1use crate::{
2 point, prelude::*, px, size, transparent_black, Action, AnyDrag, AnyElement, AnyTooltip,
3 AnyView, App, AppContext, Arena, Asset, AsyncWindowContext, AvailableSpace, Background, Bounds,
4 BoxShadow, Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
5 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
6 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
7 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
8 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
9 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
10 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
11 RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
12 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
13 Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement, TransformationMatrix,
14 Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance, WindowBounds,
15 WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
16 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS,
17};
18use anyhow::{anyhow, Context as _, Result};
19use collections::{FxHashMap, FxHashSet};
20use derive_more::{Deref, DerefMut};
21use futures::channel::oneshot;
22use futures::FutureExt;
23#[cfg(target_os = "macos")]
24use media::core_video::CVImageBuffer;
25use parking_lot::RwLock;
26use raw_window_handle::{HandleError, HasWindowHandle};
27use refineable::Refineable;
28use slotmap::SlotMap;
29use smallvec::SmallVec;
30use std::{
31 any::{Any, TypeId},
32 borrow::Cow,
33 cell::{Cell, RefCell},
34 cmp,
35 fmt::{Debug, Display},
36 future::Future,
37 hash::{Hash, Hasher},
38 marker::PhantomData,
39 mem,
40 ops::{DerefMut, Range},
41 rc::Rc,
42 sync::{
43 atomic::{AtomicUsize, Ordering::SeqCst},
44 Arc, Weak,
45 },
46 time::{Duration, Instant},
47};
48use util::post_inc;
49use util::{measure, ResultExt};
50use uuid::Uuid;
51
52mod prompts;
53
54pub use prompts::*;
55
56pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
57
58/// Represents the two different phases when dispatching events.
59#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
60pub enum DispatchPhase {
61 /// After the capture phase comes the bubble phase, in which mouse event listeners are
62 /// invoked front to back and keyboard event listeners are invoked from the focused element
63 /// to the root of the element tree. This is the phase you'll most commonly want to use when
64 /// registering event listeners.
65 #[default]
66 Bubble,
67 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
68 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
69 /// is used for special purposes such as clearing the "pressed" state for click events. If
70 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
71 /// outside of the immediate region may rely on detecting non-local events during this phase.
72 Capture,
73}
74
75impl DispatchPhase {
76 /// Returns true if this represents the "bubble" phase.
77 pub fn bubble(self) -> bool {
78 self == DispatchPhase::Bubble
79 }
80
81 /// Returns true if this represents the "capture" phase.
82 pub fn capture(self) -> bool {
83 self == DispatchPhase::Capture
84 }
85}
86
87struct WindowInvalidatorInner {
88 pub dirty: bool,
89 pub draw_phase: DrawPhase,
90 pub dirty_views: FxHashSet<EntityId>,
91}
92
93#[derive(Clone)]
94pub(crate) struct WindowInvalidator {
95 inner: Rc<RefCell<WindowInvalidatorInner>>,
96}
97
98impl WindowInvalidator {
99 pub fn new() -> Self {
100 WindowInvalidator {
101 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
102 dirty: true,
103 draw_phase: DrawPhase::None,
104 dirty_views: FxHashSet::default(),
105 })),
106 }
107 }
108
109 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
110 let mut inner = self.inner.borrow_mut();
111 inner.dirty_views.insert(entity);
112 if inner.draw_phase == DrawPhase::None {
113 inner.dirty = true;
114 cx.push_effect(Effect::Notify { emitter: entity });
115 true
116 } else {
117 false
118 }
119 }
120
121 pub fn is_dirty(&self) -> bool {
122 self.inner.borrow().dirty
123 }
124
125 pub fn set_dirty(&self, dirty: bool) {
126 self.inner.borrow_mut().dirty = dirty
127 }
128
129 pub fn set_phase(&self, phase: DrawPhase) {
130 self.inner.borrow_mut().draw_phase = phase
131 }
132
133 pub fn take_views(&self) -> FxHashSet<EntityId> {
134 mem::take(&mut self.inner.borrow_mut().dirty_views)
135 }
136
137 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
138 self.inner.borrow_mut().dirty_views = views;
139 }
140
141 pub fn not_drawing(&self) -> bool {
142 self.inner.borrow().draw_phase == DrawPhase::None
143 }
144
145 #[track_caller]
146 pub fn debug_assert_paint(&self) {
147 debug_assert!(
148 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
149 "this method can only be called during paint"
150 );
151 }
152
153 #[track_caller]
154 pub fn debug_assert_prepaint(&self) {
155 debug_assert!(
156 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
157 "this method can only be called during request_layout, or prepaint"
158 );
159 }
160
161 #[track_caller]
162 pub fn debug_assert_paint_or_prepaint(&self) {
163 debug_assert!(
164 matches!(
165 self.inner.borrow().draw_phase,
166 DrawPhase::Paint | DrawPhase::Prepaint
167 ),
168 "this method can only be called during request_layout, prepaint, or paint"
169 );
170 }
171}
172
173type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
174
175pub(crate) type AnyWindowFocusListener =
176 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
177
178pub(crate) struct WindowFocusEvent {
179 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
180 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
181}
182
183impl WindowFocusEvent {
184 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
185 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
186 }
187
188 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
189 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
190 }
191}
192
193/// This is provided when subscribing for `Context::on_focus_out` events.
194pub struct FocusOutEvent {
195 /// A weak focus handle representing what was blurred.
196 pub blurred: WeakFocusHandle,
197}
198
199slotmap::new_key_type! {
200 /// A globally unique identifier for a focusable element.
201 pub struct FocusId;
202}
203
204thread_local! {
205 /// 8MB wasn't quite enough...
206 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
207}
208
209pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
210
211impl FocusId {
212 /// Obtains whether the element associated with this handle is currently focused.
213 pub fn is_focused(&self, window: &Window) -> bool {
214 window.focus == Some(*self)
215 }
216
217 /// Obtains whether the element associated with this handle contains the focused
218 /// element or is itself focused.
219 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
220 window
221 .focused(cx)
222 .map_or(false, |focused| self.contains(focused.id, window))
223 }
224
225 /// Obtains whether the element associated with this handle is contained within the
226 /// focused element or is itself focused.
227 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
228 let focused = window.focused(cx);
229 focused.map_or(false, |focused| focused.id.contains(*self, window))
230 }
231
232 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
233 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
234 window
235 .rendered_frame
236 .dispatch_tree
237 .focus_contains(*self, other)
238 }
239}
240
241/// A handle which can be used to track and manipulate the focused element in a window.
242pub struct FocusHandle {
243 pub(crate) id: FocusId,
244 handles: Arc<FocusMap>,
245}
246
247impl std::fmt::Debug for FocusHandle {
248 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
249 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
250 }
251}
252
253impl FocusHandle {
254 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
255 let id = handles.write().insert(AtomicUsize::new(1));
256 Self {
257 id,
258 handles: handles.clone(),
259 }
260 }
261
262 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
263 let lock = handles.read();
264 let ref_count = lock.get(id)?;
265 if ref_count.load(SeqCst) == 0 {
266 None
267 } else {
268 ref_count.fetch_add(1, SeqCst);
269 Some(Self {
270 id,
271 handles: handles.clone(),
272 })
273 }
274 }
275
276 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
277 pub fn downgrade(&self) -> WeakFocusHandle {
278 WeakFocusHandle {
279 id: self.id,
280 handles: Arc::downgrade(&self.handles),
281 }
282 }
283
284 /// Moves the focus to the element associated with this handle.
285 pub fn focus(&self, window: &mut Window) {
286 window.focus(self)
287 }
288
289 /// Obtains whether the element associated with this handle is currently focused.
290 pub fn is_focused(&self, window: &Window) -> bool {
291 self.id.is_focused(window)
292 }
293
294 /// Obtains whether the element associated with this handle contains the focused
295 /// element or is itself focused.
296 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
297 self.id.contains_focused(window, cx)
298 }
299
300 /// Obtains whether the element associated with this handle is contained within the
301 /// focused element or is itself focused.
302 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
303 self.id.within_focused(window, cx)
304 }
305
306 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
307 pub fn contains(&self, other: &Self, window: &Window) -> bool {
308 self.id.contains(other.id, window)
309 }
310
311 /// Dispatch an action on the element that rendered this focus handle
312 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
313 if let Some(node_id) = window
314 .rendered_frame
315 .dispatch_tree
316 .focusable_node_id(self.id)
317 {
318 window.dispatch_action_on_node(node_id, action, cx)
319 }
320 }
321}
322
323impl Clone for FocusHandle {
324 fn clone(&self) -> Self {
325 Self::for_id(self.id, &self.handles).unwrap()
326 }
327}
328
329impl PartialEq for FocusHandle {
330 fn eq(&self, other: &Self) -> bool {
331 self.id == other.id
332 }
333}
334
335impl Eq for FocusHandle {}
336
337impl Drop for FocusHandle {
338 fn drop(&mut self) {
339 self.handles
340 .read()
341 .get(self.id)
342 .unwrap()
343 .fetch_sub(1, SeqCst);
344 }
345}
346
347/// A weak reference to a focus handle.
348#[derive(Clone, Debug)]
349pub struct WeakFocusHandle {
350 pub(crate) id: FocusId,
351 pub(crate) handles: Weak<FocusMap>,
352}
353
354impl WeakFocusHandle {
355 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
356 pub fn upgrade(&self) -> Option<FocusHandle> {
357 let handles = self.handles.upgrade()?;
358 FocusHandle::for_id(self.id, &handles)
359 }
360}
361
362impl PartialEq for WeakFocusHandle {
363 fn eq(&self, other: &WeakFocusHandle) -> bool {
364 self.id == other.id
365 }
366}
367
368impl Eq for WeakFocusHandle {}
369
370impl PartialEq<FocusHandle> for WeakFocusHandle {
371 fn eq(&self, other: &FocusHandle) -> bool {
372 self.id == other.id
373 }
374}
375
376impl PartialEq<WeakFocusHandle> for FocusHandle {
377 fn eq(&self, other: &WeakFocusHandle) -> bool {
378 self.id == other.id
379 }
380}
381
382/// Focusable allows users of your view to easily
383/// focus it (using window.focus_view(cx, view))
384pub trait Focusable: 'static {
385 /// Returns the focus handle associated with this view.
386 fn focus_handle(&self, cx: &App) -> FocusHandle;
387}
388
389impl<V: Focusable> Focusable for Entity<V> {
390 fn focus_handle(&self, cx: &App) -> FocusHandle {
391 self.read(cx).focus_handle(cx)
392 }
393}
394
395/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
396/// where the lifecycle of the view is handled by another view.
397pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
398
399impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
400
401/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
402pub struct DismissEvent;
403
404type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
405
406pub(crate) type AnyMouseListener =
407 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
408
409#[derive(Clone)]
410pub(crate) struct CursorStyleRequest {
411 pub(crate) hitbox_id: HitboxId,
412 pub(crate) style: CursorStyle,
413}
414
415/// An identifier for a [Hitbox].
416#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
417pub struct HitboxId(usize);
418
419impl HitboxId {
420 /// Checks if the hitbox with this id is currently hovered.
421 pub fn is_hovered(&self, window: &Window) -> bool {
422 window.mouse_hit_test.0.contains(self)
423 }
424}
425
426/// A rectangular region that potentially blocks hitboxes inserted prior.
427/// See [Window::insert_hitbox] for more details.
428#[derive(Clone, Debug, Deref)]
429pub struct Hitbox {
430 /// A unique identifier for the hitbox.
431 pub id: HitboxId,
432 /// The bounds of the hitbox.
433 #[deref]
434 pub bounds: Bounds<Pixels>,
435 /// The content mask when the hitbox was inserted.
436 pub content_mask: ContentMask<Pixels>,
437 /// Whether the hitbox occludes other hitboxes inserted prior.
438 pub opaque: bool,
439}
440
441impl Hitbox {
442 /// Checks if the hitbox is currently hovered.
443 pub fn is_hovered(&self, window: &Window) -> bool {
444 self.id.is_hovered(window)
445 }
446}
447
448#[derive(Default, Eq, PartialEq)]
449pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
450
451/// An identifier for a tooltip.
452#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
453pub struct TooltipId(usize);
454
455impl TooltipId {
456 /// Checks if the tooltip is currently hovered.
457 pub fn is_hovered(&self, window: &Window) -> bool {
458 window
459 .tooltip_bounds
460 .as_ref()
461 .map_or(false, |tooltip_bounds| {
462 tooltip_bounds.id == *self
463 && tooltip_bounds.bounds.contains(&window.mouse_position())
464 })
465 }
466}
467
468pub(crate) struct TooltipBounds {
469 id: TooltipId,
470 bounds: Bounds<Pixels>,
471}
472
473#[derive(Clone)]
474pub(crate) struct TooltipRequest {
475 id: TooltipId,
476 tooltip: AnyTooltip,
477}
478
479pub(crate) struct DeferredDraw {
480 current_view: EntityId,
481 priority: usize,
482 parent_node: DispatchNodeId,
483 element_id_stack: SmallVec<[ElementId; 32]>,
484 text_style_stack: Vec<TextStyleRefinement>,
485 element: Option<AnyElement>,
486 absolute_offset: Point<Pixels>,
487 prepaint_range: Range<PrepaintStateIndex>,
488 paint_range: Range<PaintIndex>,
489}
490
491pub(crate) struct Frame {
492 pub(crate) focus: Option<FocusId>,
493 pub(crate) window_active: bool,
494 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
495 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
496 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
497 pub(crate) dispatch_tree: DispatchTree,
498 pub(crate) scene: Scene,
499 pub(crate) hitboxes: Vec<Hitbox>,
500 pub(crate) deferred_draws: Vec<DeferredDraw>,
501 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
502 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
503 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
504 #[cfg(any(test, feature = "test-support"))]
505 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
506}
507
508#[derive(Clone, Default)]
509pub(crate) struct PrepaintStateIndex {
510 hitboxes_index: usize,
511 tooltips_index: usize,
512 deferred_draws_index: usize,
513 dispatch_tree_index: usize,
514 accessed_element_states_index: usize,
515 line_layout_index: LineLayoutIndex,
516}
517
518#[derive(Clone, Default)]
519pub(crate) struct PaintIndex {
520 scene_index: usize,
521 mouse_listeners_index: usize,
522 input_handlers_index: usize,
523 cursor_styles_index: usize,
524 accessed_element_states_index: usize,
525 line_layout_index: LineLayoutIndex,
526}
527
528impl Frame {
529 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
530 Frame {
531 focus: None,
532 window_active: false,
533 element_states: FxHashMap::default(),
534 accessed_element_states: Vec::new(),
535 mouse_listeners: Vec::new(),
536 dispatch_tree,
537 scene: Scene::default(),
538 hitboxes: Vec::new(),
539 deferred_draws: Vec::new(),
540 input_handlers: Vec::new(),
541 tooltip_requests: Vec::new(),
542 cursor_styles: Vec::new(),
543
544 #[cfg(any(test, feature = "test-support"))]
545 debug_bounds: FxHashMap::default(),
546 }
547 }
548
549 pub(crate) fn clear(&mut self) {
550 self.element_states.clear();
551 self.accessed_element_states.clear();
552 self.mouse_listeners.clear();
553 self.dispatch_tree.clear();
554 self.scene.clear();
555 self.input_handlers.clear();
556 self.tooltip_requests.clear();
557 self.cursor_styles.clear();
558 self.hitboxes.clear();
559 self.deferred_draws.clear();
560 self.focus = None;
561 }
562
563 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
564 let mut hit_test = HitTest::default();
565 for hitbox in self.hitboxes.iter().rev() {
566 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
567 if bounds.contains(&position) {
568 hit_test.0.push(hitbox.id);
569 if hitbox.opaque {
570 break;
571 }
572 }
573 }
574 hit_test
575 }
576
577 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
578 self.focus
579 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
580 .unwrap_or_default()
581 }
582
583 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
584 for element_state_key in &self.accessed_element_states {
585 if let Some((element_state_key, element_state)) =
586 prev_frame.element_states.remove_entry(element_state_key)
587 {
588 self.element_states.insert(element_state_key, element_state);
589 }
590 }
591
592 self.scene.finish();
593 }
594}
595
596// Holds the state for a specific window.
597#[doc(hidden)]
598pub struct Window {
599 pub(crate) handle: AnyWindowHandle,
600 pub(crate) invalidator: WindowInvalidator,
601 pub(crate) removed: bool,
602 pub(crate) platform_window: Box<dyn PlatformWindow>,
603 display_id: Option<DisplayId>,
604 sprite_atlas: Arc<dyn PlatformAtlas>,
605 text_system: Arc<WindowTextSystem>,
606 rem_size: Pixels,
607 /// The stack of override values for the window's rem size.
608 ///
609 /// This is used by `with_rem_size` to allow rendering an element tree with
610 /// a given rem size.
611 rem_size_override_stack: SmallVec<[Pixels; 8]>,
612 pub(crate) viewport_size: Size<Pixels>,
613 layout_engine: Option<TaffyLayoutEngine>,
614 pub(crate) root: Option<AnyView>,
615 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
616 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
617 pub(crate) rendered_entity_stack: Vec<EntityId>,
618 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
619 pub(crate) element_opacity: Option<f32>,
620 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
621 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
622 pub(crate) rendered_frame: Frame,
623 pub(crate) next_frame: Frame,
624 pub(crate) next_hitbox_id: HitboxId,
625 pub(crate) next_tooltip_id: TooltipId,
626 pub(crate) tooltip_bounds: Option<TooltipBounds>,
627 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
628 pub(crate) dirty_views: FxHashSet<EntityId>,
629 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
630 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
631 default_prevented: bool,
632 mouse_position: Point<Pixels>,
633 mouse_hit_test: HitTest,
634 modifiers: Modifiers,
635 scale_factor: f32,
636 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
637 appearance: WindowAppearance,
638 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
639 active: Rc<Cell<bool>>,
640 hovered: Rc<Cell<bool>>,
641 pub(crate) needs_present: Rc<Cell<bool>>,
642 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
643 pub(crate) refreshing: bool,
644 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
645 pub(crate) focus: Option<FocusId>,
646 focus_enabled: bool,
647 pending_input: Option<PendingInput>,
648 pending_modifier: ModifierState,
649 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
650 prompt: Option<RenderablePromptHandle>,
651}
652
653#[derive(Clone, Debug, Default)]
654struct ModifierState {
655 modifiers: Modifiers,
656 saw_keystroke: bool,
657}
658
659#[derive(Clone, Copy, Debug, Eq, PartialEq)]
660pub(crate) enum DrawPhase {
661 None,
662 Prepaint,
663 Paint,
664 Focus,
665}
666
667#[derive(Default, Debug)]
668struct PendingInput {
669 keystrokes: SmallVec<[Keystroke; 1]>,
670 focus: Option<FocusId>,
671 timer: Option<Task<()>>,
672}
673
674pub(crate) struct ElementStateBox {
675 pub(crate) inner: Box<dyn Any>,
676 #[cfg(debug_assertions)]
677 pub(crate) type_name: &'static str,
678}
679
680fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
681 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
682
683 // TODO, BUG: if you open a window with the currently active window
684 // on the stack, this will erroneously select the 'unwrap_or_else'
685 // code path
686 cx.active_window()
687 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
688 .map(|mut bounds| {
689 bounds.origin += DEFAULT_WINDOW_OFFSET;
690 bounds
691 })
692 .unwrap_or_else(|| {
693 let display = display_id
694 .map(|id| cx.find_display(id))
695 .unwrap_or_else(|| cx.primary_display());
696
697 display
698 .map(|display| display.default_bounds())
699 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
700 })
701}
702
703impl Window {
704 pub(crate) fn new(
705 handle: AnyWindowHandle,
706 options: WindowOptions,
707 cx: &mut App,
708 ) -> Result<Self> {
709 let WindowOptions {
710 window_bounds,
711 titlebar,
712 focus,
713 show,
714 kind,
715 is_movable,
716 display_id,
717 window_background,
718 app_id,
719 window_min_size,
720 window_decorations,
721 } = options;
722
723 let bounds = window_bounds
724 .map(|bounds| bounds.get_bounds())
725 .unwrap_or_else(|| default_bounds(display_id, cx));
726 let mut platform_window = cx.platform.open_window(
727 handle,
728 WindowParams {
729 bounds,
730 titlebar,
731 kind,
732 is_movable,
733 focus,
734 show,
735 display_id,
736 window_min_size,
737 },
738 )?;
739 let display_id = platform_window.display().map(|display| display.id());
740 let sprite_atlas = platform_window.sprite_atlas();
741 let mouse_position = platform_window.mouse_position();
742 let modifiers = platform_window.modifiers();
743 let content_size = platform_window.content_size();
744 let scale_factor = platform_window.scale_factor();
745 let appearance = platform_window.appearance();
746 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
747 let invalidator = WindowInvalidator::new();
748 let active = Rc::new(Cell::new(platform_window.is_active()));
749 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
750 let needs_present = Rc::new(Cell::new(false));
751 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
752 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
753
754 platform_window
755 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
756 platform_window.set_background_appearance(window_background);
757
758 if let Some(ref window_open_state) = window_bounds {
759 match window_open_state {
760 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
761 WindowBounds::Maximized(_) => platform_window.zoom(),
762 WindowBounds::Windowed(_) => {}
763 }
764 }
765
766 platform_window.on_close(Box::new({
767 let mut cx = cx.to_async();
768 move || {
769 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
770 }
771 }));
772 platform_window.on_request_frame(Box::new({
773 let mut cx = cx.to_async();
774 let invalidator = invalidator.clone();
775 let active = active.clone();
776 let needs_present = needs_present.clone();
777 let next_frame_callbacks = next_frame_callbacks.clone();
778 let last_input_timestamp = last_input_timestamp.clone();
779 move |request_frame_options| {
780 let next_frame_callbacks = next_frame_callbacks.take();
781 if !next_frame_callbacks.is_empty() {
782 handle
783 .update(&mut cx, |_, window, cx| {
784 for callback in next_frame_callbacks {
785 callback(window, cx);
786 }
787 })
788 .log_err();
789 }
790
791 // Keep presenting the current scene for 1 extra second since the
792 // last input to prevent the display from underclocking the refresh rate.
793 let needs_present = request_frame_options.require_presentation
794 || needs_present.get()
795 || (active.get()
796 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
797
798 if invalidator.is_dirty() {
799 measure("frame duration", || {
800 handle
801 .update(&mut cx, |_, window, cx| {
802 window.draw(cx);
803 window.present();
804 })
805 .log_err();
806 })
807 } else if needs_present {
808 handle
809 .update(&mut cx, |_, window, _| window.present())
810 .log_err();
811 }
812
813 handle
814 .update(&mut cx, |_, window, _| {
815 window.complete_frame();
816 })
817 .log_err();
818 }
819 }));
820 platform_window.on_resize(Box::new({
821 let mut cx = cx.to_async();
822 move |_, _| {
823 handle
824 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
825 .log_err();
826 }
827 }));
828 platform_window.on_moved(Box::new({
829 let mut cx = cx.to_async();
830 move || {
831 handle
832 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
833 .log_err();
834 }
835 }));
836 platform_window.on_appearance_changed(Box::new({
837 let mut cx = cx.to_async();
838 move || {
839 handle
840 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
841 .log_err();
842 }
843 }));
844 platform_window.on_active_status_change(Box::new({
845 let mut cx = cx.to_async();
846 move |active| {
847 handle
848 .update(&mut cx, |_, window, cx| {
849 window.active.set(active);
850 window
851 .activation_observers
852 .clone()
853 .retain(&(), |callback| callback(window, cx));
854 window.refresh();
855 })
856 .log_err();
857 }
858 }));
859 platform_window.on_hover_status_change(Box::new({
860 let mut cx = cx.to_async();
861 move |active| {
862 handle
863 .update(&mut cx, |_, window, _| {
864 window.hovered.set(active);
865 window.refresh();
866 })
867 .log_err();
868 }
869 }));
870 platform_window.on_input({
871 let mut cx = cx.to_async();
872 Box::new(move |event| {
873 handle
874 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
875 .log_err()
876 .unwrap_or(DispatchEventResult::default())
877 })
878 });
879
880 if let Some(app_id) = app_id {
881 platform_window.set_app_id(&app_id);
882 }
883
884 platform_window.map_window().unwrap();
885
886 Ok(Window {
887 handle,
888 invalidator,
889 removed: false,
890 platform_window,
891 display_id,
892 sprite_atlas,
893 text_system,
894 rem_size: px(16.),
895 rem_size_override_stack: SmallVec::new(),
896 viewport_size: content_size,
897 layout_engine: Some(TaffyLayoutEngine::new()),
898 root: None,
899 element_id_stack: SmallVec::default(),
900 text_style_stack: Vec::new(),
901 rendered_entity_stack: Vec::new(),
902 element_offset_stack: Vec::new(),
903 content_mask_stack: Vec::new(),
904 element_opacity: None,
905 requested_autoscroll: None,
906 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
907 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
908 next_frame_callbacks,
909 next_hitbox_id: HitboxId::default(),
910 next_tooltip_id: TooltipId::default(),
911 tooltip_bounds: None,
912 dirty_views: FxHashSet::default(),
913 focus_listeners: SubscriberSet::new(),
914 focus_lost_listeners: SubscriberSet::new(),
915 default_prevented: true,
916 mouse_position,
917 mouse_hit_test: HitTest::default(),
918 modifiers,
919 scale_factor,
920 bounds_observers: SubscriberSet::new(),
921 appearance,
922 appearance_observers: SubscriberSet::new(),
923 active,
924 hovered,
925 needs_present,
926 last_input_timestamp,
927 refreshing: false,
928 activation_observers: SubscriberSet::new(),
929 focus: None,
930 focus_enabled: true,
931 pending_input: None,
932 pending_modifier: ModifierState::default(),
933 pending_input_observers: SubscriberSet::new(),
934 prompt: None,
935 })
936 }
937
938 pub(crate) fn new_focus_listener(
939 &self,
940 value: AnyWindowFocusListener,
941 ) -> (Subscription, impl FnOnce()) {
942 self.focus_listeners.insert((), value)
943 }
944}
945
946#[derive(Clone, Debug, Default, PartialEq, Eq)]
947pub(crate) struct DispatchEventResult {
948 pub propagate: bool,
949 pub default_prevented: bool,
950}
951
952/// Indicates which region of the window is visible. Content falling outside of this mask will not be
953/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
954/// to leave room to support more complex shapes in the future.
955#[derive(Clone, Debug, Default, PartialEq, Eq)]
956#[repr(C)]
957pub struct ContentMask<P: Clone + Default + Debug> {
958 /// The bounds
959 pub bounds: Bounds<P>,
960}
961
962impl ContentMask<Pixels> {
963 /// Scale the content mask's pixel units by the given scaling factor.
964 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
965 ContentMask {
966 bounds: self.bounds.scale(factor),
967 }
968 }
969
970 /// Intersect the content mask with the given content mask.
971 pub fn intersect(&self, other: &Self) -> Self {
972 let bounds = self.bounds.intersect(&other.bounds);
973 ContentMask { bounds }
974 }
975}
976
977impl Window {
978 fn mark_view_dirty(&mut self, view_id: EntityId) {
979 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
980 // should already be dirty.
981 for view_id in self
982 .rendered_frame
983 .dispatch_tree
984 .view_path(view_id)
985 .into_iter()
986 .rev()
987 {
988 if !self.dirty_views.insert(view_id) {
989 break;
990 }
991 }
992 }
993
994 /// Registers a callback to be invoked when the window appearance changes.
995 pub fn observe_window_appearance(
996 &self,
997 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
998 ) -> Subscription {
999 let (subscription, activate) = self.appearance_observers.insert(
1000 (),
1001 Box::new(move |window, cx| {
1002 callback(window, cx);
1003 true
1004 }),
1005 );
1006 activate();
1007 subscription
1008 }
1009
1010 pub fn replace_root<E>(
1011 &mut self,
1012 cx: &mut App,
1013 build_view: impl FnOnce(&mut Window, &mut Context<'_, E>) -> E,
1014 ) -> Entity<E>
1015 where
1016 E: 'static + Render,
1017 {
1018 let view = cx.new(|cx| build_view(self, cx));
1019 self.root = Some(view.clone().into());
1020 self.refresh();
1021 view
1022 }
1023
1024 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1025 where
1026 E: 'static + Render,
1027 {
1028 self.root
1029 .as_ref()
1030 .map(|view| view.clone().downcast::<E>().ok())
1031 }
1032
1033 /// Obtain a handle to the window that belongs to this context.
1034 pub fn window_handle(&self) -> AnyWindowHandle {
1035 self.handle
1036 }
1037
1038 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1039 pub fn refresh(&mut self) {
1040 if self.invalidator.not_drawing() {
1041 self.refreshing = true;
1042 self.invalidator.set_dirty(true);
1043 }
1044 }
1045
1046 /// Close this window.
1047 pub fn remove_window(&mut self) {
1048 self.removed = true;
1049 }
1050
1051 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1052 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1053 self.focus
1054 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1055 }
1056
1057 /// Move focus to the element associated with the given [`FocusHandle`].
1058 pub fn focus(&mut self, handle: &FocusHandle) {
1059 if !self.focus_enabled || self.focus == Some(handle.id) {
1060 return;
1061 }
1062
1063 self.focus = Some(handle.id);
1064 self.clear_pending_keystrokes();
1065 self.refresh();
1066 }
1067
1068 /// Remove focus from all elements within this context's window.
1069 pub fn blur(&mut self) {
1070 if !self.focus_enabled {
1071 return;
1072 }
1073
1074 self.focus = None;
1075 self.refresh();
1076 }
1077
1078 /// Blur the window and don't allow anything in it to be focused again.
1079 pub fn disable_focus(&mut self) {
1080 self.blur();
1081 self.focus_enabled = false;
1082 }
1083
1084 /// Accessor for the text system.
1085 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1086 &self.text_system
1087 }
1088
1089 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1090 pub fn text_style(&self) -> TextStyle {
1091 let mut style = TextStyle::default();
1092 for refinement in &self.text_style_stack {
1093 style.refine(refinement);
1094 }
1095 style
1096 }
1097
1098 /// Check if the platform window is maximized
1099 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1100 pub fn is_maximized(&self) -> bool {
1101 self.platform_window.is_maximized()
1102 }
1103
1104 /// request a certain window decoration (Wayland)
1105 pub fn request_decorations(&self, decorations: WindowDecorations) {
1106 self.platform_window.request_decorations(decorations);
1107 }
1108
1109 /// Start a window resize operation (Wayland)
1110 pub fn start_window_resize(&self, edge: ResizeEdge) {
1111 self.platform_window.start_window_resize(edge);
1112 }
1113
1114 /// Return the `WindowBounds` to indicate that how a window should be opened
1115 /// after it has been closed
1116 pub fn window_bounds(&self) -> WindowBounds {
1117 self.platform_window.window_bounds()
1118 }
1119
1120 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1121 pub fn inner_window_bounds(&self) -> WindowBounds {
1122 self.platform_window.inner_window_bounds()
1123 }
1124
1125 /// Dispatch the given action on the currently focused element.
1126 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1127 let focus_handle = self.focused(cx);
1128
1129 let window = self.handle;
1130 cx.defer(move |cx| {
1131 window
1132 .update(cx, |_, window, cx| {
1133 let node_id = focus_handle
1134 .and_then(|handle| {
1135 window
1136 .rendered_frame
1137 .dispatch_tree
1138 .focusable_node_id(handle.id)
1139 })
1140 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1141
1142 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1143 })
1144 .log_err();
1145 })
1146 }
1147
1148 pub(crate) fn dispatch_keystroke_observers(
1149 &mut self,
1150 event: &dyn Any,
1151 action: Option<Box<dyn Action>>,
1152 cx: &mut App,
1153 ) {
1154 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1155 return;
1156 };
1157
1158 cx.keystroke_observers.clone().retain(&(), move |callback| {
1159 (callback)(
1160 &KeystrokeEvent {
1161 keystroke: key_down_event.keystroke.clone(),
1162 action: action.as_ref().map(|action| action.boxed_clone()),
1163 },
1164 self,
1165 cx,
1166 )
1167 });
1168 }
1169
1170 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1171 /// that are currently on the stack to be returned to the app.
1172 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1173 let handle = self.handle;
1174 cx.defer(move |cx| {
1175 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1176 });
1177 }
1178
1179 /// Subscribe to events emitted by a entity.
1180 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1181 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1182 pub fn observe<T: 'static>(
1183 &mut self,
1184 observed: &Entity<T>,
1185 cx: &mut App,
1186 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1187 ) -> Subscription {
1188 let entity_id = observed.entity_id();
1189 let observed = observed.downgrade();
1190 let window_handle = self.handle;
1191 cx.new_observer(
1192 entity_id,
1193 Box::new(move |cx| {
1194 window_handle
1195 .update(cx, |_, window, cx| {
1196 if let Some(handle) = observed.upgrade() {
1197 on_notify(handle, window, cx);
1198 true
1199 } else {
1200 false
1201 }
1202 })
1203 .unwrap_or(false)
1204 }),
1205 )
1206 }
1207
1208 /// Subscribe to events emitted by a entity.
1209 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1210 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1211 pub fn subscribe<Emitter, Evt>(
1212 &mut self,
1213 entity: &Entity<Emitter>,
1214 cx: &mut App,
1215 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1216 ) -> Subscription
1217 where
1218 Emitter: EventEmitter<Evt>,
1219 Evt: 'static,
1220 {
1221 let entity_id = entity.entity_id();
1222 let entity = entity.downgrade();
1223 let window_handle = self.handle;
1224 cx.new_subscription(
1225 entity_id,
1226 (
1227 TypeId::of::<Evt>(),
1228 Box::new(move |event, cx| {
1229 window_handle
1230 .update(cx, |_, window, cx| {
1231 if let Some(handle) = Entity::<Emitter>::upgrade_from(&entity) {
1232 let event = event.downcast_ref().expect("invalid event type");
1233 on_event(handle, event, window, cx);
1234 true
1235 } else {
1236 false
1237 }
1238 })
1239 .unwrap_or(false)
1240 }),
1241 ),
1242 )
1243 }
1244
1245 /// Register a callback to be invoked when the given `Entity` is released.
1246 pub fn observe_release<T>(
1247 &self,
1248 entity: &Entity<T>,
1249 cx: &mut App,
1250 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1251 ) -> Subscription
1252 where
1253 T: 'static,
1254 {
1255 let entity_id = entity.entity_id();
1256 let window_handle = self.handle;
1257 let (subscription, activate) = cx.release_listeners.insert(
1258 entity_id,
1259 Box::new(move |entity, cx| {
1260 let entity = entity.downcast_mut().expect("invalid entity type");
1261 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1262 }),
1263 );
1264 activate();
1265 subscription
1266 }
1267
1268 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1269 /// await points in async code.
1270 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1271 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1272 }
1273
1274 /// Schedule the given closure to be run directly after the current frame is rendered.
1275 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1276 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1277 }
1278
1279 /// Schedule a frame to be drawn on the next animation frame.
1280 ///
1281 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1282 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1283 ///
1284 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1285 pub fn request_animation_frame(&self) {
1286 let entity = self.current_view();
1287 self.on_next_frame(move |_, cx| cx.notify(entity));
1288 }
1289
1290 /// Spawn the future returned by the given closure on the application thread pool.
1291 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1292 /// use within your future.
1293 #[track_caller]
1294 pub fn spawn<Fut, R>(&self, cx: &App, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
1295 where
1296 R: 'static,
1297 Fut: Future<Output = R> + 'static,
1298 {
1299 cx.spawn(|app| f(AsyncWindowContext::new_context(app, self.handle)))
1300 }
1301
1302 fn bounds_changed(&mut self, cx: &mut App) {
1303 self.scale_factor = self.platform_window.scale_factor();
1304 self.viewport_size = self.platform_window.content_size();
1305 self.display_id = self.platform_window.display().map(|display| display.id());
1306
1307 self.refresh();
1308
1309 self.bounds_observers
1310 .clone()
1311 .retain(&(), |callback| callback(self, cx));
1312 }
1313
1314 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1315 pub fn bounds(&self) -> Bounds<Pixels> {
1316 self.platform_window.bounds()
1317 }
1318
1319 /// Returns whether or not the window is currently fullscreen
1320 pub fn is_fullscreen(&self) -> bool {
1321 self.platform_window.is_fullscreen()
1322 }
1323
1324 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1325 self.appearance = self.platform_window.appearance();
1326
1327 self.appearance_observers
1328 .clone()
1329 .retain(&(), |callback| callback(self, cx));
1330 }
1331
1332 /// Returns the appearance of the current window.
1333 pub fn appearance(&self) -> WindowAppearance {
1334 self.appearance
1335 }
1336
1337 /// Returns the size of the drawable area within the window.
1338 pub fn viewport_size(&self) -> Size<Pixels> {
1339 self.viewport_size
1340 }
1341
1342 /// Returns whether this window is focused by the operating system (receiving key events).
1343 pub fn is_window_active(&self) -> bool {
1344 self.active.get()
1345 }
1346
1347 /// Returns whether this window is considered to be the window
1348 /// that currently owns the mouse cursor.
1349 /// On mac, this is equivalent to `is_window_active`.
1350 pub fn is_window_hovered(&self) -> bool {
1351 if cfg!(any(
1352 target_os = "windows",
1353 target_os = "linux",
1354 target_os = "freebsd"
1355 )) {
1356 self.hovered.get()
1357 } else {
1358 self.is_window_active()
1359 }
1360 }
1361
1362 /// Toggle zoom on the window.
1363 pub fn zoom_window(&self) {
1364 self.platform_window.zoom();
1365 }
1366
1367 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1368 pub fn show_window_menu(&self, position: Point<Pixels>) {
1369 self.platform_window.show_window_menu(position)
1370 }
1371
1372 /// Tells the compositor to take control of window movement (Wayland and X11)
1373 ///
1374 /// Events may not be received during a move operation.
1375 pub fn start_window_move(&self) {
1376 self.platform_window.start_window_move()
1377 }
1378
1379 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1380 pub fn set_client_inset(&self, inset: Pixels) {
1381 self.platform_window.set_client_inset(inset);
1382 }
1383
1384 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1385 pub fn window_decorations(&self) -> Decorations {
1386 self.platform_window.window_decorations()
1387 }
1388
1389 /// Returns which window controls are currently visible (Wayland)
1390 pub fn window_controls(&self) -> WindowControls {
1391 self.platform_window.window_controls()
1392 }
1393
1394 /// Updates the window's title at the platform level.
1395 pub fn set_window_title(&mut self, title: &str) {
1396 self.platform_window.set_title(title);
1397 }
1398
1399 /// Sets the application identifier.
1400 pub fn set_app_id(&mut self, app_id: &str) {
1401 self.platform_window.set_app_id(app_id);
1402 }
1403
1404 /// Sets the window background appearance.
1405 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1406 self.platform_window
1407 .set_background_appearance(background_appearance);
1408 }
1409
1410 /// Mark the window as dirty at the platform level.
1411 pub fn set_window_edited(&mut self, edited: bool) {
1412 self.platform_window.set_edited(edited);
1413 }
1414
1415 /// Determine the display on which the window is visible.
1416 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1417 cx.platform
1418 .displays()
1419 .into_iter()
1420 .find(|display| Some(display.id()) == self.display_id)
1421 }
1422
1423 /// Show the platform character palette.
1424 pub fn show_character_palette(&self) {
1425 self.platform_window.show_character_palette();
1426 }
1427
1428 /// The scale factor of the display associated with the window. For example, it could
1429 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1430 /// be rendered as two pixels on screen.
1431 pub fn scale_factor(&self) -> f32 {
1432 self.scale_factor
1433 }
1434
1435 /// The size of an em for the base font of the application. Adjusting this value allows the
1436 /// UI to scale, just like zooming a web page.
1437 pub fn rem_size(&self) -> Pixels {
1438 self.rem_size_override_stack
1439 .last()
1440 .copied()
1441 .unwrap_or(self.rem_size)
1442 }
1443
1444 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1445 /// UI to scale, just like zooming a web page.
1446 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1447 self.rem_size = rem_size.into();
1448 }
1449
1450 /// Executes the provided function with the specified rem size.
1451 ///
1452 /// This method must only be called as part of element drawing.
1453 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1454 where
1455 F: FnOnce(&mut Self) -> R,
1456 {
1457 self.invalidator.debug_assert_paint_or_prepaint();
1458
1459 if let Some(rem_size) = rem_size {
1460 self.rem_size_override_stack.push(rem_size.into());
1461 let result = f(self);
1462 self.rem_size_override_stack.pop();
1463 result
1464 } else {
1465 f(self)
1466 }
1467 }
1468
1469 /// The line height associated with the current text style.
1470 pub fn line_height(&self) -> Pixels {
1471 self.text_style().line_height_in_pixels(self.rem_size())
1472 }
1473
1474 /// Call to prevent the default action of an event. Currently only used to prevent
1475 /// parent elements from becoming focused on mouse down.
1476 pub fn prevent_default(&mut self) {
1477 self.default_prevented = true;
1478 }
1479
1480 /// Obtain whether default has been prevented for the event currently being dispatched.
1481 pub fn default_prevented(&self) -> bool {
1482 self.default_prevented
1483 }
1484
1485 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1486 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1487 let target = self
1488 .focused(cx)
1489 .and_then(|focused_handle| {
1490 self.rendered_frame
1491 .dispatch_tree
1492 .focusable_node_id(focused_handle.id)
1493 })
1494 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1495 self.rendered_frame
1496 .dispatch_tree
1497 .is_action_available(action, target)
1498 }
1499
1500 /// The position of the mouse relative to the window.
1501 pub fn mouse_position(&self) -> Point<Pixels> {
1502 self.mouse_position
1503 }
1504
1505 /// The current state of the keyboard's modifiers
1506 pub fn modifiers(&self) -> Modifiers {
1507 self.modifiers
1508 }
1509
1510 fn complete_frame(&self) {
1511 self.platform_window.completed_frame();
1512 }
1513
1514 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1515 /// the contents of the new [Scene], use [present].
1516 #[profiling::function]
1517 pub fn draw(&mut self, cx: &mut App) {
1518 self.invalidate_entities();
1519 cx.entities.clear_accessed();
1520 debug_assert!(self.rendered_entity_stack.is_empty());
1521 self.invalidator.set_dirty(false);
1522 self.requested_autoscroll = None;
1523
1524 // Restore the previously-used input handler.
1525 if let Some(input_handler) = self.platform_window.take_input_handler() {
1526 self.rendered_frame.input_handlers.push(Some(input_handler));
1527 }
1528 self.draw_roots(cx);
1529 self.dirty_views.clear();
1530 self.next_frame.window_active = self.active.get();
1531
1532 // Register requested input handler with the platform window.
1533 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1534 self.platform_window
1535 .set_input_handler(input_handler.unwrap());
1536 }
1537
1538 self.layout_engine.as_mut().unwrap().clear();
1539 self.text_system().finish_frame();
1540 self.next_frame.finish(&mut self.rendered_frame);
1541 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1542 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1543 if percentage >= 80. {
1544 log::warn!("elevated element arena occupation: {}.", percentage);
1545 }
1546 element_arena.clear();
1547 });
1548
1549 self.invalidator.set_phase(DrawPhase::Focus);
1550 let previous_focus_path = self.rendered_frame.focus_path();
1551 let previous_window_active = self.rendered_frame.window_active;
1552 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1553 self.next_frame.clear();
1554 let current_focus_path = self.rendered_frame.focus_path();
1555 let current_window_active = self.rendered_frame.window_active;
1556
1557 if previous_focus_path != current_focus_path
1558 || previous_window_active != current_window_active
1559 {
1560 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1561 self.focus_lost_listeners
1562 .clone()
1563 .retain(&(), |listener| listener(self, cx));
1564 }
1565
1566 let event = WindowFocusEvent {
1567 previous_focus_path: if previous_window_active {
1568 previous_focus_path
1569 } else {
1570 Default::default()
1571 },
1572 current_focus_path: if current_window_active {
1573 current_focus_path
1574 } else {
1575 Default::default()
1576 },
1577 };
1578 self.focus_listeners
1579 .clone()
1580 .retain(&(), |listener| listener(&event, self, cx));
1581 }
1582
1583 debug_assert!(self.rendered_entity_stack.is_empty());
1584 self.record_entities_accessed(cx);
1585 self.reset_cursor_style(cx);
1586 self.refreshing = false;
1587 self.invalidator.set_phase(DrawPhase::None);
1588 self.needs_present.set(true);
1589 }
1590
1591 fn record_entities_accessed(&mut self, cx: &mut App) {
1592 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1593 let mut entities = mem::take(entities_ref.deref_mut());
1594 drop(entities_ref);
1595 let handle = self.handle;
1596 cx.record_entities_accessed(
1597 handle,
1598 // Try moving window invalidator into the Window
1599 self.invalidator.clone(),
1600 &entities,
1601 );
1602 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1603 mem::swap(&mut entities, entities_ref.deref_mut());
1604 }
1605
1606 fn invalidate_entities(&mut self) {
1607 let mut views = self.invalidator.take_views();
1608 for entity in views.drain() {
1609 self.mark_view_dirty(entity);
1610 }
1611 self.invalidator.replace_views(views);
1612 }
1613
1614 #[profiling::function]
1615 fn present(&self) {
1616 self.platform_window.draw(&self.rendered_frame.scene);
1617 self.needs_present.set(false);
1618 profiling::finish_frame!();
1619 }
1620
1621 fn draw_roots(&mut self, cx: &mut App) {
1622 self.invalidator.set_phase(DrawPhase::Prepaint);
1623 self.tooltip_bounds.take();
1624
1625 // Layout all root elements.
1626 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1627 root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1628
1629 let mut sorted_deferred_draws =
1630 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1631 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1632 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1633
1634 let mut prompt_element = None;
1635 let mut active_drag_element = None;
1636 let mut tooltip_element = None;
1637 if let Some(prompt) = self.prompt.take() {
1638 let mut element = prompt.view.any_view().into_any();
1639 element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1640 prompt_element = Some(element);
1641 self.prompt = Some(prompt);
1642 } else if let Some(active_drag) = cx.active_drag.take() {
1643 let mut element = active_drag.view.clone().into_any();
1644 let offset = self.mouse_position() - active_drag.cursor_offset;
1645 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1646 active_drag_element = Some(element);
1647 cx.active_drag = Some(active_drag);
1648 } else {
1649 tooltip_element = self.prepaint_tooltip(cx);
1650 }
1651
1652 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1653
1654 // Now actually paint the elements.
1655 self.invalidator.set_phase(DrawPhase::Paint);
1656 root_element.paint(self, cx);
1657
1658 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1659
1660 if let Some(mut prompt_element) = prompt_element {
1661 prompt_element.paint(self, cx);
1662 } else if let Some(mut drag_element) = active_drag_element {
1663 drag_element.paint(self, cx);
1664 } else if let Some(mut tooltip_element) = tooltip_element {
1665 tooltip_element.paint(self, cx);
1666 }
1667 }
1668
1669 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1670 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1671 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1672 let Some(Some(tooltip_request)) = self
1673 .next_frame
1674 .tooltip_requests
1675 .get(tooltip_request_index)
1676 .cloned()
1677 else {
1678 log::error!("Unexpectedly absent TooltipRequest");
1679 continue;
1680 };
1681 let mut element = tooltip_request.tooltip.view.clone().into_any();
1682 let mouse_position = tooltip_request.tooltip.mouse_position;
1683 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1684
1685 let mut tooltip_bounds =
1686 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1687 let window_bounds = Bounds {
1688 origin: Point::default(),
1689 size: self.viewport_size(),
1690 };
1691
1692 if tooltip_bounds.right() > window_bounds.right() {
1693 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1694 if new_x >= Pixels::ZERO {
1695 tooltip_bounds.origin.x = new_x;
1696 } else {
1697 tooltip_bounds.origin.x = cmp::max(
1698 Pixels::ZERO,
1699 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1700 );
1701 }
1702 }
1703
1704 if tooltip_bounds.bottom() > window_bounds.bottom() {
1705 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1706 if new_y >= Pixels::ZERO {
1707 tooltip_bounds.origin.y = new_y;
1708 } else {
1709 tooltip_bounds.origin.y = cmp::max(
1710 Pixels::ZERO,
1711 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1712 );
1713 }
1714 }
1715
1716 // It's possible for an element to have an active tooltip while not being painted (e.g.
1717 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1718 // case, instead update the tooltip's visibility here.
1719 let is_visible =
1720 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1721 if !is_visible {
1722 continue;
1723 }
1724
1725 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1726 element.prepaint(window, cx)
1727 });
1728
1729 self.tooltip_bounds = Some(TooltipBounds {
1730 id: tooltip_request.id,
1731 bounds: tooltip_bounds,
1732 });
1733 return Some(element);
1734 }
1735 None
1736 }
1737
1738 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1739 assert_eq!(self.element_id_stack.len(), 0);
1740
1741 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1742 for deferred_draw_ix in deferred_draw_indices {
1743 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1744 self.element_id_stack
1745 .clone_from(&deferred_draw.element_id_stack);
1746 self.text_style_stack
1747 .clone_from(&deferred_draw.text_style_stack);
1748 self.next_frame
1749 .dispatch_tree
1750 .set_active_node(deferred_draw.parent_node);
1751
1752 let prepaint_start = self.prepaint_index();
1753 if let Some(element) = deferred_draw.element.as_mut() {
1754 self.with_rendered_view(deferred_draw.current_view, |window| {
1755 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1756 element.prepaint(window, cx)
1757 });
1758 })
1759 } else {
1760 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1761 }
1762 let prepaint_end = self.prepaint_index();
1763 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1764 }
1765 assert_eq!(
1766 self.next_frame.deferred_draws.len(),
1767 0,
1768 "cannot call defer_draw during deferred drawing"
1769 );
1770 self.next_frame.deferred_draws = deferred_draws;
1771 self.element_id_stack.clear();
1772 self.text_style_stack.clear();
1773 }
1774
1775 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1776 assert_eq!(self.element_id_stack.len(), 0);
1777
1778 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1779 for deferred_draw_ix in deferred_draw_indices {
1780 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1781 self.element_id_stack
1782 .clone_from(&deferred_draw.element_id_stack);
1783 self.next_frame
1784 .dispatch_tree
1785 .set_active_node(deferred_draw.parent_node);
1786
1787 let paint_start = self.paint_index();
1788 if let Some(element) = deferred_draw.element.as_mut() {
1789 self.with_rendered_view(deferred_draw.current_view, |window| {
1790 element.paint(window, cx);
1791 })
1792 } else {
1793 self.reuse_paint(deferred_draw.paint_range.clone());
1794 }
1795 let paint_end = self.paint_index();
1796 deferred_draw.paint_range = paint_start..paint_end;
1797 }
1798 self.next_frame.deferred_draws = deferred_draws;
1799 self.element_id_stack.clear();
1800 }
1801
1802 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1803 PrepaintStateIndex {
1804 hitboxes_index: self.next_frame.hitboxes.len(),
1805 tooltips_index: self.next_frame.tooltip_requests.len(),
1806 deferred_draws_index: self.next_frame.deferred_draws.len(),
1807 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1808 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1809 line_layout_index: self.text_system.layout_index(),
1810 }
1811 }
1812
1813 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1814 self.next_frame.hitboxes.extend(
1815 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1816 .iter()
1817 .cloned(),
1818 );
1819 self.next_frame.tooltip_requests.extend(
1820 self.rendered_frame.tooltip_requests
1821 [range.start.tooltips_index..range.end.tooltips_index]
1822 .iter_mut()
1823 .map(|request| request.take()),
1824 );
1825 self.next_frame.accessed_element_states.extend(
1826 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1827 ..range.end.accessed_element_states_index]
1828 .iter()
1829 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1830 );
1831 self.text_system
1832 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1833
1834 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1835 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1836 &mut self.rendered_frame.dispatch_tree,
1837 self.focus,
1838 );
1839
1840 if reused_subtree.contains_focus() {
1841 self.next_frame.focus = self.focus;
1842 }
1843
1844 self.next_frame.deferred_draws.extend(
1845 self.rendered_frame.deferred_draws
1846 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1847 .iter()
1848 .map(|deferred_draw| DeferredDraw {
1849 current_view: deferred_draw.current_view,
1850 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1851 element_id_stack: deferred_draw.element_id_stack.clone(),
1852 text_style_stack: deferred_draw.text_style_stack.clone(),
1853 priority: deferred_draw.priority,
1854 element: None,
1855 absolute_offset: deferred_draw.absolute_offset,
1856 prepaint_range: deferred_draw.prepaint_range.clone(),
1857 paint_range: deferred_draw.paint_range.clone(),
1858 }),
1859 );
1860 }
1861
1862 pub(crate) fn paint_index(&self) -> PaintIndex {
1863 PaintIndex {
1864 scene_index: self.next_frame.scene.len(),
1865 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1866 input_handlers_index: self.next_frame.input_handlers.len(),
1867 cursor_styles_index: self.next_frame.cursor_styles.len(),
1868 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1869 line_layout_index: self.text_system.layout_index(),
1870 }
1871 }
1872
1873 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1874 self.next_frame.cursor_styles.extend(
1875 self.rendered_frame.cursor_styles
1876 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1877 .iter()
1878 .cloned(),
1879 );
1880 self.next_frame.input_handlers.extend(
1881 self.rendered_frame.input_handlers
1882 [range.start.input_handlers_index..range.end.input_handlers_index]
1883 .iter_mut()
1884 .map(|handler| handler.take()),
1885 );
1886 self.next_frame.mouse_listeners.extend(
1887 self.rendered_frame.mouse_listeners
1888 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1889 .iter_mut()
1890 .map(|listener| listener.take()),
1891 );
1892 self.next_frame.accessed_element_states.extend(
1893 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1894 ..range.end.accessed_element_states_index]
1895 .iter()
1896 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1897 );
1898
1899 self.text_system
1900 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1901 self.next_frame.scene.replay(
1902 range.start.scene_index..range.end.scene_index,
1903 &self.rendered_frame.scene,
1904 );
1905 }
1906
1907 /// Push a text style onto the stack, and call a function with that style active.
1908 /// Use [`Window::text_style`] to get the current, combined text style. This method
1909 /// should only be called as part of element drawing.
1910 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1911 where
1912 F: FnOnce(&mut Self) -> R,
1913 {
1914 self.invalidator.debug_assert_paint_or_prepaint();
1915 if let Some(style) = style {
1916 self.text_style_stack.push(style);
1917 let result = f(self);
1918 self.text_style_stack.pop();
1919 result
1920 } else {
1921 f(self)
1922 }
1923 }
1924
1925 /// Updates the cursor style at the platform level. This method should only be called
1926 /// during the prepaint phase of element drawing.
1927 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
1928 self.invalidator.debug_assert_paint();
1929 self.next_frame.cursor_styles.push(CursorStyleRequest {
1930 hitbox_id: hitbox.id,
1931 style,
1932 });
1933 }
1934
1935 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
1936 /// during the paint phase of element drawing.
1937 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
1938 self.invalidator.debug_assert_prepaint();
1939 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
1940 self.next_frame
1941 .tooltip_requests
1942 .push(Some(TooltipRequest { id, tooltip }));
1943 id
1944 }
1945
1946 /// Invoke the given function with the given content mask after intersecting it
1947 /// with the current mask. This method should only be called during element drawing.
1948 pub fn with_content_mask<R>(
1949 &mut self,
1950 mask: Option<ContentMask<Pixels>>,
1951 f: impl FnOnce(&mut Self) -> R,
1952 ) -> R {
1953 self.invalidator.debug_assert_paint_or_prepaint();
1954 if let Some(mask) = mask {
1955 let mask = mask.intersect(&self.content_mask());
1956 self.content_mask_stack.push(mask);
1957 let result = f(self);
1958 self.content_mask_stack.pop();
1959 result
1960 } else {
1961 f(self)
1962 }
1963 }
1964
1965 /// Updates the global element offset relative to the current offset. This is used to implement
1966 /// scrolling. This method should only be called during the prepaint phase of element drawing.
1967 pub fn with_element_offset<R>(
1968 &mut self,
1969 offset: Point<Pixels>,
1970 f: impl FnOnce(&mut Self) -> R,
1971 ) -> R {
1972 self.invalidator.debug_assert_prepaint();
1973
1974 if offset.is_zero() {
1975 return f(self);
1976 };
1977
1978 let abs_offset = self.element_offset() + offset;
1979 self.with_absolute_element_offset(abs_offset, f)
1980 }
1981
1982 /// Updates the global element offset based on the given offset. This is used to implement
1983 /// drag handles and other manual painting of elements. This method should only be called during
1984 /// the prepaint phase of element drawing.
1985 pub fn with_absolute_element_offset<R>(
1986 &mut self,
1987 offset: Point<Pixels>,
1988 f: impl FnOnce(&mut Self) -> R,
1989 ) -> R {
1990 self.invalidator.debug_assert_prepaint();
1991 self.element_offset_stack.push(offset);
1992 let result = f(self);
1993 self.element_offset_stack.pop();
1994 result
1995 }
1996
1997 pub(crate) fn with_element_opacity<R>(
1998 &mut self,
1999 opacity: Option<f32>,
2000 f: impl FnOnce(&mut Self) -> R,
2001 ) -> R {
2002 if opacity.is_none() {
2003 return f(self);
2004 }
2005
2006 self.invalidator.debug_assert_paint_or_prepaint();
2007 self.element_opacity = opacity;
2008 let result = f(self);
2009 self.element_opacity = None;
2010 result
2011 }
2012
2013 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2014 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2015 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2016 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2017 /// called during the prepaint phase of element drawing.
2018 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2019 self.invalidator.debug_assert_prepaint();
2020 let index = self.prepaint_index();
2021 let result = f(self);
2022 if result.is_err() {
2023 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2024 self.next_frame
2025 .tooltip_requests
2026 .truncate(index.tooltips_index);
2027 self.next_frame
2028 .deferred_draws
2029 .truncate(index.deferred_draws_index);
2030 self.next_frame
2031 .dispatch_tree
2032 .truncate(index.dispatch_tree_index);
2033 self.next_frame
2034 .accessed_element_states
2035 .truncate(index.accessed_element_states_index);
2036 self.text_system.truncate_layouts(index.line_layout_index);
2037 }
2038 result
2039 }
2040
2041 /// When you call this method during [`prepaint`], containing elements will attempt to
2042 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2043 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2044 /// that supports this method being called on the elements it contains. This method should only be
2045 /// called during the prepaint phase of element drawing.
2046 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2047 self.invalidator.debug_assert_prepaint();
2048 self.requested_autoscroll = Some(bounds);
2049 }
2050
2051 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2052 /// described in [`request_autoscroll`].
2053 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2054 self.invalidator.debug_assert_prepaint();
2055 self.requested_autoscroll.take()
2056 }
2057
2058 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2059 /// Your view will be re-drawn once the asset has finished loading.
2060 ///
2061 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2062 /// time.
2063 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2064 let (task, is_first) = cx.fetch_asset::<A>(source);
2065 task.clone().now_or_never().or_else(|| {
2066 if is_first {
2067 let entity = self.current_view();
2068 self.spawn(cx, {
2069 let task = task.clone();
2070 |mut cx| async move {
2071 task.await;
2072
2073 cx.on_next_frame(move |_, cx| {
2074 cx.notify(entity);
2075 });
2076 }
2077 })
2078 .detach();
2079 }
2080
2081 None
2082 })
2083 }
2084 /// Obtain the current element offset. This method should only be called during the
2085 /// prepaint phase of element drawing.
2086 pub fn element_offset(&self) -> Point<Pixels> {
2087 self.invalidator.debug_assert_prepaint();
2088 self.element_offset_stack
2089 .last()
2090 .copied()
2091 .unwrap_or_default()
2092 }
2093
2094 /// Obtain the current element opacity. This method should only be called during the
2095 /// prepaint phase of element drawing.
2096 pub(crate) fn element_opacity(&self) -> f32 {
2097 self.invalidator.debug_assert_paint_or_prepaint();
2098 self.element_opacity.unwrap_or(1.0)
2099 }
2100
2101 /// Obtain the current content mask. This method should only be called during element drawing.
2102 pub fn content_mask(&self) -> ContentMask<Pixels> {
2103 self.invalidator.debug_assert_paint_or_prepaint();
2104 self.content_mask_stack
2105 .last()
2106 .cloned()
2107 .unwrap_or_else(|| ContentMask {
2108 bounds: Bounds {
2109 origin: Point::default(),
2110 size: self.viewport_size,
2111 },
2112 })
2113 }
2114
2115 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2116 /// This can be used within a custom element to distinguish multiple sets of child elements.
2117 pub fn with_element_namespace<R>(
2118 &mut self,
2119 element_id: impl Into<ElementId>,
2120 f: impl FnOnce(&mut Self) -> R,
2121 ) -> R {
2122 self.element_id_stack.push(element_id.into());
2123 let result = f(self);
2124 self.element_id_stack.pop();
2125 result
2126 }
2127
2128 /// Updates or initializes state for an element with the given id that lives across multiple
2129 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2130 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2131 /// when drawing the next frame. This method should only be called as part of element drawing.
2132 pub fn with_element_state<S, R>(
2133 &mut self,
2134 global_id: &GlobalElementId,
2135 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2136 ) -> R
2137 where
2138 S: 'static,
2139 {
2140 self.invalidator.debug_assert_paint_or_prepaint();
2141
2142 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2143 self.next_frame
2144 .accessed_element_states
2145 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2146
2147 if let Some(any) = self
2148 .next_frame
2149 .element_states
2150 .remove(&key)
2151 .or_else(|| self.rendered_frame.element_states.remove(&key))
2152 {
2153 let ElementStateBox {
2154 inner,
2155 #[cfg(debug_assertions)]
2156 type_name,
2157 } = any;
2158 // Using the extra inner option to avoid needing to reallocate a new box.
2159 let mut state_box = inner
2160 .downcast::<Option<S>>()
2161 .map_err(|_| {
2162 #[cfg(debug_assertions)]
2163 {
2164 anyhow::anyhow!(
2165 "invalid element state type for id, requested {:?}, actual: {:?}",
2166 std::any::type_name::<S>(),
2167 type_name
2168 )
2169 }
2170
2171 #[cfg(not(debug_assertions))]
2172 {
2173 anyhow::anyhow!(
2174 "invalid element state type for id, requested {:?}",
2175 std::any::type_name::<S>(),
2176 )
2177 }
2178 })
2179 .unwrap();
2180
2181 let state = state_box.take().expect(
2182 "reentrant call to with_element_state for the same state type and element id",
2183 );
2184 let (result, state) = f(Some(state), self);
2185 state_box.replace(state);
2186 self.next_frame.element_states.insert(
2187 key,
2188 ElementStateBox {
2189 inner: state_box,
2190 #[cfg(debug_assertions)]
2191 type_name,
2192 },
2193 );
2194 result
2195 } else {
2196 let (result, state) = f(None, self);
2197 self.next_frame.element_states.insert(
2198 key,
2199 ElementStateBox {
2200 inner: Box::new(Some(state)),
2201 #[cfg(debug_assertions)]
2202 type_name: std::any::type_name::<S>(),
2203 },
2204 );
2205 result
2206 }
2207 }
2208
2209 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2210 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2211 /// when the element is guaranteed to have an id.
2212 ///
2213 /// The first option means 'no ID provided'
2214 /// The second option means 'not yet initialized'
2215 pub fn with_optional_element_state<S, R>(
2216 &mut self,
2217 global_id: Option<&GlobalElementId>,
2218 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2219 ) -> R
2220 where
2221 S: 'static,
2222 {
2223 self.invalidator.debug_assert_paint_or_prepaint();
2224
2225 if let Some(global_id) = global_id {
2226 self.with_element_state(global_id, |state, cx| {
2227 let (result, state) = f(Some(state), cx);
2228 let state =
2229 state.expect("you must return some state when you pass some element id");
2230 (result, state)
2231 })
2232 } else {
2233 let (result, state) = f(None, self);
2234 debug_assert!(
2235 state.is_none(),
2236 "you must not return an element state when passing None for the global id"
2237 );
2238 result
2239 }
2240 }
2241
2242 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2243 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2244 /// with higher values being drawn on top.
2245 ///
2246 /// This method should only be called as part of the prepaint phase of element drawing.
2247 pub fn defer_draw(
2248 &mut self,
2249 element: AnyElement,
2250 absolute_offset: Point<Pixels>,
2251 priority: usize,
2252 ) {
2253 self.invalidator.debug_assert_prepaint();
2254 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2255 self.next_frame.deferred_draws.push(DeferredDraw {
2256 current_view: self.current_view(),
2257 parent_node,
2258 element_id_stack: self.element_id_stack.clone(),
2259 text_style_stack: self.text_style_stack.clone(),
2260 priority,
2261 element: Some(element),
2262 absolute_offset,
2263 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2264 paint_range: PaintIndex::default()..PaintIndex::default(),
2265 });
2266 }
2267
2268 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2269 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2270 /// for performance reasons.
2271 ///
2272 /// This method should only be called as part of the paint phase of element drawing.
2273 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2274 self.invalidator.debug_assert_paint();
2275
2276 let scale_factor = self.scale_factor();
2277 let content_mask = self.content_mask();
2278 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2279 if !clipped_bounds.is_empty() {
2280 self.next_frame
2281 .scene
2282 .push_layer(clipped_bounds.scale(scale_factor));
2283 }
2284
2285 let result = f(self);
2286
2287 if !clipped_bounds.is_empty() {
2288 self.next_frame.scene.pop_layer();
2289 }
2290
2291 result
2292 }
2293
2294 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2295 ///
2296 /// This method should only be called as part of the paint phase of element drawing.
2297 pub fn paint_shadows(
2298 &mut self,
2299 bounds: Bounds<Pixels>,
2300 corner_radii: Corners<Pixels>,
2301 shadows: &[BoxShadow],
2302 ) {
2303 self.invalidator.debug_assert_paint();
2304
2305 let scale_factor = self.scale_factor();
2306 let content_mask = self.content_mask();
2307 let opacity = self.element_opacity();
2308 for shadow in shadows {
2309 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2310 self.next_frame.scene.insert_primitive(Shadow {
2311 order: 0,
2312 blur_radius: shadow.blur_radius.scale(scale_factor),
2313 bounds: shadow_bounds.scale(scale_factor),
2314 content_mask: content_mask.scale(scale_factor),
2315 corner_radii: corner_radii.scale(scale_factor),
2316 color: shadow.color.opacity(opacity),
2317 });
2318 }
2319 }
2320
2321 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2322 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2323 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2324 ///
2325 /// This method should only be called as part of the paint phase of element drawing.
2326 pub fn paint_quad(&mut self, quad: PaintQuad) {
2327 self.invalidator.debug_assert_paint();
2328
2329 let scale_factor = self.scale_factor();
2330 let content_mask = self.content_mask();
2331 let opacity = self.element_opacity();
2332 self.next_frame.scene.insert_primitive(Quad {
2333 order: 0,
2334 pad: 0,
2335 bounds: quad.bounds.scale(scale_factor),
2336 content_mask: content_mask.scale(scale_factor),
2337 background: quad.background.opacity(opacity),
2338 border_color: quad.border_color.opacity(opacity),
2339 corner_radii: quad.corner_radii.scale(scale_factor),
2340 border_widths: quad.border_widths.scale(scale_factor),
2341 });
2342 }
2343
2344 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2345 ///
2346 /// This method should only be called as part of the paint phase of element drawing.
2347 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2348 self.invalidator.debug_assert_paint();
2349
2350 let scale_factor = self.scale_factor();
2351 let content_mask = self.content_mask();
2352 let opacity = self.element_opacity();
2353 path.content_mask = content_mask;
2354 let color: Background = color.into();
2355 path.color = color.opacity(opacity);
2356 self.next_frame
2357 .scene
2358 .insert_primitive(path.scale(scale_factor));
2359 }
2360
2361 /// Paint an underline into the scene for the next frame at the current z-index.
2362 ///
2363 /// This method should only be called as part of the paint phase of element drawing.
2364 pub fn paint_underline(
2365 &mut self,
2366 origin: Point<Pixels>,
2367 width: Pixels,
2368 style: &UnderlineStyle,
2369 ) {
2370 self.invalidator.debug_assert_paint();
2371
2372 let scale_factor = self.scale_factor();
2373 let height = if style.wavy {
2374 style.thickness * 3.
2375 } else {
2376 style.thickness
2377 };
2378 let bounds = Bounds {
2379 origin,
2380 size: size(width, height),
2381 };
2382 let content_mask = self.content_mask();
2383 let element_opacity = self.element_opacity();
2384
2385 self.next_frame.scene.insert_primitive(Underline {
2386 order: 0,
2387 pad: 0,
2388 bounds: bounds.scale(scale_factor),
2389 content_mask: content_mask.scale(scale_factor),
2390 color: style.color.unwrap_or_default().opacity(element_opacity),
2391 thickness: style.thickness.scale(scale_factor),
2392 wavy: style.wavy,
2393 });
2394 }
2395
2396 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2397 ///
2398 /// This method should only be called as part of the paint phase of element drawing.
2399 pub fn paint_strikethrough(
2400 &mut self,
2401 origin: Point<Pixels>,
2402 width: Pixels,
2403 style: &StrikethroughStyle,
2404 ) {
2405 self.invalidator.debug_assert_paint();
2406
2407 let scale_factor = self.scale_factor();
2408 let height = style.thickness;
2409 let bounds = Bounds {
2410 origin,
2411 size: size(width, height),
2412 };
2413 let content_mask = self.content_mask();
2414 let opacity = self.element_opacity();
2415
2416 self.next_frame.scene.insert_primitive(Underline {
2417 order: 0,
2418 pad: 0,
2419 bounds: bounds.scale(scale_factor),
2420 content_mask: content_mask.scale(scale_factor),
2421 thickness: style.thickness.scale(scale_factor),
2422 color: style.color.unwrap_or_default().opacity(opacity),
2423 wavy: false,
2424 });
2425 }
2426
2427 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2428 ///
2429 /// The y component of the origin is the baseline of the glyph.
2430 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2431 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2432 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2433 ///
2434 /// This method should only be called as part of the paint phase of element drawing.
2435 pub fn paint_glyph(
2436 &mut self,
2437 origin: Point<Pixels>,
2438 font_id: FontId,
2439 glyph_id: GlyphId,
2440 font_size: Pixels,
2441 color: Hsla,
2442 ) -> Result<()> {
2443 self.invalidator.debug_assert_paint();
2444
2445 let element_opacity = self.element_opacity();
2446 let scale_factor = self.scale_factor();
2447 let glyph_origin = origin.scale(scale_factor);
2448 let subpixel_variant = Point {
2449 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2450 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2451 };
2452 let params = RenderGlyphParams {
2453 font_id,
2454 glyph_id,
2455 font_size,
2456 subpixel_variant,
2457 scale_factor,
2458 is_emoji: false,
2459 };
2460
2461 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2462 if !raster_bounds.is_zero() {
2463 let tile = self
2464 .sprite_atlas
2465 .get_or_insert_with(¶ms.clone().into(), &mut || {
2466 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2467 Ok(Some((size, Cow::Owned(bytes))))
2468 })?
2469 .expect("Callback above only errors or returns Some");
2470 let bounds = Bounds {
2471 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2472 size: tile.bounds.size.map(Into::into),
2473 };
2474 let content_mask = self.content_mask().scale(scale_factor);
2475 self.next_frame.scene.insert_primitive(MonochromeSprite {
2476 order: 0,
2477 pad: 0,
2478 bounds,
2479 content_mask,
2480 color: color.opacity(element_opacity),
2481 tile,
2482 transformation: TransformationMatrix::unit(),
2483 });
2484 }
2485 Ok(())
2486 }
2487
2488 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2489 ///
2490 /// The y component of the origin is the baseline of the glyph.
2491 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2492 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2493 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2494 ///
2495 /// This method should only be called as part of the paint phase of element drawing.
2496 pub fn paint_emoji(
2497 &mut self,
2498 origin: Point<Pixels>,
2499 font_id: FontId,
2500 glyph_id: GlyphId,
2501 font_size: Pixels,
2502 ) -> Result<()> {
2503 self.invalidator.debug_assert_paint();
2504
2505 let scale_factor = self.scale_factor();
2506 let glyph_origin = origin.scale(scale_factor);
2507 let params = RenderGlyphParams {
2508 font_id,
2509 glyph_id,
2510 font_size,
2511 // We don't render emojis with subpixel variants.
2512 subpixel_variant: Default::default(),
2513 scale_factor,
2514 is_emoji: true,
2515 };
2516
2517 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2518 if !raster_bounds.is_zero() {
2519 let tile = self
2520 .sprite_atlas
2521 .get_or_insert_with(¶ms.clone().into(), &mut || {
2522 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2523 Ok(Some((size, Cow::Owned(bytes))))
2524 })?
2525 .expect("Callback above only errors or returns Some");
2526
2527 let bounds = Bounds {
2528 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2529 size: tile.bounds.size.map(Into::into),
2530 };
2531 let content_mask = self.content_mask().scale(scale_factor);
2532 let opacity = self.element_opacity();
2533
2534 self.next_frame.scene.insert_primitive(PolychromeSprite {
2535 order: 0,
2536 pad: 0,
2537 grayscale: false,
2538 bounds,
2539 corner_radii: Default::default(),
2540 content_mask,
2541 tile,
2542 opacity,
2543 });
2544 }
2545 Ok(())
2546 }
2547
2548 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2549 ///
2550 /// This method should only be called as part of the paint phase of element drawing.
2551 pub fn paint_svg(
2552 &mut self,
2553 bounds: Bounds<Pixels>,
2554 path: SharedString,
2555 transformation: TransformationMatrix,
2556 color: Hsla,
2557 cx: &App,
2558 ) -> Result<()> {
2559 self.invalidator.debug_assert_paint();
2560
2561 let element_opacity = self.element_opacity();
2562 let scale_factor = self.scale_factor();
2563 let bounds = bounds.scale(scale_factor);
2564 let params = RenderSvgParams {
2565 path,
2566 size: bounds.size.map(|pixels| {
2567 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2568 }),
2569 };
2570
2571 let Some(tile) =
2572 self.sprite_atlas
2573 .get_or_insert_with(¶ms.clone().into(), &mut || {
2574 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2575 return Ok(None);
2576 };
2577 Ok(Some((params.size, Cow::Owned(bytes))))
2578 })?
2579 else {
2580 return Ok(());
2581 };
2582 let content_mask = self.content_mask().scale(scale_factor);
2583
2584 self.next_frame.scene.insert_primitive(MonochromeSprite {
2585 order: 0,
2586 pad: 0,
2587 bounds: bounds
2588 .map_origin(|origin| origin.floor())
2589 .map_size(|size| size.ceil()),
2590 content_mask,
2591 color: color.opacity(element_opacity),
2592 tile,
2593 transformation,
2594 });
2595
2596 Ok(())
2597 }
2598
2599 /// Paint an image into the scene for the next frame at the current z-index.
2600 /// This method will panic if the frame_index is not valid
2601 ///
2602 /// This method should only be called as part of the paint phase of element drawing.
2603 pub fn paint_image(
2604 &mut self,
2605 bounds: Bounds<Pixels>,
2606 corner_radii: Corners<Pixels>,
2607 data: Arc<RenderImage>,
2608 frame_index: usize,
2609 grayscale: bool,
2610 ) -> Result<()> {
2611 self.invalidator.debug_assert_paint();
2612
2613 let scale_factor = self.scale_factor();
2614 let bounds = bounds.scale(scale_factor);
2615 let params = RenderImageParams {
2616 image_id: data.id,
2617 frame_index,
2618 };
2619
2620 let tile = self
2621 .sprite_atlas
2622 .get_or_insert_with(¶ms.clone().into(), &mut || {
2623 Ok(Some((
2624 data.size(frame_index),
2625 Cow::Borrowed(
2626 data.as_bytes(frame_index)
2627 .expect("It's the caller's job to pass a valid frame index"),
2628 ),
2629 )))
2630 })?
2631 .expect("Callback above only returns Some");
2632 let content_mask = self.content_mask().scale(scale_factor);
2633 let corner_radii = corner_radii.scale(scale_factor);
2634 let opacity = self.element_opacity();
2635
2636 self.next_frame.scene.insert_primitive(PolychromeSprite {
2637 order: 0,
2638 pad: 0,
2639 grayscale,
2640 bounds,
2641 content_mask,
2642 corner_radii,
2643 tile,
2644 opacity,
2645 });
2646 Ok(())
2647 }
2648
2649 /// Paint a surface into the scene for the next frame at the current z-index.
2650 ///
2651 /// This method should only be called as part of the paint phase of element drawing.
2652 #[cfg(target_os = "macos")]
2653 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
2654 use crate::PaintSurface;
2655
2656 self.invalidator.debug_assert_paint();
2657
2658 let scale_factor = self.scale_factor();
2659 let bounds = bounds.scale(scale_factor);
2660 let content_mask = self.content_mask().scale(scale_factor);
2661 self.next_frame.scene.insert_primitive(PaintSurface {
2662 order: 0,
2663 bounds,
2664 content_mask,
2665 image_buffer,
2666 });
2667 }
2668
2669 /// Removes an image from the sprite atlas.
2670 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2671 for frame_index in 0..data.frame_count() {
2672 let params = RenderImageParams {
2673 image_id: data.id,
2674 frame_index,
2675 };
2676
2677 self.sprite_atlas.remove(¶ms.clone().into());
2678 }
2679
2680 Ok(())
2681 }
2682
2683 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2684 /// layout is being requested, along with the layout ids of any children. This method is called during
2685 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2686 ///
2687 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2688 #[must_use]
2689 pub fn request_layout(
2690 &mut self,
2691 style: Style,
2692 children: impl IntoIterator<Item = LayoutId>,
2693 cx: &mut App,
2694 ) -> LayoutId {
2695 self.invalidator.debug_assert_prepaint();
2696
2697 cx.layout_id_buffer.clear();
2698 cx.layout_id_buffer.extend(children);
2699 let rem_size = self.rem_size();
2700
2701 self.layout_engine
2702 .as_mut()
2703 .unwrap()
2704 .request_layout(style, rem_size, &cx.layout_id_buffer)
2705 }
2706
2707 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2708 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2709 /// determine the element's size. One place this is used internally is when measuring text.
2710 ///
2711 /// The given closure is invoked at layout time with the known dimensions and available space and
2712 /// returns a `Size`.
2713 ///
2714 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2715 pub fn request_measured_layout<
2716 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2717 + 'static,
2718 >(
2719 &mut self,
2720 style: Style,
2721 measure: F,
2722 ) -> LayoutId {
2723 self.invalidator.debug_assert_prepaint();
2724
2725 let rem_size = self.rem_size();
2726 self.layout_engine
2727 .as_mut()
2728 .unwrap()
2729 .request_measured_layout(style, rem_size, measure)
2730 }
2731
2732 /// Compute the layout for the given id within the given available space.
2733 /// This method is called for its side effect, typically by the framework prior to painting.
2734 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2735 ///
2736 /// This method should only be called as part of the prepaint phase of element drawing.
2737 pub fn compute_layout(
2738 &mut self,
2739 layout_id: LayoutId,
2740 available_space: Size<AvailableSpace>,
2741 cx: &mut App,
2742 ) {
2743 self.invalidator.debug_assert_prepaint();
2744
2745 let mut layout_engine = self.layout_engine.take().unwrap();
2746 layout_engine.compute_layout(layout_id, available_space, self, cx);
2747 self.layout_engine = Some(layout_engine);
2748 }
2749
2750 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2751 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2752 ///
2753 /// This method should only be called as part of element drawing.
2754 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2755 self.invalidator.debug_assert_prepaint();
2756
2757 let mut bounds = self
2758 .layout_engine
2759 .as_mut()
2760 .unwrap()
2761 .layout_bounds(layout_id)
2762 .map(Into::into);
2763 bounds.origin += self.element_offset();
2764 bounds
2765 }
2766
2767 /// This method should be called during `prepaint`. You can use
2768 /// the returned [Hitbox] during `paint` or in an event handler
2769 /// to determine whether the inserted hitbox was the topmost.
2770 ///
2771 /// This method should only be called as part of the prepaint phase of element drawing.
2772 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2773 self.invalidator.debug_assert_prepaint();
2774
2775 let content_mask = self.content_mask();
2776 let id = self.next_hitbox_id;
2777 self.next_hitbox_id.0 += 1;
2778 let hitbox = Hitbox {
2779 id,
2780 bounds,
2781 content_mask,
2782 opaque,
2783 };
2784 self.next_frame.hitboxes.push(hitbox.clone());
2785 hitbox
2786 }
2787
2788 /// Sets the key context for the current element. This context will be used to translate
2789 /// keybindings into actions.
2790 ///
2791 /// This method should only be called as part of the paint phase of element drawing.
2792 pub fn set_key_context(&mut self, context: KeyContext) {
2793 self.invalidator.debug_assert_paint();
2794 self.next_frame.dispatch_tree.set_key_context(context);
2795 }
2796
2797 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2798 /// and keyboard event dispatch for the element.
2799 ///
2800 /// This method should only be called as part of the prepaint phase of element drawing.
2801 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2802 self.invalidator.debug_assert_prepaint();
2803 if focus_handle.is_focused(self) {
2804 self.next_frame.focus = Some(focus_handle.id);
2805 }
2806 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2807 }
2808
2809 /// Sets the view id for the current element, which will be used to manage view caching.
2810 ///
2811 /// This method should only be called as part of element prepaint. We plan on removing this
2812 /// method eventually when we solve some issues that require us to construct editor elements
2813 /// directly instead of always using editors via views.
2814 pub fn set_view_id(&mut self, view_id: EntityId) {
2815 self.invalidator.debug_assert_prepaint();
2816 self.next_frame.dispatch_tree.set_view_id(view_id);
2817 }
2818
2819 /// Get the entity ID for the currently rendering view
2820 pub fn current_view(&self) -> EntityId {
2821 self.invalidator.debug_assert_paint_or_prepaint();
2822 self.rendered_entity_stack.last().copied().unwrap()
2823 }
2824
2825 pub(crate) fn with_rendered_view<R>(
2826 &mut self,
2827 id: EntityId,
2828 f: impl FnOnce(&mut Self) -> R,
2829 ) -> R {
2830 self.rendered_entity_stack.push(id);
2831 let result = f(self);
2832 self.rendered_entity_stack.pop();
2833 result
2834 }
2835
2836 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2837 /// platform to receive textual input with proper integration with concerns such
2838 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2839 /// rendered.
2840 ///
2841 /// This method should only be called as part of the paint phase of element drawing.
2842 ///
2843 /// [element_input_handler]: crate::ElementInputHandler
2844 pub fn handle_input(
2845 &mut self,
2846 focus_handle: &FocusHandle,
2847 input_handler: impl InputHandler,
2848 cx: &App,
2849 ) {
2850 self.invalidator.debug_assert_paint();
2851
2852 if focus_handle.is_focused(self) {
2853 let cx = self.to_async(cx);
2854 self.next_frame
2855 .input_handlers
2856 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2857 }
2858 }
2859
2860 /// Register a mouse event listener on the window for the next frame. The type of event
2861 /// is determined by the first parameter of the given listener. When the next frame is rendered
2862 /// the listener will be cleared.
2863 ///
2864 /// This method should only be called as part of the paint phase of element drawing.
2865 pub fn on_mouse_event<Event: MouseEvent>(
2866 &mut self,
2867 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2868 ) {
2869 self.invalidator.debug_assert_paint();
2870
2871 self.next_frame.mouse_listeners.push(Some(Box::new(
2872 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2873 if let Some(event) = event.downcast_ref() {
2874 handler(event, phase, window, cx)
2875 }
2876 },
2877 )));
2878 }
2879
2880 /// Register a key event listener on the window for the next frame. The type of event
2881 /// is determined by the first parameter of the given listener. When the next frame is rendered
2882 /// the listener will be cleared.
2883 ///
2884 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2885 /// a specific need to register a global listener.
2886 ///
2887 /// This method should only be called as part of the paint phase of element drawing.
2888 pub fn on_key_event<Event: KeyEvent>(
2889 &mut self,
2890 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2891 ) {
2892 self.invalidator.debug_assert_paint();
2893
2894 self.next_frame.dispatch_tree.on_key_event(Rc::new(
2895 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
2896 if let Some(event) = event.downcast_ref::<Event>() {
2897 listener(event, phase, window, cx)
2898 }
2899 },
2900 ));
2901 }
2902
2903 /// Register a modifiers changed event listener on the window for the next frame.
2904 ///
2905 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2906 /// a specific need to register a global listener.
2907 ///
2908 /// This method should only be called as part of the paint phase of element drawing.
2909 pub fn on_modifiers_changed(
2910 &mut self,
2911 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
2912 ) {
2913 self.invalidator.debug_assert_paint();
2914
2915 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
2916 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
2917 listener(event, window, cx)
2918 },
2919 ));
2920 }
2921
2922 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2923 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
2924 /// Returns a subscription and persists until the subscription is dropped.
2925 pub fn on_focus_in(
2926 &mut self,
2927 handle: &FocusHandle,
2928 cx: &mut App,
2929 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
2930 ) -> Subscription {
2931 let focus_id = handle.id;
2932 let (subscription, activate) =
2933 self.new_focus_listener(Box::new(move |event, window, cx| {
2934 if event.is_focus_in(focus_id) {
2935 listener(window, cx);
2936 }
2937 true
2938 }));
2939 cx.defer(move |_| activate());
2940 subscription
2941 }
2942
2943 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2944 /// Returns a subscription and persists until the subscription is dropped.
2945 pub fn on_focus_out(
2946 &mut self,
2947 handle: &FocusHandle,
2948 cx: &mut App,
2949 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
2950 ) -> Subscription {
2951 let focus_id = handle.id;
2952 let (subscription, activate) =
2953 self.new_focus_listener(Box::new(move |event, window, cx| {
2954 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
2955 if event.is_focus_out(focus_id) {
2956 let event = FocusOutEvent {
2957 blurred: WeakFocusHandle {
2958 id: blurred_id,
2959 handles: Arc::downgrade(&cx.focus_handles),
2960 },
2961 };
2962 listener(event, window, cx)
2963 }
2964 }
2965 true
2966 }));
2967 cx.defer(move |_| activate());
2968 subscription
2969 }
2970
2971 fn reset_cursor_style(&self, cx: &mut App) {
2972 // Set the cursor only if we're the active window.
2973 if self.is_window_hovered() {
2974 let style = self
2975 .rendered_frame
2976 .cursor_styles
2977 .iter()
2978 .rev()
2979 .find(|request| request.hitbox_id.is_hovered(self))
2980 .map(|request| request.style)
2981 .unwrap_or(CursorStyle::Arrow);
2982 cx.platform.set_cursor_style(style);
2983 }
2984 }
2985
2986 /// Dispatch a given keystroke as though the user had typed it.
2987 /// You can create a keystroke with Keystroke::parse("").
2988 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
2989 let keystroke = keystroke.with_simulated_ime();
2990 let result = self.dispatch_event(
2991 PlatformInput::KeyDown(KeyDownEvent {
2992 keystroke: keystroke.clone(),
2993 is_held: false,
2994 }),
2995 cx,
2996 );
2997 if !result.propagate {
2998 return true;
2999 }
3000
3001 if let Some(input) = keystroke.key_char {
3002 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3003 input_handler.dispatch_input(&input, self, cx);
3004 self.platform_window.set_input_handler(input_handler);
3005 return true;
3006 }
3007 }
3008
3009 false
3010 }
3011
3012 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3013 /// binding for the action (last binding added to the keymap).
3014 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3015 self.bindings_for_action(action)
3016 .last()
3017 .map(|binding| {
3018 binding
3019 .keystrokes()
3020 .iter()
3021 .map(ToString::to_string)
3022 .collect::<Vec<_>>()
3023 .join(" ")
3024 })
3025 .unwrap_or_else(|| action.name().to_string())
3026 }
3027
3028 /// Dispatch a mouse or keyboard event on the window.
3029 #[profiling::function]
3030 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3031 self.last_input_timestamp.set(Instant::now());
3032 // Handlers may set this to false by calling `stop_propagation`.
3033 cx.propagate_event = true;
3034 // Handlers may set this to true by calling `prevent_default`.
3035 self.default_prevented = false;
3036
3037 let event = match event {
3038 // Track the mouse position with our own state, since accessing the platform
3039 // API for the mouse position can only occur on the main thread.
3040 PlatformInput::MouseMove(mouse_move) => {
3041 self.mouse_position = mouse_move.position;
3042 self.modifiers = mouse_move.modifiers;
3043 PlatformInput::MouseMove(mouse_move)
3044 }
3045 PlatformInput::MouseDown(mouse_down) => {
3046 self.mouse_position = mouse_down.position;
3047 self.modifiers = mouse_down.modifiers;
3048 PlatformInput::MouseDown(mouse_down)
3049 }
3050 PlatformInput::MouseUp(mouse_up) => {
3051 self.mouse_position = mouse_up.position;
3052 self.modifiers = mouse_up.modifiers;
3053 PlatformInput::MouseUp(mouse_up)
3054 }
3055 PlatformInput::MouseExited(mouse_exited) => {
3056 self.modifiers = mouse_exited.modifiers;
3057 PlatformInput::MouseExited(mouse_exited)
3058 }
3059 PlatformInput::ModifiersChanged(modifiers_changed) => {
3060 self.modifiers = modifiers_changed.modifiers;
3061 PlatformInput::ModifiersChanged(modifiers_changed)
3062 }
3063 PlatformInput::ScrollWheel(scroll_wheel) => {
3064 self.mouse_position = scroll_wheel.position;
3065 self.modifiers = scroll_wheel.modifiers;
3066 PlatformInput::ScrollWheel(scroll_wheel)
3067 }
3068 // Translate dragging and dropping of external files from the operating system
3069 // to internal drag and drop events.
3070 PlatformInput::FileDrop(file_drop) => match file_drop {
3071 FileDropEvent::Entered { position, paths } => {
3072 self.mouse_position = position;
3073 if cx.active_drag.is_none() {
3074 cx.active_drag = Some(AnyDrag {
3075 value: Arc::new(paths.clone()),
3076 view: cx.new(|_| paths).into(),
3077 cursor_offset: position,
3078 });
3079 }
3080 PlatformInput::MouseMove(MouseMoveEvent {
3081 position,
3082 pressed_button: Some(MouseButton::Left),
3083 modifiers: Modifiers::default(),
3084 })
3085 }
3086 FileDropEvent::Pending { position } => {
3087 self.mouse_position = position;
3088 PlatformInput::MouseMove(MouseMoveEvent {
3089 position,
3090 pressed_button: Some(MouseButton::Left),
3091 modifiers: Modifiers::default(),
3092 })
3093 }
3094 FileDropEvent::Submit { position } => {
3095 cx.activate(true);
3096 self.mouse_position = position;
3097 PlatformInput::MouseUp(MouseUpEvent {
3098 button: MouseButton::Left,
3099 position,
3100 modifiers: Modifiers::default(),
3101 click_count: 1,
3102 })
3103 }
3104 FileDropEvent::Exited => {
3105 cx.active_drag.take();
3106 PlatformInput::FileDrop(FileDropEvent::Exited)
3107 }
3108 },
3109 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3110 };
3111
3112 if let Some(any_mouse_event) = event.mouse_event() {
3113 self.dispatch_mouse_event(any_mouse_event, cx);
3114 } else if let Some(any_key_event) = event.keyboard_event() {
3115 self.dispatch_key_event(any_key_event, cx);
3116 }
3117
3118 DispatchEventResult {
3119 propagate: cx.propagate_event,
3120 default_prevented: self.default_prevented,
3121 }
3122 }
3123
3124 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3125 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3126 if hit_test != self.mouse_hit_test {
3127 self.mouse_hit_test = hit_test;
3128 self.reset_cursor_style(cx);
3129 }
3130
3131 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3132
3133 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3134 // special purposes, such as detecting events outside of a given Bounds.
3135 for listener in &mut mouse_listeners {
3136 let listener = listener.as_mut().unwrap();
3137 listener(event, DispatchPhase::Capture, self, cx);
3138 if !cx.propagate_event {
3139 break;
3140 }
3141 }
3142
3143 // Bubble phase, where most normal handlers do their work.
3144 if cx.propagate_event {
3145 for listener in mouse_listeners.iter_mut().rev() {
3146 let listener = listener.as_mut().unwrap();
3147 listener(event, DispatchPhase::Bubble, self, cx);
3148 if !cx.propagate_event {
3149 break;
3150 }
3151 }
3152 }
3153
3154 self.rendered_frame.mouse_listeners = mouse_listeners;
3155
3156 if cx.has_active_drag() {
3157 if event.is::<MouseMoveEvent>() {
3158 // If this was a mouse move event, redraw the window so that the
3159 // active drag can follow the mouse cursor.
3160 self.refresh();
3161 } else if event.is::<MouseUpEvent>() {
3162 // If this was a mouse up event, cancel the active drag and redraw
3163 // the window.
3164 cx.active_drag = None;
3165 self.refresh();
3166 }
3167 }
3168 }
3169
3170 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3171 if self.invalidator.is_dirty() {
3172 self.draw(cx);
3173 }
3174
3175 let node_id = self
3176 .focus
3177 .and_then(|focus_id| {
3178 self.rendered_frame
3179 .dispatch_tree
3180 .focusable_node_id(focus_id)
3181 })
3182 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3183
3184 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3185
3186 let mut keystroke: Option<Keystroke> = None;
3187
3188 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3189 if event.modifiers.number_of_modifiers() == 0
3190 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3191 && !self.pending_modifier.saw_keystroke
3192 {
3193 let key = match self.pending_modifier.modifiers {
3194 modifiers if modifiers.shift => Some("shift"),
3195 modifiers if modifiers.control => Some("control"),
3196 modifiers if modifiers.alt => Some("alt"),
3197 modifiers if modifiers.platform => Some("platform"),
3198 modifiers if modifiers.function => Some("function"),
3199 _ => None,
3200 };
3201 if let Some(key) = key {
3202 keystroke = Some(Keystroke {
3203 key: key.to_string(),
3204 key_char: None,
3205 modifiers: Modifiers::default(),
3206 });
3207 }
3208 }
3209
3210 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3211 && event.modifiers.number_of_modifiers() == 1
3212 {
3213 self.pending_modifier.saw_keystroke = false
3214 }
3215 self.pending_modifier.modifiers = event.modifiers
3216 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3217 self.pending_modifier.saw_keystroke = true;
3218 keystroke = Some(key_down_event.keystroke.clone());
3219 }
3220
3221 let Some(keystroke) = keystroke else {
3222 self.finish_dispatch_key_event(event, dispatch_path, cx);
3223 return;
3224 };
3225
3226 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3227 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3228 currently_pending = PendingInput::default();
3229 }
3230
3231 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3232 currently_pending.keystrokes,
3233 keystroke,
3234 &dispatch_path,
3235 );
3236 if !match_result.to_replay.is_empty() {
3237 self.replay_pending_input(match_result.to_replay, cx)
3238 }
3239
3240 if !match_result.pending.is_empty() {
3241 currently_pending.keystrokes = match_result.pending;
3242 currently_pending.focus = self.focus;
3243 currently_pending.timer = Some(self.spawn(cx, |mut cx| async move {
3244 cx.background_executor.timer(Duration::from_secs(1)).await;
3245 cx.update(move |window, cx| {
3246 let Some(currently_pending) = window
3247 .pending_input
3248 .take()
3249 .filter(|pending| pending.focus == window.focus)
3250 else {
3251 return;
3252 };
3253
3254 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3255
3256 let to_replay = window
3257 .rendered_frame
3258 .dispatch_tree
3259 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3260
3261 window.replay_pending_input(to_replay, cx)
3262 })
3263 .log_err();
3264 }));
3265 self.pending_input = Some(currently_pending);
3266 self.pending_input_changed(cx);
3267 cx.propagate_event = false;
3268 return;
3269 }
3270
3271 cx.propagate_event = true;
3272 for binding in match_result.bindings {
3273 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3274 if !cx.propagate_event {
3275 self.dispatch_keystroke_observers(event, Some(binding.action), cx);
3276 self.pending_input_changed(cx);
3277 return;
3278 }
3279 }
3280
3281 self.finish_dispatch_key_event(event, dispatch_path, cx);
3282 self.pending_input_changed(cx);
3283 }
3284
3285 fn finish_dispatch_key_event(
3286 &mut self,
3287 event: &dyn Any,
3288 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3289 cx: &mut App,
3290 ) {
3291 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3292 if !cx.propagate_event {
3293 return;
3294 }
3295
3296 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3297 if !cx.propagate_event {
3298 return;
3299 }
3300
3301 self.dispatch_keystroke_observers(event, None, cx);
3302 }
3303
3304 fn pending_input_changed(&mut self, cx: &mut App) {
3305 self.pending_input_observers
3306 .clone()
3307 .retain(&(), |callback| callback(self, cx));
3308 }
3309
3310 fn dispatch_key_down_up_event(
3311 &mut self,
3312 event: &dyn Any,
3313 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3314 cx: &mut App,
3315 ) {
3316 // Capture phase
3317 for node_id in dispatch_path {
3318 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3319
3320 for key_listener in node.key_listeners.clone() {
3321 key_listener(event, DispatchPhase::Capture, self, cx);
3322 if !cx.propagate_event {
3323 return;
3324 }
3325 }
3326 }
3327
3328 // Bubble phase
3329 for node_id in dispatch_path.iter().rev() {
3330 // Handle low level key events
3331 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3332 for key_listener in node.key_listeners.clone() {
3333 key_listener(event, DispatchPhase::Bubble, self, cx);
3334 if !cx.propagate_event {
3335 return;
3336 }
3337 }
3338 }
3339 }
3340
3341 fn dispatch_modifiers_changed_event(
3342 &mut self,
3343 event: &dyn Any,
3344 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3345 cx: &mut App,
3346 ) {
3347 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3348 return;
3349 };
3350 for node_id in dispatch_path.iter().rev() {
3351 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3352 for listener in node.modifiers_changed_listeners.clone() {
3353 listener(event, self, cx);
3354 if !cx.propagate_event {
3355 return;
3356 }
3357 }
3358 }
3359 }
3360
3361 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3362 pub fn has_pending_keystrokes(&self) -> bool {
3363 self.pending_input.is_some()
3364 }
3365
3366 pub(crate) fn clear_pending_keystrokes(&mut self) {
3367 self.pending_input.take();
3368 }
3369
3370 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3371 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3372 self.pending_input
3373 .as_ref()
3374 .map(|pending_input| pending_input.keystrokes.as_slice())
3375 }
3376
3377 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3378 let node_id = self
3379 .focus
3380 .and_then(|focus_id| {
3381 self.rendered_frame
3382 .dispatch_tree
3383 .focusable_node_id(focus_id)
3384 })
3385 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3386
3387 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3388
3389 'replay: for replay in replays {
3390 let event = KeyDownEvent {
3391 keystroke: replay.keystroke.clone(),
3392 is_held: false,
3393 };
3394
3395 cx.propagate_event = true;
3396 for binding in replay.bindings {
3397 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3398 if !cx.propagate_event {
3399 self.dispatch_keystroke_observers(&event, Some(binding.action), cx);
3400 continue 'replay;
3401 }
3402 }
3403
3404 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3405 if !cx.propagate_event {
3406 continue 'replay;
3407 }
3408 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3409 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3410 input_handler.dispatch_input(&input, self, cx);
3411 self.platform_window.set_input_handler(input_handler)
3412 }
3413 }
3414 }
3415 }
3416
3417 fn dispatch_action_on_node(
3418 &mut self,
3419 node_id: DispatchNodeId,
3420 action: &dyn Action,
3421 cx: &mut App,
3422 ) {
3423 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3424
3425 // Capture phase for global actions.
3426 cx.propagate_event = true;
3427 if let Some(mut global_listeners) = cx
3428 .global_action_listeners
3429 .remove(&action.as_any().type_id())
3430 {
3431 for listener in &global_listeners {
3432 listener(action.as_any(), DispatchPhase::Capture, cx);
3433 if !cx.propagate_event {
3434 break;
3435 }
3436 }
3437
3438 global_listeners.extend(
3439 cx.global_action_listeners
3440 .remove(&action.as_any().type_id())
3441 .unwrap_or_default(),
3442 );
3443
3444 cx.global_action_listeners
3445 .insert(action.as_any().type_id(), global_listeners);
3446 }
3447
3448 if !cx.propagate_event {
3449 return;
3450 }
3451
3452 // Capture phase for window actions.
3453 for node_id in &dispatch_path {
3454 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3455 for DispatchActionListener {
3456 action_type,
3457 listener,
3458 } in node.action_listeners.clone()
3459 {
3460 let any_action = action.as_any();
3461 if action_type == any_action.type_id() {
3462 listener(any_action, DispatchPhase::Capture, self, cx);
3463
3464 if !cx.propagate_event {
3465 return;
3466 }
3467 }
3468 }
3469 }
3470
3471 // Bubble phase for window actions.
3472 for node_id in dispatch_path.iter().rev() {
3473 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3474 for DispatchActionListener {
3475 action_type,
3476 listener,
3477 } in node.action_listeners.clone()
3478 {
3479 let any_action = action.as_any();
3480 if action_type == any_action.type_id() {
3481 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3482 listener(any_action, DispatchPhase::Bubble, self, cx);
3483
3484 if !cx.propagate_event {
3485 return;
3486 }
3487 }
3488 }
3489 }
3490
3491 // Bubble phase for global actions.
3492 if let Some(mut global_listeners) = cx
3493 .global_action_listeners
3494 .remove(&action.as_any().type_id())
3495 {
3496 for listener in global_listeners.iter().rev() {
3497 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3498
3499 listener(action.as_any(), DispatchPhase::Bubble, cx);
3500 if !cx.propagate_event {
3501 break;
3502 }
3503 }
3504
3505 global_listeners.extend(
3506 cx.global_action_listeners
3507 .remove(&action.as_any().type_id())
3508 .unwrap_or_default(),
3509 );
3510
3511 cx.global_action_listeners
3512 .insert(action.as_any().type_id(), global_listeners);
3513 }
3514 }
3515
3516 /// Register the given handler to be invoked whenever the global of the given type
3517 /// is updated.
3518 pub fn observe_global<G: Global>(
3519 &mut self,
3520 cx: &mut App,
3521 f: impl Fn(&mut Window, &mut App) + 'static,
3522 ) -> Subscription {
3523 let window_handle = self.handle;
3524 let (subscription, activate) = cx.global_observers.insert(
3525 TypeId::of::<G>(),
3526 Box::new(move |cx| {
3527 window_handle
3528 .update(cx, |_, window, cx| f(window, cx))
3529 .is_ok()
3530 }),
3531 );
3532 cx.defer(move |_| activate());
3533 subscription
3534 }
3535
3536 /// Focus the current window and bring it to the foreground at the platform level.
3537 pub fn activate_window(&self) {
3538 self.platform_window.activate();
3539 }
3540
3541 /// Minimize the current window at the platform level.
3542 pub fn minimize_window(&self) {
3543 self.platform_window.minimize();
3544 }
3545
3546 /// Toggle full screen status on the current window at the platform level.
3547 pub fn toggle_fullscreen(&self) {
3548 self.platform_window.toggle_fullscreen();
3549 }
3550
3551 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3552 pub fn invalidate_character_coordinates(&self) {
3553 self.on_next_frame(|window, cx| {
3554 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3555 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3556 window
3557 .platform_window
3558 .update_ime_position(bounds.scale(window.scale_factor()));
3559 }
3560 window.platform_window.set_input_handler(input_handler);
3561 }
3562 });
3563 }
3564
3565 /// Present a platform dialog.
3566 /// The provided message will be presented, along with buttons for each answer.
3567 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3568 pub fn prompt(
3569 &mut self,
3570 level: PromptLevel,
3571 message: &str,
3572 detail: Option<&str>,
3573 answers: &[&str],
3574 cx: &mut App,
3575 ) -> oneshot::Receiver<usize> {
3576 let prompt_builder = cx.prompt_builder.take();
3577 let Some(prompt_builder) = prompt_builder else {
3578 unreachable!("Re-entrant window prompting is not supported by GPUI");
3579 };
3580
3581 let receiver = match &prompt_builder {
3582 PromptBuilder::Default => self
3583 .platform_window
3584 .prompt(level, message, detail, answers)
3585 .unwrap_or_else(|| {
3586 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3587 }),
3588 PromptBuilder::Custom(_) => {
3589 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3590 }
3591 };
3592
3593 cx.prompt_builder = Some(prompt_builder);
3594
3595 receiver
3596 }
3597
3598 fn build_custom_prompt(
3599 &mut self,
3600 prompt_builder: &PromptBuilder,
3601 level: PromptLevel,
3602 message: &str,
3603 detail: Option<&str>,
3604 answers: &[&str],
3605 cx: &mut App,
3606 ) -> oneshot::Receiver<usize> {
3607 let (sender, receiver) = oneshot::channel();
3608 let handle = PromptHandle::new(sender);
3609 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3610 self.prompt = Some(handle);
3611 receiver
3612 }
3613
3614 /// Returns the current context stack.
3615 pub fn context_stack(&self) -> Vec<KeyContext> {
3616 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3617 let node_id = self
3618 .focus
3619 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3620 .unwrap_or_else(|| dispatch_tree.root_node_id());
3621
3622 dispatch_tree
3623 .dispatch_path(node_id)
3624 .iter()
3625 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3626 .collect()
3627 }
3628
3629 /// Returns all available actions for the focused element.
3630 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3631 let node_id = self
3632 .focus
3633 .and_then(|focus_id| {
3634 self.rendered_frame
3635 .dispatch_tree
3636 .focusable_node_id(focus_id)
3637 })
3638 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3639
3640 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3641 for action_type in cx.global_action_listeners.keys() {
3642 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3643 let action = cx.actions.build_action_type(action_type).ok();
3644 if let Some(action) = action {
3645 actions.insert(ix, action);
3646 }
3647 }
3648 }
3649 actions
3650 }
3651
3652 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3653 /// returned in the order they were added. For display, the last binding should take precedence.
3654 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3655 self.rendered_frame
3656 .dispatch_tree
3657 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3658 }
3659
3660 /// Returns any bindings that would invoke an action on the given focus handle if it were
3661 /// focused. Bindings are returned in the order they were added. For display, the last binding
3662 /// should take precedence.
3663 pub fn bindings_for_action_in(
3664 &self,
3665 action: &dyn Action,
3666 focus_handle: &FocusHandle,
3667 ) -> Vec<KeyBinding> {
3668 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3669
3670 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3671 return vec![];
3672 };
3673 let context_stack: Vec<_> = dispatch_tree
3674 .dispatch_path(node_id)
3675 .into_iter()
3676 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3677 .collect();
3678 dispatch_tree.bindings_for_action(action, &context_stack)
3679 }
3680
3681 /// Returns the key bindings for the given action in the given context.
3682 pub fn bindings_for_action_in_context(
3683 &self,
3684 action: &dyn Action,
3685 context: KeyContext,
3686 ) -> Vec<KeyBinding> {
3687 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3688 dispatch_tree.bindings_for_action(action, &[context])
3689 }
3690
3691 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3692
3693 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3694 pub fn listener_for<V: Render, E>(
3695 &self,
3696 view: &Entity<V>,
3697 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3698 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3699 let view = view.downgrade();
3700 move |e: &E, window: &mut Window, cx: &mut App| {
3701 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3702 }
3703 }
3704
3705 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3706 pub fn handler_for<V: Render>(
3707 &self,
3708 view: &Entity<V>,
3709 f: impl Fn(&mut V, &mut Window, &mut Context<V>) + 'static,
3710 ) -> impl Fn(&mut Window, &mut App) {
3711 let view = view.downgrade();
3712 move |window: &mut Window, cx: &mut App| {
3713 view.update(cx, |view, cx| f(view, window, cx)).ok();
3714 }
3715 }
3716
3717 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3718 /// If the callback returns false, the window won't be closed.
3719 pub fn on_window_should_close(
3720 &self,
3721 cx: &App,
3722 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3723 ) {
3724 let mut cx = self.to_async(cx);
3725 self.platform_window.on_should_close(Box::new(move || {
3726 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3727 }))
3728 }
3729
3730 /// Register an action listener on the window for the next frame. The type of action
3731 /// is determined by the first parameter of the given listener. When the next frame is rendered
3732 /// the listener will be cleared.
3733 ///
3734 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3735 /// a specific need to register a global listener.
3736 pub fn on_action(
3737 &mut self,
3738 action_type: TypeId,
3739 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3740 ) {
3741 self.next_frame
3742 .dispatch_tree
3743 .on_action(action_type, Rc::new(listener));
3744 }
3745
3746 /// Read information about the GPU backing this window.
3747 /// Currently returns None on Mac and Windows.
3748 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3749 self.platform_window.gpu_specs()
3750 }
3751}
3752
3753// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3754slotmap::new_key_type! {
3755 /// A unique identifier for a window.
3756 pub struct WindowId;
3757}
3758
3759impl WindowId {
3760 /// Converts this window ID to a `u64`.
3761 pub fn as_u64(&self) -> u64 {
3762 self.0.as_ffi()
3763 }
3764}
3765
3766impl From<u64> for WindowId {
3767 fn from(value: u64) -> Self {
3768 WindowId(slotmap::KeyData::from_ffi(value))
3769 }
3770}
3771
3772/// A handle to a window with a specific root view type.
3773/// Note that this does not keep the window alive on its own.
3774#[derive(Deref, DerefMut)]
3775pub struct WindowHandle<V> {
3776 #[deref]
3777 #[deref_mut]
3778 pub(crate) any_handle: AnyWindowHandle,
3779 state_type: PhantomData<V>,
3780}
3781
3782impl<V: 'static + Render> WindowHandle<V> {
3783 /// Creates a new handle from a window ID.
3784 /// This does not check if the root type of the window is `V`.
3785 pub fn new(id: WindowId) -> Self {
3786 WindowHandle {
3787 any_handle: AnyWindowHandle {
3788 id,
3789 state_type: TypeId::of::<V>(),
3790 },
3791 state_type: PhantomData,
3792 }
3793 }
3794
3795 /// Get the root view out of this window.
3796 ///
3797 /// This will fail if the window is closed or if the root view's type does not match `V`.
3798 #[cfg(any(test, feature = "test-support"))]
3799 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
3800 where
3801 C: AppContext,
3802 {
3803 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
3804 root_view
3805 .downcast::<V>()
3806 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3807 }))
3808 }
3809
3810 /// Updates the root view of this window.
3811 ///
3812 /// This will fail if the window has been closed or if the root view's type does not match
3813 pub fn update<C, R>(
3814 &self,
3815 cx: &mut C,
3816 update: impl FnOnce(&mut V, &mut Window, &mut Context<'_, V>) -> R,
3817 ) -> Result<R>
3818 where
3819 C: AppContext,
3820 {
3821 cx.update_window(self.any_handle, |root_view, window, cx| {
3822 let view = root_view
3823 .downcast::<V>()
3824 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3825
3826 Ok(view.update(cx, |view, cx| update(view, window, cx)))
3827 })?
3828 }
3829
3830 /// Read the root view out of this window.
3831 ///
3832 /// This will fail if the window is closed or if the root view's type does not match `V`.
3833 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
3834 let x = cx
3835 .windows
3836 .get(self.id)
3837 .and_then(|window| {
3838 window
3839 .as_ref()
3840 .and_then(|window| window.root.clone())
3841 .map(|root_view| root_view.downcast::<V>())
3842 })
3843 .ok_or_else(|| anyhow!("window not found"))?
3844 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3845
3846 Ok(x.read(cx))
3847 }
3848
3849 /// Read the root view out of this window, with a callback
3850 ///
3851 /// This will fail if the window is closed or if the root view's type does not match `V`.
3852 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
3853 where
3854 C: AppContext,
3855 {
3856 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3857 }
3858
3859 /// Read the root view pointer off of this window.
3860 ///
3861 /// This will fail if the window is closed or if the root view's type does not match `V`.
3862 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
3863 where
3864 C: AppContext,
3865 {
3866 cx.read_window(self, |root_view, _cx| root_view.clone())
3867 }
3868
3869 /// Check if this window is 'active'.
3870 ///
3871 /// Will return `None` if the window is closed or currently
3872 /// borrowed.
3873 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
3874 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
3875 .ok()
3876 }
3877}
3878
3879impl<V> Copy for WindowHandle<V> {}
3880
3881impl<V> Clone for WindowHandle<V> {
3882 fn clone(&self) -> Self {
3883 *self
3884 }
3885}
3886
3887impl<V> PartialEq for WindowHandle<V> {
3888 fn eq(&self, other: &Self) -> bool {
3889 self.any_handle == other.any_handle
3890 }
3891}
3892
3893impl<V> Eq for WindowHandle<V> {}
3894
3895impl<V> Hash for WindowHandle<V> {
3896 fn hash<H: Hasher>(&self, state: &mut H) {
3897 self.any_handle.hash(state);
3898 }
3899}
3900
3901impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3902 fn from(val: WindowHandle<V>) -> Self {
3903 val.any_handle
3904 }
3905}
3906
3907unsafe impl<V> Send for WindowHandle<V> {}
3908unsafe impl<V> Sync for WindowHandle<V> {}
3909
3910/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3911#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3912pub struct AnyWindowHandle {
3913 pub(crate) id: WindowId,
3914 state_type: TypeId,
3915}
3916
3917impl AnyWindowHandle {
3918 /// Get the ID of this window.
3919 pub fn window_id(&self) -> WindowId {
3920 self.id
3921 }
3922
3923 /// Attempt to convert this handle to a window handle with a specific root view type.
3924 /// If the types do not match, this will return `None`.
3925 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3926 if TypeId::of::<T>() == self.state_type {
3927 Some(WindowHandle {
3928 any_handle: *self,
3929 state_type: PhantomData,
3930 })
3931 } else {
3932 None
3933 }
3934 }
3935
3936 /// Updates the state of the root view of this window.
3937 ///
3938 /// This will fail if the window has been closed.
3939 pub fn update<C, R>(
3940 self,
3941 cx: &mut C,
3942 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
3943 ) -> Result<R>
3944 where
3945 C: AppContext,
3946 {
3947 cx.update_window(self, update)
3948 }
3949
3950 /// Read the state of the root view of this window.
3951 ///
3952 /// This will fail if the window has been closed.
3953 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
3954 where
3955 C: AppContext,
3956 T: 'static,
3957 {
3958 let view = self
3959 .downcast::<T>()
3960 .context("the type of the window's root view has changed")?;
3961
3962 cx.read_window(&view, read)
3963 }
3964}
3965
3966impl HasWindowHandle for Window {
3967 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
3968 self.platform_window.window_handle()
3969 }
3970}
3971
3972/// An identifier for an [`Element`](crate::Element).
3973///
3974/// Can be constructed with a string, a number, or both, as well
3975/// as other internal representations.
3976#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3977pub enum ElementId {
3978 /// The ID of a View element
3979 View(EntityId),
3980 /// An integer ID.
3981 Integer(usize),
3982 /// A string based ID.
3983 Name(SharedString),
3984 /// A UUID.
3985 Uuid(Uuid),
3986 /// An ID that's equated with a focus handle.
3987 FocusHandle(FocusId),
3988 /// A combination of a name and an integer.
3989 NamedInteger(SharedString, usize),
3990 /// A path
3991 Path(Arc<std::path::Path>),
3992}
3993
3994impl Display for ElementId {
3995 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3996 match self {
3997 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
3998 ElementId::Integer(ix) => write!(f, "{}", ix)?,
3999 ElementId::Name(name) => write!(f, "{}", name)?,
4000 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4001 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4002 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4003 ElementId::Path(path) => write!(f, "{}", path.display())?,
4004 }
4005
4006 Ok(())
4007 }
4008}
4009
4010impl TryInto<SharedString> for ElementId {
4011 type Error = anyhow::Error;
4012
4013 fn try_into(self) -> anyhow::Result<SharedString> {
4014 if let ElementId::Name(name) = self {
4015 Ok(name)
4016 } else {
4017 Err(anyhow!("element id is not string"))
4018 }
4019 }
4020}
4021
4022impl From<usize> for ElementId {
4023 fn from(id: usize) -> Self {
4024 ElementId::Integer(id)
4025 }
4026}
4027
4028impl From<i32> for ElementId {
4029 fn from(id: i32) -> Self {
4030 Self::Integer(id as usize)
4031 }
4032}
4033
4034impl From<SharedString> for ElementId {
4035 fn from(name: SharedString) -> Self {
4036 ElementId::Name(name)
4037 }
4038}
4039
4040impl From<Arc<std::path::Path>> for ElementId {
4041 fn from(path: Arc<std::path::Path>) -> Self {
4042 ElementId::Path(path)
4043 }
4044}
4045
4046impl From<&'static str> for ElementId {
4047 fn from(name: &'static str) -> Self {
4048 ElementId::Name(name.into())
4049 }
4050}
4051
4052impl<'a> From<&'a FocusHandle> for ElementId {
4053 fn from(handle: &'a FocusHandle) -> Self {
4054 ElementId::FocusHandle(handle.id)
4055 }
4056}
4057
4058impl From<(&'static str, EntityId)> for ElementId {
4059 fn from((name, id): (&'static str, EntityId)) -> Self {
4060 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
4061 }
4062}
4063
4064impl From<(&'static str, usize)> for ElementId {
4065 fn from((name, id): (&'static str, usize)) -> Self {
4066 ElementId::NamedInteger(name.into(), id)
4067 }
4068}
4069
4070impl From<(SharedString, usize)> for ElementId {
4071 fn from((name, id): (SharedString, usize)) -> Self {
4072 ElementId::NamedInteger(name, id)
4073 }
4074}
4075
4076impl From<(&'static str, u64)> for ElementId {
4077 fn from((name, id): (&'static str, u64)) -> Self {
4078 ElementId::NamedInteger(name.into(), id as usize)
4079 }
4080}
4081
4082impl From<Uuid> for ElementId {
4083 fn from(value: Uuid) -> Self {
4084 Self::Uuid(value)
4085 }
4086}
4087
4088impl From<(&'static str, u32)> for ElementId {
4089 fn from((name, id): (&'static str, u32)) -> Self {
4090 ElementId::NamedInteger(name.into(), id as usize)
4091 }
4092}
4093
4094/// A rectangle to be rendered in the window at the given position and size.
4095/// Passed as an argument [`Window::paint_quad`].
4096#[derive(Clone)]
4097pub struct PaintQuad {
4098 /// The bounds of the quad within the window.
4099 pub bounds: Bounds<Pixels>,
4100 /// The radii of the quad's corners.
4101 pub corner_radii: Corners<Pixels>,
4102 /// The background color of the quad.
4103 pub background: Background,
4104 /// The widths of the quad's borders.
4105 pub border_widths: Edges<Pixels>,
4106 /// The color of the quad's borders.
4107 pub border_color: Hsla,
4108}
4109
4110impl PaintQuad {
4111 /// Sets the corner radii of the quad.
4112 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4113 PaintQuad {
4114 corner_radii: corner_radii.into(),
4115 ..self
4116 }
4117 }
4118
4119 /// Sets the border widths of the quad.
4120 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4121 PaintQuad {
4122 border_widths: border_widths.into(),
4123 ..self
4124 }
4125 }
4126
4127 /// Sets the border color of the quad.
4128 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4129 PaintQuad {
4130 border_color: border_color.into(),
4131 ..self
4132 }
4133 }
4134
4135 /// Sets the background color of the quad.
4136 pub fn background(self, background: impl Into<Background>) -> Self {
4137 PaintQuad {
4138 background: background.into(),
4139 ..self
4140 }
4141 }
4142}
4143
4144/// Creates a quad with the given parameters.
4145pub fn quad(
4146 bounds: Bounds<Pixels>,
4147 corner_radii: impl Into<Corners<Pixels>>,
4148 background: impl Into<Background>,
4149 border_widths: impl Into<Edges<Pixels>>,
4150 border_color: impl Into<Hsla>,
4151) -> PaintQuad {
4152 PaintQuad {
4153 bounds,
4154 corner_radii: corner_radii.into(),
4155 background: background.into(),
4156 border_widths: border_widths.into(),
4157 border_color: border_color.into(),
4158 }
4159}
4160
4161/// Creates a filled quad with the given bounds and background color.
4162pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4163 PaintQuad {
4164 bounds: bounds.into(),
4165 corner_radii: (0.).into(),
4166 background: background.into(),
4167 border_widths: (0.).into(),
4168 border_color: transparent_black(),
4169 }
4170}
4171
4172/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4173pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
4174 PaintQuad {
4175 bounds: bounds.into(),
4176 corner_radii: (0.).into(),
4177 background: transparent_black().into(),
4178 border_widths: (1.).into(),
4179 border_color: border_color.into(),
4180 }
4181}