geometry.rs

   1//! The GPUI geometry module is a collection of types and traits that
   2//! can be used to describe common units, concepts, and the relationships
   3//! between them.
   4
   5use anyhow::{Context as _, anyhow};
   6use core::fmt::Debug;
   7use derive_more::{Add, AddAssign, Div, DivAssign, Mul, Neg, Sub, SubAssign};
   8use refineable::Refineable;
   9use schemars::{JsonSchema, json_schema};
  10use serde::{Deserialize, Deserializer, Serialize, Serializer, de};
  11use std::borrow::Cow;
  12use std::ops::Range;
  13use std::{
  14    cmp::{self, PartialOrd},
  15    fmt::{self, Display},
  16    hash::Hash,
  17    ops::{Add, Div, Mul, MulAssign, Neg, Sub},
  18};
  19use taffy::prelude::{TaffyGridLine, TaffyGridSpan};
  20
  21use crate::{App, DisplayId};
  22
  23/// Axis in a 2D cartesian space.
  24#[derive(Copy, Clone, PartialEq, Eq, Serialize, Deserialize, Debug)]
  25pub enum Axis {
  26    /// The y axis, or up and down
  27    Vertical,
  28    /// The x axis, or left and right
  29    Horizontal,
  30}
  31
  32impl Axis {
  33    /// Swap this axis to the opposite axis.
  34    pub fn invert(self) -> Self {
  35        match self {
  36            Axis::Vertical => Axis::Horizontal,
  37            Axis::Horizontal => Axis::Vertical,
  38        }
  39    }
  40}
  41
  42/// A trait for accessing the given unit along a certain axis.
  43pub trait Along {
  44    /// The unit associated with this type
  45    type Unit;
  46
  47    /// Returns the unit along the given axis.
  48    fn along(&self, axis: Axis) -> Self::Unit;
  49
  50    /// Applies the given function to the unit along the given axis and returns a new value.
  51    fn apply_along(&self, axis: Axis, f: impl FnOnce(Self::Unit) -> Self::Unit) -> Self;
  52}
  53
  54/// Describes a location in a 2D cartesian space.
  55///
  56/// It holds two public fields, `x` and `y`, which represent the coordinates in the space.
  57/// The type `T` for the coordinates can be any type that implements `Default`, `Clone`, and `Debug`.
  58///
  59/// # Examples
  60///
  61/// ```
  62/// # use gpui::Point;
  63/// let point = Point { x: 10, y: 20 };
  64/// println!("{:?}", point); // Outputs: Point { x: 10, y: 20 }
  65/// ```
  66#[derive(
  67    Refineable,
  68    Default,
  69    Add,
  70    AddAssign,
  71    Sub,
  72    SubAssign,
  73    Copy,
  74    Debug,
  75    PartialEq,
  76    Eq,
  77    Serialize,
  78    Deserialize,
  79    JsonSchema,
  80    Hash,
  81)]
  82#[refineable(Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  83#[repr(C)]
  84pub struct Point<T: Clone + Debug + Default + PartialEq> {
  85    /// The x coordinate of the point.
  86    pub x: T,
  87    /// The y coordinate of the point.
  88    pub y: T,
  89}
  90
  91/// Constructs a new `Point<T>` with the given x and y coordinates.
  92///
  93/// # Arguments
  94///
  95/// * `x` - The x coordinate of the point.
  96/// * `y` - The y coordinate of the point.
  97///
  98/// # Returns
  99///
 100/// Returns a `Point<T>` with the specified coordinates.
 101///
 102/// # Examples
 103///
 104/// ```
 105/// use gpui::point;
 106/// let p = point(10, 20);
 107/// assert_eq!(p.x, 10);
 108/// assert_eq!(p.y, 20);
 109/// ```
 110pub const fn point<T: Clone + Debug + Default + PartialEq>(x: T, y: T) -> Point<T> {
 111    Point { x, y }
 112}
 113
 114impl<T: Clone + Debug + Default + PartialEq> Point<T> {
 115    /// Creates a new `Point` with the specified `x` and `y` coordinates.
 116    ///
 117    /// # Arguments
 118    ///
 119    /// * `x` - The horizontal coordinate of the point.
 120    /// * `y` - The vertical coordinate of the point.
 121    ///
 122    /// # Examples
 123    ///
 124    /// ```
 125    /// use gpui::Point;
 126    /// let p = Point::new(10, 20);
 127    /// assert_eq!(p.x, 10);
 128    /// assert_eq!(p.y, 20);
 129    /// ```
 130    pub const fn new(x: T, y: T) -> Self {
 131        Self { x, y }
 132    }
 133
 134    /// Transforms the point to a `Point<U>` by applying the given function to both coordinates.
 135    ///
 136    /// This method allows for converting a `Point<T>` to a `Point<U>` by specifying a closure
 137    /// that defines how to convert between the two types. The closure is applied to both the `x`
 138    /// and `y` coordinates, resulting in a new point of the desired type.
 139    ///
 140    /// # Arguments
 141    ///
 142    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 143    ///
 144    /// # Examples
 145    ///
 146    /// ```
 147    /// # use gpui::Point;
 148    /// let p = Point { x: 3, y: 4 };
 149    /// let p_float = p.map(|coord| coord as f32);
 150    /// assert_eq!(p_float, Point { x: 3.0, y: 4.0 });
 151    /// ```
 152    #[must_use]
 153    pub fn map<U: Clone + Debug + Default + PartialEq>(&self, f: impl Fn(T) -> U) -> Point<U> {
 154        Point {
 155            x: f(self.x.clone()),
 156            y: f(self.y.clone()),
 157        }
 158    }
 159}
 160
 161impl<T: Clone + Debug + Default + PartialEq> Along for Point<T> {
 162    type Unit = T;
 163
 164    fn along(&self, axis: Axis) -> T {
 165        match axis {
 166            Axis::Horizontal => self.x.clone(),
 167            Axis::Vertical => self.y.clone(),
 168        }
 169    }
 170
 171    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Point<T> {
 172        match axis {
 173            Axis::Horizontal => Point {
 174                x: f(self.x.clone()),
 175                y: self.y.clone(),
 176            },
 177            Axis::Vertical => Point {
 178                x: self.x.clone(),
 179                y: f(self.y.clone()),
 180            },
 181        }
 182    }
 183}
 184
 185impl<T: Clone + Debug + Default + PartialEq + Negate> Negate for Point<T> {
 186    fn negate(self) -> Self {
 187        self.map(Negate::negate)
 188    }
 189}
 190
 191impl Point<Pixels> {
 192    /// Scales the point by a given factor, which is typically derived from the resolution
 193    /// of a target display to ensure proper sizing of UI elements.
 194    ///
 195    /// # Arguments
 196    ///
 197    /// * `factor` - The scaling factor to apply to both the x and y coordinates.
 198    ///
 199    /// # Examples
 200    ///
 201    /// ```
 202    /// # use gpui::{Point, Pixels, ScaledPixels};
 203    /// let p = Point { x: Pixels::from(10.0), y: Pixels::from(20.0) };
 204    /// let scaled_p = p.scale(1.5);
 205    /// assert_eq!(scaled_p, Point { x: ScaledPixels::from(15.0), y: ScaledPixels::from(30.0) });
 206    /// ```
 207    pub fn scale(&self, factor: f32) -> Point<ScaledPixels> {
 208        Point {
 209            x: self.x.scale(factor),
 210            y: self.y.scale(factor),
 211        }
 212    }
 213
 214    /// Calculates the Euclidean distance from the origin (0, 0) to this point.
 215    ///
 216    /// # Examples
 217    ///
 218    /// ```
 219    /// # use gpui::{Pixels, Point};
 220    /// let p = Point { x: Pixels::from(3.0), y: Pixels::from(4.0) };
 221    /// assert_eq!(p.magnitude(), 5.0);
 222    /// ```
 223    pub fn magnitude(&self) -> f64 {
 224        ((self.x.0.powi(2) + self.y.0.powi(2)) as f64).sqrt()
 225    }
 226}
 227
 228impl<T> Point<T>
 229where
 230    T: Sub<T, Output = T> + Clone + Debug + Default + PartialEq,
 231{
 232    /// Get the position of this point, relative to the given origin
 233    pub fn relative_to(&self, origin: &Point<T>) -> Point<T> {
 234        point(
 235            self.x.clone() - origin.x.clone(),
 236            self.y.clone() - origin.y.clone(),
 237        )
 238    }
 239}
 240
 241impl<T, Rhs> Mul<Rhs> for Point<T>
 242where
 243    T: Mul<Rhs, Output = T> + Clone + Debug + Default + PartialEq,
 244    Rhs: Clone + Debug,
 245{
 246    type Output = Point<T>;
 247
 248    fn mul(self, rhs: Rhs) -> Self::Output {
 249        Point {
 250            x: self.x * rhs.clone(),
 251            y: self.y * rhs,
 252        }
 253    }
 254}
 255
 256impl<T, S> MulAssign<S> for Point<T>
 257where
 258    T: Mul<S, Output = T> + Clone + Debug + Default + PartialEq,
 259    S: Clone,
 260{
 261    fn mul_assign(&mut self, rhs: S) {
 262        self.x = self.x.clone() * rhs.clone();
 263        self.y = self.y.clone() * rhs;
 264    }
 265}
 266
 267impl<T, S> Div<S> for Point<T>
 268where
 269    T: Div<S, Output = T> + Clone + Debug + Default + PartialEq,
 270    S: Clone,
 271{
 272    type Output = Self;
 273
 274    fn div(self, rhs: S) -> Self::Output {
 275        Self {
 276            x: self.x / rhs.clone(),
 277            y: self.y / rhs,
 278        }
 279    }
 280}
 281
 282impl<T> Point<T>
 283where
 284    T: PartialOrd + Clone + Debug + Default + PartialEq,
 285{
 286    /// Returns a new point with the maximum values of each dimension from `self` and `other`.
 287    ///
 288    /// # Arguments
 289    ///
 290    /// * `other` - A reference to another `Point` to compare with `self`.
 291    ///
 292    /// # Examples
 293    ///
 294    /// ```
 295    /// # use gpui::Point;
 296    /// let p1 = Point { x: 3, y: 7 };
 297    /// let p2 = Point { x: 5, y: 2 };
 298    /// let max_point = p1.max(&p2);
 299    /// assert_eq!(max_point, Point { x: 5, y: 7 });
 300    /// ```
 301    pub fn max(&self, other: &Self) -> Self {
 302        Point {
 303            x: if self.x > other.x {
 304                self.x.clone()
 305            } else {
 306                other.x.clone()
 307            },
 308            y: if self.y > other.y {
 309                self.y.clone()
 310            } else {
 311                other.y.clone()
 312            },
 313        }
 314    }
 315
 316    /// Returns a new point with the minimum values of each dimension from `self` and `other`.
 317    ///
 318    /// # Arguments
 319    ///
 320    /// * `other` - A reference to another `Point` to compare with `self`.
 321    ///
 322    /// # Examples
 323    ///
 324    /// ```
 325    /// # use gpui::Point;
 326    /// let p1 = Point { x: 3, y: 7 };
 327    /// let p2 = Point { x: 5, y: 2 };
 328    /// let min_point = p1.min(&p2);
 329    /// assert_eq!(min_point, Point { x: 3, y: 2 });
 330    /// ```
 331    pub fn min(&self, other: &Self) -> Self {
 332        Point {
 333            x: if self.x <= other.x {
 334                self.x.clone()
 335            } else {
 336                other.x.clone()
 337            },
 338            y: if self.y <= other.y {
 339                self.y.clone()
 340            } else {
 341                other.y.clone()
 342            },
 343        }
 344    }
 345
 346    /// Clamps the point to a specified range.
 347    ///
 348    /// Given a minimum point and a maximum point, this method constrains the current point
 349    /// such that its coordinates do not exceed the range defined by the minimum and maximum points.
 350    /// If the current point's coordinates are less than the minimum, they are set to the minimum.
 351    /// If they are greater than the maximum, they are set to the maximum.
 352    ///
 353    /// # Arguments
 354    ///
 355    /// * `min` - A reference to a `Point` representing the minimum allowable coordinates.
 356    /// * `max` - A reference to a `Point` representing the maximum allowable coordinates.
 357    ///
 358    /// # Examples
 359    ///
 360    /// ```
 361    /// # use gpui::Point;
 362    /// let p = Point { x: 10, y: 20 };
 363    /// let min = Point { x: 0, y: 5 };
 364    /// let max = Point { x: 15, y: 25 };
 365    /// let clamped_p = p.clamp(&min, &max);
 366    /// assert_eq!(clamped_p, Point { x: 10, y: 20 });
 367    ///
 368    /// let p_out_of_bounds = Point { x: -5, y: 30 };
 369    /// let clamped_p_out_of_bounds = p_out_of_bounds.clamp(&min, &max);
 370    /// assert_eq!(clamped_p_out_of_bounds, Point { x: 0, y: 25 });
 371    /// ```
 372    pub fn clamp(&self, min: &Self, max: &Self) -> Self {
 373        self.max(min).min(max)
 374    }
 375}
 376
 377impl<T: Clone + Debug + Default + PartialEq> Clone for Point<T> {
 378    fn clone(&self) -> Self {
 379        Self {
 380            x: self.x.clone(),
 381            y: self.y.clone(),
 382        }
 383    }
 384}
 385
 386impl<T: Clone + Debug + Default + PartialEq + Display> Display for Point<T> {
 387    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 388        write!(f, "({}, {})", self.x, self.y)
 389    }
 390}
 391
 392/// A structure representing a two-dimensional size with width and height in a given unit.
 393///
 394/// This struct is generic over the type `T`, which can be any type that implements `Clone`, `Default`, and `Debug`.
 395/// It is commonly used to specify dimensions for elements in a UI, such as a window or element.
 396#[derive(Refineable, Default, Clone, Copy, PartialEq, Div, Hash, Serialize, Deserialize)]
 397#[refineable(Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 398#[repr(C)]
 399pub struct Size<T: Clone + Debug + Default + PartialEq> {
 400    /// The width component of the size.
 401    pub width: T,
 402    /// The height component of the size.
 403    pub height: T,
 404}
 405
 406impl<T: Clone + Debug + Default + PartialEq> Size<T> {
 407    /// Create a new Size, a synonym for [`size`]
 408    pub fn new(width: T, height: T) -> Self {
 409        size(width, height)
 410    }
 411}
 412
 413/// Constructs a new `Size<T>` with the provided width and height.
 414///
 415/// # Arguments
 416///
 417/// * `width` - The width component of the `Size`.
 418/// * `height` - The height component of the `Size`.
 419///
 420/// # Examples
 421///
 422/// ```
 423/// use gpui::size;
 424/// let my_size = size(10, 20);
 425/// assert_eq!(my_size.width, 10);
 426/// assert_eq!(my_size.height, 20);
 427/// ```
 428pub const fn size<T>(width: T, height: T) -> Size<T>
 429where
 430    T: Clone + Debug + Default + PartialEq,
 431{
 432    Size { width, height }
 433}
 434
 435impl<T> Size<T>
 436where
 437    T: Clone + Debug + Default + PartialEq,
 438{
 439    /// Applies a function to the width and height of the size, producing a new `Size<U>`.
 440    ///
 441    /// This method allows for converting a `Size<T>` to a `Size<U>` by specifying a closure
 442    /// that defines how to convert between the two types. The closure is applied to both the `width`
 443    /// and `height`, resulting in a new size of the desired type.
 444    ///
 445    /// # Arguments
 446    ///
 447    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
 448    ///
 449    /// # Examples
 450    ///
 451    /// ```
 452    /// # use gpui::Size;
 453    /// let my_size = Size { width: 10, height: 20 };
 454    /// let my_new_size = my_size.map(|dimension| dimension as f32 * 1.5);
 455    /// assert_eq!(my_new_size, Size { width: 15.0, height: 30.0 });
 456    /// ```
 457    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Size<U>
 458    where
 459        U: Clone + Debug + Default + PartialEq,
 460    {
 461        Size {
 462            width: f(self.width.clone()),
 463            height: f(self.height.clone()),
 464        }
 465    }
 466}
 467
 468impl<T> Size<T>
 469where
 470    T: Clone + Debug + Default + PartialEq + Half,
 471{
 472    /// Compute the center point of the size.g
 473    pub fn center(&self) -> Point<T> {
 474        Point {
 475            x: self.width.half(),
 476            y: self.height.half(),
 477        }
 478    }
 479}
 480
 481impl Size<Pixels> {
 482    /// Scales the size by a given factor.
 483    ///
 484    /// This method multiplies both the width and height by the provided scaling factor,
 485    /// resulting in a new `Size<ScaledPixels>` that is proportionally larger or smaller
 486    /// depending on the factor.
 487    ///
 488    /// # Arguments
 489    ///
 490    /// * `factor` - The scaling factor to apply to the width and height.
 491    ///
 492    /// # Examples
 493    ///
 494    /// ```
 495    /// # use gpui::{Size, Pixels, ScaledPixels};
 496    /// let size = Size { width: Pixels::from(100.0), height: Pixels::from(50.0) };
 497    /// let scaled_size = size.scale(2.0);
 498    /// assert_eq!(scaled_size, Size { width: ScaledPixels::from(200.0), height: ScaledPixels::from(100.0) });
 499    /// ```
 500    pub fn scale(&self, factor: f32) -> Size<ScaledPixels> {
 501        Size {
 502            width: self.width.scale(factor),
 503            height: self.height.scale(factor),
 504        }
 505    }
 506}
 507
 508impl<T> Along for Size<T>
 509where
 510    T: Clone + Debug + Default + PartialEq,
 511{
 512    type Unit = T;
 513
 514    fn along(&self, axis: Axis) -> T {
 515        match axis {
 516            Axis::Horizontal => self.width.clone(),
 517            Axis::Vertical => self.height.clone(),
 518        }
 519    }
 520
 521    /// Returns the value of this size along the given axis.
 522    fn apply_along(&self, axis: Axis, f: impl FnOnce(T) -> T) -> Self {
 523        match axis {
 524            Axis::Horizontal => Size {
 525                width: f(self.width.clone()),
 526                height: self.height.clone(),
 527            },
 528            Axis::Vertical => Size {
 529                width: self.width.clone(),
 530                height: f(self.height.clone()),
 531            },
 532        }
 533    }
 534}
 535
 536impl<T> Size<T>
 537where
 538    T: PartialOrd + Clone + Debug + Default + PartialEq,
 539{
 540    /// Returns a new `Size` with the maximum width and height from `self` and `other`.
 541    ///
 542    /// # Arguments
 543    ///
 544    /// * `other` - A reference to another `Size` to compare with `self`.
 545    ///
 546    /// # Examples
 547    ///
 548    /// ```
 549    /// # use gpui::Size;
 550    /// let size1 = Size { width: 30, height: 40 };
 551    /// let size2 = Size { width: 50, height: 20 };
 552    /// let max_size = size1.max(&size2);
 553    /// assert_eq!(max_size, Size { width: 50, height: 40 });
 554    /// ```
 555    pub fn max(&self, other: &Self) -> Self {
 556        Size {
 557            width: if self.width >= other.width {
 558                self.width.clone()
 559            } else {
 560                other.width.clone()
 561            },
 562            height: if self.height >= other.height {
 563                self.height.clone()
 564            } else {
 565                other.height.clone()
 566            },
 567        }
 568    }
 569
 570    /// Returns a new `Size` with the minimum width and height from `self` and `other`.
 571    ///
 572    /// # Arguments
 573    ///
 574    /// * `other` - A reference to another `Size` to compare with `self`.
 575    ///
 576    /// # Examples
 577    ///
 578    /// ```
 579    /// # use gpui::Size;
 580    /// let size1 = Size { width: 30, height: 40 };
 581    /// let size2 = Size { width: 50, height: 20 };
 582    /// let min_size = size1.min(&size2);
 583    /// assert_eq!(min_size, Size { width: 30, height: 20 });
 584    /// ```
 585    pub fn min(&self, other: &Self) -> Self {
 586        Size {
 587            width: if self.width >= other.width {
 588                other.width.clone()
 589            } else {
 590                self.width.clone()
 591            },
 592            height: if self.height >= other.height {
 593                other.height.clone()
 594            } else {
 595                self.height.clone()
 596            },
 597        }
 598    }
 599}
 600
 601impl<T> Sub for Size<T>
 602where
 603    T: Sub<Output = T> + Clone + Debug + Default + PartialEq,
 604{
 605    type Output = Size<T>;
 606
 607    fn sub(self, rhs: Self) -> Self::Output {
 608        Size {
 609            width: self.width - rhs.width,
 610            height: self.height - rhs.height,
 611        }
 612    }
 613}
 614
 615impl<T> Add for Size<T>
 616where
 617    T: Add<Output = T> + Clone + Debug + Default + PartialEq,
 618{
 619    type Output = Size<T>;
 620
 621    fn add(self, rhs: Self) -> Self::Output {
 622        Size {
 623            width: self.width + rhs.width,
 624            height: self.height + rhs.height,
 625        }
 626    }
 627}
 628
 629impl<T, Rhs> Mul<Rhs> for Size<T>
 630where
 631    T: Mul<Rhs, Output = Rhs> + Clone + Debug + Default + PartialEq,
 632    Rhs: Clone + Debug + Default + PartialEq,
 633{
 634    type Output = Size<Rhs>;
 635
 636    fn mul(self, rhs: Rhs) -> Self::Output {
 637        Size {
 638            width: self.width * rhs.clone(),
 639            height: self.height * rhs,
 640        }
 641    }
 642}
 643
 644impl<T, S> MulAssign<S> for Size<T>
 645where
 646    T: Mul<S, Output = T> + Clone + Debug + Default + PartialEq,
 647    S: Clone,
 648{
 649    fn mul_assign(&mut self, rhs: S) {
 650        self.width = self.width.clone() * rhs.clone();
 651        self.height = self.height.clone() * rhs;
 652    }
 653}
 654
 655impl<T> Eq for Size<T> where T: Eq + Clone + Debug + Default + PartialEq {}
 656
 657impl<T> Debug for Size<T>
 658where
 659    T: Clone + Debug + Default + PartialEq,
 660{
 661    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 662        write!(f, "Size {{ {:?} × {:?} }}", self.width, self.height)
 663    }
 664}
 665
 666impl<T: Clone + Debug + Default + PartialEq + Display> Display for Size<T> {
 667    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 668        write!(f, "{} × {}", self.width, self.height)
 669    }
 670}
 671
 672impl<T: Clone + Debug + Default + PartialEq> From<Point<T>> for Size<T> {
 673    fn from(point: Point<T>) -> Self {
 674        Self {
 675            width: point.x,
 676            height: point.y,
 677        }
 678    }
 679}
 680
 681impl From<Size<Pixels>> for Size<DefiniteLength> {
 682    fn from(size: Size<Pixels>) -> Self {
 683        Size {
 684            width: size.width.into(),
 685            height: size.height.into(),
 686        }
 687    }
 688}
 689
 690impl From<Size<Pixels>> for Size<AbsoluteLength> {
 691    fn from(size: Size<Pixels>) -> Self {
 692        Size {
 693            width: size.width.into(),
 694            height: size.height.into(),
 695        }
 696    }
 697}
 698
 699impl Size<Length> {
 700    /// Returns a `Size` with both width and height set to fill the available space.
 701    ///
 702    /// This function creates a `Size` instance where both the width and height are set to `Length::Definite(DefiniteLength::Fraction(1.0))`,
 703    /// which represents 100% of the available space in both dimensions.
 704    ///
 705    /// # Returns
 706    ///
 707    /// A `Size<Length>` that will fill the available space when used in a layout.
 708    pub fn full() -> Self {
 709        Self {
 710            width: relative(1.).into(),
 711            height: relative(1.).into(),
 712        }
 713    }
 714}
 715
 716impl Size<Length> {
 717    /// Returns a `Size` with both width and height set to `auto`, which allows the layout engine to determine the size.
 718    ///
 719    /// This function creates a `Size` instance where both the width and height are set to `Length::Auto`,
 720    /// indicating that their size should be computed based on the layout context, such as the content size or
 721    /// available space.
 722    ///
 723    /// # Returns
 724    ///
 725    /// A `Size<Length>` with width and height set to `Length::Auto`.
 726    pub fn auto() -> Self {
 727        Self {
 728            width: Length::Auto,
 729            height: Length::Auto,
 730        }
 731    }
 732}
 733
 734/// Represents a rectangular area in a 2D space with an origin point and a size.
 735///
 736/// The `Bounds` struct is generic over a type `T` which represents the type of the coordinate system.
 737/// The origin is represented as a `Point<T>` which defines the top left corner of the rectangle,
 738/// and the size is represented as a `Size<T>` which defines the width and height of the rectangle.
 739///
 740/// # Examples
 741///
 742/// ```
 743/// # use gpui::{Bounds, Point, Size};
 744/// let origin = Point { x: 0, y: 0 };
 745/// let size = Size { width: 10, height: 20 };
 746/// let bounds = Bounds::new(origin, size);
 747///
 748/// assert_eq!(bounds.origin, origin);
 749/// assert_eq!(bounds.size, size);
 750/// ```
 751#[derive(Refineable, Copy, Clone, Default, Debug, Eq, PartialEq, Serialize, Deserialize, Hash)]
 752#[refineable(Debug)]
 753#[repr(C)]
 754pub struct Bounds<T: Clone + Debug + Default + PartialEq> {
 755    /// The origin point of this area.
 756    pub origin: Point<T>,
 757    /// The size of the rectangle.
 758    pub size: Size<T>,
 759}
 760
 761/// Create a bounds with the given origin and size
 762pub fn bounds<T: Clone + Debug + Default + PartialEq>(
 763    origin: Point<T>,
 764    size: Size<T>,
 765) -> Bounds<T> {
 766    Bounds { origin, size }
 767}
 768
 769impl Bounds<Pixels> {
 770    /// Generate a centered bounds for the given display or primary display if none is provided
 771    pub fn centered(display_id: Option<DisplayId>, size: Size<Pixels>, cx: &App) -> Self {
 772        let display = display_id
 773            .and_then(|id| cx.find_display(id))
 774            .or_else(|| cx.primary_display());
 775
 776        display
 777            .map(|display| Bounds::centered_at(display.bounds().center(), size))
 778            .unwrap_or_else(|| Bounds {
 779                origin: point(px(0.), px(0.)),
 780                size,
 781            })
 782    }
 783
 784    /// Generate maximized bounds for the given display or primary display if none is provided
 785    pub fn maximized(display_id: Option<DisplayId>, cx: &App) -> Self {
 786        let display = display_id
 787            .and_then(|id| cx.find_display(id))
 788            .or_else(|| cx.primary_display());
 789
 790        display
 791            .map(|display| display.bounds())
 792            .unwrap_or_else(|| Bounds {
 793                origin: point(px(0.), px(0.)),
 794                size: size(px(1024.), px(768.)),
 795            })
 796    }
 797}
 798
 799impl<T> Bounds<T>
 800where
 801    T: Clone + Debug + Default + PartialEq,
 802{
 803    /// Creates a new `Bounds` with the specified origin and size.
 804    ///
 805    /// # Arguments
 806    ///
 807    /// * `origin` - A `Point<T>` representing the origin of the bounds.
 808    /// * `size` - A `Size<T>` representing the size of the bounds.
 809    ///
 810    /// # Returns
 811    ///
 812    /// Returns a `Bounds<T>` that has the given origin and size.
 813    pub fn new(origin: Point<T>, size: Size<T>) -> Self {
 814        Bounds { origin, size }
 815    }
 816}
 817
 818impl<T> Bounds<T>
 819where
 820    T: Sub<Output = T> + Clone + Debug + Default + PartialEq,
 821{
 822    /// Constructs a `Bounds` from two corner points: the top left and bottom right corners.
 823    ///
 824    /// This function calculates the origin and size of the `Bounds` based on the provided corner points.
 825    /// The origin is set to the top left corner, and the size is determined by the difference between
 826    /// the x and y coordinates of the bottom right and top left points.
 827    ///
 828    /// # Arguments
 829    ///
 830    /// * `top_left` - A `Point<T>` representing the top left corner of the rectangle.
 831    /// * `bottom_right` - A `Point<T>` representing the bottom right corner of the rectangle.
 832    ///
 833    /// # Returns
 834    ///
 835    /// Returns a `Bounds<T>` that encompasses the area defined by the two corner points.
 836    ///
 837    /// # Examples
 838    ///
 839    /// ```
 840    /// # use gpui::{Bounds, Point};
 841    /// let top_left = Point { x: 0, y: 0 };
 842    /// let bottom_right = Point { x: 10, y: 10 };
 843    /// let bounds = Bounds::from_corners(top_left, bottom_right);
 844    ///
 845    /// assert_eq!(bounds.origin, top_left);
 846    /// assert_eq!(bounds.size.width, 10);
 847    /// assert_eq!(bounds.size.height, 10);
 848    /// ```
 849    pub fn from_corners(top_left: Point<T>, bottom_right: Point<T>) -> Self {
 850        let origin = Point {
 851            x: top_left.x.clone(),
 852            y: top_left.y.clone(),
 853        };
 854        let size = Size {
 855            width: bottom_right.x - top_left.x,
 856            height: bottom_right.y - top_left.y,
 857        };
 858        Bounds { origin, size }
 859    }
 860
 861    /// Constructs a `Bounds` from a corner point and size. The specified corner will be placed at
 862    /// the specified origin.
 863    pub fn from_corner_and_size(corner: Corner, origin: Point<T>, size: Size<T>) -> Bounds<T> {
 864        let origin = match corner {
 865            Corner::TopLeft => origin,
 866            Corner::TopRight => Point {
 867                x: origin.x - size.width.clone(),
 868                y: origin.y,
 869            },
 870            Corner::BottomLeft => Point {
 871                x: origin.x,
 872                y: origin.y - size.height.clone(),
 873            },
 874            Corner::BottomRight => Point {
 875                x: origin.x - size.width.clone(),
 876                y: origin.y - size.height.clone(),
 877            },
 878        };
 879
 880        Bounds { origin, size }
 881    }
 882}
 883
 884impl<T> Bounds<T>
 885where
 886    T: Sub<T, Output = T> + Half + Clone + Debug + Default + PartialEq,
 887{
 888    /// Creates a new bounds centered at the given point.
 889    pub fn centered_at(center: Point<T>, size: Size<T>) -> Self {
 890        let origin = Point {
 891            x: center.x - size.width.half(),
 892            y: center.y - size.height.half(),
 893        };
 894        Self::new(origin, size)
 895    }
 896}
 897
 898impl<T> Bounds<T>
 899where
 900    T: PartialOrd + Add<T, Output = T> + Clone + Debug + Default + PartialEq,
 901{
 902    /// Checks if this `Bounds` intersects with another `Bounds`.
 903    ///
 904    /// Two `Bounds` instances intersect if they overlap in the 2D space they occupy.
 905    /// This method checks if there is any overlapping area between the two bounds.
 906    ///
 907    /// # Arguments
 908    ///
 909    /// * `other` - A reference to another `Bounds` to check for intersection with.
 910    ///
 911    /// # Returns
 912    ///
 913    /// Returns `true` if there is any intersection between the two bounds, `false` otherwise.
 914    ///
 915    /// # Examples
 916    ///
 917    /// ```
 918    /// # use gpui::{Bounds, Point, Size};
 919    /// let bounds1 = Bounds {
 920    ///     origin: Point { x: 0, y: 0 },
 921    ///     size: Size { width: 10, height: 10 },
 922    /// };
 923    /// let bounds2 = Bounds {
 924    ///     origin: Point { x: 5, y: 5 },
 925    ///     size: Size { width: 10, height: 10 },
 926    /// };
 927    /// let bounds3 = Bounds {
 928    ///     origin: Point { x: 20, y: 20 },
 929    ///     size: Size { width: 10, height: 10 },
 930    /// };
 931    ///
 932    /// assert_eq!(bounds1.intersects(&bounds2), true); // Overlapping bounds
 933    /// assert_eq!(bounds1.intersects(&bounds3), false); // Non-overlapping bounds
 934    /// ```
 935    pub fn intersects(&self, other: &Bounds<T>) -> bool {
 936        let my_lower_right = self.bottom_right();
 937        let their_lower_right = other.bottom_right();
 938
 939        self.origin.x < their_lower_right.x
 940            && my_lower_right.x > other.origin.x
 941            && self.origin.y < their_lower_right.y
 942            && my_lower_right.y > other.origin.y
 943    }
 944}
 945
 946impl<T> Bounds<T>
 947where
 948    T: Add<T, Output = T> + Half + Clone + Debug + Default + PartialEq,
 949{
 950    /// Returns the center point of the bounds.
 951    ///
 952    /// Calculates the center by taking the origin's x and y coordinates and adding half the width and height
 953    /// of the bounds, respectively. The center is represented as a `Point<T>` where `T` is the type of the
 954    /// coordinate system.
 955    ///
 956    /// # Returns
 957    ///
 958    /// A `Point<T>` representing the center of the bounds.
 959    ///
 960    /// # Examples
 961    ///
 962    /// ```
 963    /// # use gpui::{Bounds, Point, Size};
 964    /// let bounds = Bounds {
 965    ///     origin: Point { x: 0, y: 0 },
 966    ///     size: Size { width: 10, height: 20 },
 967    /// };
 968    /// let center = bounds.center();
 969    /// assert_eq!(center, Point { x: 5, y: 10 });
 970    /// ```
 971    pub fn center(&self) -> Point<T> {
 972        Point {
 973            x: self.origin.x.clone() + self.size.width.clone().half(),
 974            y: self.origin.y.clone() + self.size.height.clone().half(),
 975        }
 976    }
 977}
 978
 979impl<T> Bounds<T>
 980where
 981    T: Add<T, Output = T> + Clone + Debug + Default + PartialEq,
 982{
 983    /// Calculates the half perimeter of a rectangle defined by the bounds.
 984    ///
 985    /// The half perimeter is calculated as the sum of the width and the height of the rectangle.
 986    /// This method is generic over the type `T` which must implement the `Sub` trait to allow
 987    /// calculation of the width and height from the bounds' origin and size, as well as the `Add` trait
 988    /// to sum the width and height for the half perimeter.
 989    ///
 990    /// # Examples
 991    ///
 992    /// ```
 993    /// # use gpui::{Bounds, Point, Size};
 994    /// let bounds = Bounds {
 995    ///     origin: Point { x: 0, y: 0 },
 996    ///     size: Size { width: 10, height: 20 },
 997    /// };
 998    /// let half_perimeter = bounds.half_perimeter();
 999    /// assert_eq!(half_perimeter, 30);
1000    /// ```
1001    pub fn half_perimeter(&self) -> T {
1002        self.size.width.clone() + self.size.height.clone()
1003    }
1004}
1005
1006impl<T> Bounds<T>
1007where
1008    T: Add<T, Output = T> + Sub<Output = T> + Clone + Debug + Default + PartialEq,
1009{
1010    /// Dilates the bounds by a specified amount in all directions.
1011    ///
1012    /// This method expands the bounds by the given `amount`, increasing the size
1013    /// and adjusting the origin so that the bounds grow outwards equally in all directions.
1014    /// The resulting bounds will have its width and height increased by twice the `amount`
1015    /// (since it grows in both directions), and the origin will be moved by `-amount`
1016    /// in both the x and y directions.
1017    ///
1018    /// # Arguments
1019    ///
1020    /// * `amount` - The amount by which to dilate the bounds.
1021    ///
1022    /// # Examples
1023    ///
1024    /// ```
1025    /// # use gpui::{Bounds, Point, Size};
1026    /// let mut bounds = Bounds {
1027    ///     origin: Point { x: 10, y: 10 },
1028    ///     size: Size { width: 10, height: 10 },
1029    /// };
1030    /// let expanded_bounds = bounds.dilate(5);
1031    /// assert_eq!(expanded_bounds, Bounds {
1032    ///     origin: Point { x: 5, y: 5 },
1033    ///     size: Size { width: 20, height: 20 },
1034    /// });
1035    /// ```
1036    #[must_use]
1037    pub fn dilate(&self, amount: T) -> Bounds<T> {
1038        let double_amount = amount.clone() + amount.clone();
1039        Bounds {
1040            origin: self.origin.clone() - point(amount.clone(), amount),
1041            size: self.size.clone() + size(double_amount.clone(), double_amount),
1042        }
1043    }
1044
1045    /// Extends the bounds different amounts in each direction.
1046    #[must_use]
1047    pub fn extend(&self, amount: Edges<T>) -> Bounds<T> {
1048        Bounds {
1049            origin: self.origin.clone() - point(amount.left.clone(), amount.top.clone()),
1050            size: self.size.clone()
1051                + size(
1052                    amount.left.clone() + amount.right.clone(),
1053                    amount.top.clone() + amount.bottom,
1054                ),
1055        }
1056    }
1057}
1058
1059impl<T> Bounds<T>
1060where
1061    T: Add<T, Output = T>
1062        + Sub<T, Output = T>
1063        + Neg<Output = T>
1064        + Clone
1065        + Debug
1066        + Default
1067        + PartialEq,
1068{
1069    /// Inset the bounds by a specified amount. Equivalent to `dilate` with the amount negated.
1070    ///
1071    /// Note that this may panic if T does not support negative values.
1072    pub fn inset(&self, amount: T) -> Self {
1073        self.dilate(-amount)
1074    }
1075}
1076
1077impl<T: PartialOrd + Add<T, Output = T> + Sub<Output = T> + Clone + Debug + Default + PartialEq>
1078    Bounds<T>
1079{
1080    /// Calculates the intersection of two `Bounds` objects.
1081    ///
1082    /// This method computes the overlapping region of two `Bounds`. If the bounds do not intersect,
1083    /// the resulting `Bounds` will have a size with width and height of zero.
1084    ///
1085    /// # Arguments
1086    ///
1087    /// * `other` - A reference to another `Bounds` to intersect with.
1088    ///
1089    /// # Returns
1090    ///
1091    /// Returns a `Bounds` representing the intersection area. If there is no intersection,
1092    /// the returned `Bounds` will have a size with width and height of zero.
1093    ///
1094    /// # Examples
1095    ///
1096    /// ```
1097    /// # use gpui::{Bounds, Point, Size};
1098    /// let bounds1 = Bounds {
1099    ///     origin: Point { x: 0, y: 0 },
1100    ///     size: Size { width: 10, height: 10 },
1101    /// };
1102    /// let bounds2 = Bounds {
1103    ///     origin: Point { x: 5, y: 5 },
1104    ///     size: Size { width: 10, height: 10 },
1105    /// };
1106    /// let intersection = bounds1.intersect(&bounds2);
1107    ///
1108    /// assert_eq!(intersection, Bounds {
1109    ///     origin: Point { x: 5, y: 5 },
1110    ///     size: Size { width: 5, height: 5 },
1111    /// });
1112    /// ```
1113    pub fn intersect(&self, other: &Self) -> Self {
1114        let upper_left = self.origin.max(&other.origin);
1115        let bottom_right = self.bottom_right().min(&other.bottom_right());
1116        Self::from_corners(upper_left, bottom_right)
1117    }
1118
1119    /// Computes the union of two `Bounds`.
1120    ///
1121    /// This method calculates the smallest `Bounds` that contains both the current `Bounds` and the `other` `Bounds`.
1122    /// The resulting `Bounds` will have an origin that is the minimum of the origins of the two `Bounds`,
1123    /// and a size that encompasses the furthest extents of both `Bounds`.
1124    ///
1125    /// # Arguments
1126    ///
1127    /// * `other` - A reference to another `Bounds` to create a union with.
1128    ///
1129    /// # Returns
1130    ///
1131    /// Returns a `Bounds` representing the union of the two `Bounds`.
1132    ///
1133    /// # Examples
1134    ///
1135    /// ```
1136    /// # use gpui::{Bounds, Point, Size};
1137    /// let bounds1 = Bounds {
1138    ///     origin: Point { x: 0, y: 0 },
1139    ///     size: Size { width: 10, height: 10 },
1140    /// };
1141    /// let bounds2 = Bounds {
1142    ///     origin: Point { x: 5, y: 5 },
1143    ///     size: Size { width: 15, height: 15 },
1144    /// };
1145    /// let union_bounds = bounds1.union(&bounds2);
1146    ///
1147    /// assert_eq!(union_bounds, Bounds {
1148    ///     origin: Point { x: 0, y: 0 },
1149    ///     size: Size { width: 20, height: 20 },
1150    /// });
1151    /// ```
1152    pub fn union(&self, other: &Self) -> Self {
1153        let top_left = self.origin.min(&other.origin);
1154        let bottom_right = self.bottom_right().max(&other.bottom_right());
1155        Bounds::from_corners(top_left, bottom_right)
1156    }
1157}
1158
1159impl<T> Bounds<T>
1160where
1161    T: Add<T, Output = T> + Sub<T, Output = T> + Clone + Debug + Default + PartialEq,
1162{
1163    /// Computes the space available within outer bounds.
1164    pub fn space_within(&self, outer: &Self) -> Edges<T> {
1165        Edges {
1166            top: self.top() - outer.top(),
1167            right: outer.right() - self.right(),
1168            bottom: outer.bottom() - self.bottom(),
1169            left: self.left() - outer.left(),
1170        }
1171    }
1172}
1173
1174impl<T, Rhs> Mul<Rhs> for Bounds<T>
1175where
1176    T: Mul<Rhs, Output = Rhs> + Clone + Debug + Default + PartialEq,
1177    Point<T>: Mul<Rhs, Output = Point<Rhs>>,
1178    Rhs: Clone + Debug + Default + PartialEq,
1179{
1180    type Output = Bounds<Rhs>;
1181
1182    fn mul(self, rhs: Rhs) -> Self::Output {
1183        Bounds {
1184            origin: self.origin * rhs.clone(),
1185            size: self.size * rhs,
1186        }
1187    }
1188}
1189
1190impl<T, S> MulAssign<S> for Bounds<T>
1191where
1192    T: Mul<S, Output = T> + Clone + Debug + Default + PartialEq,
1193    S: Clone,
1194{
1195    fn mul_assign(&mut self, rhs: S) {
1196        self.origin *= rhs.clone();
1197        self.size *= rhs;
1198    }
1199}
1200
1201impl<T, S> Div<S> for Bounds<T>
1202where
1203    Size<T>: Div<S, Output = Size<T>>,
1204    T: Div<S, Output = T> + Clone + Debug + Default + PartialEq,
1205    S: Clone,
1206{
1207    type Output = Self;
1208
1209    fn div(self, rhs: S) -> Self {
1210        Self {
1211            origin: self.origin / rhs.clone(),
1212            size: self.size / rhs,
1213        }
1214    }
1215}
1216
1217impl<T> Add<Point<T>> for Bounds<T>
1218where
1219    T: Add<T, Output = T> + Clone + Debug + Default + PartialEq,
1220{
1221    type Output = Self;
1222
1223    fn add(self, rhs: Point<T>) -> Self {
1224        Self {
1225            origin: self.origin + rhs,
1226            size: self.size,
1227        }
1228    }
1229}
1230
1231impl<T> Sub<Point<T>> for Bounds<T>
1232where
1233    T: Sub<T, Output = T> + Clone + Debug + Default + PartialEq,
1234{
1235    type Output = Self;
1236
1237    fn sub(self, rhs: Point<T>) -> Self {
1238        Self {
1239            origin: self.origin - rhs,
1240            size: self.size,
1241        }
1242    }
1243}
1244
1245impl<T> Bounds<T>
1246where
1247    T: Add<T, Output = T> + Clone + Debug + Default + PartialEq,
1248{
1249    /// Returns the top edge of the bounds.
1250    ///
1251    /// # Returns
1252    ///
1253    /// A value of type `T` representing the y-coordinate of the top edge of the bounds.
1254    pub fn top(&self) -> T {
1255        self.origin.y.clone()
1256    }
1257
1258    /// Returns the bottom edge of the bounds.
1259    ///
1260    /// # Returns
1261    ///
1262    /// A value of type `T` representing the y-coordinate of the bottom edge of the bounds.
1263    pub fn bottom(&self) -> T {
1264        self.origin.y.clone() + self.size.height.clone()
1265    }
1266
1267    /// Returns the left edge of the bounds.
1268    ///
1269    /// # Returns
1270    ///
1271    /// A value of type `T` representing the x-coordinate of the left edge of the bounds.
1272    pub fn left(&self) -> T {
1273        self.origin.x.clone()
1274    }
1275
1276    /// Returns the right edge of the bounds.
1277    ///
1278    /// # Returns
1279    ///
1280    /// A value of type `T` representing the x-coordinate of the right edge of the bounds.
1281    pub fn right(&self) -> T {
1282        self.origin.x.clone() + self.size.width.clone()
1283    }
1284
1285    /// Returns the top right corner point of the bounds.
1286    ///
1287    /// # Returns
1288    ///
1289    /// A `Point<T>` representing the top right corner of the bounds.
1290    ///
1291    /// # Examples
1292    ///
1293    /// ```
1294    /// # use gpui::{Bounds, Point, Size};
1295    /// let bounds = Bounds {
1296    ///     origin: Point { x: 0, y: 0 },
1297    ///     size: Size { width: 10, height: 20 },
1298    /// };
1299    /// let top_right = bounds.top_right();
1300    /// assert_eq!(top_right, Point { x: 10, y: 0 });
1301    /// ```
1302    pub fn top_right(&self) -> Point<T> {
1303        Point {
1304            x: self.origin.x.clone() + self.size.width.clone(),
1305            y: self.origin.y.clone(),
1306        }
1307    }
1308
1309    /// Returns the bottom right corner point of the bounds.
1310    ///
1311    /// # Returns
1312    ///
1313    /// A `Point<T>` representing the bottom right corner of the bounds.
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// # use gpui::{Bounds, Point, Size};
1319    /// let bounds = Bounds {
1320    ///     origin: Point { x: 0, y: 0 },
1321    ///     size: Size { width: 10, height: 20 },
1322    /// };
1323    /// let bottom_right = bounds.bottom_right();
1324    /// assert_eq!(bottom_right, Point { x: 10, y: 20 });
1325    /// ```
1326    pub fn bottom_right(&self) -> Point<T> {
1327        Point {
1328            x: self.origin.x.clone() + self.size.width.clone(),
1329            y: self.origin.y.clone() + self.size.height.clone(),
1330        }
1331    }
1332
1333    /// Returns the bottom left corner point of the bounds.
1334    ///
1335    /// # Returns
1336    ///
1337    /// A `Point<T>` representing the bottom left corner of the bounds.
1338    ///
1339    /// # Examples
1340    ///
1341    /// ```
1342    /// # use gpui::{Bounds, Point, Size};
1343    /// let bounds = Bounds {
1344    ///     origin: Point { x: 0, y: 0 },
1345    ///     size: Size { width: 10, height: 20 },
1346    /// };
1347    /// let bottom_left = bounds.bottom_left();
1348    /// assert_eq!(bottom_left, Point { x: 0, y: 20 });
1349    /// ```
1350    pub fn bottom_left(&self) -> Point<T> {
1351        Point {
1352            x: self.origin.x.clone(),
1353            y: self.origin.y.clone() + self.size.height.clone(),
1354        }
1355    }
1356
1357    /// Returns the requested corner point of the bounds.
1358    ///
1359    /// # Returns
1360    ///
1361    /// A `Point<T>` representing the corner of the bounds requested by the parameter.
1362    ///
1363    /// # Examples
1364    ///
1365    /// ```
1366    /// use gpui::{Bounds, Corner, Point, Size};
1367    /// let bounds = Bounds {
1368    ///     origin: Point { x: 0, y: 0 },
1369    ///     size: Size { width: 10, height: 20 },
1370    /// };
1371    /// let bottom_left = bounds.corner(Corner::BottomLeft);
1372    /// assert_eq!(bottom_left, Point { x: 0, y: 20 });
1373    /// ```
1374    pub fn corner(&self, corner: Corner) -> Point<T> {
1375        match corner {
1376            Corner::TopLeft => self.origin.clone(),
1377            Corner::TopRight => self.top_right(),
1378            Corner::BottomLeft => self.bottom_left(),
1379            Corner::BottomRight => self.bottom_right(),
1380        }
1381    }
1382}
1383
1384impl<T> Bounds<T>
1385where
1386    T: Add<T, Output = T> + PartialOrd + Clone + Debug + Default + PartialEq,
1387{
1388    /// Checks if the given point is within the bounds.
1389    ///
1390    /// This method determines whether a point lies inside the rectangle defined by the bounds,
1391    /// including the edges. The point is considered inside if its x-coordinate is greater than
1392    /// or equal to the left edge and less than or equal to the right edge, and its y-coordinate
1393    /// is greater than or equal to the top edge and less than or equal to the bottom edge of the bounds.
1394    ///
1395    /// # Arguments
1396    ///
1397    /// * `point` - A reference to a `Point<T>` that represents the point to check.
1398    ///
1399    /// # Returns
1400    ///
1401    /// Returns `true` if the point is within the bounds, `false` otherwise.
1402    ///
1403    /// # Examples
1404    ///
1405    /// ```
1406    /// # use gpui::{Point, Bounds, Size};
1407    /// let bounds = Bounds {
1408    ///     origin: Point { x: 0, y: 0 },
1409    ///     size: Size { width: 10, height: 10 },
1410    /// };
1411    /// let inside_point = Point { x: 5, y: 5 };
1412    /// let outside_point = Point { x: 15, y: 15 };
1413    ///
1414    /// assert!(bounds.contains(&inside_point));
1415    /// assert!(!bounds.contains(&outside_point));
1416    /// ```
1417    pub fn contains(&self, point: &Point<T>) -> bool {
1418        point.x >= self.origin.x
1419            && point.x <= self.origin.x.clone() + self.size.width.clone()
1420            && point.y >= self.origin.y
1421            && point.y <= self.origin.y.clone() + self.size.height.clone()
1422    }
1423
1424    /// Checks if this bounds is completely contained within another bounds.
1425    ///
1426    /// This method determines whether the current bounds is entirely enclosed by the given bounds.
1427    /// A bounds is considered to be contained within another if its origin (top-left corner) and
1428    /// its bottom-right corner are both contained within the other bounds.
1429    ///
1430    /// # Arguments
1431    ///
1432    /// * `other` - A reference to another `Bounds` that might contain this bounds.
1433    ///
1434    /// # Returns
1435    ///
1436    /// Returns `true` if this bounds is completely inside the other bounds, `false` otherwise.
1437    ///
1438    /// # Examples
1439    ///
1440    /// ```
1441    /// # use gpui::{Bounds, Point, Size};
1442    /// let outer_bounds = Bounds {
1443    ///     origin: Point { x: 0, y: 0 },
1444    ///     size: Size { width: 20, height: 20 },
1445    /// };
1446    /// let inner_bounds = Bounds {
1447    ///     origin: Point { x: 5, y: 5 },
1448    ///     size: Size { width: 10, height: 10 },
1449    /// };
1450    /// let overlapping_bounds = Bounds {
1451    ///     origin: Point { x: 15, y: 15 },
1452    ///     size: Size { width: 10, height: 10 },
1453    /// };
1454    ///
1455    /// assert!(inner_bounds.is_contained_within(&outer_bounds));
1456    /// assert!(!overlapping_bounds.is_contained_within(&outer_bounds));
1457    /// ```
1458    pub fn is_contained_within(&self, other: &Self) -> bool {
1459        other.contains(&self.origin) && other.contains(&self.bottom_right())
1460    }
1461
1462    /// Applies a function to the origin and size of the bounds, producing a new `Bounds<U>`.
1463    ///
1464    /// This method allows for converting a `Bounds<T>` to a `Bounds<U>` by specifying a closure
1465    /// that defines how to convert between the two types. The closure is applied to the `origin` and
1466    /// `size` fields, resulting in new bounds of the desired type.
1467    ///
1468    /// # Arguments
1469    ///
1470    /// * `f` - A closure that takes a value of type `T` and returns a value of type `U`.
1471    ///
1472    /// # Returns
1473    ///
1474    /// Returns a new `Bounds<U>` with the origin and size mapped by the provided function.
1475    ///
1476    /// # Examples
1477    ///
1478    /// ```
1479    /// # use gpui::{Bounds, Point, Size};
1480    /// let bounds = Bounds {
1481    ///     origin: Point { x: 10.0, y: 10.0 },
1482    ///     size: Size { width: 10.0, height: 20.0 },
1483    /// };
1484    /// let new_bounds = bounds.map(|value| value as f64 * 1.5);
1485    ///
1486    /// assert_eq!(new_bounds, Bounds {
1487    ///     origin: Point { x: 15.0, y: 15.0 },
1488    ///     size: Size { width: 15.0, height: 30.0 },
1489    /// });
1490    /// ```
1491    pub fn map<U>(&self, f: impl Fn(T) -> U) -> Bounds<U>
1492    where
1493        U: Clone + Debug + Default + PartialEq,
1494    {
1495        Bounds {
1496            origin: self.origin.map(&f),
1497            size: self.size.map(f),
1498        }
1499    }
1500
1501    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1502    ///
1503    /// # Examples
1504    ///
1505    /// ```
1506    /// # use gpui::{Bounds, Point, Size};
1507    /// let bounds = Bounds {
1508    ///     origin: Point { x: 10.0, y: 10.0 },
1509    ///     size: Size { width: 10.0, height: 20.0 },
1510    /// };
1511    /// let new_bounds = bounds.map_origin(|value| value * 1.5);
1512    ///
1513    /// assert_eq!(new_bounds, Bounds {
1514    ///     origin: Point { x: 15.0, y: 15.0 },
1515    ///     size: Size { width: 10.0, height: 20.0 },
1516    /// });
1517    /// ```
1518    pub fn map_origin(self, f: impl Fn(T) -> T) -> Bounds<T> {
1519        Bounds {
1520            origin: self.origin.map(f),
1521            size: self.size,
1522        }
1523    }
1524
1525    /// Applies a function to the origin  of the bounds, producing a new `Bounds` with the new origin
1526    ///
1527    /// # Examples
1528    ///
1529    /// ```
1530    /// # use gpui::{Bounds, Point, Size};
1531    /// let bounds = Bounds {
1532    ///     origin: Point { x: 10.0, y: 10.0 },
1533    ///     size: Size { width: 10.0, height: 20.0 },
1534    /// };
1535    /// let new_bounds = bounds.map_size(|value| value * 1.5);
1536    ///
1537    /// assert_eq!(new_bounds, Bounds {
1538    ///     origin: Point { x: 10.0, y: 10.0 },
1539    ///     size: Size { width: 15.0, height: 30.0 },
1540    /// });
1541    /// ```
1542    pub fn map_size(self, f: impl Fn(T) -> T) -> Bounds<T> {
1543        Bounds {
1544            origin: self.origin,
1545            size: self.size.map(f),
1546        }
1547    }
1548}
1549
1550impl<T> Bounds<T>
1551where
1552    T: Add<T, Output = T> + Sub<T, Output = T> + PartialOrd + Clone + Debug + Default + PartialEq,
1553{
1554    /// Convert a point to the coordinate space defined by this Bounds
1555    pub fn localize(&self, point: &Point<T>) -> Option<Point<T>> {
1556        self.contains(point)
1557            .then(|| point.relative_to(&self.origin))
1558    }
1559}
1560
1561/// Checks if the bounds represent an empty area.
1562///
1563/// # Returns
1564///
1565/// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1566impl<T: PartialOrd + Clone + Debug + Default + PartialEq> Bounds<T> {
1567    /// Checks if the bounds represent an empty area.
1568    ///
1569    /// # Returns
1570    ///
1571    /// Returns `true` if either the width or the height of the bounds is less than or equal to zero, indicating an empty area.
1572    #[must_use]
1573    pub fn is_empty(&self) -> bool {
1574        self.size.width <= T::default() || self.size.height <= T::default()
1575    }
1576}
1577
1578impl<T: Clone + Debug + Default + PartialEq + Display + Add<T, Output = T>> Display for Bounds<T> {
1579    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1580        write!(
1581            f,
1582            "{} - {} (size {})",
1583            self.origin,
1584            self.bottom_right(),
1585            self.size
1586        )
1587    }
1588}
1589
1590impl Size<DevicePixels> {
1591    /// Converts the size from physical to logical pixels.
1592    pub(crate) fn to_pixels(self, scale_factor: f32) -> Size<Pixels> {
1593        size(
1594            px(self.width.0 as f32 / scale_factor),
1595            px(self.height.0 as f32 / scale_factor),
1596        )
1597    }
1598}
1599
1600impl Size<Pixels> {
1601    /// Converts the size from logical to physical pixels.
1602    pub(crate) fn to_device_pixels(self, scale_factor: f32) -> Size<DevicePixels> {
1603        size(
1604            DevicePixels((self.width.0 * scale_factor).round() as i32),
1605            DevicePixels((self.height.0 * scale_factor).round() as i32),
1606        )
1607    }
1608}
1609
1610impl Bounds<Pixels> {
1611    /// Scales the bounds by a given factor, typically used to adjust for display scaling.
1612    ///
1613    /// This method multiplies the origin and size of the bounds by the provided scaling factor,
1614    /// resulting in a new `Bounds<ScaledPixels>` that is proportionally larger or smaller
1615    /// depending on the scaling factor. This can be used to ensure that the bounds are properly
1616    /// scaled for different display densities.
1617    ///
1618    /// # Arguments
1619    ///
1620    /// * `factor` - The scaling factor to apply to the origin and size, typically the display's scaling factor.
1621    ///
1622    /// # Returns
1623    ///
1624    /// Returns a new `Bounds<ScaledPixels>` that represents the scaled bounds.
1625    ///
1626    /// # Examples
1627    ///
1628    /// ```
1629    /// # use gpui::{Bounds, Point, Size, Pixels, ScaledPixels, DevicePixels};
1630    /// let bounds = Bounds {
1631    ///     origin: Point { x: Pixels::from(10.0), y: Pixels::from(20.0) },
1632    ///     size: Size { width: Pixels::from(30.0), height: Pixels::from(40.0) },
1633    /// };
1634    /// let display_scale_factor = 2.0;
1635    /// let scaled_bounds = bounds.scale(display_scale_factor);
1636    /// assert_eq!(scaled_bounds, Bounds {
1637    ///     origin: Point {
1638    ///         x: ScaledPixels::from(20.0),
1639    ///         y: ScaledPixels::from(40.0),
1640    ///     },
1641    ///     size: Size {
1642    ///         width: ScaledPixels::from(60.0),
1643    ///         height: ScaledPixels::from(80.0)
1644    ///     },
1645    /// });
1646    /// ```
1647    pub fn scale(&self, factor: f32) -> Bounds<ScaledPixels> {
1648        Bounds {
1649            origin: self.origin.scale(factor),
1650            size: self.size.scale(factor),
1651        }
1652    }
1653
1654    /// Convert the bounds from logical pixels to physical pixels
1655    pub fn to_device_pixels(self, factor: f32) -> Bounds<DevicePixels> {
1656        Bounds {
1657            origin: point(
1658                DevicePixels((self.origin.x.0 * factor).round() as i32),
1659                DevicePixels((self.origin.y.0 * factor).round() as i32),
1660            ),
1661            size: self.size.to_device_pixels(factor),
1662        }
1663    }
1664}
1665
1666impl Bounds<DevicePixels> {
1667    /// Convert the bounds from physical pixels to logical pixels
1668    pub fn to_pixels(self, scale_factor: f32) -> Bounds<Pixels> {
1669        Bounds {
1670            origin: point(
1671                px(self.origin.x.0 as f32 / scale_factor),
1672                px(self.origin.y.0 as f32 / scale_factor),
1673            ),
1674            size: self.size.to_pixels(scale_factor),
1675        }
1676    }
1677}
1678
1679/// Represents the edges of a box in a 2D space, such as padding or margin.
1680///
1681/// Each field represents the size of the edge on one side of the box: `top`, `right`, `bottom`, and `left`.
1682///
1683/// # Examples
1684///
1685/// ```
1686/// # use gpui::Edges;
1687/// let edges = Edges {
1688///     top: 10.0,
1689///     right: 20.0,
1690///     bottom: 30.0,
1691///     left: 40.0,
1692/// };
1693///
1694/// assert_eq!(edges.top, 10.0);
1695/// assert_eq!(edges.right, 20.0);
1696/// assert_eq!(edges.bottom, 30.0);
1697/// assert_eq!(edges.left, 40.0);
1698/// ```
1699#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
1700#[refineable(Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
1701#[repr(C)]
1702pub struct Edges<T: Clone + Debug + Default + PartialEq> {
1703    /// The size of the top edge.
1704    pub top: T,
1705    /// The size of the right edge.
1706    pub right: T,
1707    /// The size of the bottom edge.
1708    pub bottom: T,
1709    /// The size of the left edge.
1710    pub left: T,
1711}
1712
1713impl<T> Mul for Edges<T>
1714where
1715    T: Mul<Output = T> + Clone + Debug + Default + PartialEq,
1716{
1717    type Output = Self;
1718
1719    fn mul(self, rhs: Self) -> Self::Output {
1720        Self {
1721            top: self.top.clone() * rhs.top,
1722            right: self.right.clone() * rhs.right,
1723            bottom: self.bottom.clone() * rhs.bottom,
1724            left: self.left * rhs.left,
1725        }
1726    }
1727}
1728
1729impl<T, S> MulAssign<S> for Edges<T>
1730where
1731    T: Mul<S, Output = T> + Clone + Debug + Default + PartialEq,
1732    S: Clone,
1733{
1734    fn mul_assign(&mut self, rhs: S) {
1735        self.top = self.top.clone() * rhs.clone();
1736        self.right = self.right.clone() * rhs.clone();
1737        self.bottom = self.bottom.clone() * rhs.clone();
1738        self.left = self.left.clone() * rhs;
1739    }
1740}
1741
1742impl<T: Clone + Debug + Default + PartialEq + Copy> Copy for Edges<T> {}
1743
1744impl<T: Clone + Debug + Default + PartialEq> Edges<T> {
1745    /// Constructs `Edges` where all sides are set to the same specified value.
1746    ///
1747    /// This function creates an `Edges` instance with the `top`, `right`, `bottom`, and `left` fields all initialized
1748    /// to the same value provided as an argument. This is useful when you want to have uniform edges around a box,
1749    /// such as padding or margin with the same size on all sides.
1750    ///
1751    /// # Arguments
1752    ///
1753    /// * `value` - The value to set for all four sides of the edges.
1754    ///
1755    /// # Returns
1756    ///
1757    /// An `Edges` instance with all sides set to the given value.
1758    ///
1759    /// # Examples
1760    ///
1761    /// ```
1762    /// # use gpui::Edges;
1763    /// let uniform_edges = Edges::all(10.0);
1764    /// assert_eq!(uniform_edges.top, 10.0);
1765    /// assert_eq!(uniform_edges.right, 10.0);
1766    /// assert_eq!(uniform_edges.bottom, 10.0);
1767    /// assert_eq!(uniform_edges.left, 10.0);
1768    /// ```
1769    pub fn all(value: T) -> Self {
1770        Self {
1771            top: value.clone(),
1772            right: value.clone(),
1773            bottom: value.clone(),
1774            left: value,
1775        }
1776    }
1777
1778    /// Applies a function to each field of the `Edges`, producing a new `Edges<U>`.
1779    ///
1780    /// This method allows for converting an `Edges<T>` to an `Edges<U>` by specifying a closure
1781    /// that defines how to convert between the two types. The closure is applied to each field
1782    /// (`top`, `right`, `bottom`, `left`), resulting in new edges of the desired type.
1783    ///
1784    /// # Arguments
1785    ///
1786    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
1787    ///
1788    /// # Returns
1789    ///
1790    /// Returns a new `Edges<U>` with each field mapped by the provided function.
1791    ///
1792    /// # Examples
1793    ///
1794    /// ```
1795    /// # use gpui::Edges;
1796    /// let edges = Edges { top: 10, right: 20, bottom: 30, left: 40 };
1797    /// let edges_float = edges.map(|&value| value as f32 * 1.1);
1798    /// assert_eq!(edges_float, Edges { top: 11.0, right: 22.0, bottom: 33.0, left: 44.0 });
1799    /// ```
1800    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Edges<U>
1801    where
1802        U: Clone + Debug + Default + PartialEq,
1803    {
1804        Edges {
1805            top: f(&self.top),
1806            right: f(&self.right),
1807            bottom: f(&self.bottom),
1808            left: f(&self.left),
1809        }
1810    }
1811
1812    /// Checks if any of the edges satisfy a given predicate.
1813    ///
1814    /// This method applies a predicate function to each field of the `Edges` and returns `true` if any field satisfies the predicate.
1815    ///
1816    /// # Arguments
1817    ///
1818    /// * `predicate` - A closure that takes a reference to a value of type `T` and returns a `bool`.
1819    ///
1820    /// # Returns
1821    ///
1822    /// Returns `true` if the predicate returns `true` for any of the edge values, `false` otherwise.
1823    ///
1824    /// # Examples
1825    ///
1826    /// ```
1827    /// # use gpui::Edges;
1828    /// let edges = Edges {
1829    ///     top: 10,
1830    ///     right: 0,
1831    ///     bottom: 5,
1832    ///     left: 0,
1833    /// };
1834    ///
1835    /// assert!(edges.any(|value| *value == 0));
1836    /// assert!(edges.any(|value| *value > 0));
1837    /// assert!(!edges.any(|value| *value > 10));
1838    /// ```
1839    pub fn any<F: Fn(&T) -> bool>(&self, predicate: F) -> bool {
1840        predicate(&self.top)
1841            || predicate(&self.right)
1842            || predicate(&self.bottom)
1843            || predicate(&self.left)
1844    }
1845}
1846
1847impl Edges<Length> {
1848    /// Sets the edges of the `Edges` struct to `auto`, which is a special value that allows the layout engine to automatically determine the size of the edges.
1849    ///
1850    /// This is typically used in layout contexts where the exact size of the edges is not important, or when the size should be calculated based on the content or container.
1851    ///
1852    /// # Returns
1853    ///
1854    /// Returns an `Edges<Length>` with all edges set to `Length::Auto`.
1855    ///
1856    /// # Examples
1857    ///
1858    /// ```
1859    /// # use gpui::{Edges, Length};
1860    /// let auto_edges = Edges::auto();
1861    /// assert_eq!(auto_edges.top, Length::Auto);
1862    /// assert_eq!(auto_edges.right, Length::Auto);
1863    /// assert_eq!(auto_edges.bottom, Length::Auto);
1864    /// assert_eq!(auto_edges.left, Length::Auto);
1865    /// ```
1866    pub fn auto() -> Self {
1867        Self {
1868            top: Length::Auto,
1869            right: Length::Auto,
1870            bottom: Length::Auto,
1871            left: Length::Auto,
1872        }
1873    }
1874
1875    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1876    ///
1877    /// This is typically used when you want to specify that a box (like a padding or margin area)
1878    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1879    ///
1880    /// # Returns
1881    ///
1882    /// Returns an `Edges<Length>` with all edges set to zero length.
1883    ///
1884    /// # Examples
1885    ///
1886    /// ```
1887    /// # use gpui::{DefiniteLength, Edges, Length, Pixels};
1888    /// let no_edges = Edges::<Length>::zero();
1889    /// assert_eq!(no_edges.top, Length::Definite(DefiniteLength::from(Pixels::ZERO)));
1890    /// assert_eq!(no_edges.right, Length::Definite(DefiniteLength::from(Pixels::ZERO)));
1891    /// assert_eq!(no_edges.bottom, Length::Definite(DefiniteLength::from(Pixels::ZERO)));
1892    /// assert_eq!(no_edges.left, Length::Definite(DefiniteLength::from(Pixels::ZERO)));
1893    /// ```
1894    pub fn zero() -> Self {
1895        Self {
1896            top: px(0.).into(),
1897            right: px(0.).into(),
1898            bottom: px(0.).into(),
1899            left: px(0.).into(),
1900        }
1901    }
1902}
1903
1904impl Edges<DefiniteLength> {
1905    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1906    ///
1907    /// This is typically used when you want to specify that a box (like a padding or margin area)
1908    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1909    ///
1910    /// # Returns
1911    ///
1912    /// Returns an `Edges<DefiniteLength>` with all edges set to zero length.
1913    ///
1914    /// # Examples
1915    ///
1916    /// ```
1917    /// # use gpui::{px, DefiniteLength, Edges};
1918    /// let no_edges = Edges::<DefiniteLength>::zero();
1919    /// assert_eq!(no_edges.top, DefiniteLength::from(px(0.)));
1920    /// assert_eq!(no_edges.right, DefiniteLength::from(px(0.)));
1921    /// assert_eq!(no_edges.bottom, DefiniteLength::from(px(0.)));
1922    /// assert_eq!(no_edges.left, DefiniteLength::from(px(0.)));
1923    /// ```
1924    pub fn zero() -> Self {
1925        Self {
1926            top: px(0.).into(),
1927            right: px(0.).into(),
1928            bottom: px(0.).into(),
1929            left: px(0.).into(),
1930        }
1931    }
1932
1933    /// Converts the `DefiniteLength` to `Pixels` based on the parent size and the REM size.
1934    ///
1935    /// This method allows for a `DefiniteLength` value to be converted into pixels, taking into account
1936    /// the size of the parent element (for percentage-based lengths) and the size of a rem unit (for rem-based lengths).
1937    ///
1938    /// # Arguments
1939    ///
1940    /// * `parent_size` - `Size<AbsoluteLength>` representing the size of the parent element.
1941    /// * `rem_size` - `Pixels` representing the size of one REM unit.
1942    ///
1943    /// # Returns
1944    ///
1945    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
1946    ///
1947    /// # Examples
1948    ///
1949    /// ```
1950    /// # use gpui::{Edges, DefiniteLength, px, AbsoluteLength, rems, Size};
1951    /// let edges = Edges {
1952    ///     top: DefiniteLength::Absolute(AbsoluteLength::Pixels(px(10.0))),
1953    ///     right: DefiniteLength::Fraction(0.5),
1954    ///     bottom: DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0))),
1955    ///     left: DefiniteLength::Fraction(0.25),
1956    /// };
1957    /// let parent_size = Size {
1958    ///     width: AbsoluteLength::Pixels(px(200.0)),
1959    ///     height: AbsoluteLength::Pixels(px(100.0)),
1960    /// };
1961    /// let rem_size = px(16.0);
1962    /// let edges_in_pixels = edges.to_pixels(parent_size, rem_size);
1963    ///
1964    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Absolute length in pixels
1965    /// assert_eq!(edges_in_pixels.right, px(100.0)); // 50% of parent width
1966    /// assert_eq!(edges_in_pixels.bottom, px(32.0)); // 2 rems
1967    /// assert_eq!(edges_in_pixels.left, px(50.0)); // 25% of parent width
1968    /// ```
1969    pub fn to_pixels(self, parent_size: Size<AbsoluteLength>, rem_size: Pixels) -> Edges<Pixels> {
1970        Edges {
1971            top: self.top.to_pixels(parent_size.height, rem_size),
1972            right: self.right.to_pixels(parent_size.width, rem_size),
1973            bottom: self.bottom.to_pixels(parent_size.height, rem_size),
1974            left: self.left.to_pixels(parent_size.width, rem_size),
1975        }
1976    }
1977}
1978
1979impl Edges<AbsoluteLength> {
1980    /// Sets the edges of the `Edges` struct to zero, which means no size or thickness.
1981    ///
1982    /// This is typically used when you want to specify that a box (like a padding or margin area)
1983    /// should have no edges, effectively making it non-existent or invisible in layout calculations.
1984    ///
1985    /// # Returns
1986    ///
1987    /// Returns an `Edges<AbsoluteLength>` with all edges set to zero length.
1988    ///
1989    /// # Examples
1990    ///
1991    /// ```
1992    /// # use gpui::{AbsoluteLength, Edges, Pixels};
1993    /// let no_edges = Edges::<AbsoluteLength>::zero();
1994    /// assert_eq!(no_edges.top, AbsoluteLength::Pixels(Pixels::ZERO));
1995    /// assert_eq!(no_edges.right, AbsoluteLength::Pixels(Pixels::ZERO));
1996    /// assert_eq!(no_edges.bottom, AbsoluteLength::Pixels(Pixels::ZERO));
1997    /// assert_eq!(no_edges.left, AbsoluteLength::Pixels(Pixels::ZERO));
1998    /// ```
1999    pub fn zero() -> Self {
2000        Self {
2001            top: px(0.).into(),
2002            right: px(0.).into(),
2003            bottom: px(0.).into(),
2004            left: px(0.).into(),
2005        }
2006    }
2007
2008    /// Converts the `AbsoluteLength` to `Pixels` based on the `rem_size`.
2009    ///
2010    /// If the `AbsoluteLength` is already in pixels, it simply returns the corresponding `Pixels` value.
2011    /// If the `AbsoluteLength` is in rems, it multiplies the number of rems by the `rem_size` to convert it to pixels.
2012    ///
2013    /// # Arguments
2014    ///
2015    /// * `rem_size` - The size of one rem unit in pixels.
2016    ///
2017    /// # Returns
2018    ///
2019    /// Returns an `Edges<Pixels>` representing the edges with lengths converted to pixels.
2020    ///
2021    /// # Examples
2022    ///
2023    /// ```
2024    /// # use gpui::{Edges, AbsoluteLength, Pixels, px, rems};
2025    /// let edges = Edges {
2026    ///     top: AbsoluteLength::Pixels(px(10.0)),
2027    ///     right: AbsoluteLength::Rems(rems(1.0)),
2028    ///     bottom: AbsoluteLength::Pixels(px(20.0)),
2029    ///     left: AbsoluteLength::Rems(rems(2.0)),
2030    /// };
2031    /// let rem_size = px(16.0);
2032    /// let edges_in_pixels = edges.to_pixels(rem_size);
2033    ///
2034    /// assert_eq!(edges_in_pixels.top, px(10.0)); // Already in pixels
2035    /// assert_eq!(edges_in_pixels.right, px(16.0)); // 1 rem converted to pixels
2036    /// assert_eq!(edges_in_pixels.bottom, px(20.0)); // Already in pixels
2037    /// assert_eq!(edges_in_pixels.left, px(32.0)); // 2 rems converted to pixels
2038    /// ```
2039    pub fn to_pixels(self, rem_size: Pixels) -> Edges<Pixels> {
2040        Edges {
2041            top: self.top.to_pixels(rem_size),
2042            right: self.right.to_pixels(rem_size),
2043            bottom: self.bottom.to_pixels(rem_size),
2044            left: self.left.to_pixels(rem_size),
2045        }
2046    }
2047}
2048
2049impl Edges<Pixels> {
2050    /// Scales the `Edges<Pixels>` by a given factor, returning `Edges<ScaledPixels>`.
2051    ///
2052    /// This method is typically used for adjusting the edge sizes for different display densities or scaling factors.
2053    ///
2054    /// # Arguments
2055    ///
2056    /// * `factor` - The scaling factor to apply to each edge.
2057    ///
2058    /// # Returns
2059    ///
2060    /// Returns a new `Edges<ScaledPixels>` where each edge is the result of scaling the original edge by the given factor.
2061    ///
2062    /// # Examples
2063    ///
2064    /// ```
2065    /// # use gpui::{Edges, Pixels, ScaledPixels};
2066    /// let edges = Edges {
2067    ///     top: Pixels::from(10.0),
2068    ///     right: Pixels::from(20.0),
2069    ///     bottom: Pixels::from(30.0),
2070    ///     left: Pixels::from(40.0),
2071    /// };
2072    /// let scaled_edges = edges.scale(2.0);
2073    /// assert_eq!(scaled_edges.top, ScaledPixels::from(20.0));
2074    /// assert_eq!(scaled_edges.right, ScaledPixels::from(40.0));
2075    /// assert_eq!(scaled_edges.bottom, ScaledPixels::from(60.0));
2076    /// assert_eq!(scaled_edges.left, ScaledPixels::from(80.0));
2077    /// ```
2078    pub fn scale(&self, factor: f32) -> Edges<ScaledPixels> {
2079        Edges {
2080            top: self.top.scale(factor),
2081            right: self.right.scale(factor),
2082            bottom: self.bottom.scale(factor),
2083            left: self.left.scale(factor),
2084        }
2085    }
2086
2087    /// Returns the maximum value of any edge.
2088    ///
2089    /// # Returns
2090    ///
2091    /// The maximum `Pixels` value among all four edges.
2092    pub fn max(&self) -> Pixels {
2093        self.top.max(self.right).max(self.bottom).max(self.left)
2094    }
2095}
2096
2097impl From<f32> for Edges<Pixels> {
2098    fn from(val: f32) -> Self {
2099        let val: Pixels = val.into();
2100        val.into()
2101    }
2102}
2103
2104impl From<Pixels> for Edges<Pixels> {
2105    fn from(val: Pixels) -> Self {
2106        Edges {
2107            top: val,
2108            right: val,
2109            bottom: val,
2110            left: val,
2111        }
2112    }
2113}
2114
2115/// Identifies a corner of a 2d box.
2116#[derive(Clone, Copy, Debug, PartialEq, Eq)]
2117pub enum Corner {
2118    /// The top left corner
2119    TopLeft,
2120    /// The top right corner
2121    TopRight,
2122    /// The bottom left corner
2123    BottomLeft,
2124    /// The bottom right corner
2125    BottomRight,
2126}
2127
2128impl Corner {
2129    /// Returns the directly opposite corner.
2130    ///
2131    /// # Examples
2132    ///
2133    /// ```
2134    /// # use gpui::Corner;
2135    /// assert_eq!(Corner::TopLeft.opposite_corner(), Corner::BottomRight);
2136    /// ```
2137    #[must_use]
2138    pub fn opposite_corner(self) -> Self {
2139        match self {
2140            Corner::TopLeft => Corner::BottomRight,
2141            Corner::TopRight => Corner::BottomLeft,
2142            Corner::BottomLeft => Corner::TopRight,
2143            Corner::BottomRight => Corner::TopLeft,
2144        }
2145    }
2146
2147    /// Returns the corner across from this corner, moving along the specified axis.
2148    ///
2149    /// # Examples
2150    ///
2151    /// ```
2152    /// # use gpui::{Axis, Corner};
2153    /// let result = Corner::TopLeft.other_side_corner_along(Axis::Horizontal);
2154    /// assert_eq!(result, Corner::TopRight);
2155    /// ```
2156    #[must_use]
2157    pub fn other_side_corner_along(self, axis: Axis) -> Self {
2158        match axis {
2159            Axis::Vertical => match self {
2160                Corner::TopLeft => Corner::BottomLeft,
2161                Corner::TopRight => Corner::BottomRight,
2162                Corner::BottomLeft => Corner::TopLeft,
2163                Corner::BottomRight => Corner::TopRight,
2164            },
2165            Axis::Horizontal => match self {
2166                Corner::TopLeft => Corner::TopRight,
2167                Corner::TopRight => Corner::TopLeft,
2168                Corner::BottomLeft => Corner::BottomRight,
2169                Corner::BottomRight => Corner::BottomLeft,
2170            },
2171        }
2172    }
2173}
2174
2175/// Represents the corners of a box in a 2D space, such as border radius.
2176///
2177/// Each field represents the size of the corner on one side of the box: `top_left`, `top_right`, `bottom_right`, and `bottom_left`.
2178#[derive(Refineable, Clone, Default, Debug, Eq, PartialEq)]
2179#[refineable(Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
2180#[repr(C)]
2181pub struct Corners<T: Clone + Debug + Default + PartialEq> {
2182    /// The value associated with the top left corner.
2183    pub top_left: T,
2184    /// The value associated with the top right corner.
2185    pub top_right: T,
2186    /// The value associated with the bottom right corner.
2187    pub bottom_right: T,
2188    /// The value associated with the bottom left corner.
2189    pub bottom_left: T,
2190}
2191
2192impl<T> Corners<T>
2193where
2194    T: Clone + Debug + Default + PartialEq,
2195{
2196    /// Constructs `Corners` where all sides are set to the same specified value.
2197    ///
2198    /// This function creates a `Corners` instance with the `top_left`, `top_right`, `bottom_right`, and `bottom_left` fields all initialized
2199    /// to the same value provided as an argument. This is useful when you want to have uniform corners around a box,
2200    /// such as a uniform border radius on a rectangle.
2201    ///
2202    /// # Arguments
2203    ///
2204    /// * `value` - The value to set for all four corners.
2205    ///
2206    /// # Returns
2207    ///
2208    /// An `Corners` instance with all corners set to the given value.
2209    ///
2210    /// # Examples
2211    ///
2212    /// ```
2213    /// # use gpui::Corners;
2214    /// let uniform_corners = Corners::all(5.0);
2215    /// assert_eq!(uniform_corners.top_left, 5.0);
2216    /// assert_eq!(uniform_corners.top_right, 5.0);
2217    /// assert_eq!(uniform_corners.bottom_right, 5.0);
2218    /// assert_eq!(uniform_corners.bottom_left, 5.0);
2219    /// ```
2220    pub fn all(value: T) -> Self {
2221        Self {
2222            top_left: value.clone(),
2223            top_right: value.clone(),
2224            bottom_right: value.clone(),
2225            bottom_left: value,
2226        }
2227    }
2228
2229    /// Returns the requested corner.
2230    ///
2231    /// # Returns
2232    ///
2233    /// A `Point<T>` representing the corner requested by the parameter.
2234    ///
2235    /// # Examples
2236    ///
2237    /// ```
2238    /// # use gpui::{Corner, Corners};
2239    /// let corners = Corners {
2240    ///     top_left: 1,
2241    ///     top_right: 2,
2242    ///     bottom_left: 3,
2243    ///     bottom_right: 4
2244    /// };
2245    /// assert_eq!(corners.corner(Corner::BottomLeft), 3);
2246    /// ```
2247    #[must_use]
2248    pub fn corner(&self, corner: Corner) -> T {
2249        match corner {
2250            Corner::TopLeft => self.top_left.clone(),
2251            Corner::TopRight => self.top_right.clone(),
2252            Corner::BottomLeft => self.bottom_left.clone(),
2253            Corner::BottomRight => self.bottom_right.clone(),
2254        }
2255    }
2256}
2257
2258impl Corners<AbsoluteLength> {
2259    /// Converts the `AbsoluteLength` to `Pixels` based on the provided rem size.
2260    ///
2261    /// # Arguments
2262    ///
2263    /// * `rem_size` - The size of one REM unit in pixels, used for conversion if the `AbsoluteLength` is in REMs.
2264    ///
2265    /// # Returns
2266    ///
2267    /// Returns a `Corners<Pixels>` instance with each corner's length converted to pixels.
2268    ///
2269    /// # Examples
2270    ///
2271    /// ```
2272    /// # use gpui::{Corners, AbsoluteLength, Pixels, Rems, Size};
2273    /// let corners = Corners {
2274    ///     top_left: AbsoluteLength::Pixels(Pixels::from(15.0)),
2275    ///     top_right: AbsoluteLength::Rems(Rems(1.0)),
2276    ///     bottom_right: AbsoluteLength::Pixels(Pixels::from(30.0)),
2277    ///     bottom_left: AbsoluteLength::Rems(Rems(2.0)),
2278    /// };
2279    /// let rem_size = Pixels::from(16.0);
2280    /// let corners_in_pixels = corners.to_pixels(rem_size);
2281    ///
2282    /// assert_eq!(corners_in_pixels.top_left, Pixels::from(15.0));
2283    /// assert_eq!(corners_in_pixels.top_right, Pixels::from(16.0)); // 1 rem converted to pixels
2284    /// assert_eq!(corners_in_pixels.bottom_right, Pixels::from(30.0));
2285    /// assert_eq!(corners_in_pixels.bottom_left, Pixels::from(32.0)); // 2 rems converted to pixels
2286    /// ```
2287    pub fn to_pixels(self, rem_size: Pixels) -> Corners<Pixels> {
2288        Corners {
2289            top_left: self.top_left.to_pixels(rem_size),
2290            top_right: self.top_right.to_pixels(rem_size),
2291            bottom_right: self.bottom_right.to_pixels(rem_size),
2292            bottom_left: self.bottom_left.to_pixels(rem_size),
2293        }
2294    }
2295}
2296
2297impl Corners<Pixels> {
2298    /// Scales the `Corners<Pixels>` by a given factor, returning `Corners<ScaledPixels>`.
2299    ///
2300    /// This method is typically used for adjusting the corner sizes for different display densities or scaling factors.
2301    ///
2302    /// # Arguments
2303    ///
2304    /// * `factor` - The scaling factor to apply to each corner.
2305    ///
2306    /// # Returns
2307    ///
2308    /// Returns a new `Corners<ScaledPixels>` where each corner is the result of scaling the original corner by the given factor.
2309    ///
2310    /// # Examples
2311    ///
2312    /// ```
2313    /// # use gpui::{Corners, Pixels, ScaledPixels};
2314    /// let corners = Corners {
2315    ///     top_left: Pixels::from(10.0),
2316    ///     top_right: Pixels::from(20.0),
2317    ///     bottom_right: Pixels::from(30.0),
2318    ///     bottom_left: Pixels::from(40.0),
2319    /// };
2320    /// let scaled_corners = corners.scale(2.0);
2321    /// assert_eq!(scaled_corners.top_left, ScaledPixels::from(20.0));
2322    /// assert_eq!(scaled_corners.top_right, ScaledPixels::from(40.0));
2323    /// assert_eq!(scaled_corners.bottom_right, ScaledPixels::from(60.0));
2324    /// assert_eq!(scaled_corners.bottom_left, ScaledPixels::from(80.0));
2325    /// ```
2326    #[must_use]
2327    pub fn scale(&self, factor: f32) -> Corners<ScaledPixels> {
2328        Corners {
2329            top_left: self.top_left.scale(factor),
2330            top_right: self.top_right.scale(factor),
2331            bottom_right: self.bottom_right.scale(factor),
2332            bottom_left: self.bottom_left.scale(factor),
2333        }
2334    }
2335
2336    /// Returns the maximum value of any corner.
2337    ///
2338    /// # Returns
2339    ///
2340    /// The maximum `Pixels` value among all four corners.
2341    #[must_use]
2342    pub fn max(&self) -> Pixels {
2343        self.top_left
2344            .max(self.top_right)
2345            .max(self.bottom_right)
2346            .max(self.bottom_left)
2347    }
2348}
2349
2350impl<T: Div<f32, Output = T> + Ord + Clone + Debug + Default + PartialEq> Corners<T> {
2351    /// Clamps corner radii to be less than or equal to half the shortest side of a quad.
2352    ///
2353    /// # Arguments
2354    ///
2355    /// * `size` - The size of the quad which limits the size of the corner radii.
2356    ///
2357    /// # Returns
2358    ///
2359    /// Corner radii values clamped to fit.
2360    #[must_use]
2361    pub fn clamp_radii_for_quad_size(self, size: Size<T>) -> Corners<T> {
2362        let max = cmp::min(size.width, size.height) / 2.;
2363        Corners {
2364            top_left: cmp::min(self.top_left, max.clone()),
2365            top_right: cmp::min(self.top_right, max.clone()),
2366            bottom_right: cmp::min(self.bottom_right, max.clone()),
2367            bottom_left: cmp::min(self.bottom_left, max),
2368        }
2369    }
2370}
2371
2372impl<T: Clone + Debug + Default + PartialEq> Corners<T> {
2373    /// Applies a function to each field of the `Corners`, producing a new `Corners<U>`.
2374    ///
2375    /// This method allows for converting a `Corners<T>` to a `Corners<U>` by specifying a closure
2376    /// that defines how to convert between the two types. The closure is applied to each field
2377    /// (`top_left`, `top_right`, `bottom_right`, `bottom_left`), resulting in new corners of the desired type.
2378    ///
2379    /// # Arguments
2380    ///
2381    /// * `f` - A closure that takes a reference to a value of type `T` and returns a value of type `U`.
2382    ///
2383    /// # Returns
2384    ///
2385    /// Returns a new `Corners<U>` with each field mapped by the provided function.
2386    ///
2387    /// # Examples
2388    ///
2389    /// ```
2390    /// # use gpui::{Corners, Pixels, Rems};
2391    /// let corners = Corners {
2392    ///     top_left: Pixels::from(10.0),
2393    ///     top_right: Pixels::from(20.0),
2394    ///     bottom_right: Pixels::from(30.0),
2395    ///     bottom_left: Pixels::from(40.0),
2396    /// };
2397    /// let corners_in_rems = corners.map(|&px| Rems(f32::from(px) / 16.0));
2398    /// assert_eq!(corners_in_rems, Corners {
2399    ///     top_left: Rems(0.625),
2400    ///     top_right: Rems(1.25),
2401    ///     bottom_right: Rems(1.875),
2402    ///     bottom_left: Rems(2.5),
2403    /// });
2404    /// ```
2405    #[must_use]
2406    pub fn map<U>(&self, f: impl Fn(&T) -> U) -> Corners<U>
2407    where
2408        U: Clone + Debug + Default + PartialEq,
2409    {
2410        Corners {
2411            top_left: f(&self.top_left),
2412            top_right: f(&self.top_right),
2413            bottom_right: f(&self.bottom_right),
2414            bottom_left: f(&self.bottom_left),
2415        }
2416    }
2417}
2418
2419impl<T> Mul for Corners<T>
2420where
2421    T: Mul<Output = T> + Clone + Debug + Default + PartialEq,
2422{
2423    type Output = Self;
2424
2425    fn mul(self, rhs: Self) -> Self::Output {
2426        Self {
2427            top_left: self.top_left.clone() * rhs.top_left,
2428            top_right: self.top_right.clone() * rhs.top_right,
2429            bottom_right: self.bottom_right.clone() * rhs.bottom_right,
2430            bottom_left: self.bottom_left * rhs.bottom_left,
2431        }
2432    }
2433}
2434
2435impl<T, S> MulAssign<S> for Corners<T>
2436where
2437    T: Mul<S, Output = T> + Clone + Debug + Default + PartialEq,
2438    S: Clone,
2439{
2440    fn mul_assign(&mut self, rhs: S) {
2441        self.top_left = self.top_left.clone() * rhs.clone();
2442        self.top_right = self.top_right.clone() * rhs.clone();
2443        self.bottom_right = self.bottom_right.clone() * rhs.clone();
2444        self.bottom_left = self.bottom_left.clone() * rhs;
2445    }
2446}
2447
2448impl<T> Copy for Corners<T> where T: Copy + Clone + Debug + Default + PartialEq {}
2449
2450impl From<f32> for Corners<Pixels> {
2451    fn from(val: f32) -> Self {
2452        Corners {
2453            top_left: val.into(),
2454            top_right: val.into(),
2455            bottom_right: val.into(),
2456            bottom_left: val.into(),
2457        }
2458    }
2459}
2460
2461impl From<Pixels> for Corners<Pixels> {
2462    fn from(val: Pixels) -> Self {
2463        Corners {
2464            top_left: val,
2465            top_right: val,
2466            bottom_right: val,
2467            bottom_left: val,
2468        }
2469    }
2470}
2471
2472/// Represents an angle in Radians
2473#[derive(
2474    Clone,
2475    Copy,
2476    Default,
2477    Add,
2478    AddAssign,
2479    Sub,
2480    SubAssign,
2481    Neg,
2482    Div,
2483    DivAssign,
2484    PartialEq,
2485    Serialize,
2486    Deserialize,
2487    Debug,
2488)]
2489#[repr(transparent)]
2490pub struct Radians(pub f32);
2491
2492/// Create a `Radian` from a raw value
2493pub fn radians(value: f32) -> Radians {
2494    Radians(value)
2495}
2496
2497/// A type representing a percentage value.
2498#[derive(
2499    Clone,
2500    Copy,
2501    Default,
2502    Add,
2503    AddAssign,
2504    Sub,
2505    SubAssign,
2506    Neg,
2507    Div,
2508    DivAssign,
2509    PartialEq,
2510    Serialize,
2511    Deserialize,
2512    Debug,
2513)]
2514#[repr(transparent)]
2515pub struct Percentage(pub f32);
2516
2517/// Generate a `Radian` from a percentage of a full circle.
2518pub fn percentage(value: f32) -> Percentage {
2519    debug_assert!(
2520        (0.0..=1.0).contains(&value),
2521        "Percentage must be between 0 and 1"
2522    );
2523    Percentage(value)
2524}
2525
2526impl From<Percentage> for Radians {
2527    fn from(value: Percentage) -> Self {
2528        radians(value.0 * std::f32::consts::PI * 2.0)
2529    }
2530}
2531
2532/// Represents a length in pixels, the base unit of measurement in the UI framework.
2533///
2534/// `Pixels` is a value type that represents an absolute length in pixels, which is used
2535/// for specifying sizes, positions, and distances in the UI. It is the fundamental unit
2536/// of measurement for all visual elements and layout calculations.
2537///
2538/// The inner value is an `f32`, allowing for sub-pixel precision which can be useful for
2539/// anti-aliasing and animations. However, when applied to actual pixel grids, the value
2540/// is typically rounded to the nearest integer.
2541///
2542/// # Examples
2543///
2544/// ```
2545/// use gpui::{Pixels, ScaledPixels};
2546///
2547/// // Define a length of 10 pixels
2548/// let length = Pixels::from(10.0);
2549///
2550/// // Define a length and scale it by a factor of 2
2551/// let scaled_length = length.scale(2.0);
2552/// assert_eq!(scaled_length, ScaledPixels::from(20.0));
2553/// ```
2554#[derive(
2555    Clone,
2556    Copy,
2557    Default,
2558    Add,
2559    AddAssign,
2560    Sub,
2561    SubAssign,
2562    Neg,
2563    Div,
2564    DivAssign,
2565    PartialEq,
2566    Serialize,
2567    Deserialize,
2568    JsonSchema,
2569)]
2570#[repr(transparent)]
2571pub struct Pixels(pub(crate) f32);
2572
2573impl Div for Pixels {
2574    type Output = f32;
2575
2576    fn div(self, rhs: Self) -> Self::Output {
2577        self.0 / rhs.0
2578    }
2579}
2580
2581impl std::ops::DivAssign for Pixels {
2582    fn div_assign(&mut self, rhs: Self) {
2583        *self = Self(self.0 / rhs.0);
2584    }
2585}
2586
2587impl std::ops::RemAssign for Pixels {
2588    fn rem_assign(&mut self, rhs: Self) {
2589        self.0 %= rhs.0;
2590    }
2591}
2592
2593impl std::ops::Rem for Pixels {
2594    type Output = Self;
2595
2596    fn rem(self, rhs: Self) -> Self {
2597        Self(self.0 % rhs.0)
2598    }
2599}
2600
2601impl Mul<f32> for Pixels {
2602    type Output = Self;
2603
2604    fn mul(self, rhs: f32) -> Self {
2605        Self(self.0 * rhs)
2606    }
2607}
2608
2609impl Mul<Pixels> for f32 {
2610    type Output = Pixels;
2611
2612    fn mul(self, rhs: Pixels) -> Self::Output {
2613        rhs * self
2614    }
2615}
2616
2617impl Mul<usize> for Pixels {
2618    type Output = Self;
2619
2620    fn mul(self, rhs: usize) -> Self {
2621        self * (rhs as f32)
2622    }
2623}
2624
2625impl Mul<Pixels> for usize {
2626    type Output = Pixels;
2627
2628    fn mul(self, rhs: Pixels) -> Pixels {
2629        rhs * self
2630    }
2631}
2632
2633impl MulAssign<f32> for Pixels {
2634    fn mul_assign(&mut self, rhs: f32) {
2635        self.0 *= rhs;
2636    }
2637}
2638
2639impl Display for Pixels {
2640    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2641        write!(f, "{}px", self.0)
2642    }
2643}
2644
2645impl Debug for Pixels {
2646    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2647        Display::fmt(self, f)
2648    }
2649}
2650
2651impl TryFrom<&'_ str> for Pixels {
2652    type Error = anyhow::Error;
2653
2654    fn try_from(value: &'_ str) -> Result<Self, Self::Error> {
2655        value
2656            .strip_suffix("px")
2657            .context("expected 'px' suffix")
2658            .and_then(|number| Ok(number.parse()?))
2659            .map(Self)
2660    }
2661}
2662
2663impl Pixels {
2664    /// Represents zero pixels.
2665    pub const ZERO: Pixels = Pixels(0.0);
2666    /// The maximum value that can be represented by `Pixels`.
2667    pub const MAX: Pixels = Pixels(f32::MAX);
2668    /// The minimum value that can be represented by `Pixels`.
2669    pub const MIN: Pixels = Pixels(f32::MIN);
2670
2671    /// Floors the `Pixels` value to the nearest whole number.
2672    ///
2673    /// # Returns
2674    ///
2675    /// Returns a new `Pixels` instance with the floored value.
2676    pub fn floor(&self) -> Self {
2677        Self(self.0.floor())
2678    }
2679
2680    /// Rounds the `Pixels` value to the nearest whole number.
2681    ///
2682    /// # Returns
2683    ///
2684    /// Returns a new `Pixels` instance with the rounded value.
2685    pub fn round(&self) -> Self {
2686        Self(self.0.round())
2687    }
2688
2689    /// Returns the ceiling of the `Pixels` value to the nearest whole number.
2690    ///
2691    /// # Returns
2692    ///
2693    /// Returns a new `Pixels` instance with the ceiling value.
2694    pub fn ceil(&self) -> Self {
2695        Self(self.0.ceil())
2696    }
2697
2698    /// Scales the `Pixels` value by a given factor, producing `ScaledPixels`.
2699    ///
2700    /// This method is used when adjusting pixel values for display scaling factors,
2701    /// such as high DPI (dots per inch) or Retina displays, where the pixel density is higher and
2702    /// thus requires scaling to maintain visual consistency and readability.
2703    ///
2704    /// The resulting `ScaledPixels` represent the scaled value which can be used for rendering
2705    /// calculations where display scaling is considered.
2706    #[must_use]
2707    pub fn scale(&self, factor: f32) -> ScaledPixels {
2708        ScaledPixels(self.0 * factor)
2709    }
2710
2711    /// Raises the `Pixels` value to a given power.
2712    ///
2713    /// # Arguments
2714    ///
2715    /// * `exponent` - The exponent to raise the `Pixels` value by.
2716    ///
2717    /// # Returns
2718    ///
2719    /// Returns a new `Pixels` instance with the value raised to the given exponent.
2720    pub fn pow(&self, exponent: f32) -> Self {
2721        Self(self.0.powf(exponent))
2722    }
2723
2724    /// Returns the absolute value of the `Pixels`.
2725    ///
2726    /// # Returns
2727    ///
2728    /// A new `Pixels` instance with the absolute value of the original `Pixels`.
2729    pub fn abs(&self) -> Self {
2730        Self(self.0.abs())
2731    }
2732
2733    /// Returns the sign of the `Pixels` value.
2734    ///
2735    /// # Returns
2736    ///
2737    /// Returns:
2738    /// * `1.0` if the value is positive
2739    /// * `-1.0` if the value is negative
2740    pub fn signum(&self) -> f32 {
2741        self.0.signum()
2742    }
2743
2744    /// Returns the f64 value of `Pixels`.
2745    ///
2746    /// # Returns
2747    ///
2748    /// A f64 value of the `Pixels`.
2749    pub fn to_f64(self) -> f64 {
2750        self.0 as f64
2751    }
2752}
2753
2754impl Eq for Pixels {}
2755
2756impl PartialOrd for Pixels {
2757    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2758        Some(self.cmp(other))
2759    }
2760}
2761
2762impl Ord for Pixels {
2763    fn cmp(&self, other: &Self) -> cmp::Ordering {
2764        self.0.total_cmp(&other.0)
2765    }
2766}
2767
2768impl std::hash::Hash for Pixels {
2769    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2770        self.0.to_bits().hash(state);
2771    }
2772}
2773
2774impl From<f64> for Pixels {
2775    fn from(pixels: f64) -> Self {
2776        Pixels(pixels as f32)
2777    }
2778}
2779
2780impl From<f32> for Pixels {
2781    fn from(pixels: f32) -> Self {
2782        Pixels(pixels)
2783    }
2784}
2785
2786impl From<Pixels> for f32 {
2787    fn from(pixels: Pixels) -> Self {
2788        pixels.0
2789    }
2790}
2791
2792impl From<&Pixels> for f32 {
2793    fn from(pixels: &Pixels) -> Self {
2794        pixels.0
2795    }
2796}
2797
2798impl From<Pixels> for f64 {
2799    fn from(pixels: Pixels) -> Self {
2800        pixels.0 as f64
2801    }
2802}
2803
2804impl From<Pixels> for u32 {
2805    fn from(pixels: Pixels) -> Self {
2806        pixels.0 as u32
2807    }
2808}
2809
2810impl From<&Pixels> for u32 {
2811    fn from(pixels: &Pixels) -> Self {
2812        pixels.0 as u32
2813    }
2814}
2815
2816impl From<u32> for Pixels {
2817    fn from(pixels: u32) -> Self {
2818        Pixels(pixels as f32)
2819    }
2820}
2821
2822impl From<Pixels> for usize {
2823    fn from(pixels: Pixels) -> Self {
2824        pixels.0 as usize
2825    }
2826}
2827
2828impl From<usize> for Pixels {
2829    fn from(pixels: usize) -> Self {
2830        Pixels(pixels as f32)
2831    }
2832}
2833
2834/// Represents physical pixels on the display.
2835///
2836/// `DevicePixels` is a unit of measurement that refers to the actual pixels on a device's screen.
2837/// This type is used when precise pixel manipulation is required, such as rendering graphics or
2838/// interfacing with hardware that operates on the pixel level. Unlike logical pixels that may be
2839/// affected by the device's scale factor, `DevicePixels` always correspond to real pixels on the
2840/// display.
2841#[derive(
2842    Add,
2843    AddAssign,
2844    Clone,
2845    Copy,
2846    Default,
2847    Div,
2848    Eq,
2849    Hash,
2850    Ord,
2851    PartialEq,
2852    PartialOrd,
2853    Sub,
2854    SubAssign,
2855    Serialize,
2856    Deserialize,
2857)]
2858#[repr(transparent)]
2859pub struct DevicePixels(pub i32);
2860
2861impl DevicePixels {
2862    /// Converts the `DevicePixels` value to the number of bytes needed to represent it in memory.
2863    ///
2864    /// This function is useful when working with graphical data that needs to be stored in a buffer,
2865    /// such as images or framebuffers, where each pixel may be represented by a specific number of bytes.
2866    ///
2867    /// # Arguments
2868    ///
2869    /// * `bytes_per_pixel` - The number of bytes used to represent a single pixel.
2870    ///
2871    /// # Returns
2872    ///
2873    /// The number of bytes required to represent the `DevicePixels` value in memory.
2874    ///
2875    /// # Examples
2876    ///
2877    /// ```
2878    /// # use gpui::DevicePixels;
2879    /// let pixels = DevicePixels(10); // 10 device pixels
2880    /// let bytes_per_pixel = 4; // Assume each pixel is represented by 4 bytes (e.g., RGBA)
2881    /// let total_bytes = pixels.to_bytes(bytes_per_pixel);
2882    /// assert_eq!(total_bytes, 40); // 10 pixels * 4 bytes/pixel = 40 bytes
2883    /// ```
2884    pub fn to_bytes(self, bytes_per_pixel: u8) -> u32 {
2885        self.0 as u32 * bytes_per_pixel as u32
2886    }
2887}
2888
2889impl fmt::Debug for DevicePixels {
2890    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2891        write!(f, "{} px (device)", self.0)
2892    }
2893}
2894
2895impl From<DevicePixels> for i32 {
2896    fn from(device_pixels: DevicePixels) -> Self {
2897        device_pixels.0
2898    }
2899}
2900
2901impl From<i32> for DevicePixels {
2902    fn from(device_pixels: i32) -> Self {
2903        DevicePixels(device_pixels)
2904    }
2905}
2906
2907impl From<u32> for DevicePixels {
2908    fn from(device_pixels: u32) -> Self {
2909        DevicePixels(device_pixels as i32)
2910    }
2911}
2912
2913impl From<DevicePixels> for u32 {
2914    fn from(device_pixels: DevicePixels) -> Self {
2915        device_pixels.0 as u32
2916    }
2917}
2918
2919impl From<DevicePixels> for u64 {
2920    fn from(device_pixels: DevicePixels) -> Self {
2921        device_pixels.0 as u64
2922    }
2923}
2924
2925impl From<u64> for DevicePixels {
2926    fn from(device_pixels: u64) -> Self {
2927        DevicePixels(device_pixels as i32)
2928    }
2929}
2930
2931impl From<DevicePixels> for usize {
2932    fn from(device_pixels: DevicePixels) -> Self {
2933        device_pixels.0 as usize
2934    }
2935}
2936
2937impl From<usize> for DevicePixels {
2938    fn from(device_pixels: usize) -> Self {
2939        DevicePixels(device_pixels as i32)
2940    }
2941}
2942
2943/// Represents scaled pixels that take into account the device's scale factor.
2944///
2945/// `ScaledPixels` are used to ensure that UI elements appear at the correct size on devices
2946/// with different pixel densities. When a device has a higher scale factor (such as Retina displays),
2947/// a single logical pixel may correspond to multiple physical pixels. By using `ScaledPixels`,
2948/// dimensions and positions can be specified in a way that scales appropriately across different
2949/// display resolutions.
2950#[derive(Clone, Copy, Default, Add, AddAssign, Sub, SubAssign, Div, DivAssign, PartialEq)]
2951#[repr(transparent)]
2952pub struct ScaledPixels(pub(crate) f32);
2953
2954impl ScaledPixels {
2955    /// Floors the `ScaledPixels` value to the nearest whole number.
2956    ///
2957    /// # Returns
2958    ///
2959    /// Returns a new `ScaledPixels` instance with the floored value.
2960    pub fn floor(&self) -> Self {
2961        Self(self.0.floor())
2962    }
2963
2964    /// Rounds the `ScaledPixels` value to the nearest whole number.
2965    ///
2966    /// # Returns
2967    ///
2968    /// Returns a new `ScaledPixels` instance with the rounded value.
2969    pub fn round(&self) -> Self {
2970        Self(self.0.round())
2971    }
2972
2973    /// Ceils the `ScaledPixels` value to the nearest whole number.
2974    ///
2975    /// # Returns
2976    ///
2977    /// Returns a new `ScaledPixels` instance with the ceiled value.
2978    pub fn ceil(&self) -> Self {
2979        Self(self.0.ceil())
2980    }
2981}
2982
2983impl Eq for ScaledPixels {}
2984
2985impl PartialOrd for ScaledPixels {
2986    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2987        Some(self.cmp(other))
2988    }
2989}
2990
2991impl Ord for ScaledPixels {
2992    fn cmp(&self, other: &Self) -> cmp::Ordering {
2993        self.0.total_cmp(&other.0)
2994    }
2995}
2996
2997impl Debug for ScaledPixels {
2998    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2999        write!(f, "{}px (scaled)", self.0)
3000    }
3001}
3002
3003impl From<ScaledPixels> for DevicePixels {
3004    fn from(scaled: ScaledPixels) -> Self {
3005        DevicePixels(scaled.0.ceil() as i32)
3006    }
3007}
3008
3009impl From<DevicePixels> for ScaledPixels {
3010    fn from(device: DevicePixels) -> Self {
3011        ScaledPixels(device.0 as f32)
3012    }
3013}
3014
3015impl From<ScaledPixels> for f64 {
3016    fn from(scaled_pixels: ScaledPixels) -> Self {
3017        scaled_pixels.0 as f64
3018    }
3019}
3020
3021impl From<ScaledPixels> for u32 {
3022    fn from(pixels: ScaledPixels) -> Self {
3023        pixels.0 as u32
3024    }
3025}
3026
3027impl From<f32> for ScaledPixels {
3028    fn from(pixels: f32) -> Self {
3029        Self(pixels)
3030    }
3031}
3032
3033impl Div for ScaledPixels {
3034    type Output = f32;
3035
3036    fn div(self, rhs: Self) -> Self::Output {
3037        self.0 / rhs.0
3038    }
3039}
3040
3041impl std::ops::DivAssign for ScaledPixels {
3042    fn div_assign(&mut self, rhs: Self) {
3043        *self = Self(self.0 / rhs.0);
3044    }
3045}
3046
3047impl std::ops::RemAssign for ScaledPixels {
3048    fn rem_assign(&mut self, rhs: Self) {
3049        self.0 %= rhs.0;
3050    }
3051}
3052
3053impl std::ops::Rem for ScaledPixels {
3054    type Output = Self;
3055
3056    fn rem(self, rhs: Self) -> Self {
3057        Self(self.0 % rhs.0)
3058    }
3059}
3060
3061impl Mul<f32> for ScaledPixels {
3062    type Output = Self;
3063
3064    fn mul(self, rhs: f32) -> Self {
3065        Self(self.0 * rhs)
3066    }
3067}
3068
3069impl Mul<ScaledPixels> for f32 {
3070    type Output = ScaledPixels;
3071
3072    fn mul(self, rhs: ScaledPixels) -> Self::Output {
3073        rhs * self
3074    }
3075}
3076
3077impl Mul<usize> for ScaledPixels {
3078    type Output = Self;
3079
3080    fn mul(self, rhs: usize) -> Self {
3081        self * (rhs as f32)
3082    }
3083}
3084
3085impl Mul<ScaledPixels> for usize {
3086    type Output = ScaledPixels;
3087
3088    fn mul(self, rhs: ScaledPixels) -> ScaledPixels {
3089        rhs * self
3090    }
3091}
3092
3093impl MulAssign<f32> for ScaledPixels {
3094    fn mul_assign(&mut self, rhs: f32) {
3095        self.0 *= rhs;
3096    }
3097}
3098
3099/// Represents a length in rems, a unit based on the font-size of the window, which can be assigned with [`Window::set_rem_size`][set_rem_size].
3100///
3101/// Rems are used for defining lengths that are scalable and consistent across different UI elements.
3102/// The value of `1rem` is typically equal to the font-size of the root element (often the `<html>` element in browsers),
3103/// making it a flexible unit that adapts to the user's text size preferences. In this framework, `rems` serve a similar
3104/// purpose, allowing for scalable and accessible design that can adjust to different display settings or user preferences.
3105///
3106/// For example, if the root element's font-size is `16px`, then `1rem` equals `16px`. A length of `2rems` would then be `32px`.
3107///
3108/// [set_rem_size]: crate::Window::set_rem_size
3109#[derive(Clone, Copy, Default, Add, Sub, Mul, Div, Neg, PartialEq)]
3110pub struct Rems(pub f32);
3111
3112impl Rems {
3113    /// Convert this Rem value to pixels.
3114    pub fn to_pixels(self, rem_size: Pixels) -> Pixels {
3115        self * rem_size
3116    }
3117}
3118
3119impl Mul<Pixels> for Rems {
3120    type Output = Pixels;
3121
3122    fn mul(self, other: Pixels) -> Pixels {
3123        Pixels(self.0 * other.0)
3124    }
3125}
3126
3127impl Display for Rems {
3128    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3129        write!(f, "{}rem", self.0)
3130    }
3131}
3132
3133impl Debug for Rems {
3134    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3135        Display::fmt(self, f)
3136    }
3137}
3138
3139impl TryFrom<&'_ str> for Rems {
3140    type Error = anyhow::Error;
3141
3142    fn try_from(value: &'_ str) -> Result<Self, Self::Error> {
3143        value
3144            .strip_suffix("rem")
3145            .context("expected 'rem' suffix")
3146            .and_then(|number| Ok(number.parse()?))
3147            .map(Self)
3148    }
3149}
3150
3151/// Represents an absolute length in pixels or rems.
3152///
3153/// `AbsoluteLength` can be either a fixed number of pixels, which is an absolute measurement not
3154/// affected by the current font size, or a number of rems, which is relative to the font size of
3155/// the root element. It is used for specifying dimensions that are either independent of or
3156/// related to the typographic scale.
3157#[derive(Clone, Copy, Neg, PartialEq)]
3158pub enum AbsoluteLength {
3159    /// A length in pixels.
3160    Pixels(Pixels),
3161    /// A length in rems.
3162    Rems(Rems),
3163}
3164
3165impl AbsoluteLength {
3166    /// Checks if the absolute length is zero.
3167    pub fn is_zero(&self) -> bool {
3168        match self {
3169            AbsoluteLength::Pixels(px) => px.0 == 0.0,
3170            AbsoluteLength::Rems(rems) => rems.0 == 0.0,
3171        }
3172    }
3173}
3174
3175impl From<Pixels> for AbsoluteLength {
3176    fn from(pixels: Pixels) -> Self {
3177        AbsoluteLength::Pixels(pixels)
3178    }
3179}
3180
3181impl From<Rems> for AbsoluteLength {
3182    fn from(rems: Rems) -> Self {
3183        AbsoluteLength::Rems(rems)
3184    }
3185}
3186
3187impl AbsoluteLength {
3188    /// Converts an `AbsoluteLength` to `Pixels` based on a given `rem_size`.
3189    ///
3190    /// # Arguments
3191    ///
3192    /// * `rem_size` - The size of one rem in pixels.
3193    ///
3194    /// # Returns
3195    ///
3196    /// Returns the `AbsoluteLength` as `Pixels`.
3197    ///
3198    /// # Examples
3199    ///
3200    /// ```
3201    /// # use gpui::{AbsoluteLength, Pixels, Rems};
3202    /// let length_in_pixels = AbsoluteLength::Pixels(Pixels::from(42.0));
3203    /// let length_in_rems = AbsoluteLength::Rems(Rems(2.0));
3204    /// let rem_size = Pixels::from(16.0);
3205    ///
3206    /// assert_eq!(length_in_pixels.to_pixels(rem_size), Pixels::from(42.0));
3207    /// assert_eq!(length_in_rems.to_pixels(rem_size), Pixels::from(32.0));
3208    /// ```
3209    pub fn to_pixels(self, rem_size: Pixels) -> Pixels {
3210        match self {
3211            AbsoluteLength::Pixels(pixels) => pixels,
3212            AbsoluteLength::Rems(rems) => rems.to_pixels(rem_size),
3213        }
3214    }
3215
3216    /// Converts an `AbsoluteLength` to `Rems` based on a given `rem_size`.
3217    ///
3218    /// # Arguments
3219    ///
3220    /// * `rem_size` - The size of one rem in pixels.
3221    ///
3222    /// # Returns
3223    ///
3224    /// Returns the `AbsoluteLength` as `Pixels`.
3225    pub fn to_rems(self, rem_size: Pixels) -> Rems {
3226        match self {
3227            AbsoluteLength::Pixels(pixels) => Rems(pixels.0 / rem_size.0),
3228            AbsoluteLength::Rems(rems) => rems,
3229        }
3230    }
3231}
3232
3233impl Default for AbsoluteLength {
3234    fn default() -> Self {
3235        px(0.).into()
3236    }
3237}
3238
3239impl Display for AbsoluteLength {
3240    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3241        match self {
3242            Self::Pixels(pixels) => write!(f, "{pixels}"),
3243            Self::Rems(rems) => write!(f, "{rems}"),
3244        }
3245    }
3246}
3247
3248impl Debug for AbsoluteLength {
3249    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3250        Display::fmt(self, f)
3251    }
3252}
3253
3254const EXPECTED_ABSOLUTE_LENGTH: &str = "number with 'px' or 'rem' suffix";
3255
3256impl TryFrom<&'_ str> for AbsoluteLength {
3257    type Error = anyhow::Error;
3258
3259    fn try_from(value: &'_ str) -> Result<Self, Self::Error> {
3260        if let Ok(pixels) = value.try_into() {
3261            Ok(Self::Pixels(pixels))
3262        } else if let Ok(rems) = value.try_into() {
3263            Ok(Self::Rems(rems))
3264        } else {
3265            Err(anyhow!(
3266                "invalid AbsoluteLength '{value}', expected {EXPECTED_ABSOLUTE_LENGTH}"
3267            ))
3268        }
3269    }
3270}
3271
3272impl JsonSchema for AbsoluteLength {
3273    fn schema_name() -> Cow<'static, str> {
3274        "AbsoluteLength".into()
3275    }
3276
3277    fn json_schema(_generator: &mut schemars::SchemaGenerator) -> schemars::Schema {
3278        json_schema!({
3279            "type": "string",
3280            "pattern": r"^-?\d+(\.\d+)?(px|rem)$"
3281        })
3282    }
3283}
3284
3285impl<'de> Deserialize<'de> for AbsoluteLength {
3286    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
3287        struct StringVisitor;
3288
3289        impl de::Visitor<'_> for StringVisitor {
3290            type Value = AbsoluteLength;
3291
3292            fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
3293                write!(f, "{EXPECTED_ABSOLUTE_LENGTH}")
3294            }
3295
3296            fn visit_str<E: de::Error>(self, value: &str) -> Result<Self::Value, E> {
3297                AbsoluteLength::try_from(value).map_err(E::custom)
3298            }
3299        }
3300
3301        deserializer.deserialize_str(StringVisitor)
3302    }
3303}
3304
3305impl Serialize for AbsoluteLength {
3306    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
3307    where
3308        S: Serializer,
3309    {
3310        serializer.serialize_str(&format!("{self}"))
3311    }
3312}
3313
3314/// A non-auto length that can be defined in pixels, rems, or percent of parent.
3315///
3316/// This enum represents lengths that have a specific value, as opposed to lengths that are automatically
3317/// determined by the context. It includes absolute lengths in pixels or rems, and relative lengths as a
3318/// fraction of the parent's size.
3319#[derive(Clone, Copy, Neg, PartialEq)]
3320pub enum DefiniteLength {
3321    /// An absolute length specified in pixels or rems.
3322    Absolute(AbsoluteLength),
3323    /// A relative length specified as a fraction of the parent's size, between 0 and 1.
3324    Fraction(f32),
3325}
3326
3327impl DefiniteLength {
3328    /// Converts the `DefiniteLength` to `Pixels` based on a given `base_size` and `rem_size`.
3329    ///
3330    /// If the `DefiniteLength` is an absolute length, it will be directly converted to `Pixels`.
3331    /// If it is a fraction, the fraction will be multiplied by the `base_size` to get the length in pixels.
3332    ///
3333    /// # Arguments
3334    ///
3335    /// * `base_size` - The base size in `AbsoluteLength` to which the fraction will be applied.
3336    /// * `rem_size` - The size of one rem in pixels, used to convert rems to pixels.
3337    ///
3338    /// # Returns
3339    ///
3340    /// Returns the `DefiniteLength` as `Pixels`.
3341    ///
3342    /// # Examples
3343    ///
3344    /// ```
3345    /// # use gpui::{DefiniteLength, AbsoluteLength, Pixels, px, rems};
3346    /// let length_in_pixels = DefiniteLength::Absolute(AbsoluteLength::Pixels(px(42.0)));
3347    /// let length_in_rems = DefiniteLength::Absolute(AbsoluteLength::Rems(rems(2.0)));
3348    /// let length_as_fraction = DefiniteLength::Fraction(0.5);
3349    /// let base_size = AbsoluteLength::Pixels(px(100.0));
3350    /// let rem_size = px(16.0);
3351    ///
3352    /// assert_eq!(length_in_pixels.to_pixels(base_size, rem_size), Pixels::from(42.0));
3353    /// assert_eq!(length_in_rems.to_pixels(base_size, rem_size), Pixels::from(32.0));
3354    /// assert_eq!(length_as_fraction.to_pixels(base_size, rem_size), Pixels::from(50.0));
3355    /// ```
3356    pub fn to_pixels(self, base_size: AbsoluteLength, rem_size: Pixels) -> Pixels {
3357        match self {
3358            DefiniteLength::Absolute(size) => size.to_pixels(rem_size),
3359            DefiniteLength::Fraction(fraction) => match base_size {
3360                AbsoluteLength::Pixels(px) => px * fraction,
3361                AbsoluteLength::Rems(rems) => rems * rem_size * fraction,
3362            },
3363        }
3364    }
3365}
3366
3367impl Debug for DefiniteLength {
3368    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3369        Display::fmt(self, f)
3370    }
3371}
3372
3373impl Display for DefiniteLength {
3374    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3375        match self {
3376            DefiniteLength::Absolute(length) => write!(f, "{length}"),
3377            DefiniteLength::Fraction(fraction) => write!(f, "{}%", (fraction * 100.0) as i32),
3378        }
3379    }
3380}
3381
3382const EXPECTED_DEFINITE_LENGTH: &str = "expected number with 'px', 'rem', or '%' suffix";
3383
3384impl TryFrom<&'_ str> for DefiniteLength {
3385    type Error = anyhow::Error;
3386
3387    fn try_from(value: &'_ str) -> Result<Self, Self::Error> {
3388        if let Some(percentage) = value.strip_suffix('%') {
3389            let fraction: f32 = percentage.parse::<f32>().with_context(|| {
3390                format!("invalid DefiniteLength '{value}', expected {EXPECTED_DEFINITE_LENGTH}")
3391            })?;
3392            Ok(DefiniteLength::Fraction(fraction / 100.0))
3393        } else if let Ok(absolute_length) = value.try_into() {
3394            Ok(DefiniteLength::Absolute(absolute_length))
3395        } else {
3396            Err(anyhow!(
3397                "invalid DefiniteLength '{value}', expected {EXPECTED_DEFINITE_LENGTH}"
3398            ))
3399        }
3400    }
3401}
3402
3403impl JsonSchema for DefiniteLength {
3404    fn schema_name() -> Cow<'static, str> {
3405        "DefiniteLength".into()
3406    }
3407
3408    fn json_schema(_generator: &mut schemars::SchemaGenerator) -> schemars::Schema {
3409        json_schema!({
3410            "type": "string",
3411            "pattern": r"^-?\d+(\.\d+)?(px|rem|%)$"
3412        })
3413    }
3414}
3415
3416impl<'de> Deserialize<'de> for DefiniteLength {
3417    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
3418        struct StringVisitor;
3419
3420        impl de::Visitor<'_> for StringVisitor {
3421            type Value = DefiniteLength;
3422
3423            fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
3424                write!(f, "{EXPECTED_DEFINITE_LENGTH}")
3425            }
3426
3427            fn visit_str<E: de::Error>(self, value: &str) -> Result<Self::Value, E> {
3428                DefiniteLength::try_from(value).map_err(E::custom)
3429            }
3430        }
3431
3432        deserializer.deserialize_str(StringVisitor)
3433    }
3434}
3435
3436impl Serialize for DefiniteLength {
3437    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
3438    where
3439        S: Serializer,
3440    {
3441        serializer.serialize_str(&format!("{self}"))
3442    }
3443}
3444
3445impl From<Pixels> for DefiniteLength {
3446    fn from(pixels: Pixels) -> Self {
3447        Self::Absolute(pixels.into())
3448    }
3449}
3450
3451impl From<Rems> for DefiniteLength {
3452    fn from(rems: Rems) -> Self {
3453        Self::Absolute(rems.into())
3454    }
3455}
3456
3457impl From<AbsoluteLength> for DefiniteLength {
3458    fn from(length: AbsoluteLength) -> Self {
3459        Self::Absolute(length)
3460    }
3461}
3462
3463impl Default for DefiniteLength {
3464    fn default() -> Self {
3465        Self::Absolute(AbsoluteLength::default())
3466    }
3467}
3468
3469/// A length that can be defined in pixels, rems, percent of parent, or auto.
3470#[derive(Clone, Copy, PartialEq)]
3471pub enum Length {
3472    /// A definite length specified either in pixels, rems, or as a fraction of the parent's size.
3473    Definite(DefiniteLength),
3474    /// An automatic length that is determined by the context in which it is used.
3475    Auto,
3476}
3477
3478impl Debug for Length {
3479    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3480        Display::fmt(self, f)
3481    }
3482}
3483
3484impl Display for Length {
3485    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3486        match self {
3487            Length::Definite(definite_length) => write!(f, "{}", definite_length),
3488            Length::Auto => write!(f, "auto"),
3489        }
3490    }
3491}
3492
3493const EXPECTED_LENGTH: &str = "expected 'auto' or number with 'px', 'rem', or '%' suffix";
3494
3495impl TryFrom<&'_ str> for Length {
3496    type Error = anyhow::Error;
3497
3498    fn try_from(value: &'_ str) -> Result<Self, Self::Error> {
3499        if value == "auto" {
3500            Ok(Length::Auto)
3501        } else if let Ok(definite_length) = value.try_into() {
3502            Ok(Length::Definite(definite_length))
3503        } else {
3504            Err(anyhow!(
3505                "invalid Length '{value}', expected {EXPECTED_LENGTH}"
3506            ))
3507        }
3508    }
3509}
3510
3511impl JsonSchema for Length {
3512    fn schema_name() -> Cow<'static, str> {
3513        "Length".into()
3514    }
3515
3516    fn json_schema(_generator: &mut schemars::SchemaGenerator) -> schemars::Schema {
3517        json_schema!({
3518            "type": "string",
3519            "pattern": r"^(auto|-?\d+(\.\d+)?(px|rem|%))$"
3520        })
3521    }
3522}
3523
3524impl<'de> Deserialize<'de> for Length {
3525    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
3526        struct StringVisitor;
3527
3528        impl de::Visitor<'_> for StringVisitor {
3529            type Value = Length;
3530
3531            fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
3532                write!(f, "{EXPECTED_LENGTH}")
3533            }
3534
3535            fn visit_str<E: de::Error>(self, value: &str) -> Result<Self::Value, E> {
3536                Length::try_from(value).map_err(E::custom)
3537            }
3538        }
3539
3540        deserializer.deserialize_str(StringVisitor)
3541    }
3542}
3543
3544impl Serialize for Length {
3545    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
3546    where
3547        S: Serializer,
3548    {
3549        serializer.serialize_str(&format!("{self}"))
3550    }
3551}
3552
3553/// Constructs a `DefiniteLength` representing a relative fraction of a parent size.
3554///
3555/// This function creates a `DefiniteLength` that is a specified fraction of a parent's dimension.
3556/// The fraction should be a floating-point number between 0.0 and 1.0, where 1.0 represents 100% of the parent's size.
3557///
3558/// # Arguments
3559///
3560/// * `fraction` - The fraction of the parent's size, between 0.0 and 1.0.
3561///
3562/// # Returns
3563///
3564/// A `DefiniteLength` representing the relative length as a fraction of the parent's size.
3565pub const fn relative(fraction: f32) -> DefiniteLength {
3566    DefiniteLength::Fraction(fraction)
3567}
3568
3569/// Returns the Golden Ratio, i.e. `~(1.0 + sqrt(5.0)) / 2.0`.
3570pub fn phi() -> DefiniteLength {
3571    relative(1.618_034)
3572}
3573
3574/// Constructs a `Rems` value representing a length in rems.
3575///
3576/// # Arguments
3577///
3578/// * `rems` - The number of rems for the length.
3579///
3580/// # Returns
3581///
3582/// A `Rems` representing the specified number of rems.
3583pub fn rems(rems: f32) -> Rems {
3584    Rems(rems)
3585}
3586
3587/// Constructs a `Pixels` value representing a length in pixels.
3588///
3589/// # Arguments
3590///
3591/// * `pixels` - The number of pixels for the length.
3592///
3593/// # Returns
3594///
3595/// A `Pixels` representing the specified number of pixels.
3596pub const fn px(pixels: f32) -> Pixels {
3597    Pixels(pixels)
3598}
3599
3600/// Returns a `Length` representing an automatic length.
3601///
3602/// The `auto` length is often used in layout calculations where the length should be determined
3603/// by the layout context itself rather than being explicitly set. This is commonly used in CSS
3604/// for properties like `width`, `height`, `margin`, `padding`, etc., where `auto` can be used
3605/// to instruct the layout engine to calculate the size based on other factors like the size of the
3606/// container or the intrinsic size of the content.
3607///
3608/// # Returns
3609///
3610/// A `Length` variant set to `Auto`.
3611pub fn auto() -> Length {
3612    Length::Auto
3613}
3614
3615impl From<Pixels> for Length {
3616    fn from(pixels: Pixels) -> Self {
3617        Self::Definite(pixels.into())
3618    }
3619}
3620
3621impl From<Rems> for Length {
3622    fn from(rems: Rems) -> Self {
3623        Self::Definite(rems.into())
3624    }
3625}
3626
3627impl From<DefiniteLength> for Length {
3628    fn from(length: DefiniteLength) -> Self {
3629        Self::Definite(length)
3630    }
3631}
3632
3633impl From<AbsoluteLength> for Length {
3634    fn from(length: AbsoluteLength) -> Self {
3635        Self::Definite(length.into())
3636    }
3637}
3638
3639impl Default for Length {
3640    fn default() -> Self {
3641        Self::Definite(DefiniteLength::default())
3642    }
3643}
3644
3645impl From<()> for Length {
3646    fn from(_: ()) -> Self {
3647        Self::Definite(DefiniteLength::default())
3648    }
3649}
3650
3651/// A location in a grid layout.
3652#[derive(Clone, PartialEq, Debug, Serialize, Deserialize, JsonSchema, Default)]
3653pub struct GridLocation {
3654    /// The rows this item uses within the grid.
3655    pub row: Range<GridPlacement>,
3656    /// The columns this item uses within the grid.
3657    pub column: Range<GridPlacement>,
3658}
3659
3660/// The placement of an item within a grid layout's column or row.
3661#[derive(Clone, Copy, PartialEq, Debug, Serialize, Deserialize, JsonSchema, Default)]
3662pub enum GridPlacement {
3663    /// The grid line index to place this item.
3664    Line(i16),
3665    /// The number of grid lines to span.
3666    Span(u16),
3667    /// Automatically determine the placement, equivalent to Span(1)
3668    #[default]
3669    Auto,
3670}
3671
3672impl From<GridPlacement> for taffy::GridPlacement {
3673    fn from(placement: GridPlacement) -> Self {
3674        match placement {
3675            GridPlacement::Line(index) => taffy::GridPlacement::from_line_index(index),
3676            GridPlacement::Span(span) => taffy::GridPlacement::from_span(span),
3677            GridPlacement::Auto => taffy::GridPlacement::Auto,
3678        }
3679    }
3680}
3681
3682/// Provides a trait for types that can calculate half of their value.
3683///
3684/// The `Half` trait is used for types that can be evenly divided, returning a new instance of the same type
3685/// representing half of the original value. This is commonly used for types that represent measurements or sizes,
3686/// such as lengths or pixels, where halving is a frequent operation during layout calculations or animations.
3687pub trait Half {
3688    /// Returns half of the current value.
3689    ///
3690    /// # Returns
3691    ///
3692    /// A new instance of the implementing type, representing half of the original value.
3693    fn half(&self) -> Self;
3694}
3695
3696impl Half for i32 {
3697    fn half(&self) -> Self {
3698        self / 2
3699    }
3700}
3701
3702impl Half for f32 {
3703    fn half(&self) -> Self {
3704        self / 2.
3705    }
3706}
3707
3708impl Half for DevicePixels {
3709    fn half(&self) -> Self {
3710        Self(self.0 / 2)
3711    }
3712}
3713
3714impl Half for ScaledPixels {
3715    fn half(&self) -> Self {
3716        Self(self.0 / 2.)
3717    }
3718}
3719
3720impl Half for Pixels {
3721    fn half(&self) -> Self {
3722        Self(self.0 / 2.)
3723    }
3724}
3725
3726impl Half for Rems {
3727    fn half(&self) -> Self {
3728        Self(self.0 / 2.)
3729    }
3730}
3731
3732/// Provides a trait for types that can negate their values.
3733pub trait Negate {
3734    /// Returns the negation of the given value
3735    fn negate(self) -> Self;
3736}
3737
3738impl Negate for i32 {
3739    fn negate(self) -> Self {
3740        -self
3741    }
3742}
3743
3744impl Negate for f32 {
3745    fn negate(self) -> Self {
3746        -self
3747    }
3748}
3749
3750impl Negate for DevicePixels {
3751    fn negate(self) -> Self {
3752        Self(-self.0)
3753    }
3754}
3755
3756impl Negate for ScaledPixels {
3757    fn negate(self) -> Self {
3758        Self(-self.0)
3759    }
3760}
3761
3762impl Negate for Pixels {
3763    fn negate(self) -> Self {
3764        Self(-self.0)
3765    }
3766}
3767
3768impl Negate for Rems {
3769    fn negate(self) -> Self {
3770        Self(-self.0)
3771    }
3772}
3773
3774/// A trait for checking if a value is zero.
3775///
3776/// This trait provides a method to determine if a value is considered to be zero.
3777/// It is implemented for various numeric and length-related types where the concept
3778/// of zero is applicable. This can be useful for comparisons, optimizations, or
3779/// determining if an operation has a neutral effect.
3780pub trait IsZero {
3781    /// Determines if the value is zero.
3782    ///
3783    /// # Returns
3784    ///
3785    /// Returns `true` if the value is zero, `false` otherwise.
3786    fn is_zero(&self) -> bool;
3787}
3788
3789impl IsZero for DevicePixels {
3790    fn is_zero(&self) -> bool {
3791        self.0 == 0
3792    }
3793}
3794
3795impl IsZero for ScaledPixels {
3796    fn is_zero(&self) -> bool {
3797        self.0 == 0.
3798    }
3799}
3800
3801impl IsZero for Pixels {
3802    fn is_zero(&self) -> bool {
3803        self.0 == 0.
3804    }
3805}
3806
3807impl IsZero for Rems {
3808    fn is_zero(&self) -> bool {
3809        self.0 == 0.
3810    }
3811}
3812
3813impl IsZero for AbsoluteLength {
3814    fn is_zero(&self) -> bool {
3815        match self {
3816            AbsoluteLength::Pixels(pixels) => pixels.is_zero(),
3817            AbsoluteLength::Rems(rems) => rems.is_zero(),
3818        }
3819    }
3820}
3821
3822impl IsZero for DefiniteLength {
3823    fn is_zero(&self) -> bool {
3824        match self {
3825            DefiniteLength::Absolute(length) => length.is_zero(),
3826            DefiniteLength::Fraction(fraction) => *fraction == 0.,
3827        }
3828    }
3829}
3830
3831impl IsZero for Length {
3832    fn is_zero(&self) -> bool {
3833        match self {
3834            Length::Definite(length) => length.is_zero(),
3835            Length::Auto => false,
3836        }
3837    }
3838}
3839
3840impl<T: IsZero + Clone + Debug + Default + PartialEq> IsZero for Point<T> {
3841    fn is_zero(&self) -> bool {
3842        self.x.is_zero() && self.y.is_zero()
3843    }
3844}
3845
3846impl<T> IsZero for Size<T>
3847where
3848    T: IsZero + Clone + Debug + Default + PartialEq,
3849{
3850    fn is_zero(&self) -> bool {
3851        self.width.is_zero() || self.height.is_zero()
3852    }
3853}
3854
3855impl<T: IsZero + Clone + Debug + Default + PartialEq> IsZero for Bounds<T> {
3856    fn is_zero(&self) -> bool {
3857        self.size.is_zero()
3858    }
3859}
3860
3861impl<T> IsZero for Corners<T>
3862where
3863    T: IsZero + Clone + Debug + Default + PartialEq,
3864{
3865    fn is_zero(&self) -> bool {
3866        self.top_left.is_zero()
3867            && self.top_right.is_zero()
3868            && self.bottom_right.is_zero()
3869            && self.bottom_left.is_zero()
3870    }
3871}
3872
3873#[cfg(test)]
3874mod tests {
3875    use super::*;
3876
3877    #[test]
3878    fn test_bounds_intersects() {
3879        let bounds1 = Bounds {
3880            origin: Point { x: 0.0, y: 0.0 },
3881            size: Size {
3882                width: 5.0,
3883                height: 5.0,
3884            },
3885        };
3886        let bounds2 = Bounds {
3887            origin: Point { x: 4.0, y: 4.0 },
3888            size: Size {
3889                width: 5.0,
3890                height: 5.0,
3891            },
3892        };
3893        let bounds3 = Bounds {
3894            origin: Point { x: 10.0, y: 10.0 },
3895            size: Size {
3896                width: 5.0,
3897                height: 5.0,
3898            },
3899        };
3900
3901        // Test Case 1: Intersecting bounds
3902        assert!(bounds1.intersects(&bounds2));
3903
3904        // Test Case 2: Non-Intersecting bounds
3905        assert!(!bounds1.intersects(&bounds3));
3906
3907        // Test Case 3: Bounds intersecting with themselves
3908        assert!(bounds1.intersects(&bounds1));
3909    }
3910}