1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
62
63/// A 6:5 aspect ratio minimum window size to be used for functional,
64/// additional-to-main-Zed windows, like the settings and rules library windows.
65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
66 width: Pixels(900.),
67 height: Pixels(750.),
68};
69
70/// Represents the two different phases when dispatching events.
71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
72pub enum DispatchPhase {
73 /// After the capture phase comes the bubble phase, in which mouse event listeners are
74 /// invoked front to back and keyboard event listeners are invoked from the focused element
75 /// to the root of the element tree. This is the phase you'll most commonly want to use when
76 /// registering event listeners.
77 #[default]
78 Bubble,
79 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
80 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
81 /// is used for special purposes such as clearing the "pressed" state for click events. If
82 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
83 /// outside of the immediate region may rely on detecting non-local events during this phase.
84 Capture,
85}
86
87impl DispatchPhase {
88 /// Returns true if this represents the "bubble" phase.
89 #[inline]
90 pub fn bubble(self) -> bool {
91 self == DispatchPhase::Bubble
92 }
93
94 /// Returns true if this represents the "capture" phase.
95 #[inline]
96 pub fn capture(self) -> bool {
97 self == DispatchPhase::Capture
98 }
99}
100
101struct WindowInvalidatorInner {
102 pub dirty: bool,
103 pub draw_phase: DrawPhase,
104 pub dirty_views: FxHashSet<EntityId>,
105}
106
107#[derive(Clone)]
108pub(crate) struct WindowInvalidator {
109 inner: Rc<RefCell<WindowInvalidatorInner>>,
110}
111
112impl WindowInvalidator {
113 pub fn new() -> Self {
114 WindowInvalidator {
115 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
116 dirty: true,
117 draw_phase: DrawPhase::None,
118 dirty_views: FxHashSet::default(),
119 })),
120 }
121 }
122
123 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
124 let mut inner = self.inner.borrow_mut();
125 inner.dirty_views.insert(entity);
126 if inner.draw_phase == DrawPhase::None {
127 inner.dirty = true;
128 cx.push_effect(Effect::Notify { emitter: entity });
129 true
130 } else {
131 false
132 }
133 }
134
135 pub fn is_dirty(&self) -> bool {
136 self.inner.borrow().dirty
137 }
138
139 pub fn set_dirty(&self, dirty: bool) {
140 self.inner.borrow_mut().dirty = dirty
141 }
142
143 pub fn set_phase(&self, phase: DrawPhase) {
144 self.inner.borrow_mut().draw_phase = phase
145 }
146
147 pub fn take_views(&self) -> FxHashSet<EntityId> {
148 mem::take(&mut self.inner.borrow_mut().dirty_views)
149 }
150
151 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
152 self.inner.borrow_mut().dirty_views = views;
153 }
154
155 pub fn not_drawing(&self) -> bool {
156 self.inner.borrow().draw_phase == DrawPhase::None
157 }
158
159 #[track_caller]
160 pub fn debug_assert_paint(&self) {
161 debug_assert!(
162 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
163 "this method can only be called during paint"
164 );
165 }
166
167 #[track_caller]
168 pub fn debug_assert_prepaint(&self) {
169 debug_assert!(
170 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
171 "this method can only be called during request_layout, or prepaint"
172 );
173 }
174
175 #[track_caller]
176 pub fn debug_assert_paint_or_prepaint(&self) {
177 debug_assert!(
178 matches!(
179 self.inner.borrow().draw_phase,
180 DrawPhase::Paint | DrawPhase::Prepaint
181 ),
182 "this method can only be called during request_layout, prepaint, or paint"
183 );
184 }
185}
186
187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
188
189pub(crate) type AnyWindowFocusListener =
190 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
191
192pub(crate) struct WindowFocusEvent {
193 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
194 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
195}
196
197impl WindowFocusEvent {
198 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
199 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
200 }
201
202 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
203 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
204 }
205}
206
207/// This is provided when subscribing for `Context::on_focus_out` events.
208pub struct FocusOutEvent {
209 /// A weak focus handle representing what was blurred.
210 pub blurred: WeakFocusHandle,
211}
212
213slotmap::new_key_type! {
214 /// A globally unique identifier for a focusable element.
215 pub struct FocusId;
216}
217
218thread_local! {
219 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
220}
221
222/// Returned when the element arena has been used and so must be cleared before the next draw.
223#[must_use]
224pub struct ArenaClearNeeded;
225
226impl ArenaClearNeeded {
227 /// Clear the element arena.
228 pub fn clear(self) {
229 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
230 element_arena.clear();
231 });
232 }
233}
234
235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
236pub(crate) struct FocusRef {
237 pub(crate) ref_count: AtomicUsize,
238 pub(crate) tab_index: isize,
239 pub(crate) tab_stop: bool,
240}
241
242impl FocusId {
243 /// Obtains whether the element associated with this handle is currently focused.
244 pub fn is_focused(&self, window: &Window) -> bool {
245 window.focus == Some(*self)
246 }
247
248 /// Obtains whether the element associated with this handle contains the focused
249 /// element or is itself focused.
250 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
251 window
252 .focused(cx)
253 .is_some_and(|focused| self.contains(focused.id, window))
254 }
255
256 /// Obtains whether the element associated with this handle is contained within the
257 /// focused element or is itself focused.
258 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
259 let focused = window.focused(cx);
260 focused.is_some_and(|focused| focused.id.contains(*self, window))
261 }
262
263 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
264 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
265 window
266 .rendered_frame
267 .dispatch_tree
268 .focus_contains(*self, other)
269 }
270}
271
272/// A handle which can be used to track and manipulate the focused element in a window.
273pub struct FocusHandle {
274 pub(crate) id: FocusId,
275 handles: Arc<FocusMap>,
276 /// The index of this element in the tab order.
277 pub tab_index: isize,
278 /// Whether this element can be focused by tab navigation.
279 pub tab_stop: bool,
280}
281
282impl std::fmt::Debug for FocusHandle {
283 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
284 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
285 }
286}
287
288impl FocusHandle {
289 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
290 let id = handles.write().insert(FocusRef {
291 ref_count: AtomicUsize::new(1),
292 tab_index: 0,
293 tab_stop: false,
294 });
295
296 Self {
297 id,
298 tab_index: 0,
299 tab_stop: false,
300 handles: handles.clone(),
301 }
302 }
303
304 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
305 let lock = handles.read();
306 let focus = lock.get(id)?;
307 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
308 return None;
309 }
310 Some(Self {
311 id,
312 tab_index: focus.tab_index,
313 tab_stop: focus.tab_stop,
314 handles: handles.clone(),
315 })
316 }
317
318 /// Sets the tab index of the element associated with this handle.
319 pub fn tab_index(mut self, index: isize) -> Self {
320 self.tab_index = index;
321 if let Some(focus) = self.handles.write().get_mut(self.id) {
322 focus.tab_index = index;
323 }
324 self
325 }
326
327 /// Sets whether the element associated with this handle is a tab stop.
328 ///
329 /// When `false`, the element will not be included in the tab order.
330 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
331 self.tab_stop = tab_stop;
332 if let Some(focus) = self.handles.write().get_mut(self.id) {
333 focus.tab_stop = tab_stop;
334 }
335 self
336 }
337
338 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
339 pub fn downgrade(&self) -> WeakFocusHandle {
340 WeakFocusHandle {
341 id: self.id,
342 handles: Arc::downgrade(&self.handles),
343 }
344 }
345
346 /// Moves the focus to the element associated with this handle.
347 pub fn focus(&self, window: &mut Window) {
348 window.focus(self)
349 }
350
351 /// Obtains whether the element associated with this handle is currently focused.
352 pub fn is_focused(&self, window: &Window) -> bool {
353 self.id.is_focused(window)
354 }
355
356 /// Obtains whether the element associated with this handle contains the focused
357 /// element or is itself focused.
358 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
359 self.id.contains_focused(window, cx)
360 }
361
362 /// Obtains whether the element associated with this handle is contained within the
363 /// focused element or is itself focused.
364 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
365 self.id.within_focused(window, cx)
366 }
367
368 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
369 pub fn contains(&self, other: &Self, window: &Window) -> bool {
370 self.id.contains(other.id, window)
371 }
372
373 /// Dispatch an action on the element that rendered this focus handle
374 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
375 if let Some(node_id) = window
376 .rendered_frame
377 .dispatch_tree
378 .focusable_node_id(self.id)
379 {
380 window.dispatch_action_on_node(node_id, action, cx)
381 }
382 }
383}
384
385impl Clone for FocusHandle {
386 fn clone(&self) -> Self {
387 Self::for_id(self.id, &self.handles).unwrap()
388 }
389}
390
391impl PartialEq for FocusHandle {
392 fn eq(&self, other: &Self) -> bool {
393 self.id == other.id
394 }
395}
396
397impl Eq for FocusHandle {}
398
399impl Drop for FocusHandle {
400 fn drop(&mut self) {
401 self.handles
402 .read()
403 .get(self.id)
404 .unwrap()
405 .ref_count
406 .fetch_sub(1, SeqCst);
407 }
408}
409
410/// A weak reference to a focus handle.
411#[derive(Clone, Debug)]
412pub struct WeakFocusHandle {
413 pub(crate) id: FocusId,
414 pub(crate) handles: Weak<FocusMap>,
415}
416
417impl WeakFocusHandle {
418 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
419 pub fn upgrade(&self) -> Option<FocusHandle> {
420 let handles = self.handles.upgrade()?;
421 FocusHandle::for_id(self.id, &handles)
422 }
423}
424
425impl PartialEq for WeakFocusHandle {
426 fn eq(&self, other: &WeakFocusHandle) -> bool {
427 self.id == other.id
428 }
429}
430
431impl Eq for WeakFocusHandle {}
432
433impl PartialEq<FocusHandle> for WeakFocusHandle {
434 fn eq(&self, other: &FocusHandle) -> bool {
435 self.id == other.id
436 }
437}
438
439impl PartialEq<WeakFocusHandle> for FocusHandle {
440 fn eq(&self, other: &WeakFocusHandle) -> bool {
441 self.id == other.id
442 }
443}
444
445/// Focusable allows users of your view to easily
446/// focus it (using window.focus_view(cx, view))
447pub trait Focusable: 'static {
448 /// Returns the focus handle associated with this view.
449 fn focus_handle(&self, cx: &App) -> FocusHandle;
450}
451
452impl<V: Focusable> Focusable for Entity<V> {
453 fn focus_handle(&self, cx: &App) -> FocusHandle {
454 self.read(cx).focus_handle(cx)
455 }
456}
457
458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
459/// where the lifecycle of the view is handled by another view.
460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
461
462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
463
464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
465pub struct DismissEvent;
466
467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
468
469pub(crate) type AnyMouseListener =
470 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
471
472#[derive(Clone)]
473pub(crate) struct CursorStyleRequest {
474 pub(crate) hitbox_id: Option<HitboxId>,
475 pub(crate) style: CursorStyle,
476}
477
478#[derive(Default, Eq, PartialEq)]
479pub(crate) struct HitTest {
480 pub(crate) ids: SmallVec<[HitboxId; 8]>,
481 pub(crate) hover_hitbox_count: usize,
482}
483
484/// A type of window control area that corresponds to the platform window.
485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
486pub enum WindowControlArea {
487 /// An area that allows dragging of the platform window.
488 Drag,
489 /// An area that allows closing of the platform window.
490 Close,
491 /// An area that allows maximizing of the platform window.
492 Max,
493 /// An area that allows minimizing of the platform window.
494 Min,
495}
496
497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
499pub struct HitboxId(u64);
500
501impl HitboxId {
502 /// Checks if the hitbox with this ID is currently hovered. Except when handling
503 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
504 /// events or paint hover styles.
505 ///
506 /// See [`Hitbox::is_hovered`] for details.
507 pub fn is_hovered(self, window: &Window) -> bool {
508 let hit_test = &window.mouse_hit_test;
509 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
510 if self == *id {
511 return true;
512 }
513 }
514 false
515 }
516
517 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
518 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
519 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
520 /// this distinction.
521 pub fn should_handle_scroll(self, window: &Window) -> bool {
522 window.mouse_hit_test.ids.contains(&self)
523 }
524
525 fn next(mut self) -> HitboxId {
526 HitboxId(self.0.wrapping_add(1))
527 }
528}
529
530/// A rectangular region that potentially blocks hitboxes inserted prior.
531/// See [Window::insert_hitbox] for more details.
532#[derive(Clone, Debug, Deref)]
533pub struct Hitbox {
534 /// A unique identifier for the hitbox.
535 pub id: HitboxId,
536 /// The bounds of the hitbox.
537 #[deref]
538 pub bounds: Bounds<Pixels>,
539 /// The content mask when the hitbox was inserted.
540 pub content_mask: ContentMask<Pixels>,
541 /// Flags that specify hitbox behavior.
542 pub behavior: HitboxBehavior,
543}
544
545impl Hitbox {
546 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
547 /// typically what you want when determining whether to handle mouse events or paint hover
548 /// styles.
549 ///
550 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
551 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
552 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
553 ///
554 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
555 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
556 /// non-interactive while still allowing scrolling. More abstractly, this is because
557 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
558 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
559 /// container.
560 pub fn is_hovered(&self, window: &Window) -> bool {
561 self.id.is_hovered(window)
562 }
563
564 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
565 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
566 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
567 ///
568 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
569 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
570 pub fn should_handle_scroll(&self, window: &Window) -> bool {
571 self.id.should_handle_scroll(window)
572 }
573}
574
575/// How the hitbox affects mouse behavior.
576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
577pub enum HitboxBehavior {
578 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
579 #[default]
580 Normal,
581
582 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
583 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
584 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
585 /// [`InteractiveElement::occlude`].
586 ///
587 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
588 /// bubble-phase handler for every mouse event type:
589 ///
590 /// ```ignore
591 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
592 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
593 /// cx.stop_propagation();
594 /// }
595 /// })
596 /// ```
597 ///
598 /// This has effects beyond event handling - any use of hitbox checking, such as hover
599 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
600 /// alternative might be to not affect mouse event handling - but this would allow
601 /// inconsistent UI where clicks and moves interact with elements that are not considered to
602 /// be hovered.
603 BlockMouse,
604
605 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
606 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
607 /// interaction except scroll events to be ignored - see the documentation of
608 /// [`Hitbox::is_hovered`] for details. This flag is set by
609 /// [`InteractiveElement::block_mouse_except_scroll`].
610 ///
611 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
612 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
613 ///
614 /// ```ignore
615 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
616 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
617 /// cx.stop_propagation();
618 /// }
619 /// })
620 /// ```
621 ///
622 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
623 /// handled differently than other mouse events. If also blocking these scroll events is
624 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
625 ///
626 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
627 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
628 /// An alternative might be to not affect mouse event handling - but this would allow
629 /// inconsistent UI where clicks and moves interact with elements that are not considered to
630 /// be hovered.
631 BlockMouseExceptScroll,
632}
633
634/// An identifier for a tooltip.
635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
636pub struct TooltipId(usize);
637
638impl TooltipId {
639 /// Checks if the tooltip is currently hovered.
640 pub fn is_hovered(&self, window: &Window) -> bool {
641 window
642 .tooltip_bounds
643 .as_ref()
644 .is_some_and(|tooltip_bounds| {
645 tooltip_bounds.id == *self
646 && tooltip_bounds.bounds.contains(&window.mouse_position())
647 })
648 }
649}
650
651pub(crate) struct TooltipBounds {
652 id: TooltipId,
653 bounds: Bounds<Pixels>,
654}
655
656#[derive(Clone)]
657pub(crate) struct TooltipRequest {
658 id: TooltipId,
659 tooltip: AnyTooltip,
660}
661
662pub(crate) struct DeferredDraw {
663 current_view: EntityId,
664 priority: usize,
665 parent_node: DispatchNodeId,
666 element_id_stack: SmallVec<[ElementId; 32]>,
667 text_style_stack: Vec<TextStyleRefinement>,
668 element: Option<AnyElement>,
669 absolute_offset: Point<Pixels>,
670 prepaint_range: Range<PrepaintStateIndex>,
671 paint_range: Range<PaintIndex>,
672}
673
674pub(crate) struct Frame {
675 pub(crate) focus: Option<FocusId>,
676 pub(crate) window_active: bool,
677 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
678 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
679 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
680 pub(crate) dispatch_tree: DispatchTree,
681 pub(crate) scene: Scene,
682 pub(crate) hitboxes: Vec<Hitbox>,
683 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
684 pub(crate) deferred_draws: Vec<DeferredDraw>,
685 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
686 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
687 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
688 #[cfg(any(test, feature = "test-support"))]
689 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
692 #[cfg(any(feature = "inspector", debug_assertions))]
693 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
694 pub(crate) tab_stops: TabStopMap,
695}
696
697#[derive(Clone, Default)]
698pub(crate) struct PrepaintStateIndex {
699 hitboxes_index: usize,
700 tooltips_index: usize,
701 deferred_draws_index: usize,
702 dispatch_tree_index: usize,
703 accessed_element_states_index: usize,
704 line_layout_index: LineLayoutIndex,
705}
706
707#[derive(Clone, Default)]
708pub(crate) struct PaintIndex {
709 scene_index: usize,
710 mouse_listeners_index: usize,
711 input_handlers_index: usize,
712 cursor_styles_index: usize,
713 accessed_element_states_index: usize,
714 tab_handle_index: usize,
715 line_layout_index: LineLayoutIndex,
716}
717
718impl Frame {
719 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
720 Frame {
721 focus: None,
722 window_active: false,
723 element_states: FxHashMap::default(),
724 accessed_element_states: Vec::new(),
725 mouse_listeners: Vec::new(),
726 dispatch_tree,
727 scene: Scene::default(),
728 hitboxes: Vec::new(),
729 window_control_hitboxes: Vec::new(),
730 deferred_draws: Vec::new(),
731 input_handlers: Vec::new(),
732 tooltip_requests: Vec::new(),
733 cursor_styles: Vec::new(),
734
735 #[cfg(any(test, feature = "test-support"))]
736 debug_bounds: FxHashMap::default(),
737
738 #[cfg(any(feature = "inspector", debug_assertions))]
739 next_inspector_instance_ids: FxHashMap::default(),
740
741 #[cfg(any(feature = "inspector", debug_assertions))]
742 inspector_hitboxes: FxHashMap::default(),
743 tab_stops: TabStopMap::default(),
744 }
745 }
746
747 pub(crate) fn clear(&mut self) {
748 self.element_states.clear();
749 self.accessed_element_states.clear();
750 self.mouse_listeners.clear();
751 self.dispatch_tree.clear();
752 self.scene.clear();
753 self.input_handlers.clear();
754 self.tooltip_requests.clear();
755 self.cursor_styles.clear();
756 self.hitboxes.clear();
757 self.window_control_hitboxes.clear();
758 self.deferred_draws.clear();
759 self.tab_stops.clear();
760 self.focus = None;
761
762 #[cfg(any(feature = "inspector", debug_assertions))]
763 {
764 self.next_inspector_instance_ids.clear();
765 self.inspector_hitboxes.clear();
766 }
767 }
768
769 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
770 self.cursor_styles
771 .iter()
772 .rev()
773 .fold_while(None, |style, request| match request.hitbox_id {
774 None => Done(Some(request.style)),
775 Some(hitbox_id) => Continue(
776 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
777 ),
778 })
779 .into_inner()
780 }
781
782 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
783 let mut set_hover_hitbox_count = false;
784 let mut hit_test = HitTest::default();
785 for hitbox in self.hitboxes.iter().rev() {
786 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
787 if bounds.contains(&position) {
788 hit_test.ids.push(hitbox.id);
789 if !set_hover_hitbox_count
790 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
791 {
792 hit_test.hover_hitbox_count = hit_test.ids.len();
793 set_hover_hitbox_count = true;
794 }
795 if hitbox.behavior == HitboxBehavior::BlockMouse {
796 break;
797 }
798 }
799 }
800 if !set_hover_hitbox_count {
801 hit_test.hover_hitbox_count = hit_test.ids.len();
802 }
803 hit_test
804 }
805
806 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
807 self.focus
808 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
809 .unwrap_or_default()
810 }
811
812 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
813 for element_state_key in &self.accessed_element_states {
814 if let Some((element_state_key, element_state)) =
815 prev_frame.element_states.remove_entry(element_state_key)
816 {
817 self.element_states.insert(element_state_key, element_state);
818 }
819 }
820
821 self.scene.finish();
822 }
823}
824
825#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
826enum InputModality {
827 Mouse,
828 Keyboard,
829}
830
831/// Holds the state for a specific window.
832pub struct Window {
833 pub(crate) handle: AnyWindowHandle,
834 pub(crate) invalidator: WindowInvalidator,
835 pub(crate) removed: bool,
836 pub(crate) platform_window: Box<dyn PlatformWindow>,
837 display_id: Option<DisplayId>,
838 sprite_atlas: Arc<dyn PlatformAtlas>,
839 text_system: Arc<WindowTextSystem>,
840 rem_size: Pixels,
841 /// The stack of override values for the window's rem size.
842 ///
843 /// This is used by `with_rem_size` to allow rendering an element tree with
844 /// a given rem size.
845 rem_size_override_stack: SmallVec<[Pixels; 8]>,
846 pub(crate) viewport_size: Size<Pixels>,
847 layout_engine: Option<TaffyLayoutEngine>,
848 pub(crate) root: Option<AnyView>,
849 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
850 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
851 pub(crate) rendered_entity_stack: Vec<EntityId>,
852 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
853 pub(crate) element_opacity: f32,
854 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
855 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
856 pub(crate) image_cache_stack: Vec<AnyImageCache>,
857 pub(crate) rendered_frame: Frame,
858 pub(crate) next_frame: Frame,
859 next_hitbox_id: HitboxId,
860 pub(crate) next_tooltip_id: TooltipId,
861 pub(crate) tooltip_bounds: Option<TooltipBounds>,
862 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
863 pub(crate) dirty_views: FxHashSet<EntityId>,
864 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
865 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
866 default_prevented: bool,
867 mouse_position: Point<Pixels>,
868 mouse_hit_test: HitTest,
869 modifiers: Modifiers,
870 capslock: Capslock,
871 scale_factor: f32,
872 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
873 appearance: WindowAppearance,
874 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
875 active: Rc<Cell<bool>>,
876 hovered: Rc<Cell<bool>>,
877 pub(crate) needs_present: Rc<Cell<bool>>,
878 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
879 last_input_modality: InputModality,
880 pub(crate) refreshing: bool,
881 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
882 pub(crate) focus: Option<FocusId>,
883 focus_enabled: bool,
884 pending_input: Option<PendingInput>,
885 pending_modifier: ModifierState,
886 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
887 prompt: Option<RenderablePromptHandle>,
888 pub(crate) client_inset: Option<Pixels>,
889 #[cfg(any(feature = "inspector", debug_assertions))]
890 inspector: Option<Entity<Inspector>>,
891}
892
893#[derive(Clone, Debug, Default)]
894struct ModifierState {
895 modifiers: Modifiers,
896 saw_keystroke: bool,
897}
898
899#[derive(Clone, Copy, Debug, Eq, PartialEq)]
900pub(crate) enum DrawPhase {
901 None,
902 Prepaint,
903 Paint,
904 Focus,
905}
906
907#[derive(Default, Debug)]
908struct PendingInput {
909 keystrokes: SmallVec<[Keystroke; 1]>,
910 focus: Option<FocusId>,
911 timer: Option<Task<()>>,
912}
913
914pub(crate) struct ElementStateBox {
915 pub(crate) inner: Box<dyn Any>,
916 #[cfg(debug_assertions)]
917 pub(crate) type_name: &'static str,
918}
919
920fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
921 #[cfg(target_os = "macos")]
922 {
923 const CASCADE_OFFSET: f32 = 25.0;
924
925 let display = display_id
926 .map(|id| cx.find_display(id))
927 .unwrap_or_else(|| cx.primary_display());
928
929 let display_bounds = display
930 .as_ref()
931 .map(|d| d.bounds())
932 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
933
934 // TODO, BUG: if you open a window with the currently active window
935 // on the stack, this will erroneously select the 'unwrap_or_else'
936 // code path
937 let (base_origin, base_size) = cx
938 .active_window()
939 .and_then(|w| {
940 w.update(cx, |_, window, _| {
941 let bounds = window.bounds();
942 (bounds.origin, bounds.size)
943 })
944 .ok()
945 })
946 .unwrap_or_else(|| {
947 let default_bounds = display
948 .as_ref()
949 .map(|d| d.default_bounds())
950 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
951 (default_bounds.origin, default_bounds.size)
952 });
953
954 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
955 let proposed_origin = base_origin + cascade_offset;
956 let proposed_bounds = Bounds::new(proposed_origin, base_size);
957
958 let display_right = display_bounds.origin.x + display_bounds.size.width;
959 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
960 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
961 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
962
963 let fits_horizontally = window_right <= display_right;
964 let fits_vertically = window_bottom <= display_bottom;
965
966 let final_origin = match (fits_horizontally, fits_vertically) {
967 (true, true) => proposed_origin,
968 (false, true) => point(display_bounds.origin.x, base_origin.y),
969 (true, false) => point(base_origin.x, display_bounds.origin.y),
970 (false, false) => display_bounds.origin,
971 };
972
973 Bounds::new(final_origin, base_size)
974 }
975
976 #[cfg(not(target_os = "macos"))]
977 {
978 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
979
980 // TODO, BUG: if you open a window with the currently active window
981 // on the stack, this will erroneously select the 'unwrap_or_else'
982 // code path
983 cx.active_window()
984 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
985 .map(|mut bounds| {
986 bounds.origin += DEFAULT_WINDOW_OFFSET;
987 bounds
988 })
989 .unwrap_or_else(|| {
990 let display = display_id
991 .map(|id| cx.find_display(id))
992 .unwrap_or_else(|| cx.primary_display());
993
994 display
995 .as_ref()
996 .map(|display| display.default_bounds())
997 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
998 })
999 }
1000}
1001
1002impl Window {
1003 pub(crate) fn new(
1004 handle: AnyWindowHandle,
1005 options: WindowOptions,
1006 cx: &mut App,
1007 ) -> Result<Self> {
1008 let WindowOptions {
1009 window_bounds,
1010 titlebar,
1011 focus,
1012 show,
1013 kind,
1014 is_movable,
1015 is_resizable,
1016 is_minimizable,
1017 display_id,
1018 window_background,
1019 app_id,
1020 window_min_size,
1021 window_decorations,
1022 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1023 tabbing_identifier,
1024 } = options;
1025
1026 let bounds = window_bounds
1027 .map(|bounds| bounds.get_bounds())
1028 .unwrap_or_else(|| default_bounds(display_id, cx));
1029 let mut platform_window = cx.platform.open_window(
1030 handle,
1031 WindowParams {
1032 bounds,
1033 titlebar,
1034 kind,
1035 is_movable,
1036 is_resizable,
1037 is_minimizable,
1038 focus,
1039 show,
1040 display_id,
1041 window_min_size,
1042 #[cfg(target_os = "macos")]
1043 tabbing_identifier,
1044 },
1045 )?;
1046
1047 let tab_bar_visible = platform_window.tab_bar_visible();
1048 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1049 if let Some(tabs) = platform_window.tabbed_windows() {
1050 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1051 }
1052
1053 let display_id = platform_window.display().map(|display| display.id());
1054 let sprite_atlas = platform_window.sprite_atlas();
1055 let mouse_position = platform_window.mouse_position();
1056 let modifiers = platform_window.modifiers();
1057 let capslock = platform_window.capslock();
1058 let content_size = platform_window.content_size();
1059 let scale_factor = platform_window.scale_factor();
1060 let appearance = platform_window.appearance();
1061 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1062 let invalidator = WindowInvalidator::new();
1063 let active = Rc::new(Cell::new(platform_window.is_active()));
1064 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1065 let needs_present = Rc::new(Cell::new(false));
1066 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1067 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1068
1069 platform_window
1070 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1071 platform_window.set_background_appearance(window_background);
1072
1073 if let Some(ref window_open_state) = window_bounds {
1074 match window_open_state {
1075 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1076 WindowBounds::Maximized(_) => platform_window.zoom(),
1077 WindowBounds::Windowed(_) => {}
1078 }
1079 }
1080
1081 platform_window.on_close(Box::new({
1082 let window_id = handle.window_id();
1083 let mut cx = cx.to_async();
1084 move || {
1085 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1086 let _ = cx.update(|cx| {
1087 SystemWindowTabController::remove_tab(cx, window_id);
1088 });
1089 }
1090 }));
1091 platform_window.on_request_frame(Box::new({
1092 let mut cx = cx.to_async();
1093 let invalidator = invalidator.clone();
1094 let active = active.clone();
1095 let needs_present = needs_present.clone();
1096 let next_frame_callbacks = next_frame_callbacks.clone();
1097 let last_input_timestamp = last_input_timestamp.clone();
1098 move |request_frame_options| {
1099 let next_frame_callbacks = next_frame_callbacks.take();
1100 if !next_frame_callbacks.is_empty() {
1101 handle
1102 .update(&mut cx, |_, window, cx| {
1103 for callback in next_frame_callbacks {
1104 callback(window, cx);
1105 }
1106 })
1107 .log_err();
1108 }
1109
1110 // Keep presenting the current scene for 1 extra second since the
1111 // last input to prevent the display from underclocking the refresh rate.
1112 let needs_present = request_frame_options.require_presentation
1113 || needs_present.get()
1114 || (active.get()
1115 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1116
1117 if invalidator.is_dirty() || request_frame_options.force_render {
1118 measure("frame duration", || {
1119 handle
1120 .update(&mut cx, |_, window, cx| {
1121 let arena_clear_needed = window.draw(cx);
1122 window.present();
1123 // drop the arena elements after present to reduce latency
1124 arena_clear_needed.clear();
1125 })
1126 .log_err();
1127 })
1128 } else if needs_present {
1129 handle
1130 .update(&mut cx, |_, window, _| window.present())
1131 .log_err();
1132 }
1133
1134 handle
1135 .update(&mut cx, |_, window, _| {
1136 window.complete_frame();
1137 })
1138 .log_err();
1139 }
1140 }));
1141 platform_window.on_resize(Box::new({
1142 let mut cx = cx.to_async();
1143 move |_, _| {
1144 handle
1145 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1146 .log_err();
1147 }
1148 }));
1149 platform_window.on_moved(Box::new({
1150 let mut cx = cx.to_async();
1151 move || {
1152 handle
1153 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1154 .log_err();
1155 }
1156 }));
1157 platform_window.on_appearance_changed(Box::new({
1158 let mut cx = cx.to_async();
1159 move || {
1160 handle
1161 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1162 .log_err();
1163 }
1164 }));
1165 platform_window.on_active_status_change(Box::new({
1166 let mut cx = cx.to_async();
1167 move |active| {
1168 handle
1169 .update(&mut cx, |_, window, cx| {
1170 window.active.set(active);
1171 window.modifiers = window.platform_window.modifiers();
1172 window.capslock = window.platform_window.capslock();
1173 window
1174 .activation_observers
1175 .clone()
1176 .retain(&(), |callback| callback(window, cx));
1177
1178 window.bounds_changed(cx);
1179 window.refresh();
1180
1181 SystemWindowTabController::update_last_active(cx, window.handle.id);
1182 })
1183 .log_err();
1184 }
1185 }));
1186 platform_window.on_hover_status_change(Box::new({
1187 let mut cx = cx.to_async();
1188 move |active| {
1189 handle
1190 .update(&mut cx, |_, window, _| {
1191 window.hovered.set(active);
1192 window.refresh();
1193 })
1194 .log_err();
1195 }
1196 }));
1197 platform_window.on_input({
1198 let mut cx = cx.to_async();
1199 Box::new(move |event| {
1200 handle
1201 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1202 .log_err()
1203 .unwrap_or(DispatchEventResult::default())
1204 })
1205 });
1206 platform_window.on_hit_test_window_control({
1207 let mut cx = cx.to_async();
1208 Box::new(move || {
1209 handle
1210 .update(&mut cx, |_, window, _cx| {
1211 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1212 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1213 return Some(*area);
1214 }
1215 }
1216 None
1217 })
1218 .log_err()
1219 .unwrap_or(None)
1220 })
1221 });
1222 platform_window.on_move_tab_to_new_window({
1223 let mut cx = cx.to_async();
1224 Box::new(move || {
1225 handle
1226 .update(&mut cx, |_, _window, cx| {
1227 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1228 })
1229 .log_err();
1230 })
1231 });
1232 platform_window.on_merge_all_windows({
1233 let mut cx = cx.to_async();
1234 Box::new(move || {
1235 handle
1236 .update(&mut cx, |_, _window, cx| {
1237 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1238 })
1239 .log_err();
1240 })
1241 });
1242 platform_window.on_select_next_tab({
1243 let mut cx = cx.to_async();
1244 Box::new(move || {
1245 handle
1246 .update(&mut cx, |_, _window, cx| {
1247 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1248 })
1249 .log_err();
1250 })
1251 });
1252 platform_window.on_select_previous_tab({
1253 let mut cx = cx.to_async();
1254 Box::new(move || {
1255 handle
1256 .update(&mut cx, |_, _window, cx| {
1257 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1258 })
1259 .log_err();
1260 })
1261 });
1262 platform_window.on_toggle_tab_bar({
1263 let mut cx = cx.to_async();
1264 Box::new(move || {
1265 handle
1266 .update(&mut cx, |_, window, cx| {
1267 let tab_bar_visible = window.platform_window.tab_bar_visible();
1268 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1269 })
1270 .log_err();
1271 })
1272 });
1273
1274 if let Some(app_id) = app_id {
1275 platform_window.set_app_id(&app_id);
1276 }
1277
1278 platform_window.map_window().unwrap();
1279
1280 Ok(Window {
1281 handle,
1282 invalidator,
1283 removed: false,
1284 platform_window,
1285 display_id,
1286 sprite_atlas,
1287 text_system,
1288 rem_size: px(16.),
1289 rem_size_override_stack: SmallVec::new(),
1290 viewport_size: content_size,
1291 layout_engine: Some(TaffyLayoutEngine::new()),
1292 root: None,
1293 element_id_stack: SmallVec::default(),
1294 text_style_stack: Vec::new(),
1295 rendered_entity_stack: Vec::new(),
1296 element_offset_stack: Vec::new(),
1297 content_mask_stack: Vec::new(),
1298 element_opacity: 1.0,
1299 requested_autoscroll: None,
1300 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1301 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1302 next_frame_callbacks,
1303 next_hitbox_id: HitboxId(0),
1304 next_tooltip_id: TooltipId::default(),
1305 tooltip_bounds: None,
1306 dirty_views: FxHashSet::default(),
1307 focus_listeners: SubscriberSet::new(),
1308 focus_lost_listeners: SubscriberSet::new(),
1309 default_prevented: true,
1310 mouse_position,
1311 mouse_hit_test: HitTest::default(),
1312 modifiers,
1313 capslock,
1314 scale_factor,
1315 bounds_observers: SubscriberSet::new(),
1316 appearance,
1317 appearance_observers: SubscriberSet::new(),
1318 active,
1319 hovered,
1320 needs_present,
1321 last_input_timestamp,
1322 last_input_modality: InputModality::Mouse,
1323 refreshing: false,
1324 activation_observers: SubscriberSet::new(),
1325 focus: None,
1326 focus_enabled: true,
1327 pending_input: None,
1328 pending_modifier: ModifierState::default(),
1329 pending_input_observers: SubscriberSet::new(),
1330 prompt: None,
1331 client_inset: None,
1332 image_cache_stack: Vec::new(),
1333 #[cfg(any(feature = "inspector", debug_assertions))]
1334 inspector: None,
1335 })
1336 }
1337
1338 pub(crate) fn new_focus_listener(
1339 &self,
1340 value: AnyWindowFocusListener,
1341 ) -> (Subscription, impl FnOnce() + use<>) {
1342 self.focus_listeners.insert((), value)
1343 }
1344}
1345
1346#[derive(Clone, Debug, Default, PartialEq, Eq)]
1347pub(crate) struct DispatchEventResult {
1348 pub propagate: bool,
1349 pub default_prevented: bool,
1350}
1351
1352/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1353/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1354/// to leave room to support more complex shapes in the future.
1355#[derive(Clone, Debug, Default, PartialEq, Eq)]
1356#[repr(C)]
1357pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1358 /// The bounds
1359 pub bounds: Bounds<P>,
1360}
1361
1362impl ContentMask<Pixels> {
1363 /// Scale the content mask's pixel units by the given scaling factor.
1364 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1365 ContentMask {
1366 bounds: self.bounds.scale(factor),
1367 }
1368 }
1369
1370 /// Intersect the content mask with the given content mask.
1371 pub fn intersect(&self, other: &Self) -> Self {
1372 let bounds = self.bounds.intersect(&other.bounds);
1373 ContentMask { bounds }
1374 }
1375}
1376
1377impl Window {
1378 fn mark_view_dirty(&mut self, view_id: EntityId) {
1379 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1380 // should already be dirty.
1381 for view_id in self
1382 .rendered_frame
1383 .dispatch_tree
1384 .view_path_reversed(view_id)
1385 {
1386 if !self.dirty_views.insert(view_id) {
1387 break;
1388 }
1389 }
1390 }
1391
1392 /// Registers a callback to be invoked when the window appearance changes.
1393 pub fn observe_window_appearance(
1394 &self,
1395 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1396 ) -> Subscription {
1397 let (subscription, activate) = self.appearance_observers.insert(
1398 (),
1399 Box::new(move |window, cx| {
1400 callback(window, cx);
1401 true
1402 }),
1403 );
1404 activate();
1405 subscription
1406 }
1407
1408 /// Replaces the root entity of the window with a new one.
1409 pub fn replace_root<E>(
1410 &mut self,
1411 cx: &mut App,
1412 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1413 ) -> Entity<E>
1414 where
1415 E: 'static + Render,
1416 {
1417 let view = cx.new(|cx| build_view(self, cx));
1418 self.root = Some(view.clone().into());
1419 self.refresh();
1420 view
1421 }
1422
1423 /// Returns the root entity of the window, if it has one.
1424 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1425 where
1426 E: 'static + Render,
1427 {
1428 self.root
1429 .as_ref()
1430 .map(|view| view.clone().downcast::<E>().ok())
1431 }
1432
1433 /// Obtain a handle to the window that belongs to this context.
1434 pub fn window_handle(&self) -> AnyWindowHandle {
1435 self.handle
1436 }
1437
1438 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1439 pub fn refresh(&mut self) {
1440 if self.invalidator.not_drawing() {
1441 self.refreshing = true;
1442 self.invalidator.set_dirty(true);
1443 }
1444 }
1445
1446 /// Close this window.
1447 pub fn remove_window(&mut self) {
1448 self.removed = true;
1449 }
1450
1451 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1452 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1453 self.focus
1454 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1455 }
1456
1457 /// Move focus to the element associated with the given [`FocusHandle`].
1458 pub fn focus(&mut self, handle: &FocusHandle) {
1459 if !self.focus_enabled || self.focus == Some(handle.id) {
1460 return;
1461 }
1462
1463 self.focus = Some(handle.id);
1464 self.clear_pending_keystrokes();
1465 self.refresh();
1466 }
1467
1468 /// Remove focus from all elements within this context's window.
1469 pub fn blur(&mut self) {
1470 if !self.focus_enabled {
1471 return;
1472 }
1473
1474 self.focus = None;
1475 self.refresh();
1476 }
1477
1478 /// Blur the window and don't allow anything in it to be focused again.
1479 pub fn disable_focus(&mut self) {
1480 self.blur();
1481 self.focus_enabled = false;
1482 }
1483
1484 /// Move focus to next tab stop.
1485 pub fn focus_next(&mut self) {
1486 if !self.focus_enabled {
1487 return;
1488 }
1489
1490 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1491 self.focus(&handle)
1492 }
1493 }
1494
1495 /// Move focus to previous tab stop.
1496 pub fn focus_prev(&mut self) {
1497 if !self.focus_enabled {
1498 return;
1499 }
1500
1501 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1502 self.focus(&handle)
1503 }
1504 }
1505
1506 /// Accessor for the text system.
1507 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1508 &self.text_system
1509 }
1510
1511 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1512 pub fn text_style(&self) -> TextStyle {
1513 let mut style = TextStyle::default();
1514 for refinement in &self.text_style_stack {
1515 style.refine(refinement);
1516 }
1517 style
1518 }
1519
1520 /// Check if the platform window is maximized
1521 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1522 pub fn is_maximized(&self) -> bool {
1523 self.platform_window.is_maximized()
1524 }
1525
1526 /// request a certain window decoration (Wayland)
1527 pub fn request_decorations(&self, decorations: WindowDecorations) {
1528 self.platform_window.request_decorations(decorations);
1529 }
1530
1531 /// Start a window resize operation (Wayland)
1532 pub fn start_window_resize(&self, edge: ResizeEdge) {
1533 self.platform_window.start_window_resize(edge);
1534 }
1535
1536 /// Return the `WindowBounds` to indicate that how a window should be opened
1537 /// after it has been closed
1538 pub fn window_bounds(&self) -> WindowBounds {
1539 self.platform_window.window_bounds()
1540 }
1541
1542 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1543 pub fn inner_window_bounds(&self) -> WindowBounds {
1544 self.platform_window.inner_window_bounds()
1545 }
1546
1547 /// Dispatch the given action on the currently focused element.
1548 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1549 let focus_id = self.focused(cx).map(|handle| handle.id);
1550
1551 let window = self.handle;
1552 cx.defer(move |cx| {
1553 window
1554 .update(cx, |_, window, cx| {
1555 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1556 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1557 })
1558 .log_err();
1559 })
1560 }
1561
1562 pub(crate) fn dispatch_keystroke_observers(
1563 &mut self,
1564 event: &dyn Any,
1565 action: Option<Box<dyn Action>>,
1566 context_stack: Vec<KeyContext>,
1567 cx: &mut App,
1568 ) {
1569 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1570 return;
1571 };
1572
1573 cx.keystroke_observers.clone().retain(&(), move |callback| {
1574 (callback)(
1575 &KeystrokeEvent {
1576 keystroke: key_down_event.keystroke.clone(),
1577 action: action.as_ref().map(|action| action.boxed_clone()),
1578 context_stack: context_stack.clone(),
1579 },
1580 self,
1581 cx,
1582 )
1583 });
1584 }
1585
1586 pub(crate) fn dispatch_keystroke_interceptors(
1587 &mut self,
1588 event: &dyn Any,
1589 context_stack: Vec<KeyContext>,
1590 cx: &mut App,
1591 ) {
1592 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1593 return;
1594 };
1595
1596 cx.keystroke_interceptors
1597 .clone()
1598 .retain(&(), move |callback| {
1599 (callback)(
1600 &KeystrokeEvent {
1601 keystroke: key_down_event.keystroke.clone(),
1602 action: None,
1603 context_stack: context_stack.clone(),
1604 },
1605 self,
1606 cx,
1607 )
1608 });
1609 }
1610
1611 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1612 /// that are currently on the stack to be returned to the app.
1613 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1614 let handle = self.handle;
1615 cx.defer(move |cx| {
1616 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1617 });
1618 }
1619
1620 /// Subscribe to events emitted by a entity.
1621 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1622 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1623 pub fn observe<T: 'static>(
1624 &mut self,
1625 observed: &Entity<T>,
1626 cx: &mut App,
1627 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1628 ) -> Subscription {
1629 let entity_id = observed.entity_id();
1630 let observed = observed.downgrade();
1631 let window_handle = self.handle;
1632 cx.new_observer(
1633 entity_id,
1634 Box::new(move |cx| {
1635 window_handle
1636 .update(cx, |_, window, cx| {
1637 if let Some(handle) = observed.upgrade() {
1638 on_notify(handle, window, cx);
1639 true
1640 } else {
1641 false
1642 }
1643 })
1644 .unwrap_or(false)
1645 }),
1646 )
1647 }
1648
1649 /// Subscribe to events emitted by a entity.
1650 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1651 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1652 pub fn subscribe<Emitter, Evt>(
1653 &mut self,
1654 entity: &Entity<Emitter>,
1655 cx: &mut App,
1656 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1657 ) -> Subscription
1658 where
1659 Emitter: EventEmitter<Evt>,
1660 Evt: 'static,
1661 {
1662 let entity_id = entity.entity_id();
1663 let handle = entity.downgrade();
1664 let window_handle = self.handle;
1665 cx.new_subscription(
1666 entity_id,
1667 (
1668 TypeId::of::<Evt>(),
1669 Box::new(move |event, cx| {
1670 window_handle
1671 .update(cx, |_, window, cx| {
1672 if let Some(entity) = handle.upgrade() {
1673 let event = event.downcast_ref().expect("invalid event type");
1674 on_event(entity, event, window, cx);
1675 true
1676 } else {
1677 false
1678 }
1679 })
1680 .unwrap_or(false)
1681 }),
1682 ),
1683 )
1684 }
1685
1686 /// Register a callback to be invoked when the given `Entity` is released.
1687 pub fn observe_release<T>(
1688 &self,
1689 entity: &Entity<T>,
1690 cx: &mut App,
1691 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1692 ) -> Subscription
1693 where
1694 T: 'static,
1695 {
1696 let entity_id = entity.entity_id();
1697 let window_handle = self.handle;
1698 let (subscription, activate) = cx.release_listeners.insert(
1699 entity_id,
1700 Box::new(move |entity, cx| {
1701 let entity = entity.downcast_mut().expect("invalid entity type");
1702 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1703 }),
1704 );
1705 activate();
1706 subscription
1707 }
1708
1709 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1710 /// await points in async code.
1711 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1712 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1713 }
1714
1715 /// Schedule the given closure to be run directly after the current frame is rendered.
1716 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1717 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1718 }
1719
1720 /// Schedule a frame to be drawn on the next animation frame.
1721 ///
1722 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1723 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1724 ///
1725 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1726 pub fn request_animation_frame(&self) {
1727 let entity = self.current_view();
1728 self.on_next_frame(move |_, cx| cx.notify(entity));
1729 }
1730
1731 /// Spawn the future returned by the given closure on the application thread pool.
1732 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1733 /// use within your future.
1734 #[track_caller]
1735 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1736 where
1737 R: 'static,
1738 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1739 {
1740 let handle = self.handle;
1741 cx.spawn(async move |app| {
1742 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1743 f(&mut async_window_cx).await
1744 })
1745 }
1746
1747 fn bounds_changed(&mut self, cx: &mut App) {
1748 self.scale_factor = self.platform_window.scale_factor();
1749 self.viewport_size = self.platform_window.content_size();
1750 self.display_id = self.platform_window.display().map(|display| display.id());
1751
1752 self.refresh();
1753
1754 self.bounds_observers
1755 .clone()
1756 .retain(&(), |callback| callback(self, cx));
1757 }
1758
1759 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1760 pub fn bounds(&self) -> Bounds<Pixels> {
1761 self.platform_window.bounds()
1762 }
1763
1764 /// Set the content size of the window.
1765 pub fn resize(&mut self, size: Size<Pixels>) {
1766 self.platform_window.resize(size);
1767 }
1768
1769 /// Returns whether or not the window is currently fullscreen
1770 pub fn is_fullscreen(&self) -> bool {
1771 self.platform_window.is_fullscreen()
1772 }
1773
1774 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1775 self.appearance = self.platform_window.appearance();
1776
1777 self.appearance_observers
1778 .clone()
1779 .retain(&(), |callback| callback(self, cx));
1780 }
1781
1782 /// Returns the appearance of the current window.
1783 pub fn appearance(&self) -> WindowAppearance {
1784 self.appearance
1785 }
1786
1787 /// Returns the size of the drawable area within the window.
1788 pub fn viewport_size(&self) -> Size<Pixels> {
1789 self.viewport_size
1790 }
1791
1792 /// Returns whether this window is focused by the operating system (receiving key events).
1793 pub fn is_window_active(&self) -> bool {
1794 self.active.get()
1795 }
1796
1797 /// Returns whether this window is considered to be the window
1798 /// that currently owns the mouse cursor.
1799 /// On mac, this is equivalent to `is_window_active`.
1800 pub fn is_window_hovered(&self) -> bool {
1801 if cfg!(any(
1802 target_os = "windows",
1803 target_os = "linux",
1804 target_os = "freebsd"
1805 )) {
1806 self.hovered.get()
1807 } else {
1808 self.is_window_active()
1809 }
1810 }
1811
1812 /// Toggle zoom on the window.
1813 pub fn zoom_window(&self) {
1814 self.platform_window.zoom();
1815 }
1816
1817 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1818 pub fn show_window_menu(&self, position: Point<Pixels>) {
1819 self.platform_window.show_window_menu(position)
1820 }
1821
1822 /// Handle window movement for Linux and macOS.
1823 /// Tells the compositor to take control of window movement (Wayland and X11)
1824 ///
1825 /// Events may not be received during a move operation.
1826 pub fn start_window_move(&self) {
1827 self.platform_window.start_window_move()
1828 }
1829
1830 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1831 pub fn set_client_inset(&mut self, inset: Pixels) {
1832 self.client_inset = Some(inset);
1833 self.platform_window.set_client_inset(inset);
1834 }
1835
1836 /// Returns the client_inset value by [`Self::set_client_inset`].
1837 pub fn client_inset(&self) -> Option<Pixels> {
1838 self.client_inset
1839 }
1840
1841 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1842 pub fn window_decorations(&self) -> Decorations {
1843 self.platform_window.window_decorations()
1844 }
1845
1846 /// Returns which window controls are currently visible (Wayland)
1847 pub fn window_controls(&self) -> WindowControls {
1848 self.platform_window.window_controls()
1849 }
1850
1851 /// Updates the window's title at the platform level.
1852 pub fn set_window_title(&mut self, title: &str) {
1853 self.platform_window.set_title(title);
1854 }
1855
1856 /// Sets the application identifier.
1857 pub fn set_app_id(&mut self, app_id: &str) {
1858 self.platform_window.set_app_id(app_id);
1859 }
1860
1861 /// Sets the window background appearance.
1862 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1863 self.platform_window
1864 .set_background_appearance(background_appearance);
1865 }
1866
1867 /// Mark the window as dirty at the platform level.
1868 pub fn set_window_edited(&mut self, edited: bool) {
1869 self.platform_window.set_edited(edited);
1870 }
1871
1872 /// Determine the display on which the window is visible.
1873 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1874 cx.platform
1875 .displays()
1876 .into_iter()
1877 .find(|display| Some(display.id()) == self.display_id)
1878 }
1879
1880 /// Show the platform character palette.
1881 pub fn show_character_palette(&self) {
1882 self.platform_window.show_character_palette();
1883 }
1884
1885 /// The scale factor of the display associated with the window. For example, it could
1886 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1887 /// be rendered as two pixels on screen.
1888 pub fn scale_factor(&self) -> f32 {
1889 self.scale_factor
1890 }
1891
1892 /// The size of an em for the base font of the application. Adjusting this value allows the
1893 /// UI to scale, just like zooming a web page.
1894 pub fn rem_size(&self) -> Pixels {
1895 self.rem_size_override_stack
1896 .last()
1897 .copied()
1898 .unwrap_or(self.rem_size)
1899 }
1900
1901 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1902 /// UI to scale, just like zooming a web page.
1903 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1904 self.rem_size = rem_size.into();
1905 }
1906
1907 /// Acquire a globally unique identifier for the given ElementId.
1908 /// Only valid for the duration of the provided closure.
1909 pub fn with_global_id<R>(
1910 &mut self,
1911 element_id: ElementId,
1912 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1913 ) -> R {
1914 self.element_id_stack.push(element_id);
1915 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1916
1917 let result = f(&global_id, self);
1918 self.element_id_stack.pop();
1919 result
1920 }
1921
1922 /// Executes the provided function with the specified rem size.
1923 ///
1924 /// This method must only be called as part of element drawing.
1925 // This function is called in a highly recursive manner in editor
1926 // prepainting, make sure its inlined to reduce the stack burden
1927 #[inline]
1928 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1929 where
1930 F: FnOnce(&mut Self) -> R,
1931 {
1932 self.invalidator.debug_assert_paint_or_prepaint();
1933
1934 if let Some(rem_size) = rem_size {
1935 self.rem_size_override_stack.push(rem_size.into());
1936 let result = f(self);
1937 self.rem_size_override_stack.pop();
1938 result
1939 } else {
1940 f(self)
1941 }
1942 }
1943
1944 /// The line height associated with the current text style.
1945 pub fn line_height(&self) -> Pixels {
1946 self.text_style().line_height_in_pixels(self.rem_size())
1947 }
1948
1949 /// Call to prevent the default action of an event. Currently only used to prevent
1950 /// parent elements from becoming focused on mouse down.
1951 pub fn prevent_default(&mut self) {
1952 self.default_prevented = true;
1953 }
1954
1955 /// Obtain whether default has been prevented for the event currently being dispatched.
1956 pub fn default_prevented(&self) -> bool {
1957 self.default_prevented
1958 }
1959
1960 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1961 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1962 let node_id =
1963 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1964 self.rendered_frame
1965 .dispatch_tree
1966 .is_action_available(action, node_id)
1967 }
1968
1969 /// The position of the mouse relative to the window.
1970 pub fn mouse_position(&self) -> Point<Pixels> {
1971 self.mouse_position
1972 }
1973
1974 /// The current state of the keyboard's modifiers
1975 pub fn modifiers(&self) -> Modifiers {
1976 self.modifiers
1977 }
1978
1979 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1980 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1981 pub fn last_input_was_keyboard(&self) -> bool {
1982 self.last_input_modality == InputModality::Keyboard
1983 }
1984
1985 /// The current state of the keyboard's capslock
1986 pub fn capslock(&self) -> Capslock {
1987 self.capslock
1988 }
1989
1990 fn complete_frame(&self) {
1991 self.platform_window.completed_frame();
1992 }
1993
1994 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1995 /// the contents of the new [`Scene`], use [`Self::present`].
1996 #[profiling::function]
1997 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1998 self.invalidate_entities();
1999 cx.entities.clear_accessed();
2000 debug_assert!(self.rendered_entity_stack.is_empty());
2001 self.invalidator.set_dirty(false);
2002 self.requested_autoscroll = None;
2003
2004 // Restore the previously-used input handler.
2005 if let Some(input_handler) = self.platform_window.take_input_handler() {
2006 self.rendered_frame.input_handlers.push(Some(input_handler));
2007 }
2008 self.draw_roots(cx);
2009 self.dirty_views.clear();
2010 self.next_frame.window_active = self.active.get();
2011
2012 // Register requested input handler with the platform window.
2013 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2014 self.platform_window
2015 .set_input_handler(input_handler.unwrap());
2016 }
2017
2018 self.layout_engine.as_mut().unwrap().clear();
2019 self.text_system().finish_frame();
2020 self.next_frame.finish(&mut self.rendered_frame);
2021
2022 self.invalidator.set_phase(DrawPhase::Focus);
2023 let previous_focus_path = self.rendered_frame.focus_path();
2024 let previous_window_active = self.rendered_frame.window_active;
2025 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2026 self.next_frame.clear();
2027 let current_focus_path = self.rendered_frame.focus_path();
2028 let current_window_active = self.rendered_frame.window_active;
2029
2030 if previous_focus_path != current_focus_path
2031 || previous_window_active != current_window_active
2032 {
2033 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2034 self.focus_lost_listeners
2035 .clone()
2036 .retain(&(), |listener| listener(self, cx));
2037 }
2038
2039 let event = WindowFocusEvent {
2040 previous_focus_path: if previous_window_active {
2041 previous_focus_path
2042 } else {
2043 Default::default()
2044 },
2045 current_focus_path: if current_window_active {
2046 current_focus_path
2047 } else {
2048 Default::default()
2049 },
2050 };
2051 self.focus_listeners
2052 .clone()
2053 .retain(&(), |listener| listener(&event, self, cx));
2054 }
2055
2056 debug_assert!(self.rendered_entity_stack.is_empty());
2057 self.record_entities_accessed(cx);
2058 self.reset_cursor_style(cx);
2059 self.refreshing = false;
2060 self.invalidator.set_phase(DrawPhase::None);
2061 self.needs_present.set(true);
2062
2063 ArenaClearNeeded
2064 }
2065
2066 fn record_entities_accessed(&mut self, cx: &mut App) {
2067 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2068 let mut entities = mem::take(entities_ref.deref_mut());
2069 drop(entities_ref);
2070 let handle = self.handle;
2071 cx.record_entities_accessed(
2072 handle,
2073 // Try moving window invalidator into the Window
2074 self.invalidator.clone(),
2075 &entities,
2076 );
2077 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2078 mem::swap(&mut entities, entities_ref.deref_mut());
2079 }
2080
2081 fn invalidate_entities(&mut self) {
2082 let mut views = self.invalidator.take_views();
2083 for entity in views.drain() {
2084 self.mark_view_dirty(entity);
2085 }
2086 self.invalidator.replace_views(views);
2087 }
2088
2089 #[profiling::function]
2090 fn present(&self) {
2091 self.platform_window.draw(&self.rendered_frame.scene);
2092 self.needs_present.set(false);
2093 profiling::finish_frame!();
2094 }
2095
2096 fn draw_roots(&mut self, cx: &mut App) {
2097 self.invalidator.set_phase(DrawPhase::Prepaint);
2098 self.tooltip_bounds.take();
2099
2100 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2101 let root_size = {
2102 #[cfg(any(feature = "inspector", debug_assertions))]
2103 {
2104 if self.inspector.is_some() {
2105 let mut size = self.viewport_size;
2106 size.width = (size.width - _inspector_width).max(px(0.0));
2107 size
2108 } else {
2109 self.viewport_size
2110 }
2111 }
2112 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2113 {
2114 self.viewport_size
2115 }
2116 };
2117
2118 // Layout all root elements.
2119 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2120 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2121
2122 #[cfg(any(feature = "inspector", debug_assertions))]
2123 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2124
2125 let mut sorted_deferred_draws =
2126 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2127 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2128 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2129
2130 let mut prompt_element = None;
2131 let mut active_drag_element = None;
2132 let mut tooltip_element = None;
2133 if let Some(prompt) = self.prompt.take() {
2134 let mut element = prompt.view.any_view().into_any();
2135 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2136 prompt_element = Some(element);
2137 self.prompt = Some(prompt);
2138 } else if let Some(active_drag) = cx.active_drag.take() {
2139 let mut element = active_drag.view.clone().into_any();
2140 let offset = self.mouse_position() - active_drag.cursor_offset;
2141 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2142 active_drag_element = Some(element);
2143 cx.active_drag = Some(active_drag);
2144 } else {
2145 tooltip_element = self.prepaint_tooltip(cx);
2146 }
2147
2148 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2149
2150 // Now actually paint the elements.
2151 self.invalidator.set_phase(DrawPhase::Paint);
2152 root_element.paint(self, cx);
2153
2154 #[cfg(any(feature = "inspector", debug_assertions))]
2155 self.paint_inspector(inspector_element, cx);
2156
2157 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2158
2159 if let Some(mut prompt_element) = prompt_element {
2160 prompt_element.paint(self, cx);
2161 } else if let Some(mut drag_element) = active_drag_element {
2162 drag_element.paint(self, cx);
2163 } else if let Some(mut tooltip_element) = tooltip_element {
2164 tooltip_element.paint(self, cx);
2165 }
2166
2167 #[cfg(any(feature = "inspector", debug_assertions))]
2168 self.paint_inspector_hitbox(cx);
2169 }
2170
2171 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2172 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2173 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2174 let Some(Some(tooltip_request)) = self
2175 .next_frame
2176 .tooltip_requests
2177 .get(tooltip_request_index)
2178 .cloned()
2179 else {
2180 log::error!("Unexpectedly absent TooltipRequest");
2181 continue;
2182 };
2183 let mut element = tooltip_request.tooltip.view.clone().into_any();
2184 let mouse_position = tooltip_request.tooltip.mouse_position;
2185 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2186
2187 let mut tooltip_bounds =
2188 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2189 let window_bounds = Bounds {
2190 origin: Point::default(),
2191 size: self.viewport_size(),
2192 };
2193
2194 if tooltip_bounds.right() > window_bounds.right() {
2195 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2196 if new_x >= Pixels::ZERO {
2197 tooltip_bounds.origin.x = new_x;
2198 } else {
2199 tooltip_bounds.origin.x = cmp::max(
2200 Pixels::ZERO,
2201 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2202 );
2203 }
2204 }
2205
2206 if tooltip_bounds.bottom() > window_bounds.bottom() {
2207 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2208 if new_y >= Pixels::ZERO {
2209 tooltip_bounds.origin.y = new_y;
2210 } else {
2211 tooltip_bounds.origin.y = cmp::max(
2212 Pixels::ZERO,
2213 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2214 );
2215 }
2216 }
2217
2218 // It's possible for an element to have an active tooltip while not being painted (e.g.
2219 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2220 // case, instead update the tooltip's visibility here.
2221 let is_visible =
2222 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2223 if !is_visible {
2224 continue;
2225 }
2226
2227 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2228 element.prepaint(window, cx)
2229 });
2230
2231 self.tooltip_bounds = Some(TooltipBounds {
2232 id: tooltip_request.id,
2233 bounds: tooltip_bounds,
2234 });
2235 return Some(element);
2236 }
2237 None
2238 }
2239
2240 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2241 assert_eq!(self.element_id_stack.len(), 0);
2242
2243 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2244 for deferred_draw_ix in deferred_draw_indices {
2245 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2246 self.element_id_stack
2247 .clone_from(&deferred_draw.element_id_stack);
2248 self.text_style_stack
2249 .clone_from(&deferred_draw.text_style_stack);
2250 self.next_frame
2251 .dispatch_tree
2252 .set_active_node(deferred_draw.parent_node);
2253
2254 let prepaint_start = self.prepaint_index();
2255 if let Some(element) = deferred_draw.element.as_mut() {
2256 self.with_rendered_view(deferred_draw.current_view, |window| {
2257 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2258 element.prepaint(window, cx)
2259 });
2260 })
2261 } else {
2262 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2263 }
2264 let prepaint_end = self.prepaint_index();
2265 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2266 }
2267 assert_eq!(
2268 self.next_frame.deferred_draws.len(),
2269 0,
2270 "cannot call defer_draw during deferred drawing"
2271 );
2272 self.next_frame.deferred_draws = deferred_draws;
2273 self.element_id_stack.clear();
2274 self.text_style_stack.clear();
2275 }
2276
2277 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2278 assert_eq!(self.element_id_stack.len(), 0);
2279
2280 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2281 for deferred_draw_ix in deferred_draw_indices {
2282 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2283 self.element_id_stack
2284 .clone_from(&deferred_draw.element_id_stack);
2285 self.next_frame
2286 .dispatch_tree
2287 .set_active_node(deferred_draw.parent_node);
2288
2289 let paint_start = self.paint_index();
2290 if let Some(element) = deferred_draw.element.as_mut() {
2291 self.with_rendered_view(deferred_draw.current_view, |window| {
2292 element.paint(window, cx);
2293 })
2294 } else {
2295 self.reuse_paint(deferred_draw.paint_range.clone());
2296 }
2297 let paint_end = self.paint_index();
2298 deferred_draw.paint_range = paint_start..paint_end;
2299 }
2300 self.next_frame.deferred_draws = deferred_draws;
2301 self.element_id_stack.clear();
2302 }
2303
2304 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2305 PrepaintStateIndex {
2306 hitboxes_index: self.next_frame.hitboxes.len(),
2307 tooltips_index: self.next_frame.tooltip_requests.len(),
2308 deferred_draws_index: self.next_frame.deferred_draws.len(),
2309 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2310 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2311 line_layout_index: self.text_system.layout_index(),
2312 }
2313 }
2314
2315 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2316 self.next_frame.hitboxes.extend(
2317 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2318 .iter()
2319 .cloned(),
2320 );
2321 self.next_frame.tooltip_requests.extend(
2322 self.rendered_frame.tooltip_requests
2323 [range.start.tooltips_index..range.end.tooltips_index]
2324 .iter_mut()
2325 .map(|request| request.take()),
2326 );
2327 self.next_frame.accessed_element_states.extend(
2328 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2329 ..range.end.accessed_element_states_index]
2330 .iter()
2331 .map(|(id, type_id)| (id.clone(), *type_id)),
2332 );
2333 self.text_system
2334 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2335
2336 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2337 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2338 &mut self.rendered_frame.dispatch_tree,
2339 self.focus,
2340 );
2341
2342 if reused_subtree.contains_focus() {
2343 self.next_frame.focus = self.focus;
2344 }
2345
2346 self.next_frame.deferred_draws.extend(
2347 self.rendered_frame.deferred_draws
2348 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2349 .iter()
2350 .map(|deferred_draw| DeferredDraw {
2351 current_view: deferred_draw.current_view,
2352 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2353 element_id_stack: deferred_draw.element_id_stack.clone(),
2354 text_style_stack: deferred_draw.text_style_stack.clone(),
2355 priority: deferred_draw.priority,
2356 element: None,
2357 absolute_offset: deferred_draw.absolute_offset,
2358 prepaint_range: deferred_draw.prepaint_range.clone(),
2359 paint_range: deferred_draw.paint_range.clone(),
2360 }),
2361 );
2362 }
2363
2364 pub(crate) fn paint_index(&self) -> PaintIndex {
2365 PaintIndex {
2366 scene_index: self.next_frame.scene.len(),
2367 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2368 input_handlers_index: self.next_frame.input_handlers.len(),
2369 cursor_styles_index: self.next_frame.cursor_styles.len(),
2370 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2371 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2372 line_layout_index: self.text_system.layout_index(),
2373 }
2374 }
2375
2376 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2377 self.next_frame.cursor_styles.extend(
2378 self.rendered_frame.cursor_styles
2379 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2380 .iter()
2381 .cloned(),
2382 );
2383 self.next_frame.input_handlers.extend(
2384 self.rendered_frame.input_handlers
2385 [range.start.input_handlers_index..range.end.input_handlers_index]
2386 .iter_mut()
2387 .map(|handler| handler.take()),
2388 );
2389 self.next_frame.mouse_listeners.extend(
2390 self.rendered_frame.mouse_listeners
2391 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2392 .iter_mut()
2393 .map(|listener| listener.take()),
2394 );
2395 self.next_frame.accessed_element_states.extend(
2396 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2397 ..range.end.accessed_element_states_index]
2398 .iter()
2399 .map(|(id, type_id)| (id.clone(), *type_id)),
2400 );
2401 self.next_frame.tab_stops.replay(
2402 &self.rendered_frame.tab_stops.insertion_history
2403 [range.start.tab_handle_index..range.end.tab_handle_index],
2404 );
2405
2406 self.text_system
2407 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2408 self.next_frame.scene.replay(
2409 range.start.scene_index..range.end.scene_index,
2410 &self.rendered_frame.scene,
2411 );
2412 }
2413
2414 /// Push a text style onto the stack, and call a function with that style active.
2415 /// Use [`Window::text_style`] to get the current, combined text style. This method
2416 /// should only be called as part of element drawing.
2417 // This function is called in a highly recursive manner in editor
2418 // prepainting, make sure its inlined to reduce the stack burden
2419 #[inline]
2420 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2421 where
2422 F: FnOnce(&mut Self) -> R,
2423 {
2424 self.invalidator.debug_assert_paint_or_prepaint();
2425 if let Some(style) = style {
2426 self.text_style_stack.push(style);
2427 let result = f(self);
2428 self.text_style_stack.pop();
2429 result
2430 } else {
2431 f(self)
2432 }
2433 }
2434
2435 /// Updates the cursor style at the platform level. This method should only be called
2436 /// during the prepaint phase of element drawing.
2437 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2438 self.invalidator.debug_assert_paint();
2439 self.next_frame.cursor_styles.push(CursorStyleRequest {
2440 hitbox_id: Some(hitbox.id),
2441 style,
2442 });
2443 }
2444
2445 /// Updates the cursor style for the entire window at the platform level. A cursor
2446 /// style using this method will have precedence over any cursor style set using
2447 /// `set_cursor_style`. This method should only be called during the prepaint
2448 /// phase of element drawing.
2449 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2450 self.invalidator.debug_assert_paint();
2451 self.next_frame.cursor_styles.push(CursorStyleRequest {
2452 hitbox_id: None,
2453 style,
2454 })
2455 }
2456
2457 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2458 /// during the paint phase of element drawing.
2459 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2460 self.invalidator.debug_assert_prepaint();
2461 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2462 self.next_frame
2463 .tooltip_requests
2464 .push(Some(TooltipRequest { id, tooltip }));
2465 id
2466 }
2467
2468 /// Invoke the given function with the given content mask after intersecting it
2469 /// with the current mask. This method should only be called during element drawing.
2470 // This function is called in a highly recursive manner in editor
2471 // prepainting, make sure its inlined to reduce the stack burden
2472 #[inline]
2473 pub fn with_content_mask<R>(
2474 &mut self,
2475 mask: Option<ContentMask<Pixels>>,
2476 f: impl FnOnce(&mut Self) -> R,
2477 ) -> R {
2478 self.invalidator.debug_assert_paint_or_prepaint();
2479 if let Some(mask) = mask {
2480 let mask = mask.intersect(&self.content_mask());
2481 self.content_mask_stack.push(mask);
2482 let result = f(self);
2483 self.content_mask_stack.pop();
2484 result
2485 } else {
2486 f(self)
2487 }
2488 }
2489
2490 /// Updates the global element offset relative to the current offset. This is used to implement
2491 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2492 pub fn with_element_offset<R>(
2493 &mut self,
2494 offset: Point<Pixels>,
2495 f: impl FnOnce(&mut Self) -> R,
2496 ) -> R {
2497 self.invalidator.debug_assert_prepaint();
2498
2499 if offset.is_zero() {
2500 return f(self);
2501 };
2502
2503 let abs_offset = self.element_offset() + offset;
2504 self.with_absolute_element_offset(abs_offset, f)
2505 }
2506
2507 /// Updates the global element offset based on the given offset. This is used to implement
2508 /// drag handles and other manual painting of elements. This method should only be called during
2509 /// the prepaint phase of element drawing.
2510 pub fn with_absolute_element_offset<R>(
2511 &mut self,
2512 offset: Point<Pixels>,
2513 f: impl FnOnce(&mut Self) -> R,
2514 ) -> R {
2515 self.invalidator.debug_assert_prepaint();
2516 self.element_offset_stack.push(offset);
2517 let result = f(self);
2518 self.element_offset_stack.pop();
2519 result
2520 }
2521
2522 pub(crate) fn with_element_opacity<R>(
2523 &mut self,
2524 opacity: Option<f32>,
2525 f: impl FnOnce(&mut Self) -> R,
2526 ) -> R {
2527 self.invalidator.debug_assert_paint_or_prepaint();
2528
2529 let Some(opacity) = opacity else {
2530 return f(self);
2531 };
2532
2533 let previous_opacity = self.element_opacity;
2534 self.element_opacity = previous_opacity * opacity;
2535 let result = f(self);
2536 self.element_opacity = previous_opacity;
2537 result
2538 }
2539
2540 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2541 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2542 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2543 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2544 /// called during the prepaint phase of element drawing.
2545 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2546 self.invalidator.debug_assert_prepaint();
2547 let index = self.prepaint_index();
2548 let result = f(self);
2549 if result.is_err() {
2550 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2551 self.next_frame
2552 .tooltip_requests
2553 .truncate(index.tooltips_index);
2554 self.next_frame
2555 .deferred_draws
2556 .truncate(index.deferred_draws_index);
2557 self.next_frame
2558 .dispatch_tree
2559 .truncate(index.dispatch_tree_index);
2560 self.next_frame
2561 .accessed_element_states
2562 .truncate(index.accessed_element_states_index);
2563 self.text_system.truncate_layouts(index.line_layout_index);
2564 }
2565 result
2566 }
2567
2568 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2569 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2570 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2571 /// that supports this method being called on the elements it contains. This method should only be
2572 /// called during the prepaint phase of element drawing.
2573 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2574 self.invalidator.debug_assert_prepaint();
2575 self.requested_autoscroll = Some(bounds);
2576 }
2577
2578 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2579 /// described in [`Self::request_autoscroll`].
2580 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2581 self.invalidator.debug_assert_prepaint();
2582 self.requested_autoscroll.take()
2583 }
2584
2585 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2586 /// Your view will be re-drawn once the asset has finished loading.
2587 ///
2588 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2589 /// time.
2590 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2591 let (task, is_first) = cx.fetch_asset::<A>(source);
2592 task.clone().now_or_never().or_else(|| {
2593 if is_first {
2594 let entity_id = self.current_view();
2595 self.spawn(cx, {
2596 let task = task.clone();
2597 async move |cx| {
2598 task.await;
2599
2600 cx.on_next_frame(move |_, cx| {
2601 cx.notify(entity_id);
2602 });
2603 }
2604 })
2605 .detach();
2606 }
2607
2608 None
2609 })
2610 }
2611
2612 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2613 /// Your view will not be re-drawn once the asset has finished loading.
2614 ///
2615 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2616 /// time.
2617 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2618 let (task, _) = cx.fetch_asset::<A>(source);
2619 task.now_or_never()
2620 }
2621 /// Obtain the current element offset. This method should only be called during the
2622 /// prepaint phase of element drawing.
2623 pub fn element_offset(&self) -> Point<Pixels> {
2624 self.invalidator.debug_assert_prepaint();
2625 self.element_offset_stack
2626 .last()
2627 .copied()
2628 .unwrap_or_default()
2629 }
2630
2631 /// Obtain the current element opacity. This method should only be called during the
2632 /// prepaint phase of element drawing.
2633 #[inline]
2634 pub(crate) fn element_opacity(&self) -> f32 {
2635 self.invalidator.debug_assert_paint_or_prepaint();
2636 self.element_opacity
2637 }
2638
2639 /// Obtain the current content mask. This method should only be called during element drawing.
2640 pub fn content_mask(&self) -> ContentMask<Pixels> {
2641 self.invalidator.debug_assert_paint_or_prepaint();
2642 self.content_mask_stack
2643 .last()
2644 .cloned()
2645 .unwrap_or_else(|| ContentMask {
2646 bounds: Bounds {
2647 origin: Point::default(),
2648 size: self.viewport_size,
2649 },
2650 })
2651 }
2652
2653 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2654 /// This can be used within a custom element to distinguish multiple sets of child elements.
2655 pub fn with_element_namespace<R>(
2656 &mut self,
2657 element_id: impl Into<ElementId>,
2658 f: impl FnOnce(&mut Self) -> R,
2659 ) -> R {
2660 self.element_id_stack.push(element_id.into());
2661 let result = f(self);
2662 self.element_id_stack.pop();
2663 result
2664 }
2665
2666 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2667 pub fn use_keyed_state<S: 'static>(
2668 &mut self,
2669 key: impl Into<ElementId>,
2670 cx: &mut App,
2671 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2672 ) -> Entity<S> {
2673 let current_view = self.current_view();
2674 self.with_global_id(key.into(), |global_id, window| {
2675 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2676 if let Some(state) = state {
2677 (state.clone(), state)
2678 } else {
2679 let new_state = cx.new(|cx| init(window, cx));
2680 cx.observe(&new_state, move |_, cx| {
2681 cx.notify(current_view);
2682 })
2683 .detach();
2684 (new_state.clone(), new_state)
2685 }
2686 })
2687 })
2688 }
2689
2690 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2691 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2692 self.with_global_id(id.into(), |_, window| f(window))
2693 }
2694
2695 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2696 ///
2697 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2698 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2699 /// you can provide a custom ElementID using the `use_keyed_state` method.
2700 #[track_caller]
2701 pub fn use_state<S: 'static>(
2702 &mut self,
2703 cx: &mut App,
2704 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2705 ) -> Entity<S> {
2706 self.use_keyed_state(
2707 ElementId::CodeLocation(*core::panic::Location::caller()),
2708 cx,
2709 init,
2710 )
2711 }
2712
2713 /// Updates or initializes state for an element with the given id that lives across multiple
2714 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2715 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2716 /// when drawing the next frame. This method should only be called as part of element drawing.
2717 pub fn with_element_state<S, R>(
2718 &mut self,
2719 global_id: &GlobalElementId,
2720 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2721 ) -> R
2722 where
2723 S: 'static,
2724 {
2725 self.invalidator.debug_assert_paint_or_prepaint();
2726
2727 let key = (global_id.clone(), TypeId::of::<S>());
2728 self.next_frame.accessed_element_states.push(key.clone());
2729
2730 if let Some(any) = self
2731 .next_frame
2732 .element_states
2733 .remove(&key)
2734 .or_else(|| self.rendered_frame.element_states.remove(&key))
2735 {
2736 let ElementStateBox {
2737 inner,
2738 #[cfg(debug_assertions)]
2739 type_name,
2740 } = any;
2741 // Using the extra inner option to avoid needing to reallocate a new box.
2742 let mut state_box = inner
2743 .downcast::<Option<S>>()
2744 .map_err(|_| {
2745 #[cfg(debug_assertions)]
2746 {
2747 anyhow::anyhow!(
2748 "invalid element state type for id, requested {:?}, actual: {:?}",
2749 std::any::type_name::<S>(),
2750 type_name
2751 )
2752 }
2753
2754 #[cfg(not(debug_assertions))]
2755 {
2756 anyhow::anyhow!(
2757 "invalid element state type for id, requested {:?}",
2758 std::any::type_name::<S>(),
2759 )
2760 }
2761 })
2762 .unwrap();
2763
2764 let state = state_box.take().expect(
2765 "reentrant call to with_element_state for the same state type and element id",
2766 );
2767 let (result, state) = f(Some(state), self);
2768 state_box.replace(state);
2769 self.next_frame.element_states.insert(
2770 key,
2771 ElementStateBox {
2772 inner: state_box,
2773 #[cfg(debug_assertions)]
2774 type_name,
2775 },
2776 );
2777 result
2778 } else {
2779 let (result, state) = f(None, self);
2780 self.next_frame.element_states.insert(
2781 key,
2782 ElementStateBox {
2783 inner: Box::new(Some(state)),
2784 #[cfg(debug_assertions)]
2785 type_name: std::any::type_name::<S>(),
2786 },
2787 );
2788 result
2789 }
2790 }
2791
2792 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2793 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2794 /// when the element is guaranteed to have an id.
2795 ///
2796 /// The first option means 'no ID provided'
2797 /// The second option means 'not yet initialized'
2798 pub fn with_optional_element_state<S, R>(
2799 &mut self,
2800 global_id: Option<&GlobalElementId>,
2801 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2802 ) -> R
2803 where
2804 S: 'static,
2805 {
2806 self.invalidator.debug_assert_paint_or_prepaint();
2807
2808 if let Some(global_id) = global_id {
2809 self.with_element_state(global_id, |state, cx| {
2810 let (result, state) = f(Some(state), cx);
2811 let state =
2812 state.expect("you must return some state when you pass some element id");
2813 (result, state)
2814 })
2815 } else {
2816 let (result, state) = f(None, self);
2817 debug_assert!(
2818 state.is_none(),
2819 "you must not return an element state when passing None for the global id"
2820 );
2821 result
2822 }
2823 }
2824
2825 /// Executes the given closure within the context of a tab group.
2826 #[inline]
2827 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2828 if let Some(index) = index {
2829 self.next_frame.tab_stops.begin_group(index);
2830 let result = f(self);
2831 self.next_frame.tab_stops.end_group();
2832 result
2833 } else {
2834 f(self)
2835 }
2836 }
2837
2838 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2839 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2840 /// with higher values being drawn on top.
2841 ///
2842 /// This method should only be called as part of the prepaint phase of element drawing.
2843 pub fn defer_draw(
2844 &mut self,
2845 element: AnyElement,
2846 absolute_offset: Point<Pixels>,
2847 priority: usize,
2848 ) {
2849 self.invalidator.debug_assert_prepaint();
2850 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2851 self.next_frame.deferred_draws.push(DeferredDraw {
2852 current_view: self.current_view(),
2853 parent_node,
2854 element_id_stack: self.element_id_stack.clone(),
2855 text_style_stack: self.text_style_stack.clone(),
2856 priority,
2857 element: Some(element),
2858 absolute_offset,
2859 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2860 paint_range: PaintIndex::default()..PaintIndex::default(),
2861 });
2862 }
2863
2864 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2865 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2866 /// for performance reasons.
2867 ///
2868 /// This method should only be called as part of the paint phase of element drawing.
2869 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2870 self.invalidator.debug_assert_paint();
2871
2872 let scale_factor = self.scale_factor();
2873 let content_mask = self.content_mask();
2874 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2875 if !clipped_bounds.is_empty() {
2876 self.next_frame
2877 .scene
2878 .push_layer(clipped_bounds.scale(scale_factor));
2879 }
2880
2881 let result = f(self);
2882
2883 if !clipped_bounds.is_empty() {
2884 self.next_frame.scene.pop_layer();
2885 }
2886
2887 result
2888 }
2889
2890 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2891 ///
2892 /// This method should only be called as part of the paint phase of element drawing.
2893 pub fn paint_shadows(
2894 &mut self,
2895 bounds: Bounds<Pixels>,
2896 corner_radii: Corners<Pixels>,
2897 shadows: &[BoxShadow],
2898 ) {
2899 self.invalidator.debug_assert_paint();
2900
2901 let scale_factor = self.scale_factor();
2902 let content_mask = self.content_mask();
2903 let opacity = self.element_opacity();
2904 for shadow in shadows {
2905 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2906 self.next_frame.scene.insert_primitive(Shadow {
2907 order: 0,
2908 blur_radius: shadow.blur_radius.scale(scale_factor),
2909 bounds: shadow_bounds.scale(scale_factor),
2910 content_mask: content_mask.scale(scale_factor),
2911 corner_radii: corner_radii.scale(scale_factor),
2912 color: shadow.color.opacity(opacity),
2913 });
2914 }
2915 }
2916
2917 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2918 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2919 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2920 ///
2921 /// This method should only be called as part of the paint phase of element drawing.
2922 ///
2923 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2924 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2925 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2926 pub fn paint_quad(&mut self, quad: PaintQuad) {
2927 self.invalidator.debug_assert_paint();
2928
2929 let scale_factor = self.scale_factor();
2930 let content_mask = self.content_mask();
2931 let opacity = self.element_opacity();
2932 self.next_frame.scene.insert_primitive(Quad {
2933 order: 0,
2934 bounds: quad.bounds.scale(scale_factor),
2935 content_mask: content_mask.scale(scale_factor),
2936 background: quad.background.opacity(opacity),
2937 border_color: quad.border_color.opacity(opacity),
2938 corner_radii: quad.corner_radii.scale(scale_factor),
2939 border_widths: quad.border_widths.scale(scale_factor),
2940 border_style: quad.border_style,
2941 });
2942 }
2943
2944 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2945 ///
2946 /// This method should only be called as part of the paint phase of element drawing.
2947 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2948 self.invalidator.debug_assert_paint();
2949
2950 let scale_factor = self.scale_factor();
2951 let content_mask = self.content_mask();
2952 let opacity = self.element_opacity();
2953 path.content_mask = content_mask;
2954 let color: Background = color.into();
2955 path.color = color.opacity(opacity);
2956 self.next_frame
2957 .scene
2958 .insert_primitive(path.scale(scale_factor));
2959 }
2960
2961 /// Paint an underline into the scene for the next frame at the current z-index.
2962 ///
2963 /// This method should only be called as part of the paint phase of element drawing.
2964 pub fn paint_underline(
2965 &mut self,
2966 origin: Point<Pixels>,
2967 width: Pixels,
2968 style: &UnderlineStyle,
2969 ) {
2970 self.invalidator.debug_assert_paint();
2971
2972 let scale_factor = self.scale_factor();
2973 let height = if style.wavy {
2974 style.thickness * 3.
2975 } else {
2976 style.thickness
2977 };
2978 let bounds = Bounds {
2979 origin,
2980 size: size(width, height),
2981 };
2982 let content_mask = self.content_mask();
2983 let element_opacity = self.element_opacity();
2984
2985 self.next_frame.scene.insert_primitive(Underline {
2986 order: 0,
2987 pad: 0,
2988 bounds: bounds.scale(scale_factor),
2989 content_mask: content_mask.scale(scale_factor),
2990 color: style.color.unwrap_or_default().opacity(element_opacity),
2991 thickness: style.thickness.scale(scale_factor),
2992 wavy: if style.wavy { 1 } else { 0 },
2993 });
2994 }
2995
2996 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2997 ///
2998 /// This method should only be called as part of the paint phase of element drawing.
2999 pub fn paint_strikethrough(
3000 &mut self,
3001 origin: Point<Pixels>,
3002 width: Pixels,
3003 style: &StrikethroughStyle,
3004 ) {
3005 self.invalidator.debug_assert_paint();
3006
3007 let scale_factor = self.scale_factor();
3008 let height = style.thickness;
3009 let bounds = Bounds {
3010 origin,
3011 size: size(width, height),
3012 };
3013 let content_mask = self.content_mask();
3014 let opacity = self.element_opacity();
3015
3016 self.next_frame.scene.insert_primitive(Underline {
3017 order: 0,
3018 pad: 0,
3019 bounds: bounds.scale(scale_factor),
3020 content_mask: content_mask.scale(scale_factor),
3021 thickness: style.thickness.scale(scale_factor),
3022 color: style.color.unwrap_or_default().opacity(opacity),
3023 wavy: 0,
3024 });
3025 }
3026
3027 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3028 ///
3029 /// The y component of the origin is the baseline of the glyph.
3030 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3031 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3032 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3033 ///
3034 /// This method should only be called as part of the paint phase of element drawing.
3035 pub fn paint_glyph(
3036 &mut self,
3037 origin: Point<Pixels>,
3038 font_id: FontId,
3039 glyph_id: GlyphId,
3040 font_size: Pixels,
3041 color: Hsla,
3042 ) -> Result<()> {
3043 self.invalidator.debug_assert_paint();
3044
3045 let element_opacity = self.element_opacity();
3046 let scale_factor = self.scale_factor();
3047 let glyph_origin = origin.scale(scale_factor);
3048
3049 let subpixel_variant = Point {
3050 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3051 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3052 };
3053 let params = RenderGlyphParams {
3054 font_id,
3055 glyph_id,
3056 font_size,
3057 subpixel_variant,
3058 scale_factor,
3059 is_emoji: false,
3060 };
3061
3062 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3063 if !raster_bounds.is_zero() {
3064 let tile = self
3065 .sprite_atlas
3066 .get_or_insert_with(¶ms.clone().into(), &mut || {
3067 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3068 Ok(Some((size, Cow::Owned(bytes))))
3069 })?
3070 .expect("Callback above only errors or returns Some");
3071 let bounds = Bounds {
3072 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3073 size: tile.bounds.size.map(Into::into),
3074 };
3075 let content_mask = self.content_mask().scale(scale_factor);
3076 self.next_frame.scene.insert_primitive(MonochromeSprite {
3077 order: 0,
3078 pad: 0,
3079 bounds,
3080 content_mask,
3081 color: color.opacity(element_opacity),
3082 tile,
3083 transformation: TransformationMatrix::unit(),
3084 });
3085 }
3086 Ok(())
3087 }
3088
3089 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3090 ///
3091 /// The y component of the origin is the baseline of the glyph.
3092 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3093 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3094 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3095 ///
3096 /// This method should only be called as part of the paint phase of element drawing.
3097 pub fn paint_emoji(
3098 &mut self,
3099 origin: Point<Pixels>,
3100 font_id: FontId,
3101 glyph_id: GlyphId,
3102 font_size: Pixels,
3103 ) -> Result<()> {
3104 self.invalidator.debug_assert_paint();
3105
3106 let scale_factor = self.scale_factor();
3107 let glyph_origin = origin.scale(scale_factor);
3108 let params = RenderGlyphParams {
3109 font_id,
3110 glyph_id,
3111 font_size,
3112 // We don't render emojis with subpixel variants.
3113 subpixel_variant: Default::default(),
3114 scale_factor,
3115 is_emoji: true,
3116 };
3117
3118 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3119 if !raster_bounds.is_zero() {
3120 let tile = self
3121 .sprite_atlas
3122 .get_or_insert_with(¶ms.clone().into(), &mut || {
3123 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3124 Ok(Some((size, Cow::Owned(bytes))))
3125 })?
3126 .expect("Callback above only errors or returns Some");
3127
3128 let bounds = Bounds {
3129 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3130 size: tile.bounds.size.map(Into::into),
3131 };
3132 let content_mask = self.content_mask().scale(scale_factor);
3133 let opacity = self.element_opacity();
3134
3135 self.next_frame.scene.insert_primitive(PolychromeSprite {
3136 order: 0,
3137 pad: 0,
3138 grayscale: false,
3139 bounds,
3140 corner_radii: Default::default(),
3141 content_mask,
3142 tile,
3143 opacity,
3144 });
3145 }
3146 Ok(())
3147 }
3148
3149 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3150 ///
3151 /// This method should only be called as part of the paint phase of element drawing.
3152 pub fn paint_svg(
3153 &mut self,
3154 bounds: Bounds<Pixels>,
3155 path: SharedString,
3156 mut data: Option<&[u8]>,
3157 transformation: TransformationMatrix,
3158 color: Hsla,
3159 cx: &App,
3160 ) -> Result<()> {
3161 self.invalidator.debug_assert_paint();
3162
3163 let element_opacity = self.element_opacity();
3164 let scale_factor = self.scale_factor();
3165
3166 let bounds = bounds.scale(scale_factor);
3167 let params = RenderSvgParams {
3168 path,
3169 size: bounds.size.map(|pixels| {
3170 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3171 }),
3172 };
3173
3174 let Some(tile) =
3175 self.sprite_atlas
3176 .get_or_insert_with(¶ms.clone().into(), &mut || {
3177 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3178 else {
3179 return Ok(None);
3180 };
3181 Ok(Some((size, Cow::Owned(bytes))))
3182 })?
3183 else {
3184 return Ok(());
3185 };
3186 let content_mask = self.content_mask().scale(scale_factor);
3187 let svg_bounds = Bounds {
3188 origin: bounds.center()
3189 - Point::new(
3190 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3191 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3192 ),
3193 size: tile
3194 .bounds
3195 .size
3196 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3197 };
3198
3199 self.next_frame.scene.insert_primitive(MonochromeSprite {
3200 order: 0,
3201 pad: 0,
3202 bounds: svg_bounds
3203 .map_origin(|origin| origin.round())
3204 .map_size(|size| size.ceil()),
3205 content_mask,
3206 color: color.opacity(element_opacity),
3207 tile,
3208 transformation,
3209 });
3210
3211 Ok(())
3212 }
3213
3214 /// Paint an image into the scene for the next frame at the current z-index.
3215 /// This method will panic if the frame_index is not valid
3216 ///
3217 /// This method should only be called as part of the paint phase of element drawing.
3218 pub fn paint_image(
3219 &mut self,
3220 bounds: Bounds<Pixels>,
3221 corner_radii: Corners<Pixels>,
3222 data: Arc<RenderImage>,
3223 frame_index: usize,
3224 grayscale: bool,
3225 ) -> Result<()> {
3226 self.invalidator.debug_assert_paint();
3227
3228 let scale_factor = self.scale_factor();
3229 let bounds = bounds.scale(scale_factor);
3230 let params = RenderImageParams {
3231 image_id: data.id,
3232 frame_index,
3233 };
3234
3235 let tile = self
3236 .sprite_atlas
3237 .get_or_insert_with(¶ms.into(), &mut || {
3238 Ok(Some((
3239 data.size(frame_index),
3240 Cow::Borrowed(
3241 data.as_bytes(frame_index)
3242 .expect("It's the caller's job to pass a valid frame index"),
3243 ),
3244 )))
3245 })?
3246 .expect("Callback above only returns Some");
3247 let content_mask = self.content_mask().scale(scale_factor);
3248 let corner_radii = corner_radii.scale(scale_factor);
3249 let opacity = self.element_opacity();
3250
3251 self.next_frame.scene.insert_primitive(PolychromeSprite {
3252 order: 0,
3253 pad: 0,
3254 grayscale,
3255 bounds: bounds
3256 .map_origin(|origin| origin.floor())
3257 .map_size(|size| size.ceil()),
3258 content_mask,
3259 corner_radii,
3260 tile,
3261 opacity,
3262 });
3263 Ok(())
3264 }
3265
3266 /// Paint a surface into the scene for the next frame at the current z-index.
3267 ///
3268 /// This method should only be called as part of the paint phase of element drawing.
3269 #[cfg(target_os = "macos")]
3270 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3271 use crate::PaintSurface;
3272
3273 self.invalidator.debug_assert_paint();
3274
3275 let scale_factor = self.scale_factor();
3276 let bounds = bounds.scale(scale_factor);
3277 let content_mask = self.content_mask().scale(scale_factor);
3278 self.next_frame.scene.insert_primitive(PaintSurface {
3279 order: 0,
3280 bounds,
3281 content_mask,
3282 image_buffer,
3283 });
3284 }
3285
3286 /// Removes an image from the sprite atlas.
3287 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3288 for frame_index in 0..data.frame_count() {
3289 let params = RenderImageParams {
3290 image_id: data.id,
3291 frame_index,
3292 };
3293
3294 self.sprite_atlas.remove(¶ms.clone().into());
3295 }
3296
3297 Ok(())
3298 }
3299
3300 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3301 /// layout is being requested, along with the layout ids of any children. This method is called during
3302 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3303 ///
3304 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3305 #[must_use]
3306 pub fn request_layout(
3307 &mut self,
3308 style: Style,
3309 children: impl IntoIterator<Item = LayoutId>,
3310 cx: &mut App,
3311 ) -> LayoutId {
3312 self.invalidator.debug_assert_prepaint();
3313
3314 cx.layout_id_buffer.clear();
3315 cx.layout_id_buffer.extend(children);
3316 let rem_size = self.rem_size();
3317 let scale_factor = self.scale_factor();
3318
3319 self.layout_engine.as_mut().unwrap().request_layout(
3320 style,
3321 rem_size,
3322 scale_factor,
3323 &cx.layout_id_buffer,
3324 )
3325 }
3326
3327 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3328 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3329 /// determine the element's size. One place this is used internally is when measuring text.
3330 ///
3331 /// The given closure is invoked at layout time with the known dimensions and available space and
3332 /// returns a `Size`.
3333 ///
3334 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3335 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3336 where
3337 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3338 + 'static,
3339 {
3340 self.invalidator.debug_assert_prepaint();
3341
3342 let rem_size = self.rem_size();
3343 let scale_factor = self.scale_factor();
3344 self.layout_engine
3345 .as_mut()
3346 .unwrap()
3347 .request_measured_layout(style, rem_size, scale_factor, measure)
3348 }
3349
3350 /// Compute the layout for the given id within the given available space.
3351 /// This method is called for its side effect, typically by the framework prior to painting.
3352 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3353 ///
3354 /// This method should only be called as part of the prepaint phase of element drawing.
3355 pub fn compute_layout(
3356 &mut self,
3357 layout_id: LayoutId,
3358 available_space: Size<AvailableSpace>,
3359 cx: &mut App,
3360 ) {
3361 self.invalidator.debug_assert_prepaint();
3362
3363 let mut layout_engine = self.layout_engine.take().unwrap();
3364 layout_engine.compute_layout(layout_id, available_space, self, cx);
3365 self.layout_engine = Some(layout_engine);
3366 }
3367
3368 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3369 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3370 ///
3371 /// This method should only be called as part of element drawing.
3372 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3373 self.invalidator.debug_assert_prepaint();
3374
3375 let scale_factor = self.scale_factor();
3376 let mut bounds = self
3377 .layout_engine
3378 .as_mut()
3379 .unwrap()
3380 .layout_bounds(layout_id, scale_factor)
3381 .map(Into::into);
3382 bounds.origin += self.element_offset();
3383 bounds
3384 }
3385
3386 /// This method should be called during `prepaint`. You can use
3387 /// the returned [Hitbox] during `paint` or in an event handler
3388 /// to determine whether the inserted hitbox was the topmost.
3389 ///
3390 /// This method should only be called as part of the prepaint phase of element drawing.
3391 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3392 self.invalidator.debug_assert_prepaint();
3393
3394 let content_mask = self.content_mask();
3395 let mut id = self.next_hitbox_id;
3396 self.next_hitbox_id = self.next_hitbox_id.next();
3397 let hitbox = Hitbox {
3398 id,
3399 bounds,
3400 content_mask,
3401 behavior,
3402 };
3403 self.next_frame.hitboxes.push(hitbox.clone());
3404 hitbox
3405 }
3406
3407 /// Set a hitbox which will act as a control area of the platform window.
3408 ///
3409 /// This method should only be called as part of the paint phase of element drawing.
3410 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3411 self.invalidator.debug_assert_paint();
3412 self.next_frame.window_control_hitboxes.push((area, hitbox));
3413 }
3414
3415 /// Sets the key context for the current element. This context will be used to translate
3416 /// keybindings into actions.
3417 ///
3418 /// This method should only be called as part of the paint phase of element drawing.
3419 pub fn set_key_context(&mut self, context: KeyContext) {
3420 self.invalidator.debug_assert_paint();
3421 self.next_frame.dispatch_tree.set_key_context(context);
3422 }
3423
3424 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3425 /// and keyboard event dispatch for the element.
3426 ///
3427 /// This method should only be called as part of the prepaint phase of element drawing.
3428 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3429 self.invalidator.debug_assert_prepaint();
3430 if focus_handle.is_focused(self) {
3431 self.next_frame.focus = Some(focus_handle.id);
3432 }
3433 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3434 }
3435
3436 /// Sets the view id for the current element, which will be used to manage view caching.
3437 ///
3438 /// This method should only be called as part of element prepaint. We plan on removing this
3439 /// method eventually when we solve some issues that require us to construct editor elements
3440 /// directly instead of always using editors via views.
3441 pub fn set_view_id(&mut self, view_id: EntityId) {
3442 self.invalidator.debug_assert_prepaint();
3443 self.next_frame.dispatch_tree.set_view_id(view_id);
3444 }
3445
3446 /// Get the entity ID for the currently rendering view
3447 pub fn current_view(&self) -> EntityId {
3448 self.invalidator.debug_assert_paint_or_prepaint();
3449 self.rendered_entity_stack.last().copied().unwrap()
3450 }
3451
3452 pub(crate) fn with_rendered_view<R>(
3453 &mut self,
3454 id: EntityId,
3455 f: impl FnOnce(&mut Self) -> R,
3456 ) -> R {
3457 self.rendered_entity_stack.push(id);
3458 let result = f(self);
3459 self.rendered_entity_stack.pop();
3460 result
3461 }
3462
3463 /// Executes the provided function with the specified image cache.
3464 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3465 where
3466 F: FnOnce(&mut Self) -> R,
3467 {
3468 if let Some(image_cache) = image_cache {
3469 self.image_cache_stack.push(image_cache);
3470 let result = f(self);
3471 self.image_cache_stack.pop();
3472 result
3473 } else {
3474 f(self)
3475 }
3476 }
3477
3478 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3479 /// platform to receive textual input with proper integration with concerns such
3480 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3481 /// rendered.
3482 ///
3483 /// This method should only be called as part of the paint phase of element drawing.
3484 ///
3485 /// [element_input_handler]: crate::ElementInputHandler
3486 pub fn handle_input(
3487 &mut self,
3488 focus_handle: &FocusHandle,
3489 input_handler: impl InputHandler,
3490 cx: &App,
3491 ) {
3492 self.invalidator.debug_assert_paint();
3493
3494 if focus_handle.is_focused(self) {
3495 let cx = self.to_async(cx);
3496 self.next_frame
3497 .input_handlers
3498 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3499 }
3500 }
3501
3502 /// Register a mouse event listener on the window for the next frame. The type of event
3503 /// is determined by the first parameter of the given listener. When the next frame is rendered
3504 /// the listener will be cleared.
3505 ///
3506 /// This method should only be called as part of the paint phase of element drawing.
3507 pub fn on_mouse_event<Event: MouseEvent>(
3508 &mut self,
3509 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3510 ) {
3511 self.invalidator.debug_assert_paint();
3512
3513 self.next_frame.mouse_listeners.push(Some(Box::new(
3514 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3515 if let Some(event) = event.downcast_ref() {
3516 listener(event, phase, window, cx)
3517 }
3518 },
3519 )));
3520 }
3521
3522 /// Register a key event listener on this node for the next frame. The type of event
3523 /// is determined by the first parameter of the given listener. When the next frame is rendered
3524 /// the listener will be cleared.
3525 ///
3526 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3527 /// a specific need to register a listener yourself.
3528 ///
3529 /// This method should only be called as part of the paint phase of element drawing.
3530 pub fn on_key_event<Event: KeyEvent>(
3531 &mut self,
3532 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3533 ) {
3534 self.invalidator.debug_assert_paint();
3535
3536 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3537 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3538 if let Some(event) = event.downcast_ref::<Event>() {
3539 listener(event, phase, window, cx)
3540 }
3541 },
3542 ));
3543 }
3544
3545 /// Register a modifiers changed event listener on the window for the next frame.
3546 ///
3547 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3548 /// a specific need to register a global listener.
3549 ///
3550 /// This method should only be called as part of the paint phase of element drawing.
3551 pub fn on_modifiers_changed(
3552 &mut self,
3553 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3554 ) {
3555 self.invalidator.debug_assert_paint();
3556
3557 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3558 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3559 listener(event, window, cx)
3560 },
3561 ));
3562 }
3563
3564 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3565 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3566 /// Returns a subscription and persists until the subscription is dropped.
3567 pub fn on_focus_in(
3568 &mut self,
3569 handle: &FocusHandle,
3570 cx: &mut App,
3571 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3572 ) -> Subscription {
3573 let focus_id = handle.id;
3574 let (subscription, activate) =
3575 self.new_focus_listener(Box::new(move |event, window, cx| {
3576 if event.is_focus_in(focus_id) {
3577 listener(window, cx);
3578 }
3579 true
3580 }));
3581 cx.defer(move |_| activate());
3582 subscription
3583 }
3584
3585 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3586 /// Returns a subscription and persists until the subscription is dropped.
3587 pub fn on_focus_out(
3588 &mut self,
3589 handle: &FocusHandle,
3590 cx: &mut App,
3591 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3592 ) -> Subscription {
3593 let focus_id = handle.id;
3594 let (subscription, activate) =
3595 self.new_focus_listener(Box::new(move |event, window, cx| {
3596 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3597 && event.is_focus_out(focus_id)
3598 {
3599 let event = FocusOutEvent {
3600 blurred: WeakFocusHandle {
3601 id: blurred_id,
3602 handles: Arc::downgrade(&cx.focus_handles),
3603 },
3604 };
3605 listener(event, window, cx)
3606 }
3607 true
3608 }));
3609 cx.defer(move |_| activate());
3610 subscription
3611 }
3612
3613 fn reset_cursor_style(&self, cx: &mut App) {
3614 // Set the cursor only if we're the active window.
3615 if self.is_window_hovered() {
3616 let style = self
3617 .rendered_frame
3618 .cursor_style(self)
3619 .unwrap_or(CursorStyle::Arrow);
3620 cx.platform.set_cursor_style(style);
3621 }
3622 }
3623
3624 /// Dispatch a given keystroke as though the user had typed it.
3625 /// You can create a keystroke with Keystroke::parse("").
3626 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3627 let keystroke = keystroke.with_simulated_ime();
3628 let result = self.dispatch_event(
3629 PlatformInput::KeyDown(KeyDownEvent {
3630 keystroke: keystroke.clone(),
3631 is_held: false,
3632 prefer_character_input: false,
3633 }),
3634 cx,
3635 );
3636 if !result.propagate {
3637 return true;
3638 }
3639
3640 if let Some(input) = keystroke.key_char
3641 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3642 {
3643 input_handler.dispatch_input(&input, self, cx);
3644 self.platform_window.set_input_handler(input_handler);
3645 return true;
3646 }
3647
3648 false
3649 }
3650
3651 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3652 /// binding for the action (last binding added to the keymap).
3653 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3654 self.highest_precedence_binding_for_action(action)
3655 .map(|binding| {
3656 binding
3657 .keystrokes()
3658 .iter()
3659 .map(ToString::to_string)
3660 .collect::<Vec<_>>()
3661 .join(" ")
3662 })
3663 .unwrap_or_else(|| action.name().to_string())
3664 }
3665
3666 /// Dispatch a mouse or keyboard event on the window.
3667 #[profiling::function]
3668 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3669 self.last_input_timestamp.set(Instant::now());
3670
3671 // Track whether this input was keyboard-based for focus-visible styling
3672 self.last_input_modality = match &event {
3673 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3674 InputModality::Keyboard
3675 }
3676 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3677 _ => self.last_input_modality,
3678 };
3679
3680 // Handlers may set this to false by calling `stop_propagation`.
3681 cx.propagate_event = true;
3682 // Handlers may set this to true by calling `prevent_default`.
3683 self.default_prevented = false;
3684
3685 let event = match event {
3686 // Track the mouse position with our own state, since accessing the platform
3687 // API for the mouse position can only occur on the main thread.
3688 PlatformInput::MouseMove(mouse_move) => {
3689 self.mouse_position = mouse_move.position;
3690 self.modifiers = mouse_move.modifiers;
3691 PlatformInput::MouseMove(mouse_move)
3692 }
3693 PlatformInput::MouseDown(mouse_down) => {
3694 self.mouse_position = mouse_down.position;
3695 self.modifiers = mouse_down.modifiers;
3696 PlatformInput::MouseDown(mouse_down)
3697 }
3698 PlatformInput::MouseUp(mouse_up) => {
3699 self.mouse_position = mouse_up.position;
3700 self.modifiers = mouse_up.modifiers;
3701 PlatformInput::MouseUp(mouse_up)
3702 }
3703 PlatformInput::MouseExited(mouse_exited) => {
3704 self.modifiers = mouse_exited.modifiers;
3705 PlatformInput::MouseExited(mouse_exited)
3706 }
3707 PlatformInput::ModifiersChanged(modifiers_changed) => {
3708 self.modifiers = modifiers_changed.modifiers;
3709 self.capslock = modifiers_changed.capslock;
3710 PlatformInput::ModifiersChanged(modifiers_changed)
3711 }
3712 PlatformInput::ScrollWheel(scroll_wheel) => {
3713 self.mouse_position = scroll_wheel.position;
3714 self.modifiers = scroll_wheel.modifiers;
3715 PlatformInput::ScrollWheel(scroll_wheel)
3716 }
3717 // Translate dragging and dropping of external files from the operating system
3718 // to internal drag and drop events.
3719 PlatformInput::FileDrop(file_drop) => match file_drop {
3720 FileDropEvent::Entered { position, paths } => {
3721 self.mouse_position = position;
3722 if cx.active_drag.is_none() {
3723 cx.active_drag = Some(AnyDrag {
3724 value: Arc::new(paths.clone()),
3725 view: cx.new(|_| paths).into(),
3726 cursor_offset: position,
3727 cursor_style: None,
3728 });
3729 }
3730 PlatformInput::MouseMove(MouseMoveEvent {
3731 position,
3732 pressed_button: Some(MouseButton::Left),
3733 modifiers: Modifiers::default(),
3734 })
3735 }
3736 FileDropEvent::Pending { position } => {
3737 self.mouse_position = position;
3738 PlatformInput::MouseMove(MouseMoveEvent {
3739 position,
3740 pressed_button: Some(MouseButton::Left),
3741 modifiers: Modifiers::default(),
3742 })
3743 }
3744 FileDropEvent::Submit { position } => {
3745 cx.activate(true);
3746 self.mouse_position = position;
3747 PlatformInput::MouseUp(MouseUpEvent {
3748 button: MouseButton::Left,
3749 position,
3750 modifiers: Modifiers::default(),
3751 click_count: 1,
3752 })
3753 }
3754 FileDropEvent::Exited => {
3755 cx.active_drag.take();
3756 PlatformInput::FileDrop(FileDropEvent::Exited)
3757 }
3758 },
3759 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3760 };
3761
3762 if let Some(any_mouse_event) = event.mouse_event() {
3763 self.dispatch_mouse_event(any_mouse_event, cx);
3764 } else if let Some(any_key_event) = event.keyboard_event() {
3765 self.dispatch_key_event(any_key_event, cx);
3766 }
3767
3768 DispatchEventResult {
3769 propagate: cx.propagate_event,
3770 default_prevented: self.default_prevented,
3771 }
3772 }
3773
3774 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3775 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3776 if hit_test != self.mouse_hit_test {
3777 self.mouse_hit_test = hit_test;
3778 self.reset_cursor_style(cx);
3779 }
3780
3781 #[cfg(any(feature = "inspector", debug_assertions))]
3782 if self.is_inspector_picking(cx) {
3783 self.handle_inspector_mouse_event(event, cx);
3784 // When inspector is picking, all other mouse handling is skipped.
3785 return;
3786 }
3787
3788 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3789
3790 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3791 // special purposes, such as detecting events outside of a given Bounds.
3792 for listener in &mut mouse_listeners {
3793 let listener = listener.as_mut().unwrap();
3794 listener(event, DispatchPhase::Capture, self, cx);
3795 if !cx.propagate_event {
3796 break;
3797 }
3798 }
3799
3800 // Bubble phase, where most normal handlers do their work.
3801 if cx.propagate_event {
3802 for listener in mouse_listeners.iter_mut().rev() {
3803 let listener = listener.as_mut().unwrap();
3804 listener(event, DispatchPhase::Bubble, self, cx);
3805 if !cx.propagate_event {
3806 break;
3807 }
3808 }
3809 }
3810
3811 self.rendered_frame.mouse_listeners = mouse_listeners;
3812
3813 if cx.has_active_drag() {
3814 if event.is::<MouseMoveEvent>() {
3815 // If this was a mouse move event, redraw the window so that the
3816 // active drag can follow the mouse cursor.
3817 self.refresh();
3818 } else if event.is::<MouseUpEvent>() {
3819 // If this was a mouse up event, cancel the active drag and redraw
3820 // the window.
3821 cx.active_drag = None;
3822 self.refresh();
3823 }
3824 }
3825 }
3826
3827 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3828 if self.invalidator.is_dirty() {
3829 self.draw(cx).clear();
3830 }
3831
3832 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3833 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3834
3835 let mut keystroke: Option<Keystroke> = None;
3836
3837 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3838 if event.modifiers.number_of_modifiers() == 0
3839 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3840 && !self.pending_modifier.saw_keystroke
3841 {
3842 let key = match self.pending_modifier.modifiers {
3843 modifiers if modifiers.shift => Some("shift"),
3844 modifiers if modifiers.control => Some("control"),
3845 modifiers if modifiers.alt => Some("alt"),
3846 modifiers if modifiers.platform => Some("platform"),
3847 modifiers if modifiers.function => Some("function"),
3848 _ => None,
3849 };
3850 if let Some(key) = key {
3851 keystroke = Some(Keystroke {
3852 key: key.to_string(),
3853 key_char: None,
3854 modifiers: Modifiers::default(),
3855 });
3856 }
3857 }
3858
3859 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3860 && event.modifiers.number_of_modifiers() == 1
3861 {
3862 self.pending_modifier.saw_keystroke = false
3863 }
3864 self.pending_modifier.modifiers = event.modifiers
3865 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3866 self.pending_modifier.saw_keystroke = true;
3867 keystroke = Some(key_down_event.keystroke.clone());
3868 }
3869
3870 let Some(keystroke) = keystroke else {
3871 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3872 return;
3873 };
3874
3875 cx.propagate_event = true;
3876 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3877 if !cx.propagate_event {
3878 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3879 return;
3880 }
3881
3882 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3883 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3884 currently_pending = PendingInput::default();
3885 }
3886
3887 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3888 currently_pending.keystrokes,
3889 keystroke,
3890 &dispatch_path,
3891 );
3892
3893 if !match_result.to_replay.is_empty() {
3894 self.replay_pending_input(match_result.to_replay, cx);
3895 cx.propagate_event = true;
3896 }
3897
3898 if !match_result.pending.is_empty() {
3899 currently_pending.keystrokes = match_result.pending;
3900 currently_pending.focus = self.focus;
3901 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3902 cx.background_executor.timer(Duration::from_secs(1)).await;
3903 cx.update(move |window, cx| {
3904 let Some(currently_pending) = window
3905 .pending_input
3906 .take()
3907 .filter(|pending| pending.focus == window.focus)
3908 else {
3909 return;
3910 };
3911
3912 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3913 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3914
3915 let to_replay = window
3916 .rendered_frame
3917 .dispatch_tree
3918 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3919
3920 window.pending_input_changed(cx);
3921 window.replay_pending_input(to_replay, cx)
3922 })
3923 .log_err();
3924 }));
3925 self.pending_input = Some(currently_pending);
3926 self.pending_input_changed(cx);
3927 cx.propagate_event = false;
3928 return;
3929 }
3930
3931 let skip_bindings = event
3932 .downcast_ref::<KeyDownEvent>()
3933 .filter(|key_down_event| key_down_event.prefer_character_input)
3934 .map(|_| {
3935 self.platform_window
3936 .take_input_handler()
3937 .map_or(false, |mut input_handler| {
3938 let accepts = input_handler.accepts_text_input(self, cx);
3939 self.platform_window.set_input_handler(input_handler);
3940 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3941 // we prefer the text input over bindings.
3942 accepts
3943 })
3944 })
3945 .unwrap_or(false);
3946
3947 if !skip_bindings {
3948 for binding in match_result.bindings {
3949 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3950 if !cx.propagate_event {
3951 self.dispatch_keystroke_observers(
3952 event,
3953 Some(binding.action),
3954 match_result.context_stack,
3955 cx,
3956 );
3957 self.pending_input_changed(cx);
3958 return;
3959 }
3960 }
3961 }
3962
3963 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3964 self.pending_input_changed(cx);
3965 }
3966
3967 fn finish_dispatch_key_event(
3968 &mut self,
3969 event: &dyn Any,
3970 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3971 context_stack: Vec<KeyContext>,
3972 cx: &mut App,
3973 ) {
3974 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3975 if !cx.propagate_event {
3976 return;
3977 }
3978
3979 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3980 if !cx.propagate_event {
3981 return;
3982 }
3983
3984 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3985 }
3986
3987 fn pending_input_changed(&mut self, cx: &mut App) {
3988 self.pending_input_observers
3989 .clone()
3990 .retain(&(), |callback| callback(self, cx));
3991 }
3992
3993 fn dispatch_key_down_up_event(
3994 &mut self,
3995 event: &dyn Any,
3996 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3997 cx: &mut App,
3998 ) {
3999 // Capture phase
4000 for node_id in dispatch_path {
4001 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4002
4003 for key_listener in node.key_listeners.clone() {
4004 key_listener(event, DispatchPhase::Capture, self, cx);
4005 if !cx.propagate_event {
4006 return;
4007 }
4008 }
4009 }
4010
4011 // Bubble phase
4012 for node_id in dispatch_path.iter().rev() {
4013 // Handle low level key events
4014 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4015 for key_listener in node.key_listeners.clone() {
4016 key_listener(event, DispatchPhase::Bubble, self, cx);
4017 if !cx.propagate_event {
4018 return;
4019 }
4020 }
4021 }
4022 }
4023
4024 fn dispatch_modifiers_changed_event(
4025 &mut self,
4026 event: &dyn Any,
4027 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4028 cx: &mut App,
4029 ) {
4030 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4031 return;
4032 };
4033 for node_id in dispatch_path.iter().rev() {
4034 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4035 for listener in node.modifiers_changed_listeners.clone() {
4036 listener(event, self, cx);
4037 if !cx.propagate_event {
4038 return;
4039 }
4040 }
4041 }
4042 }
4043
4044 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4045 pub fn has_pending_keystrokes(&self) -> bool {
4046 self.pending_input.is_some()
4047 }
4048
4049 pub(crate) fn clear_pending_keystrokes(&mut self) {
4050 self.pending_input.take();
4051 }
4052
4053 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4054 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4055 self.pending_input
4056 .as_ref()
4057 .map(|pending_input| pending_input.keystrokes.as_slice())
4058 }
4059
4060 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4061 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4062 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4063
4064 'replay: for replay in replays {
4065 let event = KeyDownEvent {
4066 keystroke: replay.keystroke.clone(),
4067 is_held: false,
4068 prefer_character_input: true,
4069 };
4070
4071 cx.propagate_event = true;
4072 for binding in replay.bindings {
4073 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4074 if !cx.propagate_event {
4075 self.dispatch_keystroke_observers(
4076 &event,
4077 Some(binding.action),
4078 Vec::default(),
4079 cx,
4080 );
4081 continue 'replay;
4082 }
4083 }
4084
4085 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4086 if !cx.propagate_event {
4087 continue 'replay;
4088 }
4089 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4090 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4091 {
4092 input_handler.dispatch_input(&input, self, cx);
4093 self.platform_window.set_input_handler(input_handler)
4094 }
4095 }
4096 }
4097
4098 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4099 focus_id
4100 .and_then(|focus_id| {
4101 self.rendered_frame
4102 .dispatch_tree
4103 .focusable_node_id(focus_id)
4104 })
4105 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4106 }
4107
4108 fn dispatch_action_on_node(
4109 &mut self,
4110 node_id: DispatchNodeId,
4111 action: &dyn Action,
4112 cx: &mut App,
4113 ) {
4114 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4115
4116 // Capture phase for global actions.
4117 cx.propagate_event = true;
4118 if let Some(mut global_listeners) = cx
4119 .global_action_listeners
4120 .remove(&action.as_any().type_id())
4121 {
4122 for listener in &global_listeners {
4123 listener(action.as_any(), DispatchPhase::Capture, cx);
4124 if !cx.propagate_event {
4125 break;
4126 }
4127 }
4128
4129 global_listeners.extend(
4130 cx.global_action_listeners
4131 .remove(&action.as_any().type_id())
4132 .unwrap_or_default(),
4133 );
4134
4135 cx.global_action_listeners
4136 .insert(action.as_any().type_id(), global_listeners);
4137 }
4138
4139 if !cx.propagate_event {
4140 return;
4141 }
4142
4143 // Capture phase for window actions.
4144 for node_id in &dispatch_path {
4145 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4146 for DispatchActionListener {
4147 action_type,
4148 listener,
4149 } in node.action_listeners.clone()
4150 {
4151 let any_action = action.as_any();
4152 if action_type == any_action.type_id() {
4153 listener(any_action, DispatchPhase::Capture, self, cx);
4154
4155 if !cx.propagate_event {
4156 return;
4157 }
4158 }
4159 }
4160 }
4161
4162 // Bubble phase for window actions.
4163 for node_id in dispatch_path.iter().rev() {
4164 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4165 for DispatchActionListener {
4166 action_type,
4167 listener,
4168 } in node.action_listeners.clone()
4169 {
4170 let any_action = action.as_any();
4171 if action_type == any_action.type_id() {
4172 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4173 listener(any_action, DispatchPhase::Bubble, self, cx);
4174
4175 if !cx.propagate_event {
4176 return;
4177 }
4178 }
4179 }
4180 }
4181
4182 // Bubble phase for global actions.
4183 if let Some(mut global_listeners) = cx
4184 .global_action_listeners
4185 .remove(&action.as_any().type_id())
4186 {
4187 for listener in global_listeners.iter().rev() {
4188 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4189
4190 listener(action.as_any(), DispatchPhase::Bubble, cx);
4191 if !cx.propagate_event {
4192 break;
4193 }
4194 }
4195
4196 global_listeners.extend(
4197 cx.global_action_listeners
4198 .remove(&action.as_any().type_id())
4199 .unwrap_or_default(),
4200 );
4201
4202 cx.global_action_listeners
4203 .insert(action.as_any().type_id(), global_listeners);
4204 }
4205 }
4206
4207 /// Register the given handler to be invoked whenever the global of the given type
4208 /// is updated.
4209 pub fn observe_global<G: Global>(
4210 &mut self,
4211 cx: &mut App,
4212 f: impl Fn(&mut Window, &mut App) + 'static,
4213 ) -> Subscription {
4214 let window_handle = self.handle;
4215 let (subscription, activate) = cx.global_observers.insert(
4216 TypeId::of::<G>(),
4217 Box::new(move |cx| {
4218 window_handle
4219 .update(cx, |_, window, cx| f(window, cx))
4220 .is_ok()
4221 }),
4222 );
4223 cx.defer(move |_| activate());
4224 subscription
4225 }
4226
4227 /// Focus the current window and bring it to the foreground at the platform level.
4228 pub fn activate_window(&self) {
4229 self.platform_window.activate();
4230 }
4231
4232 /// Minimize the current window at the platform level.
4233 pub fn minimize_window(&self) {
4234 self.platform_window.minimize();
4235 }
4236
4237 /// Toggle full screen status on the current window at the platform level.
4238 pub fn toggle_fullscreen(&self) {
4239 self.platform_window.toggle_fullscreen();
4240 }
4241
4242 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4243 pub fn invalidate_character_coordinates(&self) {
4244 self.on_next_frame(|window, cx| {
4245 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4246 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4247 window.platform_window.update_ime_position(bounds);
4248 }
4249 window.platform_window.set_input_handler(input_handler);
4250 }
4251 });
4252 }
4253
4254 /// Present a platform dialog.
4255 /// The provided message will be presented, along with buttons for each answer.
4256 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4257 pub fn prompt<T>(
4258 &mut self,
4259 level: PromptLevel,
4260 message: &str,
4261 detail: Option<&str>,
4262 answers: &[T],
4263 cx: &mut App,
4264 ) -> oneshot::Receiver<usize>
4265 where
4266 T: Clone + Into<PromptButton>,
4267 {
4268 let prompt_builder = cx.prompt_builder.take();
4269 let Some(prompt_builder) = prompt_builder else {
4270 unreachable!("Re-entrant window prompting is not supported by GPUI");
4271 };
4272
4273 let answers = answers
4274 .iter()
4275 .map(|answer| answer.clone().into())
4276 .collect::<Vec<_>>();
4277
4278 let receiver = match &prompt_builder {
4279 PromptBuilder::Default => self
4280 .platform_window
4281 .prompt(level, message, detail, &answers)
4282 .unwrap_or_else(|| {
4283 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4284 }),
4285 PromptBuilder::Custom(_) => {
4286 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4287 }
4288 };
4289
4290 cx.prompt_builder = Some(prompt_builder);
4291
4292 receiver
4293 }
4294
4295 fn build_custom_prompt(
4296 &mut self,
4297 prompt_builder: &PromptBuilder,
4298 level: PromptLevel,
4299 message: &str,
4300 detail: Option<&str>,
4301 answers: &[PromptButton],
4302 cx: &mut App,
4303 ) -> oneshot::Receiver<usize> {
4304 let (sender, receiver) = oneshot::channel();
4305 let handle = PromptHandle::new(sender);
4306 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4307 self.prompt = Some(handle);
4308 receiver
4309 }
4310
4311 /// Returns the current context stack.
4312 pub fn context_stack(&self) -> Vec<KeyContext> {
4313 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4314 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4315 dispatch_tree
4316 .dispatch_path(node_id)
4317 .iter()
4318 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4319 .collect()
4320 }
4321
4322 /// Returns all available actions for the focused element.
4323 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4324 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4325 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4326 for action_type in cx.global_action_listeners.keys() {
4327 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4328 let action = cx.actions.build_action_type(action_type).ok();
4329 if let Some(action) = action {
4330 actions.insert(ix, action);
4331 }
4332 }
4333 }
4334 actions
4335 }
4336
4337 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4338 /// returned in the order they were added. For display, the last binding should take precedence.
4339 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4340 self.rendered_frame
4341 .dispatch_tree
4342 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4343 }
4344
4345 /// Returns the highest precedence key binding that invokes an action on the currently focused
4346 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4347 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4348 self.rendered_frame
4349 .dispatch_tree
4350 .highest_precedence_binding_for_action(
4351 action,
4352 &self.rendered_frame.dispatch_tree.context_stack,
4353 )
4354 }
4355
4356 /// Returns the key bindings for an action in a context.
4357 pub fn bindings_for_action_in_context(
4358 &self,
4359 action: &dyn Action,
4360 context: KeyContext,
4361 ) -> Vec<KeyBinding> {
4362 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4363 dispatch_tree.bindings_for_action(action, &[context])
4364 }
4365
4366 /// Returns the highest precedence key binding for an action in a context. This is more
4367 /// efficient than getting the last result of `bindings_for_action_in_context`.
4368 pub fn highest_precedence_binding_for_action_in_context(
4369 &self,
4370 action: &dyn Action,
4371 context: KeyContext,
4372 ) -> Option<KeyBinding> {
4373 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4374 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4375 }
4376
4377 /// Returns any bindings that would invoke an action on the given focus handle if it were
4378 /// focused. Bindings are returned in the order they were added. For display, the last binding
4379 /// should take precedence.
4380 pub fn bindings_for_action_in(
4381 &self,
4382 action: &dyn Action,
4383 focus_handle: &FocusHandle,
4384 ) -> Vec<KeyBinding> {
4385 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4386 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4387 return vec![];
4388 };
4389 dispatch_tree.bindings_for_action(action, &context_stack)
4390 }
4391
4392 /// Returns the highest precedence key binding that would invoke an action on the given focus
4393 /// handle if it were focused. This is more efficient than getting the last result of
4394 /// `bindings_for_action_in`.
4395 pub fn highest_precedence_binding_for_action_in(
4396 &self,
4397 action: &dyn Action,
4398 focus_handle: &FocusHandle,
4399 ) -> Option<KeyBinding> {
4400 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4401 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4402 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4403 }
4404
4405 fn context_stack_for_focus_handle(
4406 &self,
4407 focus_handle: &FocusHandle,
4408 ) -> Option<Vec<KeyContext>> {
4409 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4410 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4411 let context_stack: Vec<_> = dispatch_tree
4412 .dispatch_path(node_id)
4413 .into_iter()
4414 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4415 .collect();
4416 Some(context_stack)
4417 }
4418
4419 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4420 pub fn listener_for<T: 'static, E>(
4421 &self,
4422 view: &Entity<T>,
4423 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4424 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4425 let view = view.downgrade();
4426 move |e: &E, window: &mut Window, cx: &mut App| {
4427 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4428 }
4429 }
4430
4431 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4432 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4433 &self,
4434 entity: &Entity<E>,
4435 f: Callback,
4436 ) -> impl Fn(&mut Window, &mut App) + 'static {
4437 let entity = entity.downgrade();
4438 move |window: &mut Window, cx: &mut App| {
4439 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4440 }
4441 }
4442
4443 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4444 /// If the callback returns false, the window won't be closed.
4445 pub fn on_window_should_close(
4446 &self,
4447 cx: &App,
4448 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4449 ) {
4450 let mut cx = self.to_async(cx);
4451 self.platform_window.on_should_close(Box::new(move || {
4452 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4453 }))
4454 }
4455
4456 /// Register an action listener on this node for the next frame. The type of action
4457 /// is determined by the first parameter of the given listener. When the next frame is rendered
4458 /// the listener will be cleared.
4459 ///
4460 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4461 /// a specific need to register a listener yourself.
4462 ///
4463 /// This method should only be called as part of the paint phase of element drawing.
4464 pub fn on_action(
4465 &mut self,
4466 action_type: TypeId,
4467 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4468 ) {
4469 self.invalidator.debug_assert_paint();
4470
4471 self.next_frame
4472 .dispatch_tree
4473 .on_action(action_type, Rc::new(listener));
4474 }
4475
4476 /// Register a capturing action listener on this node for the next frame if the condition is true.
4477 /// The type of action is determined by the first parameter of the given listener. When the next
4478 /// frame is rendered the listener will be cleared.
4479 ///
4480 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4481 /// a specific need to register a listener yourself.
4482 ///
4483 /// This method should only be called as part of the paint phase of element drawing.
4484 pub fn on_action_when(
4485 &mut self,
4486 condition: bool,
4487 action_type: TypeId,
4488 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4489 ) {
4490 self.invalidator.debug_assert_paint();
4491
4492 if condition {
4493 self.next_frame
4494 .dispatch_tree
4495 .on_action(action_type, Rc::new(listener));
4496 }
4497 }
4498
4499 /// Read information about the GPU backing this window.
4500 /// Currently returns None on Mac and Windows.
4501 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4502 self.platform_window.gpu_specs()
4503 }
4504
4505 /// Perform titlebar double-click action.
4506 /// This is macOS specific.
4507 pub fn titlebar_double_click(&self) {
4508 self.platform_window.titlebar_double_click();
4509 }
4510
4511 /// Gets the window's title at the platform level.
4512 /// This is macOS specific.
4513 pub fn window_title(&self) -> String {
4514 self.platform_window.get_title()
4515 }
4516
4517 /// Returns a list of all tabbed windows and their titles.
4518 /// This is macOS specific.
4519 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4520 self.platform_window.tabbed_windows()
4521 }
4522
4523 /// Returns the tab bar visibility.
4524 /// This is macOS specific.
4525 pub fn tab_bar_visible(&self) -> bool {
4526 self.platform_window.tab_bar_visible()
4527 }
4528
4529 /// Merges all open windows into a single tabbed window.
4530 /// This is macOS specific.
4531 pub fn merge_all_windows(&self) {
4532 self.platform_window.merge_all_windows()
4533 }
4534
4535 /// Moves the tab to a new containing window.
4536 /// This is macOS specific.
4537 pub fn move_tab_to_new_window(&self) {
4538 self.platform_window.move_tab_to_new_window()
4539 }
4540
4541 /// Shows or hides the window tab overview.
4542 /// This is macOS specific.
4543 pub fn toggle_window_tab_overview(&self) {
4544 self.platform_window.toggle_window_tab_overview()
4545 }
4546
4547 /// Sets the tabbing identifier for the window.
4548 /// This is macOS specific.
4549 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4550 self.platform_window
4551 .set_tabbing_identifier(tabbing_identifier)
4552 }
4553
4554 /// Toggles the inspector mode on this window.
4555 #[cfg(any(feature = "inspector", debug_assertions))]
4556 pub fn toggle_inspector(&mut self, cx: &mut App) {
4557 self.inspector = match self.inspector {
4558 None => Some(cx.new(|_| Inspector::new())),
4559 Some(_) => None,
4560 };
4561 self.refresh();
4562 }
4563
4564 /// Returns true if the window is in inspector mode.
4565 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4566 #[cfg(any(feature = "inspector", debug_assertions))]
4567 {
4568 if let Some(inspector) = &self.inspector {
4569 return inspector.read(_cx).is_picking();
4570 }
4571 }
4572 false
4573 }
4574
4575 /// Executes the provided function with mutable access to an inspector state.
4576 #[cfg(any(feature = "inspector", debug_assertions))]
4577 pub fn with_inspector_state<T: 'static, R>(
4578 &mut self,
4579 _inspector_id: Option<&crate::InspectorElementId>,
4580 cx: &mut App,
4581 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4582 ) -> R {
4583 if let Some(inspector_id) = _inspector_id
4584 && let Some(inspector) = &self.inspector
4585 {
4586 let inspector = inspector.clone();
4587 let active_element_id = inspector.read(cx).active_element_id();
4588 if Some(inspector_id) == active_element_id {
4589 return inspector.update(cx, |inspector, _cx| {
4590 inspector.with_active_element_state(self, f)
4591 });
4592 }
4593 }
4594 f(&mut None, self)
4595 }
4596
4597 #[cfg(any(feature = "inspector", debug_assertions))]
4598 pub(crate) fn build_inspector_element_id(
4599 &mut self,
4600 path: crate::InspectorElementPath,
4601 ) -> crate::InspectorElementId {
4602 self.invalidator.debug_assert_paint_or_prepaint();
4603 let path = Rc::new(path);
4604 let next_instance_id = self
4605 .next_frame
4606 .next_inspector_instance_ids
4607 .entry(path.clone())
4608 .or_insert(0);
4609 let instance_id = *next_instance_id;
4610 *next_instance_id += 1;
4611 crate::InspectorElementId { path, instance_id }
4612 }
4613
4614 #[cfg(any(feature = "inspector", debug_assertions))]
4615 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4616 if let Some(inspector) = self.inspector.take() {
4617 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4618 inspector_element.prepaint_as_root(
4619 point(self.viewport_size.width - inspector_width, px(0.0)),
4620 size(inspector_width, self.viewport_size.height).into(),
4621 self,
4622 cx,
4623 );
4624 self.inspector = Some(inspector);
4625 Some(inspector_element)
4626 } else {
4627 None
4628 }
4629 }
4630
4631 #[cfg(any(feature = "inspector", debug_assertions))]
4632 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4633 if let Some(mut inspector_element) = inspector_element {
4634 inspector_element.paint(self, cx);
4635 };
4636 }
4637
4638 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4639 /// inspect UI elements by clicking on them.
4640 #[cfg(any(feature = "inspector", debug_assertions))]
4641 pub fn insert_inspector_hitbox(
4642 &mut self,
4643 hitbox_id: HitboxId,
4644 inspector_id: Option<&crate::InspectorElementId>,
4645 cx: &App,
4646 ) {
4647 self.invalidator.debug_assert_paint_or_prepaint();
4648 if !self.is_inspector_picking(cx) {
4649 return;
4650 }
4651 if let Some(inspector_id) = inspector_id {
4652 self.next_frame
4653 .inspector_hitboxes
4654 .insert(hitbox_id, inspector_id.clone());
4655 }
4656 }
4657
4658 #[cfg(any(feature = "inspector", debug_assertions))]
4659 fn paint_inspector_hitbox(&mut self, cx: &App) {
4660 if let Some(inspector) = self.inspector.as_ref() {
4661 let inspector = inspector.read(cx);
4662 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4663 && let Some(hitbox) = self
4664 .next_frame
4665 .hitboxes
4666 .iter()
4667 .find(|hitbox| hitbox.id == hitbox_id)
4668 {
4669 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4670 }
4671 }
4672 }
4673
4674 #[cfg(any(feature = "inspector", debug_assertions))]
4675 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4676 let Some(inspector) = self.inspector.clone() else {
4677 return;
4678 };
4679 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4680 inspector.update(cx, |inspector, _cx| {
4681 if let Some((_, inspector_id)) =
4682 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4683 {
4684 inspector.hover(inspector_id, self);
4685 }
4686 });
4687 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4688 inspector.update(cx, |inspector, _cx| {
4689 if let Some((_, inspector_id)) =
4690 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4691 {
4692 inspector.select(inspector_id, self);
4693 }
4694 });
4695 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4696 // This should be kept in sync with SCROLL_LINES in x11 platform.
4697 const SCROLL_LINES: f32 = 3.0;
4698 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4699 let delta_y = event
4700 .delta
4701 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4702 .y;
4703 if let Some(inspector) = self.inspector.clone() {
4704 inspector.update(cx, |inspector, _cx| {
4705 if let Some(depth) = inspector.pick_depth.as_mut() {
4706 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4707 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4708 if *depth < 0.0 {
4709 *depth = 0.0;
4710 } else if *depth > max_depth {
4711 *depth = max_depth;
4712 }
4713 if let Some((_, inspector_id)) =
4714 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4715 {
4716 inspector.set_active_element_id(inspector_id, self);
4717 }
4718 }
4719 });
4720 }
4721 }
4722 }
4723
4724 #[cfg(any(feature = "inspector", debug_assertions))]
4725 fn hovered_inspector_hitbox(
4726 &self,
4727 inspector: &Inspector,
4728 frame: &Frame,
4729 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4730 if let Some(pick_depth) = inspector.pick_depth {
4731 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4732 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4733 let skip_count = (depth as usize).min(max_skipped);
4734 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4735 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4736 return Some((*hitbox_id, inspector_id.clone()));
4737 }
4738 }
4739 }
4740 None
4741 }
4742
4743 /// For testing: set the current modifier keys state.
4744 /// This does not generate any events.
4745 #[cfg(any(test, feature = "test-support"))]
4746 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4747 self.modifiers = modifiers;
4748 }
4749}
4750
4751// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4752slotmap::new_key_type! {
4753 /// A unique identifier for a window.
4754 pub struct WindowId;
4755}
4756
4757impl WindowId {
4758 /// Converts this window ID to a `u64`.
4759 pub fn as_u64(&self) -> u64 {
4760 self.0.as_ffi()
4761 }
4762}
4763
4764impl From<u64> for WindowId {
4765 fn from(value: u64) -> Self {
4766 WindowId(slotmap::KeyData::from_ffi(value))
4767 }
4768}
4769
4770/// A handle to a window with a specific root view type.
4771/// Note that this does not keep the window alive on its own.
4772#[derive(Deref, DerefMut)]
4773pub struct WindowHandle<V> {
4774 #[deref]
4775 #[deref_mut]
4776 pub(crate) any_handle: AnyWindowHandle,
4777 state_type: PhantomData<fn(V) -> V>,
4778}
4779
4780impl<V> Debug for WindowHandle<V> {
4781 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4782 f.debug_struct("WindowHandle")
4783 .field("any_handle", &self.any_handle.id.as_u64())
4784 .finish()
4785 }
4786}
4787
4788impl<V: 'static + Render> WindowHandle<V> {
4789 /// Creates a new handle from a window ID.
4790 /// This does not check if the root type of the window is `V`.
4791 pub fn new(id: WindowId) -> Self {
4792 WindowHandle {
4793 any_handle: AnyWindowHandle {
4794 id,
4795 state_type: TypeId::of::<V>(),
4796 },
4797 state_type: PhantomData,
4798 }
4799 }
4800
4801 /// Get the root view out of this window.
4802 ///
4803 /// This will fail if the window is closed or if the root view's type does not match `V`.
4804 #[cfg(any(test, feature = "test-support"))]
4805 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4806 where
4807 C: AppContext,
4808 {
4809 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4810 root_view
4811 .downcast::<V>()
4812 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4813 }))
4814 }
4815
4816 /// Updates the root view of this window.
4817 ///
4818 /// This will fail if the window has been closed or if the root view's type does not match
4819 pub fn update<C, R>(
4820 &self,
4821 cx: &mut C,
4822 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4823 ) -> Result<R>
4824 where
4825 C: AppContext,
4826 {
4827 cx.update_window(self.any_handle, |root_view, window, cx| {
4828 let view = root_view
4829 .downcast::<V>()
4830 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4831
4832 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4833 })?
4834 }
4835
4836 /// Read the root view out of this window.
4837 ///
4838 /// This will fail if the window is closed or if the root view's type does not match `V`.
4839 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4840 let x = cx
4841 .windows
4842 .get(self.id)
4843 .and_then(|window| {
4844 window
4845 .as_deref()
4846 .and_then(|window| window.root.clone())
4847 .map(|root_view| root_view.downcast::<V>())
4848 })
4849 .context("window not found")?
4850 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4851
4852 Ok(x.read(cx))
4853 }
4854
4855 /// Read the root view out of this window, with a callback
4856 ///
4857 /// This will fail if the window is closed or if the root view's type does not match `V`.
4858 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4859 where
4860 C: AppContext,
4861 {
4862 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4863 }
4864
4865 /// Read the root view pointer off of this window.
4866 ///
4867 /// This will fail if the window is closed or if the root view's type does not match `V`.
4868 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4869 where
4870 C: AppContext,
4871 {
4872 cx.read_window(self, |root_view, _cx| root_view)
4873 }
4874
4875 /// Check if this window is 'active'.
4876 ///
4877 /// Will return `None` if the window is closed or currently
4878 /// borrowed.
4879 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4880 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4881 .ok()
4882 }
4883}
4884
4885impl<V> Copy for WindowHandle<V> {}
4886
4887impl<V> Clone for WindowHandle<V> {
4888 fn clone(&self) -> Self {
4889 *self
4890 }
4891}
4892
4893impl<V> PartialEq for WindowHandle<V> {
4894 fn eq(&self, other: &Self) -> bool {
4895 self.any_handle == other.any_handle
4896 }
4897}
4898
4899impl<V> Eq for WindowHandle<V> {}
4900
4901impl<V> Hash for WindowHandle<V> {
4902 fn hash<H: Hasher>(&self, state: &mut H) {
4903 self.any_handle.hash(state);
4904 }
4905}
4906
4907impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4908 fn from(val: WindowHandle<V>) -> Self {
4909 val.any_handle
4910 }
4911}
4912
4913/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4914#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4915pub struct AnyWindowHandle {
4916 pub(crate) id: WindowId,
4917 state_type: TypeId,
4918}
4919
4920impl AnyWindowHandle {
4921 /// Get the ID of this window.
4922 pub fn window_id(&self) -> WindowId {
4923 self.id
4924 }
4925
4926 /// Attempt to convert this handle to a window handle with a specific root view type.
4927 /// If the types do not match, this will return `None`.
4928 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4929 if TypeId::of::<T>() == self.state_type {
4930 Some(WindowHandle {
4931 any_handle: *self,
4932 state_type: PhantomData,
4933 })
4934 } else {
4935 None
4936 }
4937 }
4938
4939 /// Updates the state of the root view of this window.
4940 ///
4941 /// This will fail if the window has been closed.
4942 pub fn update<C, R>(
4943 self,
4944 cx: &mut C,
4945 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4946 ) -> Result<R>
4947 where
4948 C: AppContext,
4949 {
4950 cx.update_window(self, update)
4951 }
4952
4953 /// Read the state of the root view of this window.
4954 ///
4955 /// This will fail if the window has been closed.
4956 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4957 where
4958 C: AppContext,
4959 T: 'static,
4960 {
4961 let view = self
4962 .downcast::<T>()
4963 .context("the type of the window's root view has changed")?;
4964
4965 cx.read_window(&view, read)
4966 }
4967}
4968
4969impl HasWindowHandle for Window {
4970 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4971 self.platform_window.window_handle()
4972 }
4973}
4974
4975impl HasDisplayHandle for Window {
4976 fn display_handle(
4977 &self,
4978 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4979 self.platform_window.display_handle()
4980 }
4981}
4982
4983/// An identifier for an [`Element`].
4984///
4985/// Can be constructed with a string, a number, or both, as well
4986/// as other internal representations.
4987#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4988pub enum ElementId {
4989 /// The ID of a View element
4990 View(EntityId),
4991 /// An integer ID.
4992 Integer(u64),
4993 /// A string based ID.
4994 Name(SharedString),
4995 /// A UUID.
4996 Uuid(Uuid),
4997 /// An ID that's equated with a focus handle.
4998 FocusHandle(FocusId),
4999 /// A combination of a name and an integer.
5000 NamedInteger(SharedString, u64),
5001 /// A path.
5002 Path(Arc<std::path::Path>),
5003 /// A code location.
5004 CodeLocation(core::panic::Location<'static>),
5005 /// A labeled child of an element.
5006 NamedChild(Arc<ElementId>, SharedString),
5007}
5008
5009impl ElementId {
5010 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5011 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5012 Self::NamedInteger(name.into(), integer as u64)
5013 }
5014}
5015
5016impl Display for ElementId {
5017 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5018 match self {
5019 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5020 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5021 ElementId::Name(name) => write!(f, "{}", name)?,
5022 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5023 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5024 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5025 ElementId::Path(path) => write!(f, "{}", path.display())?,
5026 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5027 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5028 }
5029
5030 Ok(())
5031 }
5032}
5033
5034impl TryInto<SharedString> for ElementId {
5035 type Error = anyhow::Error;
5036
5037 fn try_into(self) -> anyhow::Result<SharedString> {
5038 if let ElementId::Name(name) = self {
5039 Ok(name)
5040 } else {
5041 anyhow::bail!("element id is not string")
5042 }
5043 }
5044}
5045
5046impl From<usize> for ElementId {
5047 fn from(id: usize) -> Self {
5048 ElementId::Integer(id as u64)
5049 }
5050}
5051
5052impl From<i32> for ElementId {
5053 fn from(id: i32) -> Self {
5054 Self::Integer(id as u64)
5055 }
5056}
5057
5058impl From<SharedString> for ElementId {
5059 fn from(name: SharedString) -> Self {
5060 ElementId::Name(name)
5061 }
5062}
5063
5064impl From<Arc<std::path::Path>> for ElementId {
5065 fn from(path: Arc<std::path::Path>) -> Self {
5066 ElementId::Path(path)
5067 }
5068}
5069
5070impl From<&'static str> for ElementId {
5071 fn from(name: &'static str) -> Self {
5072 ElementId::Name(name.into())
5073 }
5074}
5075
5076impl<'a> From<&'a FocusHandle> for ElementId {
5077 fn from(handle: &'a FocusHandle) -> Self {
5078 ElementId::FocusHandle(handle.id)
5079 }
5080}
5081
5082impl From<(&'static str, EntityId)> for ElementId {
5083 fn from((name, id): (&'static str, EntityId)) -> Self {
5084 ElementId::NamedInteger(name.into(), id.as_u64())
5085 }
5086}
5087
5088impl From<(&'static str, usize)> for ElementId {
5089 fn from((name, id): (&'static str, usize)) -> Self {
5090 ElementId::NamedInteger(name.into(), id as u64)
5091 }
5092}
5093
5094impl From<(SharedString, usize)> for ElementId {
5095 fn from((name, id): (SharedString, usize)) -> Self {
5096 ElementId::NamedInteger(name, id as u64)
5097 }
5098}
5099
5100impl From<(&'static str, u64)> for ElementId {
5101 fn from((name, id): (&'static str, u64)) -> Self {
5102 ElementId::NamedInteger(name.into(), id)
5103 }
5104}
5105
5106impl From<Uuid> for ElementId {
5107 fn from(value: Uuid) -> Self {
5108 Self::Uuid(value)
5109 }
5110}
5111
5112impl From<(&'static str, u32)> for ElementId {
5113 fn from((name, id): (&'static str, u32)) -> Self {
5114 ElementId::NamedInteger(name.into(), id.into())
5115 }
5116}
5117
5118impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5119 fn from((id, name): (ElementId, T)) -> Self {
5120 ElementId::NamedChild(Arc::new(id), name.into())
5121 }
5122}
5123
5124impl From<&'static core::panic::Location<'static>> for ElementId {
5125 fn from(location: &'static core::panic::Location<'static>) -> Self {
5126 ElementId::CodeLocation(*location)
5127 }
5128}
5129
5130/// A rectangle to be rendered in the window at the given position and size.
5131/// Passed as an argument [`Window::paint_quad`].
5132#[derive(Clone)]
5133pub struct PaintQuad {
5134 /// The bounds of the quad within the window.
5135 pub bounds: Bounds<Pixels>,
5136 /// The radii of the quad's corners.
5137 pub corner_radii: Corners<Pixels>,
5138 /// The background color of the quad.
5139 pub background: Background,
5140 /// The widths of the quad's borders.
5141 pub border_widths: Edges<Pixels>,
5142 /// The color of the quad's borders.
5143 pub border_color: Hsla,
5144 /// The style of the quad's borders.
5145 pub border_style: BorderStyle,
5146}
5147
5148impl PaintQuad {
5149 /// Sets the corner radii of the quad.
5150 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5151 PaintQuad {
5152 corner_radii: corner_radii.into(),
5153 ..self
5154 }
5155 }
5156
5157 /// Sets the border widths of the quad.
5158 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5159 PaintQuad {
5160 border_widths: border_widths.into(),
5161 ..self
5162 }
5163 }
5164
5165 /// Sets the border color of the quad.
5166 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5167 PaintQuad {
5168 border_color: border_color.into(),
5169 ..self
5170 }
5171 }
5172
5173 /// Sets the background color of the quad.
5174 pub fn background(self, background: impl Into<Background>) -> Self {
5175 PaintQuad {
5176 background: background.into(),
5177 ..self
5178 }
5179 }
5180}
5181
5182/// Creates a quad with the given parameters.
5183pub fn quad(
5184 bounds: Bounds<Pixels>,
5185 corner_radii: impl Into<Corners<Pixels>>,
5186 background: impl Into<Background>,
5187 border_widths: impl Into<Edges<Pixels>>,
5188 border_color: impl Into<Hsla>,
5189 border_style: BorderStyle,
5190) -> PaintQuad {
5191 PaintQuad {
5192 bounds,
5193 corner_radii: corner_radii.into(),
5194 background: background.into(),
5195 border_widths: border_widths.into(),
5196 border_color: border_color.into(),
5197 border_style,
5198 }
5199}
5200
5201/// Creates a filled quad with the given bounds and background color.
5202pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5203 PaintQuad {
5204 bounds: bounds.into(),
5205 corner_radii: (0.).into(),
5206 background: background.into(),
5207 border_widths: (0.).into(),
5208 border_color: transparent_black(),
5209 border_style: BorderStyle::default(),
5210 }
5211}
5212
5213/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5214pub fn outline(
5215 bounds: impl Into<Bounds<Pixels>>,
5216 border_color: impl Into<Hsla>,
5217 border_style: BorderStyle,
5218) -> PaintQuad {
5219 PaintQuad {
5220 bounds: bounds.into(),
5221 corner_radii: (0.).into(),
5222 background: transparent_black().into(),
5223 border_widths: (1.).into(),
5224 border_color: border_color.into(),
5225 border_style,
5226 }
5227}