qa.rs

  1//! Quality assessment of predictions using LLM-as-a-judge.
  2//!
  3//! This module uses LLM Batch APIs to evaluate prediction quality.
  4//! Caching is handled by the underlying client.
  5
  6use crate::BatchProvider;
  7use crate::anthropic_client::AnthropicClient;
  8use crate::example::Example;
  9use crate::format_prompt::extract_cursor_excerpt_from_example;
 10use crate::openai_client::OpenAiClient;
 11use crate::paths::LLM_CACHE_DB;
 12use crate::word_diff::unified_to_word_diff;
 13use anyhow::Result;
 14use serde::{Deserialize, Serialize};
 15use std::io::{BufWriter, Write};
 16use std::path::PathBuf;
 17
 18const PROMPT_TEMPLATE: &str = include_str!("prompts/qa.md");
 19
 20/// Arguments for the QA command.
 21#[derive(Debug, Clone, clap::Args)]
 22pub struct QaArgs {
 23    /// Use synchronous API instead of batch
 24    #[clap(long)]
 25    pub no_batch: bool,
 26
 27    /// Wait for batch to complete (polls every 30s)
 28    #[clap(long)]
 29    pub wait: bool,
 30
 31    /// Which LLM provider to use (anthropic or openai)
 32    #[clap(long, default_value = "anthropic")]
 33    pub backend: BatchProvider,
 34}
 35
 36fn model_for_backend(backend: BatchProvider) -> &'static str {
 37    match backend {
 38        BatchProvider::Anthropic => "claude-sonnet-4-5",
 39        BatchProvider::Openai => "gpt-5.2",
 40    }
 41}
 42
 43/// Result of QA evaluation for a single prediction.
 44#[derive(Debug, Clone, Serialize, Deserialize)]
 45pub struct QaResult {
 46    /// Free-form reasoning from the judge.
 47    #[serde(default, skip_serializing_if = "Option::is_none")]
 48    pub reasoning: Option<String>,
 49
 50    /// Does the prediction undo/revert changes the user intentionally made?
 51    #[serde(default, skip_serializing_if = "Option::is_none")]
 52    pub reverts_edits: Option<bool>,
 53
 54    /// Confidence score (1-5) for user acceptance likelihood.
 55    #[serde(default, skip_serializing_if = "Option::is_none")]
 56    pub confidence: Option<u8>,
 57
 58    /// The raw response from the model.
 59    #[serde(default, skip_serializing_if = "Option::is_none")]
 60    pub response: Option<String>,
 61
 62    /// Error message if parsing or request failed.
 63    #[serde(default, skip_serializing_if = "Option::is_none")]
 64    pub error: Option<String>,
 65}
 66
 67/// Build the assessment prompt for an example.
 68pub fn build_prompt(example: &Example) -> Option<String> {
 69    let prediction = example.predictions.first()?;
 70    let actual_patch = prediction.actual_patch.as_ref()?;
 71    let prompt_inputs = example.prompt_inputs.as_ref()?;
 72
 73    let actual_patch_word_diff = unified_to_word_diff(actual_patch);
 74
 75    // Format cursor excerpt (reuse from format_prompt)
 76    let cursor_excerpt = extract_cursor_excerpt_from_example(example)?;
 77
 78    let mut edit_history = String::new();
 79    for event in &prompt_inputs.edit_history {
 80        match event.as_ref() {
 81            zeta_prompt::Event::BufferChange {
 82                path,
 83                old_path,
 84                diff,
 85                predicted: _,
 86                in_open_source_repo: _,
 87            } => {
 88                edit_history.push_str(&format!("--- a{}\n", old_path.display()));
 89                edit_history.push_str(&format!("+++ b{}\n", path.display()));
 90                let diff_word_diff = unified_to_word_diff(diff);
 91                edit_history.push_str(&diff_word_diff);
 92                edit_history.push_str("\n\n");
 93            }
 94        }
 95    }
 96
 97    Some(
 98        PROMPT_TEMPLATE
 99            .replace("{edit_history}", &edit_history)
100            .replace("{cursor_excerpt}", &cursor_excerpt)
101            .replace("{actual_patch_word_diff}", &actual_patch_word_diff),
102    )
103}
104
105/// Extract a code block from a response.
106fn extract_codeblock(response: &str) -> Option<String> {
107    let lines: Vec<&str> = response.lines().collect();
108    for (i, line) in lines.iter().enumerate() {
109        if line.starts_with("```") {
110            let start = i + 1;
111            for (j, end_line) in lines[start..].iter().enumerate() {
112                if end_line.starts_with("```") {
113                    return Some(lines[start..start + j].join("\n"));
114                }
115            }
116            return Some(lines[start..].join("\n"));
117        }
118    }
119    None
120}
121
122/// Parse the LLM response into a QaResult.
123fn parse_response(response_text: &str) -> QaResult {
124    let codeblock = extract_codeblock(response_text);
125
126    // Try parsing codeblock first, then fall back to raw response
127    for text_to_parse in [codeblock.as_deref(), Some(response_text.trim())] {
128        let Some(text) = text_to_parse else {
129            continue;
130        };
131
132        if let Ok(parsed) = serde_json::from_str::<serde_json::Value>(text) {
133            return QaResult {
134                reasoning: parsed
135                    .get("reasoning")
136                    .and_then(|v| v.as_str())
137                    .map(|s| s.to_string()),
138                reverts_edits: parsed.get("reverts_edits").and_then(|v| v.as_bool()),
139                confidence: parsed
140                    .get("confidence")
141                    .and_then(|v| v.as_u64())
142                    .map(|v| v as u8),
143                response: Some(response_text.to_string()),
144                error: None,
145            };
146        }
147    }
148
149    // If all parsing attempts fail, return error
150    QaResult {
151        reasoning: Some(response_text.to_string()),
152        reverts_edits: None,
153        confidence: None,
154        response: Some(response_text.to_string()),
155        error: Some("Could not parse JSON from response".to_string()),
156    }
157}
158
159enum QaClient {
160    Anthropic(AnthropicClient),
161    OpenAi(OpenAiClient),
162}
163
164impl QaClient {
165    async fn generate(&self, model: &str, max_tokens: u64, prompt: &str) -> Result<Option<String>> {
166        match self {
167            QaClient::Anthropic(client) => {
168                let messages = vec![anthropic::Message {
169                    role: anthropic::Role::User,
170                    content: vec![anthropic::RequestContent::Text {
171                        text: prompt.to_string(),
172                        cache_control: None,
173                    }],
174                }];
175                let response = client.generate(model, max_tokens, messages).await?;
176                Ok(response.map(|r| {
177                    r.content
178                        .iter()
179                        .filter_map(|c| match c {
180                            anthropic::ResponseContent::Text { text } => Some(text.as_str()),
181                            _ => None,
182                        })
183                        .collect::<Vec<_>>()
184                        .join("")
185                }))
186            }
187            QaClient::OpenAi(client) => {
188                let messages = vec![open_ai::RequestMessage::User {
189                    content: open_ai::MessageContent::Plain(prompt.to_string()),
190                }];
191                let response = client.generate(model, max_tokens, messages).await?;
192                Ok(response.map(|r| {
193                    r.choices
194                        .into_iter()
195                        .filter_map(|choice| match choice.message {
196                            open_ai::RequestMessage::Assistant { content, .. } => {
197                                content.map(|c| match c {
198                                    open_ai::MessageContent::Plain(text) => text,
199                                    open_ai::MessageContent::Multipart(parts) => parts
200                                        .into_iter()
201                                        .filter_map(|p| match p {
202                                            open_ai::MessagePart::Text { text } => Some(text),
203                                            _ => None,
204                                        })
205                                        .collect::<Vec<_>>()
206                                        .join(""),
207                                })
208                            }
209                            _ => None,
210                        })
211                        .collect::<Vec<_>>()
212                        .join("")
213                }))
214            }
215        }
216    }
217
218    async fn sync_batches(&self) -> Result<()> {
219        match self {
220            QaClient::Anthropic(client) => client.sync_batches().await,
221            QaClient::OpenAi(client) => client.sync_batches().await,
222        }
223    }
224}
225
226/// Run the QA evaluation on a set of examples.
227pub async fn run_qa(
228    examples: &mut [Example],
229    args: &QaArgs,
230    output_path: Option<&PathBuf>,
231) -> Result<()> {
232    let model = model_for_backend(args.backend);
233    let client = match args.backend {
234        BatchProvider::Anthropic => {
235            if args.no_batch {
236                QaClient::Anthropic(AnthropicClient::plain()?)
237            } else {
238                QaClient::Anthropic(AnthropicClient::batch(&LLM_CACHE_DB)?)
239            }
240        }
241        BatchProvider::Openai => {
242            if args.no_batch {
243                QaClient::OpenAi(OpenAiClient::plain()?)
244            } else {
245                QaClient::OpenAi(OpenAiClient::batch(&LLM_CACHE_DB)?)
246            }
247        }
248    };
249
250    eprintln!(
251        "Using model: {}, backend: {:?}, batching: {}",
252        model, args.backend, !args.no_batch
253    );
254
255    // First pass: send requests (client handles caching internally)
256    let mut prompts: Vec<(usize, String)> = Vec::new();
257    let mut skipped_count = 0;
258
259    for (idx, example) in examples.iter().enumerate() {
260        let Some(prompt) = build_prompt(example) else {
261            skipped_count += 1;
262            continue;
263        };
264        prompts.push((idx, prompt));
265    }
266
267    if skipped_count > 0 {
268        eprintln!("Skipping {} items with missing actual_patch", skipped_count);
269    }
270
271    eprintln!("{} items to process", prompts.len());
272
273    // Process all items
274    let mut results: Vec<(usize, Option<QaResult>)> = Vec::new();
275
276    if args.no_batch {
277        // Synchronous processing
278        for (i, (idx, prompt)) in prompts.iter().enumerate() {
279            eprint!("\rProcessing {}/{}", i + 1, prompts.len());
280
281            let response = client.generate(model, 1024, prompt).await?;
282            let result = response.map(|text| parse_response(&text));
283            results.push((*idx, result));
284        }
285        eprintln!();
286    } else {
287        // Queue all for batching
288        for (idx, prompt) in &prompts {
289            let response = client.generate(model, 1024, prompt).await?;
290            let result = response.map(|text| parse_response(&text));
291            results.push((*idx, result));
292        }
293
294        // Sync batches (upload pending, download finished)
295        client.sync_batches().await?;
296
297        if args.wait {
298            eprintln!("Waiting for batch to complete...");
299            loop {
300                std::thread::sleep(std::time::Duration::from_secs(30));
301                client.sync_batches().await?;
302
303                // Re-check all items that didn't have results
304                let mut all_done = true;
305                for (result_idx, (idx, prompt)) in prompts.iter().enumerate() {
306                    if results[result_idx].1.is_none() {
307                        let response = client.generate(model, 1024, prompt).await?;
308                        if let Some(text) = response {
309                            results[result_idx] = (*idx, Some(parse_response(&text)));
310                        } else {
311                            all_done = false;
312                        }
313                    }
314                }
315
316                let done_count = results.iter().filter(|(_, r)| r.is_some()).count();
317                if all_done {
318                    break;
319                }
320                eprintln!("Still waiting... {}/{} results", done_count, prompts.len());
321            }
322        } else {
323            let pending_count = results.iter().filter(|(_, r)| r.is_none()).count();
324            if pending_count > 0 {
325                eprintln!(
326                    "Batch submitted. {} pending. Run again later to retrieve results.",
327                    pending_count
328                );
329            }
330        }
331    }
332
333    // Build results map by index
334    let mut results_by_idx: std::collections::HashMap<usize, QaResult> =
335        std::collections::HashMap::new();
336    for (idx, result) in results {
337        if let Some(r) = result {
338            results_by_idx.insert(idx, r);
339        }
340    }
341
342    // Output results
343    let mut writer: Box<dyn Write> = if let Some(path) = output_path {
344        Box::new(BufWriter::new(std::fs::File::create(path)?))
345    } else {
346        Box::new(std::io::stdout())
347    };
348
349    let mut num_total = 0;
350    let mut num_reverts_edits = 0;
351
352    for (idx, example) in examples.iter_mut().enumerate() {
353        // Skip examples that couldn't be processed
354        if build_prompt(example).is_none() {
355            continue;
356        }
357
358        let result = results_by_idx.get(&idx).cloned();
359
360        if result.as_ref().and_then(|r| r.reverts_edits) == Some(true) {
361            num_reverts_edits += 1;
362        }
363        num_total += 1;
364
365        // Populate QA results for each prediction (currently only first prediction is evaluated)
366        example.qa = example
367            .predictions
368            .iter()
369            .enumerate()
370            .map(|(i, _)| if i == 0 { result.clone() } else { None })
371            .collect();
372
373        writeln!(writer, "{}", serde_json::to_string(&example)?)?;
374    }
375
376    if let Some(path) = output_path {
377        eprintln!("Results written to {}", path.display());
378    }
379
380    eprintln!("Processed:     {} items", num_total);
381    if num_total > 0 {
382        eprintln!(
383            "Reverts edits: {} ({:.2}%)",
384            num_reverts_edits,
385            num_reverts_edits as f64 / num_total as f64 * 100.0
386        );
387    }
388
389    Ok(())
390}