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4328 /// If the callback returns false, the window won't be closed.
4329 pub fn on_window_should_close(
4330 &self,
4331 cx: &App,
4332 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4333 ) {
4334 let mut cx = self.to_async(cx);
4335 self.platform_window.on_should_close(Box::new(move || {
4336 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4337 }))
4338 }
4339
4340 /// Register an action listener on the window for the next frame. The type of action
4341 /// is determined by the first parameter of the given listener. When the next frame is rendered
4342 /// the listener will be cleared.
4343 ///
4344 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4345 /// a specific need to register a global listener.
4346 pub fn on_action(
4347 &mut self,
4348 action_type: TypeId,
4349 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4350 ) {
4351 self.next_frame
4352 .dispatch_tree
4353 .on_action(action_type, Rc::new(listener));
4354 }
4355
4356 /// Register an action listener on the window for the next frame if the condition is true.
4357 /// The type of action is determined by the first parameter of the given listener.
4358 /// When the next frame is rendered the listener will be cleared.
4359 ///
4360 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4361 /// a specific need to register a global listener.
4362 pub fn on_action_when(
4363 &mut self,
4364 condition: bool,
4365 action_type: TypeId,
4366 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4367 ) {
4368 if condition {
4369 self.next_frame
4370 .dispatch_tree
4371 .on_action(action_type, Rc::new(listener));
4372 }
4373 }
4374
4375 /// Read information about the GPU backing this window.
4376 /// Currently returns None on Mac and Windows.
4377 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4378 self.platform_window.gpu_specs()
4379 }
4380
4381 /// Perform titlebar double-click action.
4382 /// This is macOS specific.
4383 pub fn titlebar_double_click(&self) {
4384 self.platform_window.titlebar_double_click();
4385 }
4386
4387 /// Gets the window's title at the platform level.
4388 /// This is macOS specific.
4389 pub fn window_title(&self) -> String {
4390 self.platform_window.get_title()
4391 }
4392
4393 /// Returns a list of all tabbed windows and their titles.
4394 /// This is macOS specific.
4395 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4396 self.platform_window.tabbed_windows()
4397 }
4398
4399 /// Returns the tab bar visibility.
4400 /// This is macOS specific.
4401 pub fn tab_bar_visible(&self) -> bool {
4402 self.platform_window.tab_bar_visible()
4403 }
4404
4405 /// Merges all open windows into a single tabbed window.
4406 /// This is macOS specific.
4407 pub fn merge_all_windows(&self) {
4408 self.platform_window.merge_all_windows()
4409 }
4410
4411 /// Moves the tab to a new containing window.
4412 /// This is macOS specific.
4413 pub fn move_tab_to_new_window(&self) {
4414 self.platform_window.move_tab_to_new_window()
4415 }
4416
4417 /// Shows or hides the window tab overview.
4418 /// This is macOS specific.
4419 pub fn toggle_window_tab_overview(&self) {
4420 self.platform_window.toggle_window_tab_overview()
4421 }
4422
4423 /// Sets the tabbing identifier for the window.
4424 /// This is macOS specific.
4425 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4426 self.platform_window
4427 .set_tabbing_identifier(tabbing_identifier)
4428 }
4429
4430 /// Toggles the inspector mode on this window.
4431 #[cfg(any(feature = "inspector", debug_assertions))]
4432 pub fn toggle_inspector(&mut self, cx: &mut App) {
4433 self.inspector = match self.inspector {
4434 None => Some(cx.new(|_| Inspector::new())),
4435 Some(_) => None,
4436 };
4437 self.refresh();
4438 }
4439
4440 /// Returns true if the window is in inspector mode.
4441 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4442 #[cfg(any(feature = "inspector", debug_assertions))]
4443 {
4444 if let Some(inspector) = &self.inspector {
4445 return inspector.read(_cx).is_picking();
4446 }
4447 }
4448 false
4449 }
4450
4451 /// Executes the provided function with mutable access to an inspector state.
4452 #[cfg(any(feature = "inspector", debug_assertions))]
4453 pub fn with_inspector_state<T: 'static, R>(
4454 &mut self,
4455 _inspector_id: Option<&crate::InspectorElementId>,
4456 cx: &mut App,
4457 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4458 ) -> R {
4459 if let Some(inspector_id) = _inspector_id
4460 && let Some(inspector) = &self.inspector
4461 {
4462 let inspector = inspector.clone();
4463 let active_element_id = inspector.read(cx).active_element_id();
4464 if Some(inspector_id) == active_element_id {
4465 return inspector.update(cx, |inspector, _cx| {
4466 inspector.with_active_element_state(self, f)
4467 });
4468 }
4469 }
4470 f(&mut None, self)
4471 }
4472
4473 #[cfg(any(feature = "inspector", debug_assertions))]
4474 pub(crate) fn build_inspector_element_id(
4475 &mut self,
4476 path: crate::InspectorElementPath,
4477 ) -> crate::InspectorElementId {
4478 self.invalidator.debug_assert_paint_or_prepaint();
4479 let path = Rc::new(path);
4480 let next_instance_id = self
4481 .next_frame
4482 .next_inspector_instance_ids
4483 .entry(path.clone())
4484 .or_insert(0);
4485 let instance_id = *next_instance_id;
4486 *next_instance_id += 1;
4487 crate::InspectorElementId { path, instance_id }
4488 }
4489
4490 #[cfg(any(feature = "inspector", debug_assertions))]
4491 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4492 if let Some(inspector) = self.inspector.take() {
4493 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4494 inspector_element.prepaint_as_root(
4495 point(self.viewport_size.width - inspector_width, px(0.0)),
4496 size(inspector_width, self.viewport_size.height).into(),
4497 self,
4498 cx,
4499 );
4500 self.inspector = Some(inspector);
4501 Some(inspector_element)
4502 } else {
4503 None
4504 }
4505 }
4506
4507 #[cfg(any(feature = "inspector", debug_assertions))]
4508 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4509 if let Some(mut inspector_element) = inspector_element {
4510 inspector_element.paint(self, cx);
4511 };
4512 }
4513
4514 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4515 /// inspect UI elements by clicking on them.
4516 #[cfg(any(feature = "inspector", debug_assertions))]
4517 pub fn insert_inspector_hitbox(
4518 &mut self,
4519 hitbox_id: HitboxId,
4520 inspector_id: Option<&crate::InspectorElementId>,
4521 cx: &App,
4522 ) {
4523 self.invalidator.debug_assert_paint_or_prepaint();
4524 if !self.is_inspector_picking(cx) {
4525 return;
4526 }
4527 if let Some(inspector_id) = inspector_id {
4528 self.next_frame
4529 .inspector_hitboxes
4530 .insert(hitbox_id, inspector_id.clone());
4531 }
4532 }
4533
4534 #[cfg(any(feature = "inspector", debug_assertions))]
4535 fn paint_inspector_hitbox(&mut self, cx: &App) {
4536 if let Some(inspector) = self.inspector.as_ref() {
4537 let inspector = inspector.read(cx);
4538 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4539 && let Some(hitbox) = self
4540 .next_frame
4541 .hitboxes
4542 .iter()
4543 .find(|hitbox| hitbox.id == hitbox_id)
4544 {
4545 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4546 }
4547 }
4548 }
4549
4550 #[cfg(any(feature = "inspector", debug_assertions))]
4551 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4552 let Some(inspector) = self.inspector.clone() else {
4553 return;
4554 };
4555 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4556 inspector.update(cx, |inspector, _cx| {
4557 if let Some((_, inspector_id)) =
4558 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4559 {
4560 inspector.hover(inspector_id, self);
4561 }
4562 });
4563 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4564 inspector.update(cx, |inspector, _cx| {
4565 if let Some((_, inspector_id)) =
4566 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4567 {
4568 inspector.select(inspector_id, self);
4569 }
4570 });
4571 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4572 // This should be kept in sync with SCROLL_LINES in x11 platform.
4573 const SCROLL_LINES: f32 = 3.0;
4574 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4575 let delta_y = event
4576 .delta
4577 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4578 .y;
4579 if let Some(inspector) = self.inspector.clone() {
4580 inspector.update(cx, |inspector, _cx| {
4581 if let Some(depth) = inspector.pick_depth.as_mut() {
4582 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4583 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4584 if *depth < 0.0 {
4585 *depth = 0.0;
4586 } else if *depth > max_depth {
4587 *depth = max_depth;
4588 }
4589 if let Some((_, inspector_id)) =
4590 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4591 {
4592 inspector.set_active_element_id(inspector_id, self);
4593 }
4594 }
4595 });
4596 }
4597 }
4598 }
4599
4600 #[cfg(any(feature = "inspector", debug_assertions))]
4601 fn hovered_inspector_hitbox(
4602 &self,
4603 inspector: &Inspector,
4604 frame: &Frame,
4605 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4606 if let Some(pick_depth) = inspector.pick_depth {
4607 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4608 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4609 let skip_count = (depth as usize).min(max_skipped);
4610 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4611 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4612 return Some((*hitbox_id, inspector_id.clone()));
4613 }
4614 }
4615 }
4616 None
4617 }
4618
4619 /// For testing: set the current modifier keys state.
4620 /// This does not generate any events.
4621 #[cfg(any(test, feature = "test-support"))]
4622 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4623 self.modifiers = modifiers;
4624 }
4625}
4626
4627// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4628slotmap::new_key_type! {
4629 /// A unique identifier for a window.
4630 pub struct WindowId;
4631}
4632
4633impl WindowId {
4634 /// Converts this window ID to a `u64`.
4635 pub fn as_u64(&self) -> u64 {
4636 self.0.as_ffi()
4637 }
4638}
4639
4640impl From<u64> for WindowId {
4641 fn from(value: u64) -> Self {
4642 WindowId(slotmap::KeyData::from_ffi(value))
4643 }
4644}
4645
4646/// A handle to a window with a specific root view type.
4647/// Note that this does not keep the window alive on its own.
4648#[derive(Deref, DerefMut)]
4649pub struct WindowHandle<V> {
4650 #[deref]
4651 #[deref_mut]
4652 pub(crate) any_handle: AnyWindowHandle,
4653 state_type: PhantomData<fn(V) -> V>,
4654}
4655
4656impl<V> Debug for WindowHandle<V> {
4657 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4658 f.debug_struct("WindowHandle")
4659 .field("any_handle", &self.any_handle.id.as_u64())
4660 .finish()
4661 }
4662}
4663
4664impl<V: 'static + Render> WindowHandle<V> {
4665 /// Creates a new handle from a window ID.
4666 /// This does not check if the root type of the window is `V`.
4667 pub fn new(id: WindowId) -> Self {
4668 WindowHandle {
4669 any_handle: AnyWindowHandle {
4670 id,
4671 state_type: TypeId::of::<V>(),
4672 },
4673 state_type: PhantomData,
4674 }
4675 }
4676
4677 /// Get the root view out of this window.
4678 ///
4679 /// This will fail if the window is closed or if the root view's type does not match `V`.
4680 #[cfg(any(test, feature = "test-support"))]
4681 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4682 where
4683 C: AppContext,
4684 {
4685 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4686 root_view
4687 .downcast::<V>()
4688 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4689 }))
4690 }
4691
4692 /// Updates the root view of this window.
4693 ///
4694 /// This will fail if the window has been closed or if the root view's type does not match
4695 pub fn update<C, R>(
4696 &self,
4697 cx: &mut C,
4698 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4699 ) -> Result<R>
4700 where
4701 C: AppContext,
4702 {
4703 cx.update_window(self.any_handle, |root_view, window, cx| {
4704 let view = root_view
4705 .downcast::<V>()
4706 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4707
4708 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4709 })?
4710 }
4711
4712 /// Read the root view out of this window.
4713 ///
4714 /// This will fail if the window is closed or if the root view's type does not match `V`.
4715 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4716 let x = cx
4717 .windows
4718 .get(self.id)
4719 .and_then(|window| {
4720 window
4721 .as_ref()
4722 .and_then(|window| window.root.clone())
4723 .map(|root_view| root_view.downcast::<V>())
4724 })
4725 .context("window not found")?
4726 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4727
4728 Ok(x.read(cx))
4729 }
4730
4731 /// Read the root view out of this window, with a callback
4732 ///
4733 /// This will fail if the window is closed or if the root view's type does not match `V`.
4734 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4735 where
4736 C: AppContext,
4737 {
4738 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4739 }
4740
4741 /// Read the root view pointer off of this window.
4742 ///
4743 /// This will fail if the window is closed or if the root view's type does not match `V`.
4744 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4745 where
4746 C: AppContext,
4747 {
4748 cx.read_window(self, |root_view, _cx| root_view)
4749 }
4750
4751 /// Check if this window is 'active'.
4752 ///
4753 /// Will return `None` if the window is closed or currently
4754 /// borrowed.
4755 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4756 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4757 .ok()
4758 }
4759}
4760
4761impl<V> Copy for WindowHandle<V> {}
4762
4763impl<V> Clone for WindowHandle<V> {
4764 fn clone(&self) -> Self {
4765 *self
4766 }
4767}
4768
4769impl<V> PartialEq for WindowHandle<V> {
4770 fn eq(&self, other: &Self) -> bool {
4771 self.any_handle == other.any_handle
4772 }
4773}
4774
4775impl<V> Eq for WindowHandle<V> {}
4776
4777impl<V> Hash for WindowHandle<V> {
4778 fn hash<H: Hasher>(&self, state: &mut H) {
4779 self.any_handle.hash(state);
4780 }
4781}
4782
4783impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4784 fn from(val: WindowHandle<V>) -> Self {
4785 val.any_handle
4786 }
4787}
4788
4789/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4790#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4791pub struct AnyWindowHandle {
4792 pub(crate) id: WindowId,
4793 state_type: TypeId,
4794}
4795
4796impl AnyWindowHandle {
4797 /// Get the ID of this window.
4798 pub const fn window_id(&self) -> WindowId {
4799 self.id
4800 }
4801
4802 /// Attempt to convert this handle to a window handle with a specific root view type.
4803 /// If the types do not match, this will return `None`.
4804 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4805 if TypeId::of::<T>() == self.state_type {
4806 Some(WindowHandle {
4807 any_handle: *self,
4808 state_type: PhantomData,
4809 })
4810 } else {
4811 None
4812 }
4813 }
4814
4815 /// Updates the state of the root view of this window.
4816 ///
4817 /// This will fail if the window has been closed.
4818 pub fn update<C, R>(
4819 self,
4820 cx: &mut C,
4821 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4822 ) -> Result<R>
4823 where
4824 C: AppContext,
4825 {
4826 cx.update_window(self, update)
4827 }
4828
4829 /// Read the state of the root view of this window.
4830 ///
4831 /// This will fail if the window has been closed.
4832 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4833 where
4834 C: AppContext,
4835 T: 'static,
4836 {
4837 let view = self
4838 .downcast::<T>()
4839 .context("the type of the window's root view has changed")?;
4840
4841 cx.read_window(&view, read)
4842 }
4843}
4844
4845impl HasWindowHandle for Window {
4846 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4847 self.platform_window.window_handle()
4848 }
4849}
4850
4851impl HasDisplayHandle for Window {
4852 fn display_handle(
4853 &self,
4854 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4855 self.platform_window.display_handle()
4856 }
4857}
4858
4859/// An identifier for an [`Element`].
4860///
4861/// Can be constructed with a string, a number, or both, as well
4862/// as other internal representations.
4863#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4864pub enum ElementId {
4865 /// The ID of a View element
4866 View(EntityId),
4867 /// An integer ID.
4868 Integer(u64),
4869 /// A string based ID.
4870 Name(SharedString),
4871 /// A UUID.
4872 Uuid(Uuid),
4873 /// An ID that's equated with a focus handle.
4874 FocusHandle(FocusId),
4875 /// A combination of a name and an integer.
4876 NamedInteger(SharedString, u64),
4877 /// A path.
4878 Path(Arc<std::path::Path>),
4879 /// A code location.
4880 CodeLocation(core::panic::Location<'static>),
4881 /// A labeled child of an element.
4882 NamedChild(Box<ElementId>, SharedString),
4883}
4884
4885impl ElementId {
4886 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4887 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4888 Self::NamedInteger(name.into(), integer as u64)
4889 }
4890}
4891
4892impl Display for ElementId {
4893 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4894 match self {
4895 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4896 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4897 ElementId::Name(name) => write!(f, "{}", name)?,
4898 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4899 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4900 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4901 ElementId::Path(path) => write!(f, "{}", path.display())?,
4902 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4903 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4904 }
4905
4906 Ok(())
4907 }
4908}
4909
4910impl TryInto<SharedString> for ElementId {
4911 type Error = anyhow::Error;
4912
4913 fn try_into(self) -> anyhow::Result<SharedString> {
4914 if let ElementId::Name(name) = self {
4915 Ok(name)
4916 } else {
4917 anyhow::bail!("element id is not string")
4918 }
4919 }
4920}
4921
4922impl From<usize> for ElementId {
4923 fn from(id: usize) -> Self {
4924 ElementId::Integer(id as u64)
4925 }
4926}
4927
4928impl From<i32> for ElementId {
4929 fn from(id: i32) -> Self {
4930 Self::Integer(id as u64)
4931 }
4932}
4933
4934impl From<SharedString> for ElementId {
4935 fn from(name: SharedString) -> Self {
4936 ElementId::Name(name)
4937 }
4938}
4939
4940impl From<Arc<std::path::Path>> for ElementId {
4941 fn from(path: Arc<std::path::Path>) -> Self {
4942 ElementId::Path(path)
4943 }
4944}
4945
4946impl From<&'static str> for ElementId {
4947 fn from(name: &'static str) -> Self {
4948 ElementId::Name(name.into())
4949 }
4950}
4951
4952impl<'a> From<&'a FocusHandle> for ElementId {
4953 fn from(handle: &'a FocusHandle) -> Self {
4954 ElementId::FocusHandle(handle.id)
4955 }
4956}
4957
4958impl From<(&'static str, EntityId)> for ElementId {
4959 fn from((name, id): (&'static str, EntityId)) -> Self {
4960 ElementId::NamedInteger(name.into(), id.as_u64())
4961 }
4962}
4963
4964impl From<(&'static str, usize)> for ElementId {
4965 fn from((name, id): (&'static str, usize)) -> Self {
4966 ElementId::NamedInteger(name.into(), id as u64)
4967 }
4968}
4969
4970impl From<(SharedString, usize)> for ElementId {
4971 fn from((name, id): (SharedString, usize)) -> Self {
4972 ElementId::NamedInteger(name, id as u64)
4973 }
4974}
4975
4976impl From<(&'static str, u64)> for ElementId {
4977 fn from((name, id): (&'static str, u64)) -> Self {
4978 ElementId::NamedInteger(name.into(), id)
4979 }
4980}
4981
4982impl From<Uuid> for ElementId {
4983 fn from(value: Uuid) -> Self {
4984 Self::Uuid(value)
4985 }
4986}
4987
4988impl From<(&'static str, u32)> for ElementId {
4989 fn from((name, id): (&'static str, u32)) -> Self {
4990 ElementId::NamedInteger(name.into(), id.into())
4991 }
4992}
4993
4994impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4995 fn from((id, name): (ElementId, T)) -> Self {
4996 ElementId::NamedChild(Box::new(id), name.into())
4997 }
4998}
4999
5000impl From<&'static core::panic::Location<'static>> for ElementId {
5001 fn from(location: &'static core::panic::Location<'static>) -> Self {
5002 ElementId::CodeLocation(*location)
5003 }
5004}
5005
5006/// A rectangle to be rendered in the window at the given position and size.
5007/// Passed as an argument [`Window::paint_quad`].
5008#[derive(Clone)]
5009pub struct PaintQuad {
5010 /// The bounds of the quad within the window.
5011 pub bounds: Bounds<Pixels>,
5012 /// The radii of the quad's corners.
5013 pub corner_radii: Corners<Pixels>,
5014 /// The background color of the quad.
5015 pub background: Background,
5016 /// The widths of the quad's borders.
5017 pub border_widths: Edges<Pixels>,
5018 /// The color of the quad's borders.
5019 pub border_color: Hsla,
5020 /// The style of the quad's borders.
5021 pub border_style: BorderStyle,
5022}
5023
5024impl PaintQuad {
5025 /// Sets the corner radii of the quad.
5026 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5027 PaintQuad {
5028 corner_radii: corner_radii.into(),
5029 ..self
5030 }
5031 }
5032
5033 /// Sets the border widths of the quad.
5034 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5035 PaintQuad {
5036 border_widths: border_widths.into(),
5037 ..self
5038 }
5039 }
5040
5041 /// Sets the border color of the quad.
5042 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5043 PaintQuad {
5044 border_color: border_color.into(),
5045 ..self
5046 }
5047 }
5048
5049 /// Sets the background color of the quad.
5050 pub fn background(self, background: impl Into<Background>) -> Self {
5051 PaintQuad {
5052 background: background.into(),
5053 ..self
5054 }
5055 }
5056}
5057
5058/// Creates a quad with the given parameters.
5059pub fn quad(
5060 bounds: Bounds<Pixels>,
5061 corner_radii: impl Into<Corners<Pixels>>,
5062 background: impl Into<Background>,
5063 border_widths: impl Into<Edges<Pixels>>,
5064 border_color: impl Into<Hsla>,
5065 border_style: BorderStyle,
5066) -> PaintQuad {
5067 PaintQuad {
5068 bounds,
5069 corner_radii: corner_radii.into(),
5070 background: background.into(),
5071 border_widths: border_widths.into(),
5072 border_color: border_color.into(),
5073 border_style,
5074 }
5075}
5076
5077/// Creates a filled quad with the given bounds and background color.
5078pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5079 PaintQuad {
5080 bounds: bounds.into(),
5081 corner_radii: (0.).into(),
5082 background: background.into(),
5083 border_widths: (0.).into(),
5084 border_color: transparent_black(),
5085 border_style: BorderStyle::default(),
5086 }
5087}
5088
5089/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5090pub fn outline(
5091 bounds: impl Into<Bounds<Pixels>>,
5092 border_color: impl Into<Hsla>,
5093 border_style: BorderStyle,
5094) -> PaintQuad {
5095 PaintQuad {
5096 bounds: bounds.into(),
5097 corner_radii: (0.).into(),
5098 background: transparent_black().into(),
5099 border_widths: (1.).into(),
5100 border_color: border_color.into(),
5101 border_style,
5102 }
5103}