executor.rs

  1use crate::{App, PlatformDispatcher};
  2use async_task::Runnable;
  3use futures::channel::mpsc;
  4use smol::prelude::*;
  5use std::mem::ManuallyDrop;
  6use std::panic::Location;
  7use std::thread::{self, ThreadId};
  8use std::{
  9    fmt::Debug,
 10    marker::PhantomData,
 11    mem,
 12    num::NonZeroUsize,
 13    pin::Pin,
 14    rc::Rc,
 15    sync::{
 16        Arc,
 17        atomic::{AtomicUsize, Ordering::SeqCst},
 18    },
 19    task::{Context, Poll},
 20    time::{Duration, Instant},
 21};
 22use util::TryFutureExt;
 23use waker_fn::waker_fn;
 24
 25#[cfg(any(test, feature = "test-support"))]
 26use rand::rngs::StdRng;
 27
 28/// A pointer to the executor that is currently running,
 29/// for spawning background tasks.
 30#[derive(Clone)]
 31pub struct BackgroundExecutor {
 32    #[doc(hidden)]
 33    pub dispatcher: Arc<dyn PlatformDispatcher>,
 34}
 35
 36/// A pointer to the executor that is currently running,
 37/// for spawning tasks on the main thread.
 38///
 39/// This is intentionally `!Send` via the `not_send` marker field. This is because
 40/// `ForegroundExecutor::spawn` does not require `Send` but checks at runtime that the future is
 41/// only polled from the same thread it was spawned from. These checks would fail when spawning
 42/// foreground tasks from from background threads.
 43#[derive(Clone)]
 44pub struct ForegroundExecutor {
 45    #[doc(hidden)]
 46    pub dispatcher: Arc<dyn PlatformDispatcher>,
 47    not_send: PhantomData<Rc<()>>,
 48}
 49
 50/// Task is a primitive that allows work to happen in the background.
 51///
 52/// It implements [`Future`] so you can `.await` on it.
 53///
 54/// If you drop a task it will be cancelled immediately. Calling [`Task::detach`] allows
 55/// the task to continue running, but with no way to return a value.
 56#[must_use]
 57#[derive(Debug)]
 58pub struct Task<T>(TaskState<T>);
 59
 60#[derive(Debug)]
 61enum TaskState<T> {
 62    /// A task that is ready to return a value
 63    Ready(Option<T>),
 64
 65    /// A task that is currently running.
 66    Spawned(async_task::Task<T>),
 67}
 68
 69impl<T> Task<T> {
 70    /// Creates a new task that will resolve with the value
 71    pub fn ready(val: T) -> Self {
 72        Task(TaskState::Ready(Some(val)))
 73    }
 74
 75    /// Detaching a task runs it to completion in the background
 76    pub fn detach(self) {
 77        match self {
 78            Task(TaskState::Ready(_)) => {}
 79            Task(TaskState::Spawned(task)) => task.detach(),
 80        }
 81    }
 82}
 83
 84impl<E, T> Task<Result<T, E>>
 85where
 86    T: 'static,
 87    E: 'static + Debug,
 88{
 89    /// Run the task to completion in the background and log any
 90    /// errors that occur.
 91    #[track_caller]
 92    pub fn detach_and_log_err(self, cx: &App) {
 93        let location = core::panic::Location::caller();
 94        cx.foreground_executor()
 95            .spawn(self.log_tracked_err(*location))
 96            .detach();
 97    }
 98}
 99
100impl<T> Future for Task<T> {
101    type Output = T;
102
103    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
104        match unsafe { self.get_unchecked_mut() } {
105            Task(TaskState::Ready(val)) => Poll::Ready(val.take().unwrap()),
106            Task(TaskState::Spawned(task)) => task.poll(cx),
107        }
108    }
109}
110
111/// A task label is an opaque identifier that you can use to
112/// refer to a task in tests.
113#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
114pub struct TaskLabel(NonZeroUsize);
115
116impl Default for TaskLabel {
117    fn default() -> Self {
118        Self::new()
119    }
120}
121
122impl TaskLabel {
123    /// Construct a new task label.
124    pub fn new() -> Self {
125        static NEXT_TASK_LABEL: AtomicUsize = AtomicUsize::new(1);
126        Self(NEXT_TASK_LABEL.fetch_add(1, SeqCst).try_into().unwrap())
127    }
128}
129
130type AnyLocalFuture<R> = Pin<Box<dyn 'static + Future<Output = R>>>;
131
132type AnyFuture<R> = Pin<Box<dyn 'static + Send + Future<Output = R>>>;
133
134/// BackgroundExecutor lets you run things on background threads.
135/// In production this is a thread pool with no ordering guarantees.
136/// In tests this is simulated by running tasks one by one in a deterministic
137/// (but arbitrary) order controlled by the `SEED` environment variable.
138impl BackgroundExecutor {
139    #[doc(hidden)]
140    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
141        Self { dispatcher }
142    }
143
144    /// Enqueues the given future to be run to completion on a background thread.
145    pub fn spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
146    where
147        R: Send + 'static,
148    {
149        self.spawn_internal::<R>(Box::pin(future), None)
150    }
151
152    /// Enqueues the given future to be run to completion on a background thread.
153    /// The given label can be used to control the priority of the task in tests.
154    pub fn spawn_labeled<R>(
155        &self,
156        label: TaskLabel,
157        future: impl Future<Output = R> + Send + 'static,
158    ) -> Task<R>
159    where
160        R: Send + 'static,
161    {
162        self.spawn_internal::<R>(Box::pin(future), Some(label))
163    }
164
165    fn spawn_internal<R: Send + 'static>(
166        &self,
167        future: AnyFuture<R>,
168        label: Option<TaskLabel>,
169    ) -> Task<R> {
170        let dispatcher = self.dispatcher.clone();
171        let (runnable, task) = async_task::spawn(tracy_client::fiber!(future), move |runnable| {
172            dispatcher.dispatch(runnable, label)
173        });
174        runnable.schedule();
175        Task(TaskState::Spawned(task))
176    }
177
178    /// Used by the test harness to run an async test in a synchronous fashion.
179    #[cfg(any(test, feature = "test-support"))]
180    #[track_caller]
181    pub fn block_test<R>(&self, future: impl Future<Output = R>) -> R {
182        if let Ok(value) = self.block_internal(false, future, None) {
183            value
184        } else {
185            unreachable!()
186        }
187    }
188
189    /// Block the current thread until the given future resolves.
190    /// Consider using `block_with_timeout` instead.
191    pub fn block<R>(&self, future: impl Future<Output = R>) -> R {
192        if let Ok(value) = self.block_internal(true, future, None) {
193            value
194        } else {
195            unreachable!()
196        }
197    }
198
199    #[cfg(not(any(test, feature = "test-support")))]
200    pub(crate) fn block_internal<Fut: Future>(
201        &self,
202        _background_only: bool,
203        future: Fut,
204        timeout: Option<Duration>,
205    ) -> Result<Fut::Output, impl Future<Output = Fut::Output> + use<Fut>> {
206        use std::time::Instant;
207
208        let mut future = Box::pin(future);
209        if timeout == Some(Duration::ZERO) {
210            return Err(future);
211        }
212        let deadline = timeout.map(|timeout| Instant::now() + timeout);
213
214        let unparker = self.dispatcher.unparker();
215        let waker = waker_fn(move || {
216            unparker.unpark();
217        });
218        let mut cx = std::task::Context::from_waker(&waker);
219
220        loop {
221            match future.as_mut().poll(&mut cx) {
222                Poll::Ready(result) => return Ok(result),
223                Poll::Pending => {
224                    let timeout =
225                        deadline.map(|deadline| deadline.saturating_duration_since(Instant::now()));
226                    if !self.dispatcher.park(timeout)
227                        && deadline.is_some_and(|deadline| deadline < Instant::now())
228                    {
229                        return Err(future);
230                    }
231                }
232            }
233        }
234    }
235
236    #[cfg(any(test, feature = "test-support"))]
237    #[track_caller]
238    pub(crate) fn block_internal<Fut: Future>(
239        &self,
240        background_only: bool,
241        future: Fut,
242        timeout: Option<Duration>,
243    ) -> Result<Fut::Output, impl Future<Output = Fut::Output> + use<Fut>> {
244        use std::sync::atomic::AtomicBool;
245
246        let mut future = Box::pin(future);
247        if timeout == Some(Duration::ZERO) {
248            return Err(future);
249        }
250        let Some(dispatcher) = self.dispatcher.as_test() else {
251            return Err(future);
252        };
253
254        let mut max_ticks = if timeout.is_some() {
255            dispatcher.gen_block_on_ticks()
256        } else {
257            usize::MAX
258        };
259        let unparker = self.dispatcher.unparker();
260        let awoken = Arc::new(AtomicBool::new(false));
261        let waker = waker_fn({
262            let awoken = awoken.clone();
263            move || {
264                awoken.store(true, SeqCst);
265                unparker.unpark();
266            }
267        });
268        let mut cx = std::task::Context::from_waker(&waker);
269
270        loop {
271            match future.as_mut().poll(&mut cx) {
272                Poll::Ready(result) => return Ok(result),
273                Poll::Pending => {
274                    if max_ticks == 0 {
275                        return Err(future);
276                    }
277                    max_ticks -= 1;
278
279                    if !dispatcher.tick(background_only) {
280                        if awoken.swap(false, SeqCst) {
281                            continue;
282                        }
283
284                        if !dispatcher.parking_allowed() {
285                            if dispatcher.advance_clock_to_next_delayed() {
286                                continue;
287                            }
288                            let mut backtrace_message = String::new();
289                            let mut waiting_message = String::new();
290                            if let Some(backtrace) = dispatcher.waiting_backtrace() {
291                                backtrace_message =
292                                    format!("\nbacktrace of waiting future:\n{:?}", backtrace);
293                            }
294                            if let Some(waiting_hint) = dispatcher.waiting_hint() {
295                                waiting_message = format!("\n  waiting on: {}\n", waiting_hint);
296                            }
297                            panic!(
298                                "parked with nothing left to run{waiting_message}{backtrace_message}",
299                            )
300                        }
301                        self.dispatcher.park(None);
302                    }
303                }
304            }
305        }
306    }
307
308    /// Block the current thread until the given future resolves
309    /// or `duration` has elapsed.
310    pub fn block_with_timeout<Fut: Future>(
311        &self,
312        duration: Duration,
313        future: Fut,
314    ) -> Result<Fut::Output, impl Future<Output = Fut::Output> + use<Fut>> {
315        self.block_internal(true, future, Some(duration))
316    }
317
318    /// Scoped lets you start a number of tasks and waits
319    /// for all of them to complete before returning.
320    pub async fn scoped<'scope, F>(&self, scheduler: F)
321    where
322        F: FnOnce(&mut Scope<'scope>),
323    {
324        let mut scope = Scope::new(self.clone());
325        (scheduler)(&mut scope);
326        let spawned = mem::take(&mut scope.futures)
327            .into_iter()
328            .map(|f| self.spawn(f))
329            .collect::<Vec<_>>();
330        for task in spawned {
331            task.await;
332        }
333    }
334
335    /// Get the current time.
336    ///
337    /// Calling this instead of `std::time::Instant::now` allows the use
338    /// of fake timers in tests.
339    pub fn now(&self) -> Instant {
340        self.dispatcher.now()
341    }
342
343    /// Returns a task that will complete after the given duration.
344    /// Depending on other concurrent tasks the elapsed duration may be longer
345    /// than requested.
346    pub fn timer(&self, duration: Duration) -> Task<()> {
347        if duration.is_zero() {
348            return Task::ready(());
349        }
350        let (runnable, task) = async_task::spawn(async move {}, {
351            let dispatcher = self.dispatcher.clone();
352            move |runnable| dispatcher.dispatch_after(duration, runnable)
353        });
354        runnable.schedule();
355        Task(TaskState::Spawned(task))
356    }
357
358    /// in tests, start_waiting lets you indicate which task is waiting (for debugging only)
359    #[cfg(any(test, feature = "test-support"))]
360    pub fn start_waiting(&self) {
361        self.dispatcher.as_test().unwrap().start_waiting();
362    }
363
364    /// in tests, removes the debugging data added by start_waiting
365    #[cfg(any(test, feature = "test-support"))]
366    pub fn finish_waiting(&self) {
367        self.dispatcher.as_test().unwrap().finish_waiting();
368    }
369
370    /// in tests, run an arbitrary number of tasks (determined by the SEED environment variable)
371    #[cfg(any(test, feature = "test-support"))]
372    pub fn simulate_random_delay(&self) -> impl Future<Output = ()> + use<> {
373        self.dispatcher.as_test().unwrap().simulate_random_delay()
374    }
375
376    /// in tests, indicate that a given task from `spawn_labeled` should run after everything else
377    #[cfg(any(test, feature = "test-support"))]
378    pub fn deprioritize(&self, task_label: TaskLabel) {
379        self.dispatcher.as_test().unwrap().deprioritize(task_label)
380    }
381
382    /// in tests, move time forward. This does not run any tasks, but does make `timer`s ready.
383    #[cfg(any(test, feature = "test-support"))]
384    pub fn advance_clock(&self, duration: Duration) {
385        self.dispatcher.as_test().unwrap().advance_clock(duration)
386    }
387
388    /// in tests, run one task.
389    #[cfg(any(test, feature = "test-support"))]
390    pub fn tick(&self) -> bool {
391        self.dispatcher.as_test().unwrap().tick(false)
392    }
393
394    /// in tests, run all tasks that are ready to run. If after doing so
395    /// the test still has outstanding tasks, this will panic. (See also [`Self::allow_parking`])
396    #[cfg(any(test, feature = "test-support"))]
397    pub fn run_until_parked(&self) {
398        self.dispatcher.as_test().unwrap().run_until_parked()
399    }
400
401    /// in tests, prevents `run_until_parked` from panicking if there are outstanding tasks.
402    /// This is useful when you are integrating other (non-GPUI) futures, like disk access, that
403    /// do take real async time to run.
404    #[cfg(any(test, feature = "test-support"))]
405    pub fn allow_parking(&self) {
406        self.dispatcher.as_test().unwrap().allow_parking();
407    }
408
409    /// undoes the effect of [`Self::allow_parking`].
410    #[cfg(any(test, feature = "test-support"))]
411    pub fn forbid_parking(&self) {
412        self.dispatcher.as_test().unwrap().forbid_parking();
413    }
414
415    /// adds detail to the "parked with nothing let to run" message.
416    #[cfg(any(test, feature = "test-support"))]
417    pub fn set_waiting_hint(&self, msg: Option<String>) {
418        self.dispatcher.as_test().unwrap().set_waiting_hint(msg);
419    }
420
421    /// in tests, returns the rng used by the dispatcher and seeded by the `SEED` environment variable
422    #[cfg(any(test, feature = "test-support"))]
423    pub fn rng(&self) -> StdRng {
424        self.dispatcher.as_test().unwrap().rng()
425    }
426
427    /// How many CPUs are available to the dispatcher.
428    pub fn num_cpus(&self) -> usize {
429        #[cfg(any(test, feature = "test-support"))]
430        return 4;
431
432        #[cfg(not(any(test, feature = "test-support")))]
433        return num_cpus::get();
434    }
435
436    /// Whether we're on the main thread.
437    pub fn is_main_thread(&self) -> bool {
438        self.dispatcher.is_main_thread()
439    }
440
441    #[cfg(any(test, feature = "test-support"))]
442    /// in tests, control the number of ticks that `block_with_timeout` will run before timing out.
443    pub fn set_block_on_ticks(&self, range: std::ops::RangeInclusive<usize>) {
444        self.dispatcher.as_test().unwrap().set_block_on_ticks(range);
445    }
446}
447
448/// ForegroundExecutor runs things on the main thread.
449impl ForegroundExecutor {
450    /// Creates a new ForegroundExecutor from the given PlatformDispatcher.
451    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
452        Self {
453            dispatcher,
454            not_send: PhantomData,
455        }
456    }
457
458    /// Enqueues the given Task to run on the main thread at some point in the future.
459    #[track_caller]
460    pub fn spawn<R>(&self, future: impl Future<Output = R> + 'static) -> Task<R>
461    where
462        R: 'static,
463    {
464        let dispatcher = self.dispatcher.clone();
465
466        #[track_caller]
467        fn inner<R: 'static>(
468            dispatcher: Arc<dyn PlatformDispatcher>,
469            future: AnyLocalFuture<R>,
470        ) -> Task<R> {
471            let (runnable, task) = spawn_local_with_source_location(future, move |runnable| {
472                dispatcher.dispatch_on_main_thread(runnable)
473            });
474            runnable.schedule();
475            Task(TaskState::Spawned(task))
476        }
477        inner::<R>(dispatcher, Box::pin(future))
478    }
479}
480
481/// Variant of `async_task::spawn_local` that includes the source location of the spawn in panics.
482///
483/// Copy-modified from:
484/// <https://github.com/smol-rs/async-task/blob/ca9dbe1db9c422fd765847fa91306e30a6bb58a9/src/runnable.rs#L405>
485#[track_caller]
486fn spawn_local_with_source_location<Fut, S>(
487    future: Fut,
488    schedule: S,
489) -> (Runnable<()>, async_task::Task<Fut::Output, ()>)
490where
491    Fut: Future + 'static,
492    Fut::Output: 'static,
493    S: async_task::Schedule<()> + Send + Sync + 'static,
494{
495    #[inline]
496    fn thread_id() -> ThreadId {
497        std::thread_local! {
498            static ID: ThreadId = thread::current().id();
499        }
500        ID.try_with(|id| *id)
501            .unwrap_or_else(|_| thread::current().id())
502    }
503
504    struct Checked<F> {
505        id: ThreadId,
506        inner: ManuallyDrop<F>,
507        location: &'static Location<'static>,
508    }
509
510    impl<F> Drop for Checked<F> {
511        fn drop(&mut self) {
512            assert!(
513                self.id == thread_id(),
514                "local task dropped by a thread that didn't spawn it. Task spawned at {}",
515                self.location
516            );
517            unsafe {
518                ManuallyDrop::drop(&mut self.inner);
519            }
520        }
521    }
522
523    impl<F: Future> Future for Checked<F> {
524        type Output = F::Output;
525
526        fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
527            assert!(
528                self.id == thread_id(),
529                "local task polled by a thread that didn't spawn it. Task spawned at {}",
530                self.location
531            );
532            unsafe { self.map_unchecked_mut(|c| &mut *c.inner).poll(cx) }
533        }
534    }
535
536    // Wrap the future into one that checks which thread it's on.
537    let future = Checked {
538        id: thread_id(),
539        inner: ManuallyDrop::new(future),
540        location: Location::caller(),
541    };
542
543    unsafe { async_task::spawn_unchecked(future, schedule) }
544}
545
546/// Scope manages a set of tasks that are enqueued and waited on together. See [`BackgroundExecutor::scoped`].
547pub struct Scope<'a> {
548    executor: BackgroundExecutor,
549    futures: Vec<Pin<Box<dyn Future<Output = ()> + Send + 'static>>>,
550    tx: Option<mpsc::Sender<()>>,
551    rx: mpsc::Receiver<()>,
552    lifetime: PhantomData<&'a ()>,
553}
554
555impl<'a> Scope<'a> {
556    fn new(executor: BackgroundExecutor) -> Self {
557        let (tx, rx) = mpsc::channel(1);
558        Self {
559            executor,
560            tx: Some(tx),
561            rx,
562            futures: Default::default(),
563            lifetime: PhantomData,
564        }
565    }
566
567    /// How many CPUs are available to the dispatcher.
568    pub fn num_cpus(&self) -> usize {
569        self.executor.num_cpus()
570    }
571
572    /// Spawn a future into this scope.
573    pub fn spawn<F>(&mut self, f: F)
574    where
575        F: Future<Output = ()> + Send + 'a,
576    {
577        let tx = self.tx.clone().unwrap();
578
579        // SAFETY: The 'a lifetime is guaranteed to outlive any of these futures because
580        // dropping this `Scope` blocks until all of the futures have resolved.
581        let f = unsafe {
582            mem::transmute::<
583                Pin<Box<dyn Future<Output = ()> + Send + 'a>>,
584                Pin<Box<dyn Future<Output = ()> + Send + 'static>>,
585            >(Box::pin(async move {
586                f.await;
587                drop(tx);
588            }))
589        };
590        self.futures.push(f);
591    }
592}
593
594impl Drop for Scope<'_> {
595    fn drop(&mut self) {
596        self.tx.take().unwrap();
597
598        // Wait until the channel is closed, which means that all of the spawned
599        // futures have resolved.
600        self.executor.block(self.rx.next());
601    }
602}