1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::{
35 any::{Any, TypeId},
36 borrow::Cow,
37 cell::{Cell, RefCell},
38 cmp,
39 fmt::{Debug, Display},
40 hash::{Hash, Hasher},
41 marker::PhantomData,
42 mem,
43 ops::{DerefMut, Range},
44 rc::Rc,
45 sync::{
46 Arc, Weak,
47 atomic::{AtomicUsize, Ordering::SeqCst},
48 },
49 time::{Duration, Instant},
50};
51use util::post_inc;
52use util::{ResultExt, measure};
53use uuid::Uuid;
54
55mod prompts;
56
57use crate::util::atomic_incr_if_not_zero;
58pub use prompts::*;
59
60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
61
62/// Represents the two different phases when dispatching events.
63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
64pub enum DispatchPhase {
65 /// After the capture phase comes the bubble phase, in which mouse event listeners are
66 /// invoked front to back and keyboard event listeners are invoked from the focused element
67 /// to the root of the element tree. This is the phase you'll most commonly want to use when
68 /// registering event listeners.
69 #[default]
70 Bubble,
71 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
72 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
73 /// is used for special purposes such as clearing the "pressed" state for click events. If
74 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
75 /// outside of the immediate region may rely on detecting non-local events during this phase.
76 Capture,
77}
78
79impl DispatchPhase {
80 /// Returns true if this represents the "bubble" phase.
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 /// Returns true if this represents the "capture" phase.
86 pub fn capture(self) -> bool {
87 self == DispatchPhase::Capture
88 }
89}
90
91struct WindowInvalidatorInner {
92 pub dirty: bool,
93 pub draw_phase: DrawPhase,
94 pub dirty_views: FxHashSet<EntityId>,
95}
96
97#[derive(Clone)]
98pub(crate) struct WindowInvalidator {
99 inner: Rc<RefCell<WindowInvalidatorInner>>,
100}
101
102impl WindowInvalidator {
103 pub fn new() -> Self {
104 WindowInvalidator {
105 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
106 dirty: true,
107 draw_phase: DrawPhase::None,
108 dirty_views: FxHashSet::default(),
109 })),
110 }
111 }
112
113 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
114 let mut inner = self.inner.borrow_mut();
115 inner.dirty_views.insert(entity);
116 if inner.draw_phase == DrawPhase::None {
117 inner.dirty = true;
118 cx.push_effect(Effect::Notify { emitter: entity });
119 true
120 } else {
121 false
122 }
123 }
124
125 pub fn is_dirty(&self) -> bool {
126 self.inner.borrow().dirty
127 }
128
129 pub fn set_dirty(&self, dirty: bool) {
130 self.inner.borrow_mut().dirty = dirty
131 }
132
133 pub fn set_phase(&self, phase: DrawPhase) {
134 self.inner.borrow_mut().draw_phase = phase
135 }
136
137 pub fn take_views(&self) -> FxHashSet<EntityId> {
138 mem::take(&mut self.inner.borrow_mut().dirty_views)
139 }
140
141 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
142 self.inner.borrow_mut().dirty_views = views;
143 }
144
145 pub fn not_drawing(&self) -> bool {
146 self.inner.borrow().draw_phase == DrawPhase::None
147 }
148
149 #[track_caller]
150 pub fn debug_assert_paint(&self) {
151 debug_assert!(
152 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
153 "this method can only be called during paint"
154 );
155 }
156
157 #[track_caller]
158 pub fn debug_assert_prepaint(&self) {
159 debug_assert!(
160 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
161 "this method can only be called during request_layout, or prepaint"
162 );
163 }
164
165 #[track_caller]
166 pub fn debug_assert_paint_or_prepaint(&self) {
167 debug_assert!(
168 matches!(
169 self.inner.borrow().draw_phase,
170 DrawPhase::Paint | DrawPhase::Prepaint
171 ),
172 "this method can only be called during request_layout, prepaint, or paint"
173 );
174 }
175}
176
177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) type AnyWindowFocusListener =
180 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) struct WindowFocusEvent {
183 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
184 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
185}
186
187impl WindowFocusEvent {
188 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
189 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
190 }
191
192 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
193 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
194 }
195}
196
197/// This is provided when subscribing for `Context::on_focus_out` events.
198pub struct FocusOutEvent {
199 /// A weak focus handle representing what was blurred.
200 pub blurred: WeakFocusHandle,
201}
202
203slotmap::new_key_type! {
204 /// A globally unique identifier for a focusable element.
205 pub struct FocusId;
206}
207
208thread_local! {
209 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
210}
211
212/// Returned when the element arena has been used and so must be cleared before the next draw.
213#[must_use]
214pub struct ArenaClearNeeded;
215
216impl ArenaClearNeeded {
217 /// Clear the element arena.
218 pub fn clear(self) {
219 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
220 element_arena.clear();
221 });
222 }
223}
224
225pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
226
227impl FocusId {
228 /// Obtains whether the element associated with this handle is currently focused.
229 pub fn is_focused(&self, window: &Window) -> bool {
230 window.focus == Some(*self)
231 }
232
233 /// Obtains whether the element associated with this handle contains the focused
234 /// element or is itself focused.
235 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
236 window
237 .focused(cx)
238 .map_or(false, |focused| self.contains(focused.id, window))
239 }
240
241 /// Obtains whether the element associated with this handle is contained within the
242 /// focused element or is itself focused.
243 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
244 let focused = window.focused(cx);
245 focused.map_or(false, |focused| focused.id.contains(*self, window))
246 }
247
248 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
249 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
250 window
251 .rendered_frame
252 .dispatch_tree
253 .focus_contains(*self, other)
254 }
255}
256
257/// A handle which can be used to track and manipulate the focused element in a window.
258pub struct FocusHandle {
259 pub(crate) id: FocusId,
260 handles: Arc<FocusMap>,
261}
262
263impl std::fmt::Debug for FocusHandle {
264 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
265 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
266 }
267}
268
269impl FocusHandle {
270 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
271 let id = handles.write().insert(AtomicUsize::new(1));
272 Self {
273 id,
274 handles: handles.clone(),
275 }
276 }
277
278 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
279 let lock = handles.read();
280 let ref_count = lock.get(id)?;
281 if atomic_incr_if_not_zero(ref_count) == 0 {
282 return None;
283 }
284 Some(Self {
285 id,
286 handles: handles.clone(),
287 })
288 }
289
290 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
291 pub fn downgrade(&self) -> WeakFocusHandle {
292 WeakFocusHandle {
293 id: self.id,
294 handles: Arc::downgrade(&self.handles),
295 }
296 }
297
298 /// Moves the focus to the element associated with this handle.
299 pub fn focus(&self, window: &mut Window) {
300 window.focus(self)
301 }
302
303 /// Obtains whether the element associated with this handle is currently focused.
304 pub fn is_focused(&self, window: &Window) -> bool {
305 self.id.is_focused(window)
306 }
307
308 /// Obtains whether the element associated with this handle contains the focused
309 /// element or is itself focused.
310 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
311 self.id.contains_focused(window, cx)
312 }
313
314 /// Obtains whether the element associated with this handle is contained within the
315 /// focused element or is itself focused.
316 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
317 self.id.within_focused(window, cx)
318 }
319
320 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
321 pub fn contains(&self, other: &Self, window: &Window) -> bool {
322 self.id.contains(other.id, window)
323 }
324
325 /// Dispatch an action on the element that rendered this focus handle
326 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
327 if let Some(node_id) = window
328 .rendered_frame
329 .dispatch_tree
330 .focusable_node_id(self.id)
331 {
332 window.dispatch_action_on_node(node_id, action, cx)
333 }
334 }
335}
336
337impl Clone for FocusHandle {
338 fn clone(&self) -> Self {
339 Self::for_id(self.id, &self.handles).unwrap()
340 }
341}
342
343impl PartialEq for FocusHandle {
344 fn eq(&self, other: &Self) -> bool {
345 self.id == other.id
346 }
347}
348
349impl Eq for FocusHandle {}
350
351impl Drop for FocusHandle {
352 fn drop(&mut self) {
353 self.handles
354 .read()
355 .get(self.id)
356 .unwrap()
357 .fetch_sub(1, SeqCst);
358 }
359}
360
361/// A weak reference to a focus handle.
362#[derive(Clone, Debug)]
363pub struct WeakFocusHandle {
364 pub(crate) id: FocusId,
365 pub(crate) handles: Weak<FocusMap>,
366}
367
368impl WeakFocusHandle {
369 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
370 pub fn upgrade(&self) -> Option<FocusHandle> {
371 let handles = self.handles.upgrade()?;
372 FocusHandle::for_id(self.id, &handles)
373 }
374}
375
376impl PartialEq for WeakFocusHandle {
377 fn eq(&self, other: &WeakFocusHandle) -> bool {
378 self.id == other.id
379 }
380}
381
382impl Eq for WeakFocusHandle {}
383
384impl PartialEq<FocusHandle> for WeakFocusHandle {
385 fn eq(&self, other: &FocusHandle) -> bool {
386 self.id == other.id
387 }
388}
389
390impl PartialEq<WeakFocusHandle> for FocusHandle {
391 fn eq(&self, other: &WeakFocusHandle) -> bool {
392 self.id == other.id
393 }
394}
395
396/// Focusable allows users of your view to easily
397/// focus it (using window.focus_view(cx, view))
398pub trait Focusable: 'static {
399 /// Returns the focus handle associated with this view.
400 fn focus_handle(&self, cx: &App) -> FocusHandle;
401}
402
403impl<V: Focusable> Focusable for Entity<V> {
404 fn focus_handle(&self, cx: &App) -> FocusHandle {
405 self.read(cx).focus_handle(cx)
406 }
407}
408
409/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
410/// where the lifecycle of the view is handled by another view.
411pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
412
413impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
414
415/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
416pub struct DismissEvent;
417
418type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
419
420pub(crate) type AnyMouseListener =
421 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
422
423#[derive(Clone)]
424pub(crate) struct CursorStyleRequest {
425 pub(crate) hitbox_id: Option<HitboxId>,
426 pub(crate) style: CursorStyle,
427}
428
429#[derive(Default, Eq, PartialEq)]
430pub(crate) struct HitTest {
431 pub(crate) ids: SmallVec<[HitboxId; 8]>,
432 pub(crate) hover_hitbox_count: usize,
433}
434
435/// A type of window control area that corresponds to the platform window.
436#[derive(Clone, Copy, Debug, Eq, PartialEq)]
437pub enum WindowControlArea {
438 /// An area that allows dragging of the platform window.
439 Drag,
440 /// An area that allows closing of the platform window.
441 Close,
442 /// An area that allows maximizing of the platform window.
443 Max,
444 /// An area that allows minimizing of the platform window.
445 Min,
446}
447
448/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
449#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
450pub struct HitboxId(u64);
451
452impl HitboxId {
453 /// Checks if the hitbox with this ID is currently hovered. Except when handling
454 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
455 /// events or paint hover styles.
456 ///
457 /// See [`Hitbox::is_hovered`] for details.
458 pub fn is_hovered(self, window: &Window) -> bool {
459 let hit_test = &window.mouse_hit_test;
460 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
461 if self == *id {
462 return true;
463 }
464 }
465 return false;
466 }
467
468 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
469 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
470 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
471 /// this distinction.
472 pub fn should_handle_scroll(self, window: &Window) -> bool {
473 window.mouse_hit_test.ids.contains(&self)
474 }
475
476 fn next(mut self) -> HitboxId {
477 HitboxId(self.0.wrapping_add(1))
478 }
479}
480
481/// A rectangular region that potentially blocks hitboxes inserted prior.
482/// See [Window::insert_hitbox] for more details.
483#[derive(Clone, Debug, Deref)]
484pub struct Hitbox {
485 /// A unique identifier for the hitbox.
486 pub id: HitboxId,
487 /// The bounds of the hitbox.
488 #[deref]
489 pub bounds: Bounds<Pixels>,
490 /// The content mask when the hitbox was inserted.
491 pub content_mask: ContentMask<Pixels>,
492 /// Flags that specify hitbox behavior.
493 pub behavior: HitboxBehavior,
494}
495
496impl Hitbox {
497 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
498 /// typically what you want when determining whether to handle mouse events or paint hover
499 /// styles.
500 ///
501 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
502 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
503 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
504 ///
505 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
506 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
507 /// non-interactive while still allowing scrolling. More abstractly, this is because
508 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
509 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
510 /// container.
511 pub fn is_hovered(&self, window: &Window) -> bool {
512 self.id.is_hovered(window)
513 }
514
515 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
516 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
517 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
518 ///
519 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
520 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
521 pub fn should_handle_scroll(&self, window: &Window) -> bool {
522 self.id.should_handle_scroll(window)
523 }
524}
525
526/// How the hitbox affects mouse behavior.
527#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
528pub enum HitboxBehavior {
529 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
530 #[default]
531 Normal,
532
533 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
534 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
535 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
536 /// [`InteractiveElement::occlude`].
537 ///
538 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
539 /// bubble-phase handler for every mouse event type:
540 ///
541 /// ```
542 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
543 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
544 /// cx.stop_propagation();
545 /// }
546 /// }
547 /// ```
548 ///
549 /// This has effects beyond event handling - any use of hitbox checking, such as hover
550 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
551 /// alternative might be to not affect mouse event handling - but this would allow
552 /// inconsistent UI where clicks and moves interact with elements that are not considered to
553 /// be hovered.
554 BlockMouse,
555
556 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
557 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
558 /// interaction except scroll events to be ignored - see the documentation of
559 /// [`Hitbox::is_hovered`] for details. This flag is set by
560 /// [`InteractiveElement::block_mouse_except_scroll`].
561 ///
562 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
563 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
564 ///
565 /// ```
566 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
567 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
568 /// cx.stop_propagation();
569 /// }
570 /// }
571 /// ```
572 ///
573 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
574 /// handled differently than other mouse events. If also blocking these scroll events is
575 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
576 ///
577 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
578 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
579 /// An alternative might be to not affect mouse event handling - but this would allow
580 /// inconsistent UI where clicks and moves interact with elements that are not considered to
581 /// be hovered.
582 BlockMouseExceptScroll,
583}
584
585/// An identifier for a tooltip.
586#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
587pub struct TooltipId(usize);
588
589impl TooltipId {
590 /// Checks if the tooltip is currently hovered.
591 pub fn is_hovered(&self, window: &Window) -> bool {
592 window
593 .tooltip_bounds
594 .as_ref()
595 .map_or(false, |tooltip_bounds| {
596 tooltip_bounds.id == *self
597 && tooltip_bounds.bounds.contains(&window.mouse_position())
598 })
599 }
600}
601
602pub(crate) struct TooltipBounds {
603 id: TooltipId,
604 bounds: Bounds<Pixels>,
605}
606
607#[derive(Clone)]
608pub(crate) struct TooltipRequest {
609 id: TooltipId,
610 tooltip: AnyTooltip,
611}
612
613pub(crate) struct DeferredDraw {
614 current_view: EntityId,
615 priority: usize,
616 parent_node: DispatchNodeId,
617 element_id_stack: SmallVec<[ElementId; 32]>,
618 text_style_stack: Vec<TextStyleRefinement>,
619 element: Option<AnyElement>,
620 absolute_offset: Point<Pixels>,
621 prepaint_range: Range<PrepaintStateIndex>,
622 paint_range: Range<PaintIndex>,
623}
624
625pub(crate) struct Frame {
626 pub(crate) focus: Option<FocusId>,
627 pub(crate) window_active: bool,
628 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
629 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
630 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
631 pub(crate) dispatch_tree: DispatchTree,
632 pub(crate) scene: Scene,
633 pub(crate) hitboxes: Vec<Hitbox>,
634 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
635 pub(crate) deferred_draws: Vec<DeferredDraw>,
636 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
637 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
638 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
639 #[cfg(any(test, feature = "test-support"))]
640 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
641 #[cfg(any(feature = "inspector", debug_assertions))]
642 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
643 #[cfg(any(feature = "inspector", debug_assertions))]
644 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
645}
646
647#[derive(Clone, Default)]
648pub(crate) struct PrepaintStateIndex {
649 hitboxes_index: usize,
650 tooltips_index: usize,
651 deferred_draws_index: usize,
652 dispatch_tree_index: usize,
653 accessed_element_states_index: usize,
654 line_layout_index: LineLayoutIndex,
655}
656
657#[derive(Clone, Default)]
658pub(crate) struct PaintIndex {
659 scene_index: usize,
660 mouse_listeners_index: usize,
661 input_handlers_index: usize,
662 cursor_styles_index: usize,
663 accessed_element_states_index: usize,
664 line_layout_index: LineLayoutIndex,
665}
666
667impl Frame {
668 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
669 Frame {
670 focus: None,
671 window_active: false,
672 element_states: FxHashMap::default(),
673 accessed_element_states: Vec::new(),
674 mouse_listeners: Vec::new(),
675 dispatch_tree,
676 scene: Scene::default(),
677 hitboxes: Vec::new(),
678 window_control_hitboxes: Vec::new(),
679 deferred_draws: Vec::new(),
680 input_handlers: Vec::new(),
681 tooltip_requests: Vec::new(),
682 cursor_styles: Vec::new(),
683
684 #[cfg(any(test, feature = "test-support"))]
685 debug_bounds: FxHashMap::default(),
686
687 #[cfg(any(feature = "inspector", debug_assertions))]
688 next_inspector_instance_ids: FxHashMap::default(),
689
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 inspector_hitboxes: FxHashMap::default(),
692 }
693 }
694
695 pub(crate) fn clear(&mut self) {
696 self.element_states.clear();
697 self.accessed_element_states.clear();
698 self.mouse_listeners.clear();
699 self.dispatch_tree.clear();
700 self.scene.clear();
701 self.input_handlers.clear();
702 self.tooltip_requests.clear();
703 self.cursor_styles.clear();
704 self.hitboxes.clear();
705 self.window_control_hitboxes.clear();
706 self.deferred_draws.clear();
707 self.focus = None;
708 println!("clearing focus 1");
709
710 #[cfg(any(feature = "inspector", debug_assertions))]
711 {
712 self.next_inspector_instance_ids.clear();
713 self.inspector_hitboxes.clear();
714 }
715 }
716
717 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
718 self.cursor_styles
719 .iter()
720 .rev()
721 .fold_while(None, |style, request| match request.hitbox_id {
722 None => Done(Some(request.style)),
723 Some(hitbox_id) => Continue(
724 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
725 ),
726 })
727 .into_inner()
728 }
729
730 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
731 let mut set_hover_hitbox_count = false;
732 let mut hit_test = HitTest::default();
733 for hitbox in self.hitboxes.iter().rev() {
734 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
735 if bounds.contains(&position) {
736 hit_test.ids.push(hitbox.id);
737 if !set_hover_hitbox_count
738 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
739 {
740 hit_test.hover_hitbox_count = hit_test.ids.len();
741 set_hover_hitbox_count = true;
742 }
743 if hitbox.behavior == HitboxBehavior::BlockMouse {
744 break;
745 }
746 }
747 }
748 if !set_hover_hitbox_count {
749 hit_test.hover_hitbox_count = hit_test.ids.len();
750 }
751 hit_test
752 }
753
754 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
755 dbg!("focus path");
756 dbg!(self.focus.is_some());
757 self.focus
758 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
759 .unwrap_or_default()
760 }
761
762 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
763 for element_state_key in &self.accessed_element_states {
764 if let Some((element_state_key, element_state)) =
765 prev_frame.element_states.remove_entry(element_state_key)
766 {
767 self.element_states.insert(element_state_key, element_state);
768 }
769 }
770
771 self.scene.finish();
772 }
773}
774
775/// Holds the state for a specific window.
776pub struct Window {
777 pub(crate) handle: AnyWindowHandle,
778 pub(crate) invalidator: WindowInvalidator,
779 pub(crate) removed: bool,
780 pub(crate) platform_window: Box<dyn PlatformWindow>,
781 display_id: Option<DisplayId>,
782 sprite_atlas: Arc<dyn PlatformAtlas>,
783 text_system: Arc<WindowTextSystem>,
784 rem_size: Pixels,
785 /// The stack of override values for the window's rem size.
786 ///
787 /// This is used by `with_rem_size` to allow rendering an element tree with
788 /// a given rem size.
789 rem_size_override_stack: SmallVec<[Pixels; 8]>,
790 pub(crate) viewport_size: Size<Pixels>,
791 layout_engine: Option<TaffyLayoutEngine>,
792 pub(crate) root: Option<AnyView>,
793 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
794 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
795 pub(crate) rendered_entity_stack: Vec<EntityId>,
796 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
797 pub(crate) element_opacity: Option<f32>,
798 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
799 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
800 pub(crate) image_cache_stack: Vec<AnyImageCache>,
801 pub(crate) rendered_frame: Frame,
802 pub(crate) next_frame: Frame,
803 next_hitbox_id: HitboxId,
804 pub(crate) next_tooltip_id: TooltipId,
805 pub(crate) tooltip_bounds: Option<TooltipBounds>,
806 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
807 pub(crate) dirty_views: FxHashSet<EntityId>,
808 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
809 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
810 default_prevented: bool,
811 mouse_position: Point<Pixels>,
812 mouse_hit_test: HitTest,
813 modifiers: Modifiers,
814 capslock: Capslock,
815 scale_factor: f32,
816 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
817 appearance: WindowAppearance,
818 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
819 active: Rc<Cell<bool>>,
820 hovered: Rc<Cell<bool>>,
821 pub(crate) needs_present: Rc<Cell<bool>>,
822 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
823 pub(crate) refreshing: bool,
824 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
825 pub(crate) focus: Option<FocusId>,
826 focus_enabled: bool,
827 pending_input: Option<PendingInput>,
828 pending_modifier: ModifierState,
829 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
830 prompt: Option<RenderablePromptHandle>,
831 pub(crate) client_inset: Option<Pixels>,
832 #[cfg(any(feature = "inspector", debug_assertions))]
833 inspector: Option<Entity<Inspector>>,
834}
835
836#[derive(Clone, Debug, Default)]
837struct ModifierState {
838 modifiers: Modifiers,
839 saw_keystroke: bool,
840}
841
842#[derive(Clone, Copy, Debug, Eq, PartialEq)]
843pub(crate) enum DrawPhase {
844 None,
845 Prepaint,
846 Paint,
847 Focus,
848}
849
850#[derive(Default, Debug)]
851struct PendingInput {
852 keystrokes: SmallVec<[Keystroke; 1]>,
853 focus: Option<FocusId>,
854 timer: Option<Task<()>>,
855}
856
857pub(crate) struct ElementStateBox {
858 pub(crate) inner: Box<dyn Any>,
859 #[cfg(debug_assertions)]
860 pub(crate) type_name: &'static str,
861}
862
863fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
864 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
865
866 // TODO, BUG: if you open a window with the currently active window
867 // on the stack, this will erroneously select the 'unwrap_or_else'
868 // code path
869 cx.active_window()
870 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
871 .map(|mut bounds| {
872 bounds.origin += DEFAULT_WINDOW_OFFSET;
873 bounds
874 })
875 .unwrap_or_else(|| {
876 let display = display_id
877 .map(|id| cx.find_display(id))
878 .unwrap_or_else(|| cx.primary_display());
879
880 display
881 .map(|display| display.default_bounds())
882 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
883 })
884}
885
886impl Window {
887 pub(crate) fn new(
888 handle: AnyWindowHandle,
889 options: WindowOptions,
890 cx: &mut App,
891 ) -> Result<Self> {
892 let WindowOptions {
893 window_bounds,
894 titlebar,
895 focus,
896 show,
897 kind,
898 is_movable,
899 display_id,
900 window_background,
901 app_id,
902 window_min_size,
903 window_decorations,
904 } = options;
905
906 let bounds = window_bounds
907 .map(|bounds| bounds.get_bounds())
908 .unwrap_or_else(|| default_bounds(display_id, cx));
909 let mut platform_window = cx.platform.open_window(
910 handle,
911 WindowParams {
912 bounds,
913 titlebar,
914 kind,
915 is_movable,
916 focus,
917 show,
918 display_id,
919 window_min_size,
920 },
921 )?;
922 let display_id = platform_window.display().map(|display| display.id());
923 let sprite_atlas = platform_window.sprite_atlas();
924 let mouse_position = platform_window.mouse_position();
925 let modifiers = platform_window.modifiers();
926 let capslock = platform_window.capslock();
927 let content_size = platform_window.content_size();
928 let scale_factor = platform_window.scale_factor();
929 let appearance = platform_window.appearance();
930 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
931 let invalidator = WindowInvalidator::new();
932 let active = Rc::new(Cell::new(platform_window.is_active()));
933 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
934 let needs_present = Rc::new(Cell::new(false));
935 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
936 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
937
938 platform_window
939 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
940 platform_window.set_background_appearance(window_background);
941
942 if let Some(ref window_open_state) = window_bounds {
943 match window_open_state {
944 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
945 WindowBounds::Maximized(_) => platform_window.zoom(),
946 WindowBounds::Windowed(_) => {}
947 }
948 }
949
950 platform_window.on_close(Box::new({
951 let mut cx = cx.to_async();
952 move || {
953 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
954 }
955 }));
956 platform_window.on_request_frame(Box::new({
957 let mut cx = cx.to_async();
958 let invalidator = invalidator.clone();
959 let active = active.clone();
960 let needs_present = needs_present.clone();
961 let next_frame_callbacks = next_frame_callbacks.clone();
962 let last_input_timestamp = last_input_timestamp.clone();
963 move |request_frame_options| {
964 let next_frame_callbacks = next_frame_callbacks.take();
965 if !next_frame_callbacks.is_empty() {
966 handle
967 .update(&mut cx, |_, window, cx| {
968 for callback in next_frame_callbacks {
969 callback(window, cx);
970 }
971 })
972 .log_err();
973 }
974
975 // Keep presenting the current scene for 1 extra second since the
976 // last input to prevent the display from underclocking the refresh rate.
977 let needs_present = request_frame_options.require_presentation
978 || needs_present.get()
979 || (active.get()
980 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
981
982 if invalidator.is_dirty() {
983 measure("frame duration", || {
984 handle
985 .update(&mut cx, |_, window, cx| {
986 let arena_clear_needed = window.draw(cx);
987 window.present();
988 // drop the arena elements after present to reduce latency
989 arena_clear_needed.clear();
990 })
991 .log_err();
992 })
993 } else if needs_present {
994 handle
995 .update(&mut cx, |_, window, _| window.present())
996 .log_err();
997 }
998
999 handle
1000 .update(&mut cx, |_, window, _| {
1001 window.complete_frame();
1002 })
1003 .log_err();
1004 }
1005 }));
1006 platform_window.on_resize(Box::new({
1007 let mut cx = cx.to_async();
1008 move |_, _| {
1009 handle
1010 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1011 .log_err();
1012 }
1013 }));
1014 platform_window.on_moved(Box::new({
1015 let mut cx = cx.to_async();
1016 move || {
1017 handle
1018 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1019 .log_err();
1020 }
1021 }));
1022 platform_window.on_appearance_changed(Box::new({
1023 let mut cx = cx.to_async();
1024 move || {
1025 handle
1026 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1027 .log_err();
1028 }
1029 }));
1030 platform_window.on_active_status_change(Box::new({
1031 let mut cx = cx.to_async();
1032 move |active| {
1033 handle
1034 .update(&mut cx, |_, window, cx| {
1035 window.active.set(active);
1036 window.modifiers = window.platform_window.modifiers();
1037 window.capslock = window.platform_window.capslock();
1038 window
1039 .activation_observers
1040 .clone()
1041 .retain(&(), |callback| callback(window, cx));
1042 window.refresh();
1043 })
1044 .log_err();
1045 }
1046 }));
1047 platform_window.on_hover_status_change(Box::new({
1048 let mut cx = cx.to_async();
1049 move |active| {
1050 handle
1051 .update(&mut cx, |_, window, _| {
1052 window.hovered.set(active);
1053 window.refresh();
1054 })
1055 .log_err();
1056 }
1057 }));
1058 platform_window.on_input({
1059 let mut cx = cx.to_async();
1060 Box::new(move |event| {
1061 handle
1062 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1063 .log_err()
1064 .unwrap_or(DispatchEventResult::default())
1065 })
1066 });
1067 platform_window.on_hit_test_window_control({
1068 let mut cx = cx.to_async();
1069 Box::new(move || {
1070 handle
1071 .update(&mut cx, |_, window, _cx| {
1072 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1073 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1074 return Some(*area);
1075 }
1076 }
1077 None
1078 })
1079 .log_err()
1080 .unwrap_or(None)
1081 })
1082 });
1083
1084 if let Some(app_id) = app_id {
1085 platform_window.set_app_id(&app_id);
1086 }
1087
1088 platform_window.map_window().unwrap();
1089
1090 Ok(Window {
1091 handle,
1092 invalidator,
1093 removed: false,
1094 platform_window,
1095 display_id,
1096 sprite_atlas,
1097 text_system,
1098 rem_size: px(16.),
1099 rem_size_override_stack: SmallVec::new(),
1100 viewport_size: content_size,
1101 layout_engine: Some(TaffyLayoutEngine::new()),
1102 root: None,
1103 element_id_stack: SmallVec::default(),
1104 text_style_stack: Vec::new(),
1105 rendered_entity_stack: Vec::new(),
1106 element_offset_stack: Vec::new(),
1107 content_mask_stack: Vec::new(),
1108 element_opacity: None,
1109 requested_autoscroll: None,
1110 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1111 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1112 next_frame_callbacks,
1113 next_hitbox_id: HitboxId(0),
1114 next_tooltip_id: TooltipId::default(),
1115 tooltip_bounds: None,
1116 dirty_views: FxHashSet::default(),
1117 focus_listeners: SubscriberSet::new(),
1118 focus_lost_listeners: SubscriberSet::new(),
1119 default_prevented: true,
1120 mouse_position,
1121 mouse_hit_test: HitTest::default(),
1122 modifiers,
1123 capslock,
1124 scale_factor,
1125 bounds_observers: SubscriberSet::new(),
1126 appearance,
1127 appearance_observers: SubscriberSet::new(),
1128 active,
1129 hovered,
1130 needs_present,
1131 last_input_timestamp,
1132 refreshing: false,
1133 activation_observers: SubscriberSet::new(),
1134 focus: None,
1135 focus_enabled: true,
1136 pending_input: None,
1137 pending_modifier: ModifierState::default(),
1138 pending_input_observers: SubscriberSet::new(),
1139 prompt: None,
1140 client_inset: None,
1141 image_cache_stack: Vec::new(),
1142 #[cfg(any(feature = "inspector", debug_assertions))]
1143 inspector: None,
1144 })
1145 }
1146
1147 pub(crate) fn new_focus_listener(
1148 &self,
1149 value: AnyWindowFocusListener,
1150 ) -> (Subscription, impl FnOnce() + use<>) {
1151 self.focus_listeners.insert((), value)
1152 }
1153}
1154
1155#[derive(Clone, Debug, Default, PartialEq, Eq)]
1156pub(crate) struct DispatchEventResult {
1157 pub propagate: bool,
1158 pub default_prevented: bool,
1159}
1160
1161/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1162/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1163/// to leave room to support more complex shapes in the future.
1164#[derive(Clone, Debug, Default, PartialEq, Eq)]
1165#[repr(C)]
1166pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1167 /// The bounds
1168 pub bounds: Bounds<P>,
1169}
1170
1171impl ContentMask<Pixels> {
1172 /// Scale the content mask's pixel units by the given scaling factor.
1173 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1174 ContentMask {
1175 bounds: self.bounds.scale(factor),
1176 }
1177 }
1178
1179 /// Intersect the content mask with the given content mask.
1180 pub fn intersect(&self, other: &Self) -> Self {
1181 let bounds = self.bounds.intersect(&other.bounds);
1182 ContentMask { bounds }
1183 }
1184}
1185
1186impl Window {
1187 fn mark_view_dirty(&mut self, view_id: EntityId) {
1188 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1189 // should already be dirty.
1190 for view_id in self
1191 .rendered_frame
1192 .dispatch_tree
1193 .view_path(view_id)
1194 .into_iter()
1195 .rev()
1196 {
1197 if !self.dirty_views.insert(view_id) {
1198 break;
1199 }
1200 }
1201 }
1202
1203 /// Registers a callback to be invoked when the window appearance changes.
1204 pub fn observe_window_appearance(
1205 &self,
1206 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1207 ) -> Subscription {
1208 let (subscription, activate) = self.appearance_observers.insert(
1209 (),
1210 Box::new(move |window, cx| {
1211 callback(window, cx);
1212 true
1213 }),
1214 );
1215 activate();
1216 subscription
1217 }
1218
1219 /// Replaces the root entity of the window with a new one.
1220 pub fn replace_root<E>(
1221 &mut self,
1222 cx: &mut App,
1223 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1224 ) -> Entity<E>
1225 where
1226 E: 'static + Render,
1227 {
1228 let view = cx.new(|cx| build_view(self, cx));
1229 self.root = Some(view.clone().into());
1230 self.refresh();
1231 view
1232 }
1233
1234 /// Returns the root entity of the window, if it has one.
1235 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1236 where
1237 E: 'static + Render,
1238 {
1239 self.root
1240 .as_ref()
1241 .map(|view| view.clone().downcast::<E>().ok())
1242 }
1243
1244 /// Obtain a handle to the window that belongs to this context.
1245 pub fn window_handle(&self) -> AnyWindowHandle {
1246 self.handle
1247 }
1248
1249 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1250 pub fn refresh(&mut self) {
1251 if self.invalidator.not_drawing() {
1252 self.refreshing = true;
1253 self.invalidator.set_dirty(true);
1254 }
1255 }
1256
1257 /// Close this window.
1258 pub fn remove_window(&mut self) {
1259 self.removed = true;
1260 }
1261
1262 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1263 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1264 self.focus
1265 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1266 }
1267
1268 /// Move focus to the element associated with the given [`FocusHandle`].
1269 pub fn focus(&mut self, handle: &FocusHandle) {
1270 println!(
1271 "Setting focus to {:?} on platform {:?}",
1272 handle.id,
1273 std::env::consts::OS
1274 );
1275
1276 if !self.focus_enabled || self.focus == Some(handle.id) {
1277 return;
1278 }
1279 println!("actually setting focus");
1280 self.focus = Some(handle.id);
1281 self.clear_pending_keystrokes();
1282 self.refresh();
1283 }
1284
1285 /// Remove focus from all elements within this context's window.
1286 pub fn blur(&mut self) {
1287 if !self.focus_enabled {
1288 return;
1289 }
1290
1291 self.focus = None;
1292 println!("clearing focus 2");
1293 self.refresh();
1294 }
1295
1296 /// Blur the window and don't allow anything in it to be focused again.
1297 pub fn disable_focus(&mut self) {
1298 self.blur();
1299 self.focus_enabled = false;
1300 }
1301
1302 /// Accessor for the text system.
1303 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1304 &self.text_system
1305 }
1306
1307 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1308 pub fn text_style(&self) -> TextStyle {
1309 let mut style = TextStyle::default();
1310 for refinement in &self.text_style_stack {
1311 style.refine(refinement);
1312 }
1313 style
1314 }
1315
1316 /// Check if the platform window is maximized
1317 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1318 pub fn is_maximized(&self) -> bool {
1319 self.platform_window.is_maximized()
1320 }
1321
1322 /// request a certain window decoration (Wayland)
1323 pub fn request_decorations(&self, decorations: WindowDecorations) {
1324 self.platform_window.request_decorations(decorations);
1325 }
1326
1327 /// Start a window resize operation (Wayland)
1328 pub fn start_window_resize(&self, edge: ResizeEdge) {
1329 self.platform_window.start_window_resize(edge);
1330 }
1331
1332 /// Return the `WindowBounds` to indicate that how a window should be opened
1333 /// after it has been closed
1334 pub fn window_bounds(&self) -> WindowBounds {
1335 self.platform_window.window_bounds()
1336 }
1337
1338 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1339 pub fn inner_window_bounds(&self) -> WindowBounds {
1340 self.platform_window.inner_window_bounds()
1341 }
1342
1343 /// Dispatch the given action on the currently focused element.
1344 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1345 let focus_id = self.focused(cx).map(|handle| handle.id);
1346 dbg!(&focus_id);
1347 let window = self.handle;
1348 cx.defer(move |cx| {
1349 window
1350 .update(cx, |_, window, cx| {
1351 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1352 dbg!(&node_id);
1353 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1354 })
1355 .log_err();
1356 })
1357 }
1358
1359 pub(crate) fn dispatch_keystroke_observers(
1360 &mut self,
1361 event: &dyn Any,
1362 action: Option<Box<dyn Action>>,
1363 context_stack: Vec<KeyContext>,
1364 cx: &mut App,
1365 ) {
1366 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1367 return;
1368 };
1369
1370 cx.keystroke_observers.clone().retain(&(), move |callback| {
1371 (callback)(
1372 &KeystrokeEvent {
1373 keystroke: key_down_event.keystroke.clone(),
1374 action: action.as_ref().map(|action| action.boxed_clone()),
1375 context_stack: context_stack.clone(),
1376 },
1377 self,
1378 cx,
1379 )
1380 });
1381 }
1382
1383 pub(crate) fn dispatch_keystroke_interceptors(
1384 &mut self,
1385 event: &dyn Any,
1386 context_stack: Vec<KeyContext>,
1387 cx: &mut App,
1388 ) {
1389 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1390 return;
1391 };
1392
1393 cx.keystroke_interceptors
1394 .clone()
1395 .retain(&(), move |callback| {
1396 (callback)(
1397 &KeystrokeEvent {
1398 keystroke: key_down_event.keystroke.clone(),
1399 action: None,
1400 context_stack: context_stack.clone(),
1401 },
1402 self,
1403 cx,
1404 )
1405 });
1406 }
1407
1408 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1409 /// that are currently on the stack to be returned to the app.
1410 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1411 let handle = self.handle;
1412 cx.defer(move |cx| {
1413 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1414 });
1415 }
1416
1417 /// Subscribe to events emitted by a entity.
1418 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1419 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1420 pub fn observe<T: 'static>(
1421 &mut self,
1422 observed: &Entity<T>,
1423 cx: &mut App,
1424 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1425 ) -> Subscription {
1426 let entity_id = observed.entity_id();
1427 let observed = observed.downgrade();
1428 let window_handle = self.handle;
1429 cx.new_observer(
1430 entity_id,
1431 Box::new(move |cx| {
1432 window_handle
1433 .update(cx, |_, window, cx| {
1434 if let Some(handle) = observed.upgrade() {
1435 on_notify(handle, window, cx);
1436 true
1437 } else {
1438 false
1439 }
1440 })
1441 .unwrap_or(false)
1442 }),
1443 )
1444 }
1445
1446 /// Subscribe to events emitted by a entity.
1447 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1448 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1449 pub fn subscribe<Emitter, Evt>(
1450 &mut self,
1451 entity: &Entity<Emitter>,
1452 cx: &mut App,
1453 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1454 ) -> Subscription
1455 where
1456 Emitter: EventEmitter<Evt>,
1457 Evt: 'static,
1458 {
1459 let entity_id = entity.entity_id();
1460 let handle = entity.downgrade();
1461 let window_handle = self.handle;
1462 cx.new_subscription(
1463 entity_id,
1464 (
1465 TypeId::of::<Evt>(),
1466 Box::new(move |event, cx| {
1467 window_handle
1468 .update(cx, |_, window, cx| {
1469 if let Some(entity) = handle.upgrade() {
1470 let event = event.downcast_ref().expect("invalid event type");
1471 on_event(entity, event, window, cx);
1472 true
1473 } else {
1474 false
1475 }
1476 })
1477 .unwrap_or(false)
1478 }),
1479 ),
1480 )
1481 }
1482
1483 /// Register a callback to be invoked when the given `Entity` is released.
1484 pub fn observe_release<T>(
1485 &self,
1486 entity: &Entity<T>,
1487 cx: &mut App,
1488 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1489 ) -> Subscription
1490 where
1491 T: 'static,
1492 {
1493 let entity_id = entity.entity_id();
1494 let window_handle = self.handle;
1495 let (subscription, activate) = cx.release_listeners.insert(
1496 entity_id,
1497 Box::new(move |entity, cx| {
1498 let entity = entity.downcast_mut().expect("invalid entity type");
1499 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1500 }),
1501 );
1502 activate();
1503 subscription
1504 }
1505
1506 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1507 /// await points in async code.
1508 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1509 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1510 }
1511
1512 /// Schedule the given closure to be run directly after the current frame is rendered.
1513 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1514 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1515 }
1516
1517 /// Schedule a frame to be drawn on the next animation frame.
1518 ///
1519 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1520 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1521 ///
1522 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1523 pub fn request_animation_frame(&self) {
1524 let entity = self.current_view();
1525 self.on_next_frame(move |_, cx| cx.notify(entity));
1526 }
1527
1528 /// Spawn the future returned by the given closure on the application thread pool.
1529 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1530 /// use within your future.
1531 #[track_caller]
1532 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1533 where
1534 R: 'static,
1535 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1536 {
1537 let handle = self.handle;
1538 cx.spawn(async move |app| {
1539 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1540 f(&mut async_window_cx).await
1541 })
1542 }
1543
1544 fn bounds_changed(&mut self, cx: &mut App) {
1545 self.scale_factor = self.platform_window.scale_factor();
1546 self.viewport_size = self.platform_window.content_size();
1547 self.display_id = self.platform_window.display().map(|display| display.id());
1548
1549 self.refresh();
1550
1551 self.bounds_observers
1552 .clone()
1553 .retain(&(), |callback| callback(self, cx));
1554 }
1555
1556 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1557 pub fn bounds(&self) -> Bounds<Pixels> {
1558 self.platform_window.bounds()
1559 }
1560
1561 /// Set the content size of the window.
1562 pub fn resize(&mut self, size: Size<Pixels>) {
1563 self.platform_window.resize(size);
1564 }
1565
1566 /// Returns whether or not the window is currently fullscreen
1567 pub fn is_fullscreen(&self) -> bool {
1568 self.platform_window.is_fullscreen()
1569 }
1570
1571 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1572 self.appearance = self.platform_window.appearance();
1573
1574 self.appearance_observers
1575 .clone()
1576 .retain(&(), |callback| callback(self, cx));
1577 }
1578
1579 /// Returns the appearance of the current window.
1580 pub fn appearance(&self) -> WindowAppearance {
1581 self.appearance
1582 }
1583
1584 /// Returns the size of the drawable area within the window.
1585 pub fn viewport_size(&self) -> Size<Pixels> {
1586 self.viewport_size
1587 }
1588
1589 /// Returns whether this window is focused by the operating system (receiving key events).
1590 pub fn is_window_active(&self) -> bool {
1591 self.active.get()
1592 }
1593
1594 /// Returns whether this window is considered to be the window
1595 /// that currently owns the mouse cursor.
1596 /// On mac, this is equivalent to `is_window_active`.
1597 pub fn is_window_hovered(&self) -> bool {
1598 if cfg!(any(
1599 target_os = "windows",
1600 target_os = "linux",
1601 target_os = "freebsd"
1602 )) {
1603 self.hovered.get()
1604 } else {
1605 self.is_window_active()
1606 }
1607 }
1608
1609 /// Toggle zoom on the window.
1610 pub fn zoom_window(&self) {
1611 self.platform_window.zoom();
1612 }
1613
1614 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1615 pub fn show_window_menu(&self, position: Point<Pixels>) {
1616 self.platform_window.show_window_menu(position)
1617 }
1618
1619 /// Tells the compositor to take control of window movement (Wayland and X11)
1620 ///
1621 /// Events may not be received during a move operation.
1622 pub fn start_window_move(&self) {
1623 self.platform_window.start_window_move()
1624 }
1625
1626 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1627 pub fn set_client_inset(&mut self, inset: Pixels) {
1628 self.client_inset = Some(inset);
1629 self.platform_window.set_client_inset(inset);
1630 }
1631
1632 /// Returns the client_inset value by [`Self::set_client_inset`].
1633 pub fn client_inset(&self) -> Option<Pixels> {
1634 self.client_inset
1635 }
1636
1637 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1638 pub fn window_decorations(&self) -> Decorations {
1639 self.platform_window.window_decorations()
1640 }
1641
1642 /// Returns which window controls are currently visible (Wayland)
1643 pub fn window_controls(&self) -> WindowControls {
1644 self.platform_window.window_controls()
1645 }
1646
1647 /// Updates the window's title at the platform level.
1648 pub fn set_window_title(&mut self, title: &str) {
1649 self.platform_window.set_title(title);
1650 }
1651
1652 /// Sets the application identifier.
1653 pub fn set_app_id(&mut self, app_id: &str) {
1654 self.platform_window.set_app_id(app_id);
1655 }
1656
1657 /// Sets the window background appearance.
1658 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1659 self.platform_window
1660 .set_background_appearance(background_appearance);
1661 }
1662
1663 /// Mark the window as dirty at the platform level.
1664 pub fn set_window_edited(&mut self, edited: bool) {
1665 self.platform_window.set_edited(edited);
1666 }
1667
1668 /// Determine the display on which the window is visible.
1669 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1670 cx.platform
1671 .displays()
1672 .into_iter()
1673 .find(|display| Some(display.id()) == self.display_id)
1674 }
1675
1676 /// Show the platform character palette.
1677 pub fn show_character_palette(&self) {
1678 self.platform_window.show_character_palette();
1679 }
1680
1681 /// The scale factor of the display associated with the window. For example, it could
1682 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1683 /// be rendered as two pixels on screen.
1684 pub fn scale_factor(&self) -> f32 {
1685 self.scale_factor
1686 }
1687
1688 /// The size of an em for the base font of the application. Adjusting this value allows the
1689 /// UI to scale, just like zooming a web page.
1690 pub fn rem_size(&self) -> Pixels {
1691 self.rem_size_override_stack
1692 .last()
1693 .copied()
1694 .unwrap_or(self.rem_size)
1695 }
1696
1697 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1698 /// UI to scale, just like zooming a web page.
1699 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1700 self.rem_size = rem_size.into();
1701 }
1702
1703 /// Acquire a globally unique identifier for the given ElementId.
1704 /// Only valid for the duration of the provided closure.
1705 pub fn with_global_id<R>(
1706 &mut self,
1707 element_id: ElementId,
1708 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1709 ) -> R {
1710 self.element_id_stack.push(element_id);
1711 let global_id = GlobalElementId(self.element_id_stack.clone());
1712 let result = f(&global_id, self);
1713 self.element_id_stack.pop();
1714 result
1715 }
1716
1717 /// Executes the provided function with the specified rem size.
1718 ///
1719 /// This method must only be called as part of element drawing.
1720 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1721 where
1722 F: FnOnce(&mut Self) -> R,
1723 {
1724 self.invalidator.debug_assert_paint_or_prepaint();
1725
1726 if let Some(rem_size) = rem_size {
1727 self.rem_size_override_stack.push(rem_size.into());
1728 let result = f(self);
1729 self.rem_size_override_stack.pop();
1730 result
1731 } else {
1732 f(self)
1733 }
1734 }
1735
1736 /// The line height associated with the current text style.
1737 pub fn line_height(&self) -> Pixels {
1738 self.text_style().line_height_in_pixels(self.rem_size())
1739 }
1740
1741 /// Call to prevent the default action of an event. Currently only used to prevent
1742 /// parent elements from becoming focused on mouse down.
1743 pub fn prevent_default(&mut self) {
1744 self.default_prevented = true;
1745 }
1746
1747 /// Obtain whether default has been prevented for the event currently being dispatched.
1748 pub fn default_prevented(&self) -> bool {
1749 self.default_prevented
1750 }
1751
1752 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1753 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1754 let node_id =
1755 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1756 self.rendered_frame
1757 .dispatch_tree
1758 .is_action_available(action, node_id)
1759 }
1760
1761 /// The position of the mouse relative to the window.
1762 pub fn mouse_position(&self) -> Point<Pixels> {
1763 self.mouse_position
1764 }
1765
1766 /// The current state of the keyboard's modifiers
1767 pub fn modifiers(&self) -> Modifiers {
1768 self.modifiers
1769 }
1770
1771 /// The current state of the keyboard's capslock
1772 pub fn capslock(&self) -> Capslock {
1773 self.capslock
1774 }
1775
1776 fn complete_frame(&self) {
1777 self.platform_window.completed_frame();
1778 }
1779
1780 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1781 /// the contents of the new [Scene], use [present].
1782 #[profiling::function]
1783 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1784 self.invalidate_entities();
1785 cx.entities.clear_accessed();
1786 debug_assert!(self.rendered_entity_stack.is_empty());
1787 self.invalidator.set_dirty(false);
1788 self.requested_autoscroll = None;
1789
1790 // Restore the previously-used input handler.
1791 if let Some(input_handler) = self.platform_window.take_input_handler() {
1792 self.rendered_frame.input_handlers.push(Some(input_handler));
1793 }
1794 self.draw_roots(cx);
1795 self.dirty_views.clear();
1796 self.next_frame.window_active = self.active.get();
1797
1798 // Register requested input handler with the platform window.
1799 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1800 self.platform_window
1801 .set_input_handler(input_handler.unwrap());
1802 }
1803
1804 self.layout_engine.as_mut().unwrap().clear();
1805 self.text_system().finish_frame();
1806 self.next_frame.finish(&mut self.rendered_frame);
1807
1808 self.invalidator.set_phase(DrawPhase::Focus);
1809 let previous_focus_path = self.rendered_frame.focus_path();
1810 let previous_window_active = self.rendered_frame.window_active;
1811 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1812 self.next_frame.clear();
1813 let current_focus_path = self.rendered_frame.focus_path();
1814 let current_window_active = self.rendered_frame.window_active;
1815
1816 dbg!(
1817 &previous_focus_path,
1818 ¤t_focus_path,
1819 &previous_window_active,
1820 ¤t_window_active
1821 );
1822
1823 if previous_focus_path != current_focus_path
1824 || previous_window_active != current_window_active
1825 {
1826 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1827 self.focus_lost_listeners
1828 .clone()
1829 .retain(&(), |listener| listener(self, cx));
1830 }
1831
1832 let event = WindowFocusEvent {
1833 previous_focus_path: if previous_window_active {
1834 previous_focus_path
1835 } else {
1836 Default::default()
1837 },
1838 current_focus_path: if current_window_active {
1839 current_focus_path
1840 } else {
1841 Default::default()
1842 },
1843 };
1844 self.focus_listeners
1845 .clone()
1846 .retain(&(), |listener| listener(&event, self, cx));
1847 }
1848
1849 debug_assert!(self.rendered_entity_stack.is_empty());
1850 self.record_entities_accessed(cx);
1851 self.reset_cursor_style(cx);
1852 self.refreshing = false;
1853 self.invalidator.set_phase(DrawPhase::None);
1854 self.needs_present.set(true);
1855
1856 ArenaClearNeeded
1857 }
1858
1859 fn record_entities_accessed(&mut self, cx: &mut App) {
1860 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1861 let mut entities = mem::take(entities_ref.deref_mut());
1862 drop(entities_ref);
1863 let handle = self.handle;
1864 cx.record_entities_accessed(
1865 handle,
1866 // Try moving window invalidator into the Window
1867 self.invalidator.clone(),
1868 &entities,
1869 );
1870 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1871 mem::swap(&mut entities, entities_ref.deref_mut());
1872 }
1873
1874 fn invalidate_entities(&mut self) {
1875 let mut views = self.invalidator.take_views();
1876 for entity in views.drain() {
1877 self.mark_view_dirty(entity);
1878 }
1879 self.invalidator.replace_views(views);
1880 }
1881
1882 #[profiling::function]
1883 fn present(&self) {
1884 self.platform_window.draw(&self.rendered_frame.scene);
1885 self.needs_present.set(false);
1886 profiling::finish_frame!();
1887 }
1888
1889 fn draw_roots(&mut self, cx: &mut App) {
1890 self.invalidator.set_phase(DrawPhase::Prepaint);
1891 self.tooltip_bounds.take();
1892
1893 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1894 let root_size = {
1895 #[cfg(any(feature = "inspector", debug_assertions))]
1896 {
1897 if self.inspector.is_some() {
1898 let mut size = self.viewport_size;
1899 size.width = (size.width - _inspector_width).max(px(0.0));
1900 size
1901 } else {
1902 self.viewport_size
1903 }
1904 }
1905 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1906 {
1907 self.viewport_size
1908 }
1909 };
1910
1911 // Layout all root elements.
1912 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1913 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1914
1915 #[cfg(any(feature = "inspector", debug_assertions))]
1916 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1917
1918 let mut sorted_deferred_draws =
1919 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1920 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1921 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1922
1923 let mut prompt_element = None;
1924 let mut active_drag_element = None;
1925 let mut tooltip_element = None;
1926 if let Some(prompt) = self.prompt.take() {
1927 let mut element = prompt.view.any_view().into_any();
1928 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1929 prompt_element = Some(element);
1930 self.prompt = Some(prompt);
1931 } else if let Some(active_drag) = cx.active_drag.take() {
1932 let mut element = active_drag.view.clone().into_any();
1933 let offset = self.mouse_position() - active_drag.cursor_offset;
1934 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1935 active_drag_element = Some(element);
1936 cx.active_drag = Some(active_drag);
1937 } else {
1938 tooltip_element = self.prepaint_tooltip(cx);
1939 }
1940
1941 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1942
1943 // Now actually paint the elements.
1944 self.invalidator.set_phase(DrawPhase::Paint);
1945 root_element.paint(self, cx);
1946
1947 #[cfg(any(feature = "inspector", debug_assertions))]
1948 self.paint_inspector(inspector_element, cx);
1949
1950 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1951
1952 if let Some(mut prompt_element) = prompt_element {
1953 prompt_element.paint(self, cx);
1954 } else if let Some(mut drag_element) = active_drag_element {
1955 drag_element.paint(self, cx);
1956 } else if let Some(mut tooltip_element) = tooltip_element {
1957 tooltip_element.paint(self, cx);
1958 }
1959
1960 #[cfg(any(feature = "inspector", debug_assertions))]
1961 self.paint_inspector_hitbox(cx);
1962 }
1963
1964 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1965 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1966 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1967 let Some(Some(tooltip_request)) = self
1968 .next_frame
1969 .tooltip_requests
1970 .get(tooltip_request_index)
1971 .cloned()
1972 else {
1973 log::error!("Unexpectedly absent TooltipRequest");
1974 continue;
1975 };
1976 let mut element = tooltip_request.tooltip.view.clone().into_any();
1977 let mouse_position = tooltip_request.tooltip.mouse_position;
1978 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1979
1980 let mut tooltip_bounds =
1981 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1982 let window_bounds = Bounds {
1983 origin: Point::default(),
1984 size: self.viewport_size(),
1985 };
1986
1987 if tooltip_bounds.right() > window_bounds.right() {
1988 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1989 if new_x >= Pixels::ZERO {
1990 tooltip_bounds.origin.x = new_x;
1991 } else {
1992 tooltip_bounds.origin.x = cmp::max(
1993 Pixels::ZERO,
1994 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1995 );
1996 }
1997 }
1998
1999 if tooltip_bounds.bottom() > window_bounds.bottom() {
2000 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2001 if new_y >= Pixels::ZERO {
2002 tooltip_bounds.origin.y = new_y;
2003 } else {
2004 tooltip_bounds.origin.y = cmp::max(
2005 Pixels::ZERO,
2006 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2007 );
2008 }
2009 }
2010
2011 // It's possible for an element to have an active tooltip while not being painted (e.g.
2012 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2013 // case, instead update the tooltip's visibility here.
2014 let is_visible =
2015 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2016 if !is_visible {
2017 continue;
2018 }
2019
2020 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2021 element.prepaint(window, cx)
2022 });
2023
2024 self.tooltip_bounds = Some(TooltipBounds {
2025 id: tooltip_request.id,
2026 bounds: tooltip_bounds,
2027 });
2028 return Some(element);
2029 }
2030 None
2031 }
2032
2033 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2034 assert_eq!(self.element_id_stack.len(), 0);
2035
2036 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2037 for deferred_draw_ix in deferred_draw_indices {
2038 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2039 self.element_id_stack
2040 .clone_from(&deferred_draw.element_id_stack);
2041 self.text_style_stack
2042 .clone_from(&deferred_draw.text_style_stack);
2043 self.next_frame
2044 .dispatch_tree
2045 .set_active_node(deferred_draw.parent_node);
2046
2047 let prepaint_start = self.prepaint_index();
2048 if let Some(element) = deferred_draw.element.as_mut() {
2049 self.with_rendered_view(deferred_draw.current_view, |window| {
2050 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2051 element.prepaint(window, cx)
2052 });
2053 })
2054 } else {
2055 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2056 }
2057 let prepaint_end = self.prepaint_index();
2058 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2059 }
2060 assert_eq!(
2061 self.next_frame.deferred_draws.len(),
2062 0,
2063 "cannot call defer_draw during deferred drawing"
2064 );
2065 self.next_frame.deferred_draws = deferred_draws;
2066 self.element_id_stack.clear();
2067 self.text_style_stack.clear();
2068 }
2069
2070 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2071 assert_eq!(self.element_id_stack.len(), 0);
2072
2073 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2074 for deferred_draw_ix in deferred_draw_indices {
2075 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2076 self.element_id_stack
2077 .clone_from(&deferred_draw.element_id_stack);
2078 self.next_frame
2079 .dispatch_tree
2080 .set_active_node(deferred_draw.parent_node);
2081
2082 let paint_start = self.paint_index();
2083 if let Some(element) = deferred_draw.element.as_mut() {
2084 self.with_rendered_view(deferred_draw.current_view, |window| {
2085 element.paint(window, cx);
2086 })
2087 } else {
2088 self.reuse_paint(deferred_draw.paint_range.clone());
2089 }
2090 let paint_end = self.paint_index();
2091 deferred_draw.paint_range = paint_start..paint_end;
2092 }
2093 self.next_frame.deferred_draws = deferred_draws;
2094 self.element_id_stack.clear();
2095 }
2096
2097 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2098 PrepaintStateIndex {
2099 hitboxes_index: self.next_frame.hitboxes.len(),
2100 tooltips_index: self.next_frame.tooltip_requests.len(),
2101 deferred_draws_index: self.next_frame.deferred_draws.len(),
2102 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2103 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2104 line_layout_index: self.text_system.layout_index(),
2105 }
2106 }
2107
2108 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2109 self.next_frame.hitboxes.extend(
2110 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2111 .iter()
2112 .cloned(),
2113 );
2114 self.next_frame.tooltip_requests.extend(
2115 self.rendered_frame.tooltip_requests
2116 [range.start.tooltips_index..range.end.tooltips_index]
2117 .iter_mut()
2118 .map(|request| request.take()),
2119 );
2120 self.next_frame.accessed_element_states.extend(
2121 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2122 ..range.end.accessed_element_states_index]
2123 .iter()
2124 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2125 );
2126 self.text_system
2127 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2128
2129 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2130 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2131 &mut self.rendered_frame.dispatch_tree,
2132 self.focus,
2133 );
2134
2135 if reused_subtree.contains_focus() {
2136 self.next_frame.focus = self.focus;
2137 }
2138
2139 self.next_frame.deferred_draws.extend(
2140 self.rendered_frame.deferred_draws
2141 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2142 .iter()
2143 .map(|deferred_draw| DeferredDraw {
2144 current_view: deferred_draw.current_view,
2145 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2146 element_id_stack: deferred_draw.element_id_stack.clone(),
2147 text_style_stack: deferred_draw.text_style_stack.clone(),
2148 priority: deferred_draw.priority,
2149 element: None,
2150 absolute_offset: deferred_draw.absolute_offset,
2151 prepaint_range: deferred_draw.prepaint_range.clone(),
2152 paint_range: deferred_draw.paint_range.clone(),
2153 }),
2154 );
2155 }
2156
2157 pub(crate) fn paint_index(&self) -> PaintIndex {
2158 PaintIndex {
2159 scene_index: self.next_frame.scene.len(),
2160 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2161 input_handlers_index: self.next_frame.input_handlers.len(),
2162 cursor_styles_index: self.next_frame.cursor_styles.len(),
2163 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2164 line_layout_index: self.text_system.layout_index(),
2165 }
2166 }
2167
2168 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2169 self.next_frame.cursor_styles.extend(
2170 self.rendered_frame.cursor_styles
2171 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2172 .iter()
2173 .cloned(),
2174 );
2175 self.next_frame.input_handlers.extend(
2176 self.rendered_frame.input_handlers
2177 [range.start.input_handlers_index..range.end.input_handlers_index]
2178 .iter_mut()
2179 .map(|handler| handler.take()),
2180 );
2181 self.next_frame.mouse_listeners.extend(
2182 self.rendered_frame.mouse_listeners
2183 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2184 .iter_mut()
2185 .map(|listener| listener.take()),
2186 );
2187 self.next_frame.accessed_element_states.extend(
2188 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2189 ..range.end.accessed_element_states_index]
2190 .iter()
2191 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2192 );
2193
2194 self.text_system
2195 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2196 self.next_frame.scene.replay(
2197 range.start.scene_index..range.end.scene_index,
2198 &self.rendered_frame.scene,
2199 );
2200 }
2201
2202 /// Push a text style onto the stack, and call a function with that style active.
2203 /// Use [`Window::text_style`] to get the current, combined text style. This method
2204 /// should only be called as part of element drawing.
2205 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2206 where
2207 F: FnOnce(&mut Self) -> R,
2208 {
2209 self.invalidator.debug_assert_paint_or_prepaint();
2210 if let Some(style) = style {
2211 self.text_style_stack.push(style);
2212 let result = f(self);
2213 self.text_style_stack.pop();
2214 result
2215 } else {
2216 f(self)
2217 }
2218 }
2219
2220 /// Updates the cursor style at the platform level. This method should only be called
2221 /// during the prepaint phase of element drawing.
2222 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2223 self.invalidator.debug_assert_paint();
2224 self.next_frame.cursor_styles.push(CursorStyleRequest {
2225 hitbox_id: Some(hitbox.id),
2226 style,
2227 });
2228 }
2229
2230 /// Updates the cursor style for the entire window at the platform level. A cursor
2231 /// style using this method will have precedence over any cursor style set using
2232 /// `set_cursor_style`. This method should only be called during the prepaint
2233 /// phase of element drawing.
2234 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2235 self.invalidator.debug_assert_paint();
2236 self.next_frame.cursor_styles.push(CursorStyleRequest {
2237 hitbox_id: None,
2238 style,
2239 })
2240 }
2241
2242 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2243 /// during the paint phase of element drawing.
2244 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2245 self.invalidator.debug_assert_prepaint();
2246 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2247 self.next_frame
2248 .tooltip_requests
2249 .push(Some(TooltipRequest { id, tooltip }));
2250 id
2251 }
2252
2253 /// Invoke the given function with the given content mask after intersecting it
2254 /// with the current mask. This method should only be called during element drawing.
2255 pub fn with_content_mask<R>(
2256 &mut self,
2257 mask: Option<ContentMask<Pixels>>,
2258 f: impl FnOnce(&mut Self) -> R,
2259 ) -> R {
2260 self.invalidator.debug_assert_paint_or_prepaint();
2261 if let Some(mask) = mask {
2262 let mask = mask.intersect(&self.content_mask());
2263 self.content_mask_stack.push(mask);
2264 let result = f(self);
2265 self.content_mask_stack.pop();
2266 result
2267 } else {
2268 f(self)
2269 }
2270 }
2271
2272 /// Updates the global element offset relative to the current offset. This is used to implement
2273 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2274 pub fn with_element_offset<R>(
2275 &mut self,
2276 offset: Point<Pixels>,
2277 f: impl FnOnce(&mut Self) -> R,
2278 ) -> R {
2279 self.invalidator.debug_assert_prepaint();
2280
2281 if offset.is_zero() {
2282 return f(self);
2283 };
2284
2285 let abs_offset = self.element_offset() + offset;
2286 self.with_absolute_element_offset(abs_offset, f)
2287 }
2288
2289 /// Updates the global element offset based on the given offset. This is used to implement
2290 /// drag handles and other manual painting of elements. This method should only be called during
2291 /// the prepaint phase of element drawing.
2292 pub fn with_absolute_element_offset<R>(
2293 &mut self,
2294 offset: Point<Pixels>,
2295 f: impl FnOnce(&mut Self) -> R,
2296 ) -> R {
2297 self.invalidator.debug_assert_prepaint();
2298 self.element_offset_stack.push(offset);
2299 let result = f(self);
2300 self.element_offset_stack.pop();
2301 result
2302 }
2303
2304 pub(crate) fn with_element_opacity<R>(
2305 &mut self,
2306 opacity: Option<f32>,
2307 f: impl FnOnce(&mut Self) -> R,
2308 ) -> R {
2309 if opacity.is_none() {
2310 return f(self);
2311 }
2312
2313 self.invalidator.debug_assert_paint_or_prepaint();
2314 self.element_opacity = opacity;
2315 let result = f(self);
2316 self.element_opacity = None;
2317 result
2318 }
2319
2320 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2321 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2322 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2323 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2324 /// called during the prepaint phase of element drawing.
2325 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2326 self.invalidator.debug_assert_prepaint();
2327 let index = self.prepaint_index();
2328 let result = f(self);
2329 if result.is_err() {
2330 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2331 self.next_frame
2332 .tooltip_requests
2333 .truncate(index.tooltips_index);
2334 self.next_frame
2335 .deferred_draws
2336 .truncate(index.deferred_draws_index);
2337 self.next_frame
2338 .dispatch_tree
2339 .truncate(index.dispatch_tree_index);
2340 self.next_frame
2341 .accessed_element_states
2342 .truncate(index.accessed_element_states_index);
2343 self.text_system.truncate_layouts(index.line_layout_index);
2344 }
2345 result
2346 }
2347
2348 /// When you call this method during [`prepaint`], containing elements will attempt to
2349 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2350 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2351 /// that supports this method being called on the elements it contains. This method should only be
2352 /// called during the prepaint phase of element drawing.
2353 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2354 self.invalidator.debug_assert_prepaint();
2355 self.requested_autoscroll = Some(bounds);
2356 }
2357
2358 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2359 /// described in [`request_autoscroll`].
2360 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2361 self.invalidator.debug_assert_prepaint();
2362 self.requested_autoscroll.take()
2363 }
2364
2365 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2366 /// Your view will be re-drawn once the asset has finished loading.
2367 ///
2368 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2369 /// time.
2370 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2371 let (task, is_first) = cx.fetch_asset::<A>(source);
2372 task.clone().now_or_never().or_else(|| {
2373 if is_first {
2374 let entity_id = self.current_view();
2375 self.spawn(cx, {
2376 let task = task.clone();
2377 async move |cx| {
2378 task.await;
2379
2380 cx.on_next_frame(move |_, cx| {
2381 cx.notify(entity_id);
2382 });
2383 }
2384 })
2385 .detach();
2386 }
2387
2388 None
2389 })
2390 }
2391
2392 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2393 /// Your view will not be re-drawn once the asset has finished loading.
2394 ///
2395 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2396 /// time.
2397 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2398 let (task, _) = cx.fetch_asset::<A>(source);
2399 task.clone().now_or_never()
2400 }
2401 /// Obtain the current element offset. This method should only be called during the
2402 /// prepaint phase of element drawing.
2403 pub fn element_offset(&self) -> Point<Pixels> {
2404 self.invalidator.debug_assert_prepaint();
2405 self.element_offset_stack
2406 .last()
2407 .copied()
2408 .unwrap_or_default()
2409 }
2410
2411 /// Obtain the current element opacity. This method should only be called during the
2412 /// prepaint phase of element drawing.
2413 pub(crate) fn element_opacity(&self) -> f32 {
2414 self.invalidator.debug_assert_paint_or_prepaint();
2415 self.element_opacity.unwrap_or(1.0)
2416 }
2417
2418 /// Obtain the current content mask. This method should only be called during element drawing.
2419 pub fn content_mask(&self) -> ContentMask<Pixels> {
2420 self.invalidator.debug_assert_paint_or_prepaint();
2421 self.content_mask_stack
2422 .last()
2423 .cloned()
2424 .unwrap_or_else(|| ContentMask {
2425 bounds: Bounds {
2426 origin: Point::default(),
2427 size: self.viewport_size,
2428 },
2429 })
2430 }
2431
2432 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2433 /// This can be used within a custom element to distinguish multiple sets of child elements.
2434 pub fn with_element_namespace<R>(
2435 &mut self,
2436 element_id: impl Into<ElementId>,
2437 f: impl FnOnce(&mut Self) -> R,
2438 ) -> R {
2439 self.element_id_stack.push(element_id.into());
2440 let result = f(self);
2441 self.element_id_stack.pop();
2442 result
2443 }
2444
2445 /// Updates or initializes state for an element with the given id that lives across multiple
2446 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2447 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2448 /// when drawing the next frame. This method should only be called as part of element drawing.
2449 pub fn with_element_state<S, R>(
2450 &mut self,
2451 global_id: &GlobalElementId,
2452 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2453 ) -> R
2454 where
2455 S: 'static,
2456 {
2457 self.invalidator.debug_assert_paint_or_prepaint();
2458
2459 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2460 self.next_frame
2461 .accessed_element_states
2462 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2463
2464 if let Some(any) = self
2465 .next_frame
2466 .element_states
2467 .remove(&key)
2468 .or_else(|| self.rendered_frame.element_states.remove(&key))
2469 {
2470 let ElementStateBox {
2471 inner,
2472 #[cfg(debug_assertions)]
2473 type_name,
2474 } = any;
2475 // Using the extra inner option to avoid needing to reallocate a new box.
2476 let mut state_box = inner
2477 .downcast::<Option<S>>()
2478 .map_err(|_| {
2479 #[cfg(debug_assertions)]
2480 {
2481 anyhow::anyhow!(
2482 "invalid element state type for id, requested {:?}, actual: {:?}",
2483 std::any::type_name::<S>(),
2484 type_name
2485 )
2486 }
2487
2488 #[cfg(not(debug_assertions))]
2489 {
2490 anyhow::anyhow!(
2491 "invalid element state type for id, requested {:?}",
2492 std::any::type_name::<S>(),
2493 )
2494 }
2495 })
2496 .unwrap();
2497
2498 let state = state_box.take().expect(
2499 "reentrant call to with_element_state for the same state type and element id",
2500 );
2501 let (result, state) = f(Some(state), self);
2502 state_box.replace(state);
2503 self.next_frame.element_states.insert(
2504 key,
2505 ElementStateBox {
2506 inner: state_box,
2507 #[cfg(debug_assertions)]
2508 type_name,
2509 },
2510 );
2511 result
2512 } else {
2513 let (result, state) = f(None, self);
2514 self.next_frame.element_states.insert(
2515 key,
2516 ElementStateBox {
2517 inner: Box::new(Some(state)),
2518 #[cfg(debug_assertions)]
2519 type_name: std::any::type_name::<S>(),
2520 },
2521 );
2522 result
2523 }
2524 }
2525
2526 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2527 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2528 /// when the element is guaranteed to have an id.
2529 ///
2530 /// The first option means 'no ID provided'
2531 /// The second option means 'not yet initialized'
2532 pub fn with_optional_element_state<S, R>(
2533 &mut self,
2534 global_id: Option<&GlobalElementId>,
2535 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2536 ) -> R
2537 where
2538 S: 'static,
2539 {
2540 self.invalidator.debug_assert_paint_or_prepaint();
2541
2542 if let Some(global_id) = global_id {
2543 self.with_element_state(global_id, |state, cx| {
2544 let (result, state) = f(Some(state), cx);
2545 let state =
2546 state.expect("you must return some state when you pass some element id");
2547 (result, state)
2548 })
2549 } else {
2550 let (result, state) = f(None, self);
2551 debug_assert!(
2552 state.is_none(),
2553 "you must not return an element state when passing None for the global id"
2554 );
2555 result
2556 }
2557 }
2558
2559 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2560 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2561 /// with higher values being drawn on top.
2562 ///
2563 /// This method should only be called as part of the prepaint phase of element drawing.
2564 pub fn defer_draw(
2565 &mut self,
2566 element: AnyElement,
2567 absolute_offset: Point<Pixels>,
2568 priority: usize,
2569 ) {
2570 self.invalidator.debug_assert_prepaint();
2571 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2572 self.next_frame.deferred_draws.push(DeferredDraw {
2573 current_view: self.current_view(),
2574 parent_node,
2575 element_id_stack: self.element_id_stack.clone(),
2576 text_style_stack: self.text_style_stack.clone(),
2577 priority,
2578 element: Some(element),
2579 absolute_offset,
2580 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2581 paint_range: PaintIndex::default()..PaintIndex::default(),
2582 });
2583 }
2584
2585 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2586 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2587 /// for performance reasons.
2588 ///
2589 /// This method should only be called as part of the paint phase of element drawing.
2590 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2591 self.invalidator.debug_assert_paint();
2592
2593 let scale_factor = self.scale_factor();
2594 let content_mask = self.content_mask();
2595 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2596 if !clipped_bounds.is_empty() {
2597 self.next_frame
2598 .scene
2599 .push_layer(clipped_bounds.scale(scale_factor));
2600 }
2601
2602 let result = f(self);
2603
2604 if !clipped_bounds.is_empty() {
2605 self.next_frame.scene.pop_layer();
2606 }
2607
2608 result
2609 }
2610
2611 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2612 ///
2613 /// This method should only be called as part of the paint phase of element drawing.
2614 pub fn paint_shadows(
2615 &mut self,
2616 bounds: Bounds<Pixels>,
2617 corner_radii: Corners<Pixels>,
2618 shadows: &[BoxShadow],
2619 ) {
2620 self.invalidator.debug_assert_paint();
2621
2622 let scale_factor = self.scale_factor();
2623 let content_mask = self.content_mask();
2624 let opacity = self.element_opacity();
2625 for shadow in shadows {
2626 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2627 self.next_frame.scene.insert_primitive(Shadow {
2628 order: 0,
2629 blur_radius: shadow.blur_radius.scale(scale_factor),
2630 bounds: shadow_bounds.scale(scale_factor),
2631 content_mask: content_mask.scale(scale_factor),
2632 corner_radii: corner_radii.scale(scale_factor),
2633 color: shadow.color.opacity(opacity),
2634 });
2635 }
2636 }
2637
2638 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2639 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2640 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2641 ///
2642 /// This method should only be called as part of the paint phase of element drawing.
2643 ///
2644 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2645 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2646 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2647 pub fn paint_quad(&mut self, quad: PaintQuad) {
2648 self.invalidator.debug_assert_paint();
2649
2650 let scale_factor = self.scale_factor();
2651 let content_mask = self.content_mask();
2652 let opacity = self.element_opacity();
2653 self.next_frame.scene.insert_primitive(Quad {
2654 order: 0,
2655 bounds: quad.bounds.scale(scale_factor),
2656 content_mask: content_mask.scale(scale_factor),
2657 background: quad.background.opacity(opacity),
2658 border_color: quad.border_color.opacity(opacity),
2659 corner_radii: quad.corner_radii.scale(scale_factor),
2660 border_widths: quad.border_widths.scale(scale_factor),
2661 border_style: quad.border_style,
2662 });
2663 }
2664
2665 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2666 ///
2667 /// This method should only be called as part of the paint phase of element drawing.
2668 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2669 self.invalidator.debug_assert_paint();
2670
2671 let scale_factor = self.scale_factor();
2672 let content_mask = self.content_mask();
2673 let opacity = self.element_opacity();
2674 path.content_mask = content_mask;
2675 let color: Background = color.into();
2676 path.color = color.opacity(opacity);
2677 self.next_frame
2678 .scene
2679 .insert_primitive(path.apply_scale(scale_factor));
2680 }
2681
2682 /// Paint an underline into the scene for the next frame at the current z-index.
2683 ///
2684 /// This method should only be called as part of the paint phase of element drawing.
2685 pub fn paint_underline(
2686 &mut self,
2687 origin: Point<Pixels>,
2688 width: Pixels,
2689 style: &UnderlineStyle,
2690 ) {
2691 self.invalidator.debug_assert_paint();
2692
2693 let scale_factor = self.scale_factor();
2694 let height = if style.wavy {
2695 style.thickness * 3.
2696 } else {
2697 style.thickness
2698 };
2699 let bounds = Bounds {
2700 origin,
2701 size: size(width, height),
2702 };
2703 let content_mask = self.content_mask();
2704 let element_opacity = self.element_opacity();
2705
2706 self.next_frame.scene.insert_primitive(Underline {
2707 order: 0,
2708 pad: 0,
2709 bounds: bounds.scale(scale_factor),
2710 content_mask: content_mask.scale(scale_factor),
2711 color: style.color.unwrap_or_default().opacity(element_opacity),
2712 thickness: style.thickness.scale(scale_factor),
2713 wavy: style.wavy,
2714 });
2715 }
2716
2717 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2718 ///
2719 /// This method should only be called as part of the paint phase of element drawing.
2720 pub fn paint_strikethrough(
2721 &mut self,
2722 origin: Point<Pixels>,
2723 width: Pixels,
2724 style: &StrikethroughStyle,
2725 ) {
2726 self.invalidator.debug_assert_paint();
2727
2728 let scale_factor = self.scale_factor();
2729 let height = style.thickness;
2730 let bounds = Bounds {
2731 origin,
2732 size: size(width, height),
2733 };
2734 let content_mask = self.content_mask();
2735 let opacity = self.element_opacity();
2736
2737 self.next_frame.scene.insert_primitive(Underline {
2738 order: 0,
2739 pad: 0,
2740 bounds: bounds.scale(scale_factor),
2741 content_mask: content_mask.scale(scale_factor),
2742 thickness: style.thickness.scale(scale_factor),
2743 color: style.color.unwrap_or_default().opacity(opacity),
2744 wavy: false,
2745 });
2746 }
2747
2748 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2749 ///
2750 /// The y component of the origin is the baseline of the glyph.
2751 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2752 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2753 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2754 ///
2755 /// This method should only be called as part of the paint phase of element drawing.
2756 pub fn paint_glyph(
2757 &mut self,
2758 origin: Point<Pixels>,
2759 font_id: FontId,
2760 glyph_id: GlyphId,
2761 font_size: Pixels,
2762 color: Hsla,
2763 ) -> Result<()> {
2764 self.invalidator.debug_assert_paint();
2765
2766 let element_opacity = self.element_opacity();
2767 let scale_factor = self.scale_factor();
2768 let glyph_origin = origin.scale(scale_factor);
2769 let subpixel_variant = Point {
2770 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2771 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2772 };
2773 let params = RenderGlyphParams {
2774 font_id,
2775 glyph_id,
2776 font_size,
2777 subpixel_variant,
2778 scale_factor,
2779 is_emoji: false,
2780 };
2781
2782 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2783 if !raster_bounds.is_zero() {
2784 let tile = self
2785 .sprite_atlas
2786 .get_or_insert_with(¶ms.clone().into(), &mut || {
2787 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2788 Ok(Some((size, Cow::Owned(bytes))))
2789 })?
2790 .expect("Callback above only errors or returns Some");
2791 let bounds = Bounds {
2792 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2793 size: tile.bounds.size.map(Into::into),
2794 };
2795 let content_mask = self.content_mask().scale(scale_factor);
2796 self.next_frame.scene.insert_primitive(MonochromeSprite {
2797 order: 0,
2798 pad: 0,
2799 bounds,
2800 content_mask,
2801 color: color.opacity(element_opacity),
2802 tile,
2803 transformation: TransformationMatrix::unit(),
2804 });
2805 }
2806 Ok(())
2807 }
2808
2809 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2810 ///
2811 /// The y component of the origin is the baseline of the glyph.
2812 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2813 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2814 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2815 ///
2816 /// This method should only be called as part of the paint phase of element drawing.
2817 pub fn paint_emoji(
2818 &mut self,
2819 origin: Point<Pixels>,
2820 font_id: FontId,
2821 glyph_id: GlyphId,
2822 font_size: Pixels,
2823 ) -> Result<()> {
2824 self.invalidator.debug_assert_paint();
2825
2826 let scale_factor = self.scale_factor();
2827 let glyph_origin = origin.scale(scale_factor);
2828 let params = RenderGlyphParams {
2829 font_id,
2830 glyph_id,
2831 font_size,
2832 // We don't render emojis with subpixel variants.
2833 subpixel_variant: Default::default(),
2834 scale_factor,
2835 is_emoji: true,
2836 };
2837
2838 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2839 if !raster_bounds.is_zero() {
2840 let tile = self
2841 .sprite_atlas
2842 .get_or_insert_with(¶ms.clone().into(), &mut || {
2843 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2844 Ok(Some((size, Cow::Owned(bytes))))
2845 })?
2846 .expect("Callback above only errors or returns Some");
2847
2848 let bounds = Bounds {
2849 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2850 size: tile.bounds.size.map(Into::into),
2851 };
2852 let content_mask = self.content_mask().scale(scale_factor);
2853 let opacity = self.element_opacity();
2854
2855 self.next_frame.scene.insert_primitive(PolychromeSprite {
2856 order: 0,
2857 pad: 0,
2858 grayscale: false,
2859 bounds,
2860 corner_radii: Default::default(),
2861 content_mask,
2862 tile,
2863 opacity,
2864 });
2865 }
2866 Ok(())
2867 }
2868
2869 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2870 ///
2871 /// This method should only be called as part of the paint phase of element drawing.
2872 pub fn paint_svg(
2873 &mut self,
2874 bounds: Bounds<Pixels>,
2875 path: SharedString,
2876 transformation: TransformationMatrix,
2877 color: Hsla,
2878 cx: &App,
2879 ) -> Result<()> {
2880 self.invalidator.debug_assert_paint();
2881
2882 let element_opacity = self.element_opacity();
2883 let scale_factor = self.scale_factor();
2884 let bounds = bounds.scale(scale_factor);
2885 let params = RenderSvgParams {
2886 path,
2887 size: bounds.size.map(|pixels| {
2888 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2889 }),
2890 };
2891
2892 let Some(tile) =
2893 self.sprite_atlas
2894 .get_or_insert_with(¶ms.clone().into(), &mut || {
2895 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2896 return Ok(None);
2897 };
2898 Ok(Some((params.size, Cow::Owned(bytes))))
2899 })?
2900 else {
2901 return Ok(());
2902 };
2903 let content_mask = self.content_mask().scale(scale_factor);
2904
2905 self.next_frame.scene.insert_primitive(MonochromeSprite {
2906 order: 0,
2907 pad: 0,
2908 bounds: bounds
2909 .map_origin(|origin| origin.floor())
2910 .map_size(|size| size.ceil()),
2911 content_mask,
2912 color: color.opacity(element_opacity),
2913 tile,
2914 transformation,
2915 });
2916
2917 Ok(())
2918 }
2919
2920 /// Paint an image into the scene for the next frame at the current z-index.
2921 /// This method will panic if the frame_index is not valid
2922 ///
2923 /// This method should only be called as part of the paint phase of element drawing.
2924 pub fn paint_image(
2925 &mut self,
2926 bounds: Bounds<Pixels>,
2927 corner_radii: Corners<Pixels>,
2928 data: Arc<RenderImage>,
2929 frame_index: usize,
2930 grayscale: bool,
2931 ) -> Result<()> {
2932 self.invalidator.debug_assert_paint();
2933
2934 let scale_factor = self.scale_factor();
2935 let bounds = bounds.scale(scale_factor);
2936 let params = RenderImageParams {
2937 image_id: data.id,
2938 frame_index,
2939 };
2940
2941 let tile = self
2942 .sprite_atlas
2943 .get_or_insert_with(¶ms.clone().into(), &mut || {
2944 Ok(Some((
2945 data.size(frame_index),
2946 Cow::Borrowed(
2947 data.as_bytes(frame_index)
2948 .expect("It's the caller's job to pass a valid frame index"),
2949 ),
2950 )))
2951 })?
2952 .expect("Callback above only returns Some");
2953 let content_mask = self.content_mask().scale(scale_factor);
2954 let corner_radii = corner_radii.scale(scale_factor);
2955 let opacity = self.element_opacity();
2956
2957 self.next_frame.scene.insert_primitive(PolychromeSprite {
2958 order: 0,
2959 pad: 0,
2960 grayscale,
2961 bounds: bounds
2962 .map_origin(|origin| origin.floor())
2963 .map_size(|size| size.ceil()),
2964 content_mask,
2965 corner_radii,
2966 tile,
2967 opacity,
2968 });
2969 Ok(())
2970 }
2971
2972 /// Paint a surface into the scene for the next frame at the current z-index.
2973 ///
2974 /// This method should only be called as part of the paint phase of element drawing.
2975 #[cfg(target_os = "macos")]
2976 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2977 use crate::PaintSurface;
2978
2979 self.invalidator.debug_assert_paint();
2980
2981 let scale_factor = self.scale_factor();
2982 let bounds = bounds.scale(scale_factor);
2983 let content_mask = self.content_mask().scale(scale_factor);
2984 self.next_frame.scene.insert_primitive(PaintSurface {
2985 order: 0,
2986 bounds,
2987 content_mask,
2988 image_buffer,
2989 });
2990 }
2991
2992 /// Removes an image from the sprite atlas.
2993 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2994 for frame_index in 0..data.frame_count() {
2995 let params = RenderImageParams {
2996 image_id: data.id,
2997 frame_index,
2998 };
2999
3000 self.sprite_atlas.remove(¶ms.clone().into());
3001 }
3002
3003 Ok(())
3004 }
3005
3006 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3007 /// layout is being requested, along with the layout ids of any children. This method is called during
3008 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3009 ///
3010 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3011 #[must_use]
3012 pub fn request_layout(
3013 &mut self,
3014 style: Style,
3015 children: impl IntoIterator<Item = LayoutId>,
3016 cx: &mut App,
3017 ) -> LayoutId {
3018 self.invalidator.debug_assert_prepaint();
3019
3020 cx.layout_id_buffer.clear();
3021 cx.layout_id_buffer.extend(children);
3022 let rem_size = self.rem_size();
3023
3024 self.layout_engine
3025 .as_mut()
3026 .unwrap()
3027 .request_layout(style, rem_size, &cx.layout_id_buffer)
3028 }
3029
3030 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3031 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3032 /// determine the element's size. One place this is used internally is when measuring text.
3033 ///
3034 /// The given closure is invoked at layout time with the known dimensions and available space and
3035 /// returns a `Size`.
3036 ///
3037 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3038 pub fn request_measured_layout<
3039 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3040 + 'static,
3041 >(
3042 &mut self,
3043 style: Style,
3044 measure: F,
3045 ) -> LayoutId {
3046 self.invalidator.debug_assert_prepaint();
3047
3048 let rem_size = self.rem_size();
3049 self.layout_engine
3050 .as_mut()
3051 .unwrap()
3052 .request_measured_layout(style, rem_size, measure)
3053 }
3054
3055 /// Compute the layout for the given id within the given available space.
3056 /// This method is called for its side effect, typically by the framework prior to painting.
3057 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3058 ///
3059 /// This method should only be called as part of the prepaint phase of element drawing.
3060 pub fn compute_layout(
3061 &mut self,
3062 layout_id: LayoutId,
3063 available_space: Size<AvailableSpace>,
3064 cx: &mut App,
3065 ) {
3066 self.invalidator.debug_assert_prepaint();
3067
3068 let mut layout_engine = self.layout_engine.take().unwrap();
3069 layout_engine.compute_layout(layout_id, available_space, self, cx);
3070 self.layout_engine = Some(layout_engine);
3071 }
3072
3073 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3074 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3075 ///
3076 /// This method should only be called as part of element drawing.
3077 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3078 self.invalidator.debug_assert_prepaint();
3079
3080 let mut bounds = self
3081 .layout_engine
3082 .as_mut()
3083 .unwrap()
3084 .layout_bounds(layout_id)
3085 .map(Into::into);
3086 bounds.origin += self.element_offset();
3087 bounds
3088 }
3089
3090 /// This method should be called during `prepaint`. You can use
3091 /// the returned [Hitbox] during `paint` or in an event handler
3092 /// to determine whether the inserted hitbox was the topmost.
3093 ///
3094 /// This method should only be called as part of the prepaint phase of element drawing.
3095 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3096 self.invalidator.debug_assert_prepaint();
3097
3098 let content_mask = self.content_mask();
3099 let mut id = self.next_hitbox_id;
3100 self.next_hitbox_id = self.next_hitbox_id.next();
3101 let hitbox = Hitbox {
3102 id,
3103 bounds,
3104 content_mask,
3105 behavior,
3106 };
3107 self.next_frame.hitboxes.push(hitbox.clone());
3108 hitbox
3109 }
3110
3111 /// Set a hitbox which will act as a control area of the platform window.
3112 ///
3113 /// This method should only be called as part of the paint phase of element drawing.
3114 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3115 self.invalidator.debug_assert_paint();
3116 self.next_frame.window_control_hitboxes.push((area, hitbox));
3117 }
3118
3119 /// Sets the key context for the current element. This context will be used to translate
3120 /// keybindings into actions.
3121 ///
3122 /// This method should only be called as part of the paint phase of element drawing.
3123 pub fn set_key_context(&mut self, context: KeyContext) {
3124 self.invalidator.debug_assert_paint();
3125 self.next_frame.dispatch_tree.set_key_context(context);
3126 }
3127
3128 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3129 /// and keyboard event dispatch for the element.
3130 ///
3131 /// This method should only be called as part of the prepaint phase of element drawing.
3132 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3133 self.invalidator.debug_assert_prepaint();
3134 if focus_handle.is_focused(self) {
3135 self.next_frame.focus = Some(focus_handle.id);
3136 }
3137 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3138 }
3139
3140 /// Sets the view id for the current element, which will be used to manage view caching.
3141 ///
3142 /// This method should only be called as part of element prepaint. We plan on removing this
3143 /// method eventually when we solve some issues that require us to construct editor elements
3144 /// directly instead of always using editors via views.
3145 pub fn set_view_id(&mut self, view_id: EntityId) {
3146 self.invalidator.debug_assert_prepaint();
3147 self.next_frame.dispatch_tree.set_view_id(view_id);
3148 }
3149
3150 /// Get the entity ID for the currently rendering view
3151 pub fn current_view(&self) -> EntityId {
3152 self.invalidator.debug_assert_paint_or_prepaint();
3153 self.rendered_entity_stack.last().copied().unwrap()
3154 }
3155
3156 pub(crate) fn with_rendered_view<R>(
3157 &mut self,
3158 id: EntityId,
3159 f: impl FnOnce(&mut Self) -> R,
3160 ) -> R {
3161 self.rendered_entity_stack.push(id);
3162 let result = f(self);
3163 self.rendered_entity_stack.pop();
3164 result
3165 }
3166
3167 /// Executes the provided function with the specified image cache.
3168 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3169 where
3170 F: FnOnce(&mut Self) -> R,
3171 {
3172 if let Some(image_cache) = image_cache {
3173 self.image_cache_stack.push(image_cache);
3174 let result = f(self);
3175 self.image_cache_stack.pop();
3176 result
3177 } else {
3178 f(self)
3179 }
3180 }
3181
3182 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3183 /// platform to receive textual input with proper integration with concerns such
3184 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3185 /// rendered.
3186 ///
3187 /// This method should only be called as part of the paint phase of element drawing.
3188 ///
3189 /// [element_input_handler]: crate::ElementInputHandler
3190 pub fn handle_input(
3191 &mut self,
3192 focus_handle: &FocusHandle,
3193 input_handler: impl InputHandler,
3194 cx: &App,
3195 ) {
3196 self.invalidator.debug_assert_paint();
3197
3198 if focus_handle.is_focused(self) {
3199 let cx = self.to_async(cx);
3200 self.next_frame
3201 .input_handlers
3202 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3203 }
3204 }
3205
3206 /// Register a mouse event listener on the window for the next frame. The type of event
3207 /// is determined by the first parameter of the given listener. When the next frame is rendered
3208 /// the listener will be cleared.
3209 ///
3210 /// This method should only be called as part of the paint phase of element drawing.
3211 pub fn on_mouse_event<Event: MouseEvent>(
3212 &mut self,
3213 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3214 ) {
3215 self.invalidator.debug_assert_paint();
3216
3217 self.next_frame.mouse_listeners.push(Some(Box::new(
3218 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3219 if let Some(event) = event.downcast_ref() {
3220 handler(event, phase, window, cx)
3221 }
3222 },
3223 )));
3224 }
3225
3226 /// Register a key event listener on the window for the next frame. The type of event
3227 /// is determined by the first parameter of the given listener. When the next frame is rendered
3228 /// the listener will be cleared.
3229 ///
3230 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3231 /// a specific need to register a global listener.
3232 ///
3233 /// This method should only be called as part of the paint phase of element drawing.
3234 pub fn on_key_event<Event: KeyEvent>(
3235 &mut self,
3236 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3237 ) {
3238 self.invalidator.debug_assert_paint();
3239
3240 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3241 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3242 if let Some(event) = event.downcast_ref::<Event>() {
3243 listener(event, phase, window, cx)
3244 }
3245 },
3246 ));
3247 }
3248
3249 /// Register a modifiers changed event listener on the window for the next frame.
3250 ///
3251 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3252 /// a specific need to register a global listener.
3253 ///
3254 /// This method should only be called as part of the paint phase of element drawing.
3255 pub fn on_modifiers_changed(
3256 &mut self,
3257 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3258 ) {
3259 self.invalidator.debug_assert_paint();
3260
3261 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3262 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3263 listener(event, window, cx)
3264 },
3265 ));
3266 }
3267
3268 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3269 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3270 /// Returns a subscription and persists until the subscription is dropped.
3271 pub fn on_focus_in(
3272 &mut self,
3273 handle: &FocusHandle,
3274 cx: &mut App,
3275 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3276 ) -> Subscription {
3277 let focus_id = handle.id;
3278 let (subscription, activate) =
3279 self.new_focus_listener(Box::new(move |event, window, cx| {
3280 if event.is_focus_in(focus_id) {
3281 listener(window, cx);
3282 }
3283 true
3284 }));
3285 cx.defer(move |_| activate());
3286 subscription
3287 }
3288
3289 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3290 /// Returns a subscription and persists until the subscription is dropped.
3291 pub fn on_focus_out(
3292 &mut self,
3293 handle: &FocusHandle,
3294 cx: &mut App,
3295 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3296 ) -> Subscription {
3297 let focus_id = handle.id;
3298 let (subscription, activate) =
3299 self.new_focus_listener(Box::new(move |event, window, cx| {
3300 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3301 if event.is_focus_out(focus_id) {
3302 let event = FocusOutEvent {
3303 blurred: WeakFocusHandle {
3304 id: blurred_id,
3305 handles: Arc::downgrade(&cx.focus_handles),
3306 },
3307 };
3308 listener(event, window, cx)
3309 }
3310 }
3311 true
3312 }));
3313 cx.defer(move |_| activate());
3314 subscription
3315 }
3316
3317 fn reset_cursor_style(&self, cx: &mut App) {
3318 // Set the cursor only if we're the active window.
3319 if self.is_window_hovered() {
3320 let style = self
3321 .rendered_frame
3322 .cursor_style(self)
3323 .unwrap_or(CursorStyle::Arrow);
3324 cx.platform.set_cursor_style(style);
3325 }
3326 }
3327
3328 /// Dispatch a given keystroke as though the user had typed it.
3329 /// You can create a keystroke with Keystroke::parse("").
3330 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3331 let keystroke = keystroke.with_simulated_ime();
3332 let result = self.dispatch_event(
3333 PlatformInput::KeyDown(KeyDownEvent {
3334 keystroke: keystroke.clone(),
3335 is_held: false,
3336 }),
3337 cx,
3338 );
3339 if !result.propagate {
3340 return true;
3341 }
3342
3343 if let Some(input) = keystroke.key_char {
3344 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3345 input_handler.dispatch_input(&input, self, cx);
3346 self.platform_window.set_input_handler(input_handler);
3347 return true;
3348 }
3349 }
3350
3351 false
3352 }
3353
3354 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3355 /// binding for the action (last binding added to the keymap).
3356 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3357 self.highest_precedence_binding_for_action(action)
3358 .map(|binding| {
3359 binding
3360 .keystrokes()
3361 .iter()
3362 .map(ToString::to_string)
3363 .collect::<Vec<_>>()
3364 .join(" ")
3365 })
3366 .unwrap_or_else(|| action.name().to_string())
3367 }
3368
3369 /// Dispatch a mouse or keyboard event on the window.
3370 #[profiling::function]
3371 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3372 self.last_input_timestamp.set(Instant::now());
3373 // Handlers may set this to false by calling `stop_propagation`.
3374 cx.propagate_event = true;
3375 // Handlers may set this to true by calling `prevent_default`.
3376 self.default_prevented = false;
3377
3378 let event = match event {
3379 // Track the mouse position with our own state, since accessing the platform
3380 // API for the mouse position can only occur on the main thread.
3381 PlatformInput::MouseMove(mouse_move) => {
3382 self.mouse_position = mouse_move.position;
3383 self.modifiers = mouse_move.modifiers;
3384 PlatformInput::MouseMove(mouse_move)
3385 }
3386 PlatformInput::MouseDown(mouse_down) => {
3387 self.mouse_position = mouse_down.position;
3388 self.modifiers = mouse_down.modifiers;
3389 PlatformInput::MouseDown(mouse_down)
3390 }
3391 PlatformInput::MouseUp(mouse_up) => {
3392 self.mouse_position = mouse_up.position;
3393 self.modifiers = mouse_up.modifiers;
3394 PlatformInput::MouseUp(mouse_up)
3395 }
3396 PlatformInput::MouseExited(mouse_exited) => {
3397 self.modifiers = mouse_exited.modifiers;
3398 PlatformInput::MouseExited(mouse_exited)
3399 }
3400 PlatformInput::ModifiersChanged(modifiers_changed) => {
3401 self.modifiers = modifiers_changed.modifiers;
3402 self.capslock = modifiers_changed.capslock;
3403 PlatformInput::ModifiersChanged(modifiers_changed)
3404 }
3405 PlatformInput::ScrollWheel(scroll_wheel) => {
3406 self.mouse_position = scroll_wheel.position;
3407 self.modifiers = scroll_wheel.modifiers;
3408 PlatformInput::ScrollWheel(scroll_wheel)
3409 }
3410 // Translate dragging and dropping of external files from the operating system
3411 // to internal drag and drop events.
3412 PlatformInput::FileDrop(file_drop) => match file_drop {
3413 FileDropEvent::Entered { position, paths } => {
3414 self.mouse_position = position;
3415 if cx.active_drag.is_none() {
3416 cx.active_drag = Some(AnyDrag {
3417 value: Arc::new(paths.clone()),
3418 view: cx.new(|_| paths).into(),
3419 cursor_offset: position,
3420 cursor_style: None,
3421 });
3422 }
3423 PlatformInput::MouseMove(MouseMoveEvent {
3424 position,
3425 pressed_button: Some(MouseButton::Left),
3426 modifiers: Modifiers::default(),
3427 })
3428 }
3429 FileDropEvent::Pending { position } => {
3430 self.mouse_position = position;
3431 PlatformInput::MouseMove(MouseMoveEvent {
3432 position,
3433 pressed_button: Some(MouseButton::Left),
3434 modifiers: Modifiers::default(),
3435 })
3436 }
3437 FileDropEvent::Submit { position } => {
3438 cx.activate(true);
3439 self.mouse_position = position;
3440 PlatformInput::MouseUp(MouseUpEvent {
3441 button: MouseButton::Left,
3442 position,
3443 modifiers: Modifiers::default(),
3444 click_count: 1,
3445 })
3446 }
3447 FileDropEvent::Exited => {
3448 cx.active_drag.take();
3449 PlatformInput::FileDrop(FileDropEvent::Exited)
3450 }
3451 },
3452 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3453 };
3454
3455 if let Some(any_mouse_event) = event.mouse_event() {
3456 self.dispatch_mouse_event(any_mouse_event, cx);
3457 } else if let Some(any_key_event) = event.keyboard_event() {
3458 self.dispatch_key_event(any_key_event, cx);
3459 }
3460
3461 DispatchEventResult {
3462 propagate: cx.propagate_event,
3463 default_prevented: self.default_prevented,
3464 }
3465 }
3466
3467 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3468 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3469 if hit_test != self.mouse_hit_test {
3470 self.mouse_hit_test = hit_test;
3471 self.reset_cursor_style(cx);
3472 }
3473
3474 #[cfg(any(feature = "inspector", debug_assertions))]
3475 if self.is_inspector_picking(cx) {
3476 self.handle_inspector_mouse_event(event, cx);
3477 // When inspector is picking, all other mouse handling is skipped.
3478 return;
3479 }
3480
3481 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3482
3483 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3484 // special purposes, such as detecting events outside of a given Bounds.
3485 for listener in &mut mouse_listeners {
3486 let listener = listener.as_mut().unwrap();
3487 listener(event, DispatchPhase::Capture, self, cx);
3488 if !cx.propagate_event {
3489 break;
3490 }
3491 }
3492
3493 // Bubble phase, where most normal handlers do their work.
3494 if cx.propagate_event {
3495 for listener in mouse_listeners.iter_mut().rev() {
3496 let listener = listener.as_mut().unwrap();
3497 listener(event, DispatchPhase::Bubble, self, cx);
3498 if !cx.propagate_event {
3499 break;
3500 }
3501 }
3502 }
3503
3504 self.rendered_frame.mouse_listeners = mouse_listeners;
3505
3506 if cx.has_active_drag() {
3507 if event.is::<MouseMoveEvent>() {
3508 // If this was a mouse move event, redraw the window so that the
3509 // active drag can follow the mouse cursor.
3510 self.refresh();
3511 } else if event.is::<MouseUpEvent>() {
3512 // If this was a mouse up event, cancel the active drag and redraw
3513 // the window.
3514 cx.active_drag = None;
3515 self.refresh();
3516 }
3517 }
3518 }
3519
3520 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3521 if self.invalidator.is_dirty() {
3522 self.draw(cx).clear();
3523 }
3524
3525 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3526 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3527
3528 let mut keystroke: Option<Keystroke> = None;
3529
3530 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3531 if event.modifiers.number_of_modifiers() == 0
3532 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3533 && !self.pending_modifier.saw_keystroke
3534 {
3535 let key = match self.pending_modifier.modifiers {
3536 modifiers if modifiers.shift => Some("shift"),
3537 modifiers if modifiers.control => Some("control"),
3538 modifiers if modifiers.alt => Some("alt"),
3539 modifiers if modifiers.platform => Some("platform"),
3540 modifiers if modifiers.function => Some("function"),
3541 _ => None,
3542 };
3543 if let Some(key) = key {
3544 keystroke = Some(Keystroke {
3545 key: key.to_string(),
3546 key_char: None,
3547 modifiers: Modifiers::default(),
3548 });
3549 }
3550 }
3551
3552 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3553 && event.modifiers.number_of_modifiers() == 1
3554 {
3555 self.pending_modifier.saw_keystroke = false
3556 }
3557 self.pending_modifier.modifiers = event.modifiers
3558 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3559 self.pending_modifier.saw_keystroke = true;
3560 keystroke = Some(key_down_event.keystroke.clone());
3561 }
3562
3563 let Some(keystroke) = keystroke else {
3564 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3565 return;
3566 };
3567
3568 cx.propagate_event = true;
3569 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3570 if !cx.propagate_event {
3571 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3572 return;
3573 }
3574
3575 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3576 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3577 currently_pending = PendingInput::default();
3578 }
3579
3580 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3581 currently_pending.keystrokes,
3582 keystroke,
3583 &dispatch_path,
3584 );
3585
3586 if !match_result.to_replay.is_empty() {
3587 self.replay_pending_input(match_result.to_replay, cx)
3588 }
3589
3590 if !match_result.pending.is_empty() {
3591 currently_pending.keystrokes = match_result.pending;
3592 currently_pending.focus = self.focus;
3593 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3594 cx.background_executor.timer(Duration::from_secs(1)).await;
3595 cx.update(move |window, cx| {
3596 let Some(currently_pending) = window
3597 .pending_input
3598 .take()
3599 .filter(|pending| pending.focus == window.focus)
3600 else {
3601 return;
3602 };
3603
3604 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3605 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3606
3607 let to_replay = window
3608 .rendered_frame
3609 .dispatch_tree
3610 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3611
3612 window.pending_input_changed(cx);
3613 window.replay_pending_input(to_replay, cx)
3614 })
3615 .log_err();
3616 }));
3617 self.pending_input = Some(currently_pending);
3618 self.pending_input_changed(cx);
3619 cx.propagate_event = false;
3620 return;
3621 }
3622
3623 for binding in match_result.bindings {
3624 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3625 if !cx.propagate_event {
3626 self.dispatch_keystroke_observers(
3627 event,
3628 Some(binding.action),
3629 match_result.context_stack.clone(),
3630 cx,
3631 );
3632 self.pending_input_changed(cx);
3633 return;
3634 }
3635 }
3636
3637 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3638 self.pending_input_changed(cx);
3639 }
3640
3641 fn finish_dispatch_key_event(
3642 &mut self,
3643 event: &dyn Any,
3644 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3645 context_stack: Vec<KeyContext>,
3646 cx: &mut App,
3647 ) {
3648 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3649 if !cx.propagate_event {
3650 return;
3651 }
3652
3653 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3654 if !cx.propagate_event {
3655 return;
3656 }
3657
3658 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3659 }
3660
3661 fn pending_input_changed(&mut self, cx: &mut App) {
3662 self.pending_input_observers
3663 .clone()
3664 .retain(&(), |callback| callback(self, cx));
3665 }
3666
3667 fn dispatch_key_down_up_event(
3668 &mut self,
3669 event: &dyn Any,
3670 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3671 cx: &mut App,
3672 ) {
3673 // Capture phase
3674 for node_id in dispatch_path {
3675 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3676
3677 for key_listener in node.key_listeners.clone() {
3678 key_listener(event, DispatchPhase::Capture, self, cx);
3679 if !cx.propagate_event {
3680 return;
3681 }
3682 }
3683 }
3684
3685 // Bubble phase
3686 for node_id in dispatch_path.iter().rev() {
3687 // Handle low level key events
3688 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3689 for key_listener in node.key_listeners.clone() {
3690 key_listener(event, DispatchPhase::Bubble, self, cx);
3691 if !cx.propagate_event {
3692 return;
3693 }
3694 }
3695 }
3696 }
3697
3698 fn dispatch_modifiers_changed_event(
3699 &mut self,
3700 event: &dyn Any,
3701 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3702 cx: &mut App,
3703 ) {
3704 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3705 return;
3706 };
3707 for node_id in dispatch_path.iter().rev() {
3708 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3709 for listener in node.modifiers_changed_listeners.clone() {
3710 listener(event, self, cx);
3711 if !cx.propagate_event {
3712 return;
3713 }
3714 }
3715 }
3716 }
3717
3718 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3719 pub fn has_pending_keystrokes(&self) -> bool {
3720 self.pending_input.is_some()
3721 }
3722
3723 pub(crate) fn clear_pending_keystrokes(&mut self) {
3724 self.pending_input.take();
3725 }
3726
3727 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3728 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3729 self.pending_input
3730 .as_ref()
3731 .map(|pending_input| pending_input.keystrokes.as_slice())
3732 }
3733
3734 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3735 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3736 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3737
3738 'replay: for replay in replays {
3739 let event = KeyDownEvent {
3740 keystroke: replay.keystroke.clone(),
3741 is_held: false,
3742 };
3743
3744 cx.propagate_event = true;
3745 for binding in replay.bindings {
3746 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3747 if !cx.propagate_event {
3748 self.dispatch_keystroke_observers(
3749 &event,
3750 Some(binding.action),
3751 Vec::default(),
3752 cx,
3753 );
3754 continue 'replay;
3755 }
3756 }
3757
3758 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3759 if !cx.propagate_event {
3760 continue 'replay;
3761 }
3762 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3763 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3764 input_handler.dispatch_input(&input, self, cx);
3765 self.platform_window.set_input_handler(input_handler)
3766 }
3767 }
3768 }
3769 }
3770
3771 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3772 focus_id
3773 .and_then(|focus_id| {
3774 self.rendered_frame
3775 .dispatch_tree
3776 .focusable_node_id(focus_id)
3777 })
3778 .unwrap_or_else(|| {
3779 println!("root node id");
3780 self.rendered_frame.dispatch_tree.root_node_id()
3781 })
3782 }
3783
3784 fn dispatch_action_on_node(
3785 &mut self,
3786 node_id: DispatchNodeId,
3787 action: &dyn Action,
3788 cx: &mut App,
3789 ) {
3790 dbg!("dispatch_action_on_node");
3791 dbg!(action.name());
3792 dbg!(action.as_any().type_id());
3793 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3794 dbg!(&dispatch_path);
3795
3796 // Capture phase for global actions.
3797 cx.propagate_event = true;
3798 if let Some(mut global_listeners) = cx
3799 .global_action_listeners
3800 .remove(&action.as_any().type_id())
3801 {
3802 dbg!(
3803 "Found global listeners for capture phase",
3804 global_listeners.len()
3805 );
3806 for listener in &global_listeners {
3807 dbg!("Executing global listener in capture phase");
3808 listener(action.as_any(), DispatchPhase::Capture, cx);
3809 if !cx.propagate_event {
3810 dbg!("Event propagation stopped in global capture phase");
3811 break;
3812 }
3813 }
3814
3815 global_listeners.extend(
3816 cx.global_action_listeners
3817 .remove(&action.as_any().type_id())
3818 .unwrap_or_default(),
3819 );
3820
3821 cx.global_action_listeners
3822 .insert(action.as_any().type_id(), global_listeners);
3823 }
3824
3825 if !cx.propagate_event {
3826 return;
3827 }
3828
3829 // Capture phase for window actions.
3830 for node_id in &dispatch_path {
3831 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3832 for DispatchActionListener {
3833 action_type,
3834 listener,
3835 } in node.action_listeners.clone()
3836 {
3837 let any_action = action.as_any();
3838 if action_type == any_action.type_id() {
3839 dbg!("Found window action listener in capture phase", node_id);
3840 listener(any_action, DispatchPhase::Capture, self, cx);
3841
3842 if !cx.propagate_event {
3843 dbg!("Event propagation stopped in window capture phase");
3844 return;
3845 }
3846 }
3847 }
3848 }
3849
3850 // Bubble phase for window actions.
3851 for node_id in dispatch_path.iter().rev() {
3852 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3853 for DispatchActionListener {
3854 action_type,
3855 listener,
3856 } in node.action_listeners.clone()
3857 {
3858 let any_action = action.as_any();
3859 if action_type == any_action.type_id() {
3860 dbg!("Found window action listener in bubble phase", node_id);
3861 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3862 listener(any_action, DispatchPhase::Bubble, self, cx);
3863
3864 if !cx.propagate_event {
3865 dbg!("Event propagation stopped in window bubble phase");
3866 return;
3867 }
3868 }
3869 }
3870 }
3871
3872 // Bubble phase for global actions.
3873 if let Some(mut global_listeners) = cx
3874 .global_action_listeners
3875 .remove(&action.as_any().type_id())
3876 {
3877 dbg!(
3878 "Found global listeners for bubble phase",
3879 global_listeners.len()
3880 );
3881 for listener in global_listeners.iter().rev() {
3882 dbg!("Executing global listener in bubble phase");
3883 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3884
3885 listener(action.as_any(), DispatchPhase::Bubble, cx);
3886 if !cx.propagate_event {
3887 dbg!("Event propagation stopped in global bubble phase");
3888 break;
3889 }
3890 }
3891
3892 global_listeners.extend(
3893 cx.global_action_listeners
3894 .remove(&action.as_any().type_id())
3895 .unwrap_or_default(),
3896 );
3897
3898 cx.global_action_listeners
3899 .insert(action.as_any().type_id(), global_listeners);
3900 }
3901 }
3902
3903 /// Register the given handler to be invoked whenever the global of the given type
3904 /// is updated.
3905 pub fn observe_global<G: Global>(
3906 &mut self,
3907 cx: &mut App,
3908 f: impl Fn(&mut Window, &mut App) + 'static,
3909 ) -> Subscription {
3910 let window_handle = self.handle;
3911 let (subscription, activate) = cx.global_observers.insert(
3912 TypeId::of::<G>(),
3913 Box::new(move |cx| {
3914 window_handle
3915 .update(cx, |_, window, cx| f(window, cx))
3916 .is_ok()
3917 }),
3918 );
3919 cx.defer(move |_| activate());
3920 subscription
3921 }
3922
3923 /// Focus the current window and bring it to the foreground at the platform level.
3924 pub fn activate_window(&self) {
3925 self.platform_window.activate();
3926 }
3927
3928 /// Minimize the current window at the platform level.
3929 pub fn minimize_window(&self) {
3930 self.platform_window.minimize();
3931 }
3932
3933 /// Toggle full screen status on the current window at the platform level.
3934 pub fn toggle_fullscreen(&self) {
3935 self.platform_window.toggle_fullscreen();
3936 }
3937
3938 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3939 pub fn invalidate_character_coordinates(&self) {
3940 self.on_next_frame(|window, cx| {
3941 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3942 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3943 window
3944 .platform_window
3945 .update_ime_position(bounds.scale(window.scale_factor()));
3946 }
3947 window.platform_window.set_input_handler(input_handler);
3948 }
3949 });
3950 }
3951
3952 /// Present a platform dialog.
3953 /// The provided message will be presented, along with buttons for each answer.
3954 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3955 pub fn prompt<T>(
3956 &mut self,
3957 level: PromptLevel,
3958 message: &str,
3959 detail: Option<&str>,
3960 answers: &[T],
3961 cx: &mut App,
3962 ) -> oneshot::Receiver<usize>
3963 where
3964 T: Clone + Into<PromptButton>,
3965 {
3966 let prompt_builder = cx.prompt_builder.take();
3967 let Some(prompt_builder) = prompt_builder else {
3968 unreachable!("Re-entrant window prompting is not supported by GPUI");
3969 };
3970
3971 let answers = answers
3972 .iter()
3973 .map(|answer| answer.clone().into())
3974 .collect::<Vec<_>>();
3975
3976 let receiver = match &prompt_builder {
3977 PromptBuilder::Default => self
3978 .platform_window
3979 .prompt(level, message, detail, &answers)
3980 .unwrap_or_else(|| {
3981 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3982 }),
3983 PromptBuilder::Custom(_) => {
3984 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3985 }
3986 };
3987
3988 cx.prompt_builder = Some(prompt_builder);
3989
3990 receiver
3991 }
3992
3993 fn build_custom_prompt(
3994 &mut self,
3995 prompt_builder: &PromptBuilder,
3996 level: PromptLevel,
3997 message: &str,
3998 detail: Option<&str>,
3999 answers: &[PromptButton],
4000 cx: &mut App,
4001 ) -> oneshot::Receiver<usize> {
4002 let (sender, receiver) = oneshot::channel();
4003 let handle = PromptHandle::new(sender);
4004 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4005 self.prompt = Some(handle);
4006 receiver
4007 }
4008
4009 /// Returns the current context stack.
4010 pub fn context_stack(&self) -> Vec<KeyContext> {
4011 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4012 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4013 dispatch_tree
4014 .dispatch_path(node_id)
4015 .iter()
4016 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4017 .collect()
4018 }
4019
4020 /// Returns all available actions for the focused element.
4021 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4022 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4023 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4024 for action_type in cx.global_action_listeners.keys() {
4025 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4026 let action = cx.actions.build_action_type(action_type).ok();
4027 if let Some(action) = action {
4028 actions.insert(ix, action);
4029 }
4030 }
4031 }
4032 actions
4033 }
4034
4035 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4036 /// returned in the order they were added. For display, the last binding should take precedence.
4037 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4038 self.rendered_frame
4039 .dispatch_tree
4040 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4041 }
4042
4043 /// Returns the highest precedence key binding that invokes an action on the currently focused
4044 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4045 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4046 self.rendered_frame
4047 .dispatch_tree
4048 .highest_precedence_binding_for_action(
4049 action,
4050 &self.rendered_frame.dispatch_tree.context_stack,
4051 )
4052 }
4053
4054 /// Returns the key bindings for an action in a context.
4055 pub fn bindings_for_action_in_context(
4056 &self,
4057 action: &dyn Action,
4058 context: KeyContext,
4059 ) -> Vec<KeyBinding> {
4060 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4061 dispatch_tree.bindings_for_action(action, &[context])
4062 }
4063
4064 /// Returns the highest precedence key binding for an action in a context. This is more
4065 /// efficient than getting the last result of `bindings_for_action_in_context`.
4066 pub fn highest_precedence_binding_for_action_in_context(
4067 &self,
4068 action: &dyn Action,
4069 context: KeyContext,
4070 ) -> Option<KeyBinding> {
4071 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4072 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4073 }
4074
4075 /// Returns any bindings that would invoke an action on the given focus handle if it were
4076 /// focused. Bindings are returned in the order they were added. For display, the last binding
4077 /// should take precedence.
4078 pub fn bindings_for_action_in(
4079 &self,
4080 action: &dyn Action,
4081 focus_handle: &FocusHandle,
4082 ) -> Vec<KeyBinding> {
4083 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4084 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4085 return vec![];
4086 };
4087 dispatch_tree.bindings_for_action(action, &context_stack)
4088 }
4089
4090 /// Returns the highest precedence key binding that would invoke an action on the given focus
4091 /// handle if it were focused. This is more efficient than getting the last result of
4092 /// `bindings_for_action_in`.
4093 pub fn highest_precedence_binding_for_action_in(
4094 &self,
4095 action: &dyn Action,
4096 focus_handle: &FocusHandle,
4097 ) -> Option<KeyBinding> {
4098 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4099 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4100 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4101 }
4102
4103 fn context_stack_for_focus_handle(
4104 &self,
4105 focus_handle: &FocusHandle,
4106 ) -> Option<Vec<KeyContext>> {
4107 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4108 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4109 let context_stack: Vec<_> = dispatch_tree
4110 .dispatch_path(node_id)
4111 .into_iter()
4112 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4113 .collect();
4114 Some(context_stack)
4115 }
4116
4117 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4118 pub fn listener_for<V: Render, E>(
4119 &self,
4120 view: &Entity<V>,
4121 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4122 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4123 let view = view.downgrade();
4124 move |e: &E, window: &mut Window, cx: &mut App| {
4125 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4126 }
4127 }
4128
4129 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4130 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4131 &self,
4132 view: &Entity<V>,
4133 f: Callback,
4134 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4135 let view = view.downgrade();
4136 move |window: &mut Window, cx: &mut App| {
4137 view.update(cx, |view, cx| f(view, window, cx)).ok();
4138 }
4139 }
4140
4141 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4142 /// If the callback returns false, the window won't be closed.
4143 pub fn on_window_should_close(
4144 &self,
4145 cx: &App,
4146 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4147 ) {
4148 let mut cx = self.to_async(cx);
4149 self.platform_window.on_should_close(Box::new(move || {
4150 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4151 }))
4152 }
4153
4154 /// Register an action listener on the window for the next frame. The type of action
4155 /// is determined by the first parameter of the given listener. When the next frame is rendered
4156 /// the listener will be cleared.
4157 ///
4158 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4159 /// a specific need to register a global listener.
4160 pub fn on_action(
4161 &mut self,
4162 action_type: TypeId,
4163 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4164 ) {
4165 self.next_frame
4166 .dispatch_tree
4167 .on_action(action_type, Rc::new(listener));
4168 }
4169
4170 /// Read information about the GPU backing this window.
4171 /// Currently returns None on Mac and Windows.
4172 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4173 self.platform_window.gpu_specs()
4174 }
4175
4176 /// Perform titlebar double-click action.
4177 /// This is MacOS specific.
4178 pub fn titlebar_double_click(&self) {
4179 self.platform_window.titlebar_double_click();
4180 }
4181
4182 /// Toggles the inspector mode on this window.
4183 #[cfg(any(feature = "inspector", debug_assertions))]
4184 pub fn toggle_inspector(&mut self, cx: &mut App) {
4185 self.inspector = match self.inspector {
4186 None => Some(cx.new(|_| Inspector::new())),
4187 Some(_) => None,
4188 };
4189 self.refresh();
4190 }
4191
4192 /// Returns true if the window is in inspector mode.
4193 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4194 #[cfg(any(feature = "inspector", debug_assertions))]
4195 {
4196 if let Some(inspector) = &self.inspector {
4197 return inspector.read(_cx).is_picking();
4198 }
4199 }
4200 false
4201 }
4202
4203 /// Executes the provided function with mutable access to an inspector state.
4204 #[cfg(any(feature = "inspector", debug_assertions))]
4205 pub fn with_inspector_state<T: 'static, R>(
4206 &mut self,
4207 _inspector_id: Option<&crate::InspectorElementId>,
4208 cx: &mut App,
4209 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4210 ) -> R {
4211 if let Some(inspector_id) = _inspector_id {
4212 if let Some(inspector) = &self.inspector {
4213 let inspector = inspector.clone();
4214 let active_element_id = inspector.read(cx).active_element_id();
4215 if Some(inspector_id) == active_element_id {
4216 return inspector.update(cx, |inspector, _cx| {
4217 inspector.with_active_element_state(self, f)
4218 });
4219 }
4220 }
4221 }
4222 f(&mut None, self)
4223 }
4224
4225 #[cfg(any(feature = "inspector", debug_assertions))]
4226 pub(crate) fn build_inspector_element_id(
4227 &mut self,
4228 path: crate::InspectorElementPath,
4229 ) -> crate::InspectorElementId {
4230 self.invalidator.debug_assert_paint_or_prepaint();
4231 let path = Rc::new(path);
4232 let next_instance_id = self
4233 .next_frame
4234 .next_inspector_instance_ids
4235 .entry(path.clone())
4236 .or_insert(0);
4237 let instance_id = *next_instance_id;
4238 *next_instance_id += 1;
4239 crate::InspectorElementId { path, instance_id }
4240 }
4241
4242 #[cfg(any(feature = "inspector", debug_assertions))]
4243 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4244 if let Some(inspector) = self.inspector.take() {
4245 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4246 inspector_element.prepaint_as_root(
4247 point(self.viewport_size.width - inspector_width, px(0.0)),
4248 size(inspector_width, self.viewport_size.height).into(),
4249 self,
4250 cx,
4251 );
4252 self.inspector = Some(inspector);
4253 Some(inspector_element)
4254 } else {
4255 None
4256 }
4257 }
4258
4259 #[cfg(any(feature = "inspector", debug_assertions))]
4260 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4261 if let Some(mut inspector_element) = inspector_element {
4262 inspector_element.paint(self, cx);
4263 };
4264 }
4265
4266 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4267 /// inspect UI elements by clicking on them.
4268 #[cfg(any(feature = "inspector", debug_assertions))]
4269 pub fn insert_inspector_hitbox(
4270 &mut self,
4271 hitbox_id: HitboxId,
4272 inspector_id: Option<&crate::InspectorElementId>,
4273 cx: &App,
4274 ) {
4275 self.invalidator.debug_assert_paint_or_prepaint();
4276 if !self.is_inspector_picking(cx) {
4277 return;
4278 }
4279 if let Some(inspector_id) = inspector_id {
4280 self.next_frame
4281 .inspector_hitboxes
4282 .insert(hitbox_id, inspector_id.clone());
4283 }
4284 }
4285
4286 #[cfg(any(feature = "inspector", debug_assertions))]
4287 fn paint_inspector_hitbox(&mut self, cx: &App) {
4288 if let Some(inspector) = self.inspector.as_ref() {
4289 let inspector = inspector.read(cx);
4290 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4291 {
4292 if let Some(hitbox) = self
4293 .next_frame
4294 .hitboxes
4295 .iter()
4296 .find(|hitbox| hitbox.id == hitbox_id)
4297 {
4298 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4299 }
4300 }
4301 }
4302 }
4303
4304 #[cfg(any(feature = "inspector", debug_assertions))]
4305 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4306 let Some(inspector) = self.inspector.clone() else {
4307 return;
4308 };
4309 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4310 inspector.update(cx, |inspector, _cx| {
4311 if let Some((_, inspector_id)) =
4312 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4313 {
4314 inspector.hover(inspector_id, self);
4315 }
4316 });
4317 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4318 inspector.update(cx, |inspector, _cx| {
4319 if let Some((_, inspector_id)) =
4320 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4321 {
4322 inspector.select(inspector_id, self);
4323 }
4324 });
4325 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4326 // This should be kept in sync with SCROLL_LINES in x11 platform.
4327 const SCROLL_LINES: f32 = 3.0;
4328 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4329 let delta_y = event
4330 .delta
4331 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4332 .y;
4333 if let Some(inspector) = self.inspector.clone() {
4334 inspector.update(cx, |inspector, _cx| {
4335 if let Some(depth) = inspector.pick_depth.as_mut() {
4336 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4337 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4338 if *depth < 0.0 {
4339 *depth = 0.0;
4340 } else if *depth > max_depth {
4341 *depth = max_depth;
4342 }
4343 if let Some((_, inspector_id)) =
4344 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4345 {
4346 inspector.set_active_element_id(inspector_id.clone(), self);
4347 }
4348 }
4349 });
4350 }
4351 }
4352 }
4353
4354 #[cfg(any(feature = "inspector", debug_assertions))]
4355 fn hovered_inspector_hitbox(
4356 &self,
4357 inspector: &Inspector,
4358 frame: &Frame,
4359 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4360 if let Some(pick_depth) = inspector.pick_depth {
4361 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4362 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4363 let skip_count = (depth as usize).min(max_skipped);
4364 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4365 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4366 return Some((*hitbox_id, inspector_id.clone()));
4367 }
4368 }
4369 }
4370 return None;
4371 }
4372}
4373
4374// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4375slotmap::new_key_type! {
4376 /// A unique identifier for a window.
4377 pub struct WindowId;
4378}
4379
4380impl WindowId {
4381 /// Converts this window ID to a `u64`.
4382 pub fn as_u64(&self) -> u64 {
4383 self.0.as_ffi()
4384 }
4385}
4386
4387impl From<u64> for WindowId {
4388 fn from(value: u64) -> Self {
4389 WindowId(slotmap::KeyData::from_ffi(value))
4390 }
4391}
4392
4393/// A handle to a window with a specific root view type.
4394/// Note that this does not keep the window alive on its own.
4395#[derive(Deref, DerefMut)]
4396pub struct WindowHandle<V> {
4397 #[deref]
4398 #[deref_mut]
4399 pub(crate) any_handle: AnyWindowHandle,
4400 state_type: PhantomData<V>,
4401}
4402
4403impl<V: 'static + Render> WindowHandle<V> {
4404 /// Creates a new handle from a window ID.
4405 /// This does not check if the root type of the window is `V`.
4406 pub fn new(id: WindowId) -> Self {
4407 WindowHandle {
4408 any_handle: AnyWindowHandle {
4409 id,
4410 state_type: TypeId::of::<V>(),
4411 },
4412 state_type: PhantomData,
4413 }
4414 }
4415
4416 /// Get the root view out of this window.
4417 ///
4418 /// This will fail if the window is closed or if the root view's type does not match `V`.
4419 #[cfg(any(test, feature = "test-support"))]
4420 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4421 where
4422 C: AppContext,
4423 {
4424 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4425 root_view
4426 .downcast::<V>()
4427 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4428 }))
4429 }
4430
4431 /// Updates the root view of this window.
4432 ///
4433 /// This will fail if the window has been closed or if the root view's type does not match
4434 pub fn update<C, R>(
4435 &self,
4436 cx: &mut C,
4437 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4438 ) -> Result<R>
4439 where
4440 C: AppContext,
4441 {
4442 cx.update_window(self.any_handle, |root_view, window, cx| {
4443 let view = root_view
4444 .downcast::<V>()
4445 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4446
4447 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4448 })?
4449 }
4450
4451 /// Read the root view out of this window.
4452 ///
4453 /// This will fail if the window is closed or if the root view's type does not match `V`.
4454 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4455 let x = cx
4456 .windows
4457 .get(self.id)
4458 .and_then(|window| {
4459 window
4460 .as_ref()
4461 .and_then(|window| window.root.clone())
4462 .map(|root_view| root_view.downcast::<V>())
4463 })
4464 .context("window not found")?
4465 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4466
4467 Ok(x.read(cx))
4468 }
4469
4470 /// Read the root view out of this window, with a callback
4471 ///
4472 /// This will fail if the window is closed or if the root view's type does not match `V`.
4473 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4474 where
4475 C: AppContext,
4476 {
4477 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4478 }
4479
4480 /// Read the root view pointer off of this window.
4481 ///
4482 /// This will fail if the window is closed or if the root view's type does not match `V`.
4483 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4484 where
4485 C: AppContext,
4486 {
4487 cx.read_window(self, |root_view, _cx| root_view.clone())
4488 }
4489
4490 /// Check if this window is 'active'.
4491 ///
4492 /// Will return `None` if the window is closed or currently
4493 /// borrowed.
4494 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4495 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4496 .ok()
4497 }
4498}
4499
4500impl<V> Copy for WindowHandle<V> {}
4501
4502impl<V> Clone for WindowHandle<V> {
4503 fn clone(&self) -> Self {
4504 *self
4505 }
4506}
4507
4508impl<V> PartialEq for WindowHandle<V> {
4509 fn eq(&self, other: &Self) -> bool {
4510 self.any_handle == other.any_handle
4511 }
4512}
4513
4514impl<V> Eq for WindowHandle<V> {}
4515
4516impl<V> Hash for WindowHandle<V> {
4517 fn hash<H: Hasher>(&self, state: &mut H) {
4518 self.any_handle.hash(state);
4519 }
4520}
4521
4522impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4523 fn from(val: WindowHandle<V>) -> Self {
4524 val.any_handle
4525 }
4526}
4527
4528unsafe impl<V> Send for WindowHandle<V> {}
4529unsafe impl<V> Sync for WindowHandle<V> {}
4530
4531/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4532#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4533pub struct AnyWindowHandle {
4534 pub(crate) id: WindowId,
4535 state_type: TypeId,
4536}
4537
4538impl AnyWindowHandle {
4539 /// Get the ID of this window.
4540 pub fn window_id(&self) -> WindowId {
4541 self.id
4542 }
4543
4544 /// Attempt to convert this handle to a window handle with a specific root view type.
4545 /// If the types do not match, this will return `None`.
4546 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4547 if TypeId::of::<T>() == self.state_type {
4548 Some(WindowHandle {
4549 any_handle: *self,
4550 state_type: PhantomData,
4551 })
4552 } else {
4553 None
4554 }
4555 }
4556
4557 /// Updates the state of the root view of this window.
4558 ///
4559 /// This will fail if the window has been closed.
4560 pub fn update<C, R>(
4561 self,
4562 cx: &mut C,
4563 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4564 ) -> Result<R>
4565 where
4566 C: AppContext,
4567 {
4568 cx.update_window(self, update)
4569 }
4570
4571 /// Read the state of the root view of this window.
4572 ///
4573 /// This will fail if the window has been closed.
4574 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4575 where
4576 C: AppContext,
4577 T: 'static,
4578 {
4579 let view = self
4580 .downcast::<T>()
4581 .context("the type of the window's root view has changed")?;
4582
4583 cx.read_window(&view, read)
4584 }
4585}
4586
4587impl HasWindowHandle for Window {
4588 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4589 self.platform_window.window_handle()
4590 }
4591}
4592
4593impl HasDisplayHandle for Window {
4594 fn display_handle(
4595 &self,
4596 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4597 self.platform_window.display_handle()
4598 }
4599}
4600
4601/// An identifier for an [`Element`](crate::Element).
4602///
4603/// Can be constructed with a string, a number, or both, as well
4604/// as other internal representations.
4605#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4606pub enum ElementId {
4607 /// The ID of a View element
4608 View(EntityId),
4609 /// An integer ID.
4610 Integer(u64),
4611 /// A string based ID.
4612 Name(SharedString),
4613 /// A UUID.
4614 Uuid(Uuid),
4615 /// An ID that's equated with a focus handle.
4616 FocusHandle(FocusId),
4617 /// A combination of a name and an integer.
4618 NamedInteger(SharedString, u64),
4619 /// A path.
4620 Path(Arc<std::path::Path>),
4621}
4622
4623impl ElementId {
4624 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4625 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4626 Self::NamedInteger(name.into(), integer as u64)
4627 }
4628}
4629
4630impl Display for ElementId {
4631 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4632 match self {
4633 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4634 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4635 ElementId::Name(name) => write!(f, "{}", name)?,
4636 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4637 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4638 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4639 ElementId::Path(path) => write!(f, "{}", path.display())?,
4640 }
4641
4642 Ok(())
4643 }
4644}
4645
4646impl TryInto<SharedString> for ElementId {
4647 type Error = anyhow::Error;
4648
4649 fn try_into(self) -> anyhow::Result<SharedString> {
4650 if let ElementId::Name(name) = self {
4651 Ok(name)
4652 } else {
4653 anyhow::bail!("element id is not string")
4654 }
4655 }
4656}
4657
4658impl From<usize> for ElementId {
4659 fn from(id: usize) -> Self {
4660 ElementId::Integer(id as u64)
4661 }
4662}
4663
4664impl From<i32> for ElementId {
4665 fn from(id: i32) -> Self {
4666 Self::Integer(id as u64)
4667 }
4668}
4669
4670impl From<SharedString> for ElementId {
4671 fn from(name: SharedString) -> Self {
4672 ElementId::Name(name)
4673 }
4674}
4675
4676impl From<Arc<std::path::Path>> for ElementId {
4677 fn from(path: Arc<std::path::Path>) -> Self {
4678 ElementId::Path(path)
4679 }
4680}
4681
4682impl From<&'static str> for ElementId {
4683 fn from(name: &'static str) -> Self {
4684 ElementId::Name(name.into())
4685 }
4686}
4687
4688impl<'a> From<&'a FocusHandle> for ElementId {
4689 fn from(handle: &'a FocusHandle) -> Self {
4690 ElementId::FocusHandle(handle.id)
4691 }
4692}
4693
4694impl From<(&'static str, EntityId)> for ElementId {
4695 fn from((name, id): (&'static str, EntityId)) -> Self {
4696 ElementId::NamedInteger(name.into(), id.as_u64())
4697 }
4698}
4699
4700impl From<(&'static str, usize)> for ElementId {
4701 fn from((name, id): (&'static str, usize)) -> Self {
4702 ElementId::NamedInteger(name.into(), id as u64)
4703 }
4704}
4705
4706impl From<(SharedString, usize)> for ElementId {
4707 fn from((name, id): (SharedString, usize)) -> Self {
4708 ElementId::NamedInteger(name, id as u64)
4709 }
4710}
4711
4712impl From<(&'static str, u64)> for ElementId {
4713 fn from((name, id): (&'static str, u64)) -> Self {
4714 ElementId::NamedInteger(name.into(), id)
4715 }
4716}
4717
4718impl From<Uuid> for ElementId {
4719 fn from(value: Uuid) -> Self {
4720 Self::Uuid(value)
4721 }
4722}
4723
4724impl From<(&'static str, u32)> for ElementId {
4725 fn from((name, id): (&'static str, u32)) -> Self {
4726 ElementId::NamedInteger(name.into(), id.into())
4727 }
4728}
4729
4730/// A rectangle to be rendered in the window at the given position and size.
4731/// Passed as an argument [`Window::paint_quad`].
4732#[derive(Clone)]
4733pub struct PaintQuad {
4734 /// The bounds of the quad within the window.
4735 pub bounds: Bounds<Pixels>,
4736 /// The radii of the quad's corners.
4737 pub corner_radii: Corners<Pixels>,
4738 /// The background color of the quad.
4739 pub background: Background,
4740 /// The widths of the quad's borders.
4741 pub border_widths: Edges<Pixels>,
4742 /// The color of the quad's borders.
4743 pub border_color: Hsla,
4744 /// The style of the quad's borders.
4745 pub border_style: BorderStyle,
4746}
4747
4748impl PaintQuad {
4749 /// Sets the corner radii of the quad.
4750 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4751 PaintQuad {
4752 corner_radii: corner_radii.into(),
4753 ..self
4754 }
4755 }
4756
4757 /// Sets the border widths of the quad.
4758 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4759 PaintQuad {
4760 border_widths: border_widths.into(),
4761 ..self
4762 }
4763 }
4764
4765 /// Sets the border color of the quad.
4766 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4767 PaintQuad {
4768 border_color: border_color.into(),
4769 ..self
4770 }
4771 }
4772
4773 /// Sets the background color of the quad.
4774 pub fn background(self, background: impl Into<Background>) -> Self {
4775 PaintQuad {
4776 background: background.into(),
4777 ..self
4778 }
4779 }
4780}
4781
4782/// Creates a quad with the given parameters.
4783pub fn quad(
4784 bounds: Bounds<Pixels>,
4785 corner_radii: impl Into<Corners<Pixels>>,
4786 background: impl Into<Background>,
4787 border_widths: impl Into<Edges<Pixels>>,
4788 border_color: impl Into<Hsla>,
4789 border_style: BorderStyle,
4790) -> PaintQuad {
4791 PaintQuad {
4792 bounds,
4793 corner_radii: corner_radii.into(),
4794 background: background.into(),
4795 border_widths: border_widths.into(),
4796 border_color: border_color.into(),
4797 border_style,
4798 }
4799}
4800
4801/// Creates a filled quad with the given bounds and background color.
4802pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4803 PaintQuad {
4804 bounds: bounds.into(),
4805 corner_radii: (0.).into(),
4806 background: background.into(),
4807 border_widths: (0.).into(),
4808 border_color: transparent_black(),
4809 border_style: BorderStyle::default(),
4810 }
4811}
4812
4813/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4814pub fn outline(
4815 bounds: impl Into<Bounds<Pixels>>,
4816 border_color: impl Into<Hsla>,
4817 border_style: BorderStyle,
4818) -> PaintQuad {
4819 PaintQuad {
4820 bounds: bounds.into(),
4821 corner_radii: (0.).into(),
4822 background: transparent_black().into(),
4823 border_widths: (1.).into(),
4824 border_color: border_color.into(),
4825 border_style,
4826 }
4827}