1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
13 PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
14 Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
15 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
16 Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
17 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
18 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
19 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
20 transparent_black,
21};
22use anyhow::{Context as _, Result, anyhow};
23use collections::{FxHashMap, FxHashSet};
24#[cfg(target_os = "macos")]
25use core_video::pixel_buffer::CVPixelBuffer;
26use derive_more::{Deref, DerefMut};
27use futures::FutureExt;
28use futures::channel::oneshot;
29use itertools::FoldWhile::{Continue, Done};
30use itertools::Itertools;
31use parking_lot::RwLock;
32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
33use refineable::Refineable;
34use slotmap::SlotMap;
35use smallvec::SmallVec;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
63
64/// A 6:5 aspect ratio minimum window size to be used for functional,
65/// additional-to-main-Zed windows, like the settings and rules library windows.
66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
67 width: Pixels(900.),
68 height: Pixels(750.),
69};
70
71/// Represents the two different phases when dispatching events.
72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
73pub enum DispatchPhase {
74 /// After the capture phase comes the bubble phase, in which mouse event listeners are
75 /// invoked front to back and keyboard event listeners are invoked from the focused element
76 /// to the root of the element tree. This is the phase you'll most commonly want to use when
77 /// registering event listeners.
78 #[default]
79 Bubble,
80 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
81 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
82 /// is used for special purposes such as clearing the "pressed" state for click events. If
83 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
84 /// outside of the immediate region may rely on detecting non-local events during this phase.
85 Capture,
86}
87
88impl DispatchPhase {
89 /// Returns true if this represents the "bubble" phase.
90 #[inline]
91 pub fn bubble(self) -> bool {
92 self == DispatchPhase::Bubble
93 }
94
95 /// Returns true if this represents the "capture" phase.
96 #[inline]
97 pub fn capture(self) -> bool {
98 self == DispatchPhase::Capture
99 }
100}
101
102struct WindowInvalidatorInner {
103 pub dirty: bool,
104 pub draw_phase: DrawPhase,
105 pub dirty_views: FxHashSet<EntityId>,
106}
107
108#[derive(Clone)]
109pub(crate) struct WindowInvalidator {
110 inner: Rc<RefCell<WindowInvalidatorInner>>,
111}
112
113impl WindowInvalidator {
114 pub fn new() -> Self {
115 WindowInvalidator {
116 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
117 dirty: true,
118 draw_phase: DrawPhase::None,
119 dirty_views: FxHashSet::default(),
120 })),
121 }
122 }
123
124 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
125 let mut inner = self.inner.borrow_mut();
126 inner.dirty_views.insert(entity);
127 if inner.draw_phase == DrawPhase::None {
128 inner.dirty = true;
129 cx.push_effect(Effect::Notify { emitter: entity });
130 true
131 } else {
132 false
133 }
134 }
135
136 pub fn is_dirty(&self) -> bool {
137 self.inner.borrow().dirty
138 }
139
140 pub fn set_dirty(&self, dirty: bool) {
141 self.inner.borrow_mut().dirty = dirty
142 }
143
144 pub fn set_phase(&self, phase: DrawPhase) {
145 self.inner.borrow_mut().draw_phase = phase
146 }
147
148 pub fn take_views(&self) -> FxHashSet<EntityId> {
149 mem::take(&mut self.inner.borrow_mut().dirty_views)
150 }
151
152 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
153 self.inner.borrow_mut().dirty_views = views;
154 }
155
156 pub fn not_drawing(&self) -> bool {
157 self.inner.borrow().draw_phase == DrawPhase::None
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
164 "this method can only be called during paint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_prepaint(&self) {
170 debug_assert!(
171 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
172 "this method can only be called during request_layout, or prepaint"
173 );
174 }
175
176 #[track_caller]
177 pub fn debug_assert_paint_or_prepaint(&self) {
178 debug_assert!(
179 matches!(
180 self.inner.borrow().draw_phase,
181 DrawPhase::Paint | DrawPhase::Prepaint
182 ),
183 "this method can only be called during request_layout, prepaint, or paint"
184 );
185 }
186}
187
188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
189
190pub(crate) type AnyWindowFocusListener =
191 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
192
193pub(crate) struct WindowFocusEvent {
194 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
195 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
196}
197
198impl WindowFocusEvent {
199 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
200 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
201 }
202
203 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
204 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
205 }
206}
207
208/// This is provided when subscribing for `Context::on_focus_out` events.
209pub struct FocusOutEvent {
210 /// A weak focus handle representing what was blurred.
211 pub blurred: WeakFocusHandle,
212}
213
214slotmap::new_key_type! {
215 /// A globally unique identifier for a focusable element.
216 pub struct FocusId;
217}
218
219thread_local! {
220 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
221}
222
223/// Returned when the element arena has been used and so must be cleared before the next draw.
224#[must_use]
225pub struct ArenaClearNeeded;
226
227impl ArenaClearNeeded {
228 /// Clear the element arena.
229 pub fn clear(self) {
230 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
231 element_arena.clear();
232 });
233 }
234}
235
236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
237pub(crate) struct FocusRef {
238 pub(crate) ref_count: AtomicUsize,
239 pub(crate) tab_index: isize,
240 pub(crate) tab_stop: bool,
241}
242
243impl FocusId {
244 /// Obtains whether the element associated with this handle is currently focused.
245 pub fn is_focused(&self, window: &Window) -> bool {
246 window.focus == Some(*self)
247 }
248
249 /// Obtains whether the element associated with this handle contains the focused
250 /// element or is itself focused.
251 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
252 window
253 .focused(cx)
254 .is_some_and(|focused| self.contains(focused.id, window))
255 }
256
257 /// Obtains whether the element associated with this handle is contained within the
258 /// focused element or is itself focused.
259 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
260 let focused = window.focused(cx);
261 focused.is_some_and(|focused| focused.id.contains(*self, window))
262 }
263
264 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
265 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
266 window
267 .rendered_frame
268 .dispatch_tree
269 .focus_contains(*self, other)
270 }
271}
272
273/// A handle which can be used to track and manipulate the focused element in a window.
274pub struct FocusHandle {
275 pub(crate) id: FocusId,
276 handles: Arc<FocusMap>,
277 /// The index of this element in the tab order.
278 pub tab_index: isize,
279 /// Whether this element can be focused by tab navigation.
280 pub tab_stop: bool,
281}
282
283impl std::fmt::Debug for FocusHandle {
284 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
285 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
286 }
287}
288
289impl FocusHandle {
290 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
291 let id = handles.write().insert(FocusRef {
292 ref_count: AtomicUsize::new(1),
293 tab_index: 0,
294 tab_stop: false,
295 });
296
297 Self {
298 id,
299 tab_index: 0,
300 tab_stop: false,
301 handles: handles.clone(),
302 }
303 }
304
305 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
306 let lock = handles.read();
307 let focus = lock.get(id)?;
308 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
309 return None;
310 }
311 Some(Self {
312 id,
313 tab_index: focus.tab_index,
314 tab_stop: focus.tab_stop,
315 handles: handles.clone(),
316 })
317 }
318
319 /// Sets the tab index of the element associated with this handle.
320 pub fn tab_index(mut self, index: isize) -> Self {
321 self.tab_index = index;
322 if let Some(focus) = self.handles.write().get_mut(self.id) {
323 focus.tab_index = index;
324 }
325 self
326 }
327
328 /// Sets whether the element associated with this handle is a tab stop.
329 ///
330 /// When `false`, the element will not be included in the tab order.
331 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
332 self.tab_stop = tab_stop;
333 if let Some(focus) = self.handles.write().get_mut(self.id) {
334 focus.tab_stop = tab_stop;
335 }
336 self
337 }
338
339 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
340 pub fn downgrade(&self) -> WeakFocusHandle {
341 WeakFocusHandle {
342 id: self.id,
343 handles: Arc::downgrade(&self.handles),
344 }
345 }
346
347 /// Moves the focus to the element associated with this handle.
348 pub fn focus(&self, window: &mut Window, cx: &mut App) {
349 window.focus(self, cx)
350 }
351
352 /// Obtains whether the element associated with this handle is currently focused.
353 pub fn is_focused(&self, window: &Window) -> bool {
354 self.id.is_focused(window)
355 }
356
357 /// Obtains whether the element associated with this handle contains the focused
358 /// element or is itself focused.
359 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
360 self.id.contains_focused(window, cx)
361 }
362
363 /// Obtains whether the element associated with this handle is contained within the
364 /// focused element or is itself focused.
365 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
366 self.id.within_focused(window, cx)
367 }
368
369 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
370 pub fn contains(&self, other: &Self, window: &Window) -> bool {
371 self.id.contains(other.id, window)
372 }
373
374 /// Dispatch an action on the element that rendered this focus handle
375 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
376 if let Some(node_id) = window
377 .rendered_frame
378 .dispatch_tree
379 .focusable_node_id(self.id)
380 {
381 window.dispatch_action_on_node(node_id, action, cx)
382 }
383 }
384}
385
386impl Clone for FocusHandle {
387 fn clone(&self) -> Self {
388 Self::for_id(self.id, &self.handles).unwrap()
389 }
390}
391
392impl PartialEq for FocusHandle {
393 fn eq(&self, other: &Self) -> bool {
394 self.id == other.id
395 }
396}
397
398impl Eq for FocusHandle {}
399
400impl Drop for FocusHandle {
401 fn drop(&mut self) {
402 self.handles
403 .read()
404 .get(self.id)
405 .unwrap()
406 .ref_count
407 .fetch_sub(1, SeqCst);
408 }
409}
410
411/// A weak reference to a focus handle.
412#[derive(Clone, Debug)]
413pub struct WeakFocusHandle {
414 pub(crate) id: FocusId,
415 pub(crate) handles: Weak<FocusMap>,
416}
417
418impl WeakFocusHandle {
419 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
420 pub fn upgrade(&self) -> Option<FocusHandle> {
421 let handles = self.handles.upgrade()?;
422 FocusHandle::for_id(self.id, &handles)
423 }
424}
425
426impl PartialEq for WeakFocusHandle {
427 fn eq(&self, other: &WeakFocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl Eq for WeakFocusHandle {}
433
434impl PartialEq<FocusHandle> for WeakFocusHandle {
435 fn eq(&self, other: &FocusHandle) -> bool {
436 self.id == other.id
437 }
438}
439
440impl PartialEq<WeakFocusHandle> for FocusHandle {
441 fn eq(&self, other: &WeakFocusHandle) -> bool {
442 self.id == other.id
443 }
444}
445
446/// Focusable allows users of your view to easily
447/// focus it (using window.focus_view(cx, view))
448pub trait Focusable: 'static {
449 /// Returns the focus handle associated with this view.
450 fn focus_handle(&self, cx: &App) -> FocusHandle;
451}
452
453impl<V: Focusable> Focusable for Entity<V> {
454 fn focus_handle(&self, cx: &App) -> FocusHandle {
455 self.read(cx).focus_handle(cx)
456 }
457}
458
459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
460/// where the lifecycle of the view is handled by another view.
461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
462
463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
464
465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
466pub struct DismissEvent;
467
468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
469
470pub(crate) type AnyMouseListener =
471 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
472
473#[derive(Clone)]
474pub(crate) struct CursorStyleRequest {
475 pub(crate) hitbox_id: Option<HitboxId>,
476 pub(crate) style: CursorStyle,
477}
478
479#[derive(Default, Eq, PartialEq)]
480pub(crate) struct HitTest {
481 pub(crate) ids: SmallVec<[HitboxId; 8]>,
482 pub(crate) hover_hitbox_count: usize,
483}
484
485/// A type of window control area that corresponds to the platform window.
486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
487pub enum WindowControlArea {
488 /// An area that allows dragging of the platform window.
489 Drag,
490 /// An area that allows closing of the platform window.
491 Close,
492 /// An area that allows maximizing of the platform window.
493 Max,
494 /// An area that allows minimizing of the platform window.
495 Min,
496}
497
498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
500pub struct HitboxId(u64);
501
502impl HitboxId {
503 /// Checks if the hitbox with this ID is currently hovered. Except when handling
504 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
505 /// events or paint hover styles.
506 ///
507 /// See [`Hitbox::is_hovered`] for details.
508 pub fn is_hovered(self, window: &Window) -> bool {
509 let hit_test = &window.mouse_hit_test;
510 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
511 if self == *id {
512 return true;
513 }
514 }
515 false
516 }
517
518 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
519 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
520 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
521 /// this distinction.
522 pub fn should_handle_scroll(self, window: &Window) -> bool {
523 window.mouse_hit_test.ids.contains(&self)
524 }
525
526 fn next(mut self) -> HitboxId {
527 HitboxId(self.0.wrapping_add(1))
528 }
529}
530
531/// A rectangular region that potentially blocks hitboxes inserted prior.
532/// See [Window::insert_hitbox] for more details.
533#[derive(Clone, Debug, Deref)]
534pub struct Hitbox {
535 /// A unique identifier for the hitbox.
536 pub id: HitboxId,
537 /// The bounds of the hitbox.
538 #[deref]
539 pub bounds: Bounds<Pixels>,
540 /// The content mask when the hitbox was inserted.
541 pub content_mask: ContentMask<Pixels>,
542 /// Flags that specify hitbox behavior.
543 pub behavior: HitboxBehavior,
544}
545
546impl Hitbox {
547 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
548 /// typically what you want when determining whether to handle mouse events or paint hover
549 /// styles.
550 ///
551 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
552 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
553 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
554 ///
555 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
556 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
557 /// non-interactive while still allowing scrolling. More abstractly, this is because
558 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
559 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
560 /// container.
561 pub fn is_hovered(&self, window: &Window) -> bool {
562 self.id.is_hovered(window)
563 }
564
565 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
566 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
567 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
568 ///
569 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
570 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
571 pub fn should_handle_scroll(&self, window: &Window) -> bool {
572 self.id.should_handle_scroll(window)
573 }
574}
575
576/// How the hitbox affects mouse behavior.
577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
578pub enum HitboxBehavior {
579 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
580 #[default]
581 Normal,
582
583 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
584 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
585 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
586 /// [`InteractiveElement::occlude`].
587 ///
588 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
589 /// bubble-phase handler for every mouse event type:
590 ///
591 /// ```ignore
592 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
593 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
594 /// cx.stop_propagation();
595 /// }
596 /// })
597 /// ```
598 ///
599 /// This has effects beyond event handling - any use of hitbox checking, such as hover
600 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
601 /// alternative might be to not affect mouse event handling - but this would allow
602 /// inconsistent UI where clicks and moves interact with elements that are not considered to
603 /// be hovered.
604 BlockMouse,
605
606 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
607 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
608 /// interaction except scroll events to be ignored - see the documentation of
609 /// [`Hitbox::is_hovered`] for details. This flag is set by
610 /// [`InteractiveElement::block_mouse_except_scroll`].
611 ///
612 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
613 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
614 ///
615 /// ```ignore
616 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
617 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
618 /// cx.stop_propagation();
619 /// }
620 /// })
621 /// ```
622 ///
623 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
624 /// handled differently than other mouse events. If also blocking these scroll events is
625 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
626 ///
627 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
628 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
629 /// An alternative might be to not affect mouse event handling - but this would allow
630 /// inconsistent UI where clicks and moves interact with elements that are not considered to
631 /// be hovered.
632 BlockMouseExceptScroll,
633}
634
635/// An identifier for a tooltip.
636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
637pub struct TooltipId(usize);
638
639impl TooltipId {
640 /// Checks if the tooltip is currently hovered.
641 pub fn is_hovered(&self, window: &Window) -> bool {
642 window
643 .tooltip_bounds
644 .as_ref()
645 .is_some_and(|tooltip_bounds| {
646 tooltip_bounds.id == *self
647 && tooltip_bounds.bounds.contains(&window.mouse_position())
648 })
649 }
650}
651
652pub(crate) struct TooltipBounds {
653 id: TooltipId,
654 bounds: Bounds<Pixels>,
655}
656
657#[derive(Clone)]
658pub(crate) struct TooltipRequest {
659 id: TooltipId,
660 tooltip: AnyTooltip,
661}
662
663pub(crate) struct DeferredDraw {
664 current_view: EntityId,
665 priority: usize,
666 parent_node: DispatchNodeId,
667 element_id_stack: SmallVec<[ElementId; 32]>,
668 text_style_stack: Vec<TextStyleRefinement>,
669 element: Option<AnyElement>,
670 absolute_offset: Point<Pixels>,
671 prepaint_range: Range<PrepaintStateIndex>,
672 paint_range: Range<PaintIndex>,
673}
674
675pub(crate) struct Frame {
676 pub(crate) focus: Option<FocusId>,
677 pub(crate) window_active: bool,
678 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
679 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
680 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
681 pub(crate) dispatch_tree: DispatchTree,
682 pub(crate) scene: Scene,
683 pub(crate) hitboxes: Vec<Hitbox>,
684 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
685 pub(crate) deferred_draws: Vec<DeferredDraw>,
686 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
687 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
688 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
689 #[cfg(any(test, feature = "test-support"))]
690 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
691 #[cfg(any(feature = "inspector", debug_assertions))]
692 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
693 #[cfg(any(feature = "inspector", debug_assertions))]
694 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
695 pub(crate) tab_stops: TabStopMap,
696}
697
698#[derive(Clone, Default)]
699pub(crate) struct PrepaintStateIndex {
700 hitboxes_index: usize,
701 tooltips_index: usize,
702 deferred_draws_index: usize,
703 dispatch_tree_index: usize,
704 accessed_element_states_index: usize,
705 line_layout_index: LineLayoutIndex,
706}
707
708#[derive(Clone, Default)]
709pub(crate) struct PaintIndex {
710 scene_index: usize,
711 mouse_listeners_index: usize,
712 input_handlers_index: usize,
713 cursor_styles_index: usize,
714 accessed_element_states_index: usize,
715 tab_handle_index: usize,
716 line_layout_index: LineLayoutIndex,
717}
718
719impl Frame {
720 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
721 Frame {
722 focus: None,
723 window_active: false,
724 element_states: FxHashMap::default(),
725 accessed_element_states: Vec::new(),
726 mouse_listeners: Vec::new(),
727 dispatch_tree,
728 scene: Scene::default(),
729 hitboxes: Vec::new(),
730 window_control_hitboxes: Vec::new(),
731 deferred_draws: Vec::new(),
732 input_handlers: Vec::new(),
733 tooltip_requests: Vec::new(),
734 cursor_styles: Vec::new(),
735
736 #[cfg(any(test, feature = "test-support"))]
737 debug_bounds: FxHashMap::default(),
738
739 #[cfg(any(feature = "inspector", debug_assertions))]
740 next_inspector_instance_ids: FxHashMap::default(),
741
742 #[cfg(any(feature = "inspector", debug_assertions))]
743 inspector_hitboxes: FxHashMap::default(),
744 tab_stops: TabStopMap::default(),
745 }
746 }
747
748 pub(crate) fn clear(&mut self) {
749 self.element_states.clear();
750 self.accessed_element_states.clear();
751 self.mouse_listeners.clear();
752 self.dispatch_tree.clear();
753 self.scene.clear();
754 self.input_handlers.clear();
755 self.tooltip_requests.clear();
756 self.cursor_styles.clear();
757 self.hitboxes.clear();
758 self.window_control_hitboxes.clear();
759 self.deferred_draws.clear();
760 self.tab_stops.clear();
761 self.focus = None;
762
763 #[cfg(any(feature = "inspector", debug_assertions))]
764 {
765 self.next_inspector_instance_ids.clear();
766 self.inspector_hitboxes.clear();
767 }
768 }
769
770 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
771 self.cursor_styles
772 .iter()
773 .rev()
774 .fold_while(None, |style, request| match request.hitbox_id {
775 None => Done(Some(request.style)),
776 Some(hitbox_id) => Continue(
777 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
778 ),
779 })
780 .into_inner()
781 }
782
783 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
784 let mut set_hover_hitbox_count = false;
785 let mut hit_test = HitTest::default();
786 for hitbox in self.hitboxes.iter().rev() {
787 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
788 if bounds.contains(&position) {
789 hit_test.ids.push(hitbox.id);
790 if !set_hover_hitbox_count
791 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
792 {
793 hit_test.hover_hitbox_count = hit_test.ids.len();
794 set_hover_hitbox_count = true;
795 }
796 if hitbox.behavior == HitboxBehavior::BlockMouse {
797 break;
798 }
799 }
800 }
801 if !set_hover_hitbox_count {
802 hit_test.hover_hitbox_count = hit_test.ids.len();
803 }
804 hit_test
805 }
806
807 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
808 self.focus
809 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
810 .unwrap_or_default()
811 }
812
813 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
814 for element_state_key in &self.accessed_element_states {
815 if let Some((element_state_key, element_state)) =
816 prev_frame.element_states.remove_entry(element_state_key)
817 {
818 self.element_states.insert(element_state_key, element_state);
819 }
820 }
821
822 self.scene.finish();
823 }
824}
825
826#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
827enum InputModality {
828 Mouse,
829 Keyboard,
830}
831
832/// Holds the state for a specific window.
833pub struct Window {
834 pub(crate) handle: AnyWindowHandle,
835 pub(crate) invalidator: WindowInvalidator,
836 pub(crate) removed: bool,
837 pub(crate) platform_window: Box<dyn PlatformWindow>,
838 display_id: Option<DisplayId>,
839 sprite_atlas: Arc<dyn PlatformAtlas>,
840 text_system: Arc<WindowTextSystem>,
841 rem_size: Pixels,
842 /// The stack of override values for the window's rem size.
843 ///
844 /// This is used by `with_rem_size` to allow rendering an element tree with
845 /// a given rem size.
846 rem_size_override_stack: SmallVec<[Pixels; 8]>,
847 pub(crate) viewport_size: Size<Pixels>,
848 layout_engine: Option<TaffyLayoutEngine>,
849 pub(crate) root: Option<AnyView>,
850 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
851 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
852 pub(crate) rendered_entity_stack: Vec<EntityId>,
853 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
854 pub(crate) element_opacity: f32,
855 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
856 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
857 pub(crate) image_cache_stack: Vec<AnyImageCache>,
858 pub(crate) rendered_frame: Frame,
859 pub(crate) next_frame: Frame,
860 next_hitbox_id: HitboxId,
861 pub(crate) next_tooltip_id: TooltipId,
862 pub(crate) tooltip_bounds: Option<TooltipBounds>,
863 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
864 pub(crate) dirty_views: FxHashSet<EntityId>,
865 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
866 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
867 default_prevented: bool,
868 mouse_position: Point<Pixels>,
869 mouse_hit_test: HitTest,
870 modifiers: Modifiers,
871 capslock: Capslock,
872 scale_factor: f32,
873 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
874 appearance: WindowAppearance,
875 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
876 active: Rc<Cell<bool>>,
877 hovered: Rc<Cell<bool>>,
878 pub(crate) needs_present: Rc<Cell<bool>>,
879 /// Tracks recent input event timestamps to determine if input is arriving at a high rate.
880 /// Used to selectively enable VRR optimization only when input rate exceeds 60fps.
881 pub(crate) input_rate_tracker: Rc<RefCell<InputRateTracker>>,
882 last_input_modality: InputModality,
883 pub(crate) refreshing: bool,
884 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
885 pub(crate) focus: Option<FocusId>,
886 focus_enabled: bool,
887 pending_input: Option<PendingInput>,
888 pending_modifier: ModifierState,
889 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
890 prompt: Option<RenderablePromptHandle>,
891 pub(crate) client_inset: Option<Pixels>,
892 #[cfg(any(feature = "inspector", debug_assertions))]
893 inspector: Option<Entity<Inspector>>,
894}
895
896#[derive(Clone, Debug, Default)]
897struct ModifierState {
898 modifiers: Modifiers,
899 saw_keystroke: bool,
900}
901
902/// Tracks input event timestamps to determine if input is arriving at a high rate.
903/// Used for selective VRR (Variable Refresh Rate) optimization.
904#[derive(Clone, Debug)]
905pub(crate) struct InputRateTracker {
906 timestamps: Vec<Instant>,
907 window: Duration,
908 inputs_per_second: u32,
909 sustain_until: Instant,
910 sustain_duration: Duration,
911}
912
913impl Default for InputRateTracker {
914 fn default() -> Self {
915 Self {
916 timestamps: Vec::new(),
917 window: Duration::from_millis(100),
918 inputs_per_second: 60,
919 sustain_until: Instant::now(),
920 sustain_duration: Duration::from_secs(1),
921 }
922 }
923}
924
925impl InputRateTracker {
926 pub fn record_input(&mut self) {
927 let now = Instant::now();
928 self.timestamps.push(now);
929 self.prune_old_timestamps(now);
930
931 let min_events = self.inputs_per_second as u128 * self.window.as_millis() / 1000;
932 if self.timestamps.len() as u128 >= min_events {
933 self.sustain_until = now + self.sustain_duration;
934 }
935 }
936
937 pub fn is_high_rate(&self) -> bool {
938 Instant::now() < self.sustain_until
939 }
940
941 fn prune_old_timestamps(&mut self, now: Instant) {
942 self.timestamps
943 .retain(|&t| now.duration_since(t) <= self.window);
944 }
945}
946
947#[derive(Clone, Copy, Debug, Eq, PartialEq)]
948pub(crate) enum DrawPhase {
949 None,
950 Prepaint,
951 Paint,
952 Focus,
953}
954
955#[derive(Default, Debug)]
956struct PendingInput {
957 keystrokes: SmallVec<[Keystroke; 1]>,
958 focus: Option<FocusId>,
959 timer: Option<Task<()>>,
960 needs_timeout: bool,
961}
962
963pub(crate) struct ElementStateBox {
964 pub(crate) inner: Box<dyn Any>,
965 #[cfg(debug_assertions)]
966 pub(crate) type_name: &'static str,
967}
968
969fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
970 // TODO, BUG: if you open a window with the currently active window
971 // on the stack, this will erroneously fallback to `None`
972 //
973 // TODO these should be the initial window bounds not considering maximized/fullscreen
974 let active_window_bounds = cx
975 .active_window()
976 .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
977
978 const CASCADE_OFFSET: f32 = 25.0;
979
980 let display = display_id
981 .map(|id| cx.find_display(id))
982 .unwrap_or_else(|| cx.primary_display());
983
984 let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
985
986 // Use visible_bounds to exclude taskbar/dock areas
987 let display_bounds = display
988 .as_ref()
989 .map(|d| d.visible_bounds())
990 .unwrap_or_else(default_placement);
991
992 let (
993 Bounds {
994 origin: base_origin,
995 size: base_size,
996 },
997 window_bounds_ctor,
998 ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
999 Some(bounds) => match bounds {
1000 WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
1001 WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
1002 WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
1003 },
1004 None => (
1005 display
1006 .as_ref()
1007 .map(|d| d.default_bounds())
1008 .unwrap_or_else(default_placement),
1009 WindowBounds::Windowed,
1010 ),
1011 };
1012
1013 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
1014 let proposed_origin = base_origin + cascade_offset;
1015 let proposed_bounds = Bounds::new(proposed_origin, base_size);
1016
1017 let display_right = display_bounds.origin.x + display_bounds.size.width;
1018 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
1019 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
1020 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
1021
1022 let fits_horizontally = window_right <= display_right;
1023 let fits_vertically = window_bottom <= display_bottom;
1024
1025 let final_origin = match (fits_horizontally, fits_vertically) {
1026 (true, true) => proposed_origin,
1027 (false, true) => point(display_bounds.origin.x, base_origin.y),
1028 (true, false) => point(base_origin.x, display_bounds.origin.y),
1029 (false, false) => display_bounds.origin,
1030 };
1031 window_bounds_ctor(Bounds::new(final_origin, base_size))
1032}
1033
1034impl Window {
1035 pub(crate) fn new(
1036 handle: AnyWindowHandle,
1037 options: WindowOptions,
1038 cx: &mut App,
1039 ) -> Result<Self> {
1040 let WindowOptions {
1041 window_bounds,
1042 titlebar,
1043 focus,
1044 show,
1045 kind,
1046 is_movable,
1047 is_resizable,
1048 is_minimizable,
1049 display_id,
1050 window_background,
1051 app_id,
1052 window_min_size,
1053 window_decorations,
1054 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1055 tabbing_identifier,
1056 } = options;
1057
1058 let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1059 let mut platform_window = cx.platform.open_window(
1060 handle,
1061 WindowParams {
1062 bounds: window_bounds.get_bounds(),
1063 titlebar,
1064 kind,
1065 is_movable,
1066 is_resizable,
1067 is_minimizable,
1068 focus,
1069 show,
1070 display_id,
1071 window_min_size,
1072 #[cfg(target_os = "macos")]
1073 tabbing_identifier,
1074 },
1075 )?;
1076
1077 let tab_bar_visible = platform_window.tab_bar_visible();
1078 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1079 if let Some(tabs) = platform_window.tabbed_windows() {
1080 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1081 }
1082
1083 let display_id = platform_window.display().map(|display| display.id());
1084 let sprite_atlas = platform_window.sprite_atlas();
1085 let mouse_position = platform_window.mouse_position();
1086 let modifiers = platform_window.modifiers();
1087 let capslock = platform_window.capslock();
1088 let content_size = platform_window.content_size();
1089 let scale_factor = platform_window.scale_factor();
1090 let appearance = platform_window.appearance();
1091 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1092 let invalidator = WindowInvalidator::new();
1093 let active = Rc::new(Cell::new(platform_window.is_active()));
1094 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1095 let needs_present = Rc::new(Cell::new(false));
1096 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1097 let input_rate_tracker = Rc::new(RefCell::new(InputRateTracker::default()));
1098
1099 platform_window
1100 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1101 platform_window.set_background_appearance(window_background);
1102
1103 match window_bounds {
1104 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1105 WindowBounds::Maximized(_) => platform_window.zoom(),
1106 WindowBounds::Windowed(_) => {}
1107 }
1108
1109 platform_window.on_close(Box::new({
1110 let window_id = handle.window_id();
1111 let mut cx = cx.to_async();
1112 move || {
1113 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1114 let _ = cx.update(|cx| {
1115 SystemWindowTabController::remove_tab(cx, window_id);
1116 });
1117 }
1118 }));
1119 platform_window.on_request_frame(Box::new({
1120 let mut cx = cx.to_async();
1121 let invalidator = invalidator.clone();
1122 let active = active.clone();
1123 let needs_present = needs_present.clone();
1124 let next_frame_callbacks = next_frame_callbacks.clone();
1125 let input_rate_tracker = input_rate_tracker.clone();
1126 move |request_frame_options| {
1127 let next_frame_callbacks = next_frame_callbacks.take();
1128 if !next_frame_callbacks.is_empty() {
1129 handle
1130 .update(&mut cx, |_, window, cx| {
1131 for callback in next_frame_callbacks {
1132 callback(window, cx);
1133 }
1134 })
1135 .log_err();
1136 }
1137
1138 // Keep presenting if input was recently arriving at a high rate (>= 60fps).
1139 // Once high-rate input is detected, we sustain presentation for 1 second
1140 // to prevent display underclocking during active input.
1141 let needs_present = request_frame_options.require_presentation
1142 || needs_present.get()
1143 || (active.get() && input_rate_tracker.borrow_mut().is_high_rate());
1144
1145 if invalidator.is_dirty() || request_frame_options.force_render {
1146 measure("frame duration", || {
1147 handle
1148 .update(&mut cx, |_, window, cx| {
1149 let arena_clear_needed = window.draw(cx);
1150 window.present();
1151 arena_clear_needed.clear();
1152 })
1153 .log_err();
1154 })
1155 } else if needs_present {
1156 handle
1157 .update(&mut cx, |_, window, _| window.present())
1158 .log_err();
1159 }
1160
1161 handle
1162 .update(&mut cx, |_, window, _| {
1163 window.complete_frame();
1164 })
1165 .log_err();
1166 }
1167 }));
1168 platform_window.on_resize(Box::new({
1169 let mut cx = cx.to_async();
1170 move |_, _| {
1171 handle
1172 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1173 .log_err();
1174 }
1175 }));
1176 platform_window.on_moved(Box::new({
1177 let mut cx = cx.to_async();
1178 move || {
1179 handle
1180 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1181 .log_err();
1182 }
1183 }));
1184 platform_window.on_appearance_changed(Box::new({
1185 let mut cx = cx.to_async();
1186 move || {
1187 handle
1188 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1189 .log_err();
1190 }
1191 }));
1192 platform_window.on_active_status_change(Box::new({
1193 let mut cx = cx.to_async();
1194 move |active| {
1195 handle
1196 .update(&mut cx, |_, window, cx| {
1197 window.active.set(active);
1198 window.modifiers = window.platform_window.modifiers();
1199 window.capslock = window.platform_window.capslock();
1200 window
1201 .activation_observers
1202 .clone()
1203 .retain(&(), |callback| callback(window, cx));
1204
1205 window.bounds_changed(cx);
1206 window.refresh();
1207
1208 SystemWindowTabController::update_last_active(cx, window.handle.id);
1209 })
1210 .log_err();
1211 }
1212 }));
1213 platform_window.on_hover_status_change(Box::new({
1214 let mut cx = cx.to_async();
1215 move |active| {
1216 handle
1217 .update(&mut cx, |_, window, _| {
1218 window.hovered.set(active);
1219 window.refresh();
1220 })
1221 .log_err();
1222 }
1223 }));
1224 platform_window.on_input({
1225 let mut cx = cx.to_async();
1226 Box::new(move |event| {
1227 handle
1228 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1229 .log_err()
1230 .unwrap_or(DispatchEventResult::default())
1231 })
1232 });
1233 platform_window.on_hit_test_window_control({
1234 let mut cx = cx.to_async();
1235 Box::new(move || {
1236 handle
1237 .update(&mut cx, |_, window, _cx| {
1238 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1239 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1240 return Some(*area);
1241 }
1242 }
1243 None
1244 })
1245 .log_err()
1246 .unwrap_or(None)
1247 })
1248 });
1249 platform_window.on_move_tab_to_new_window({
1250 let mut cx = cx.to_async();
1251 Box::new(move || {
1252 handle
1253 .update(&mut cx, |_, _window, cx| {
1254 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1255 })
1256 .log_err();
1257 })
1258 });
1259 platform_window.on_merge_all_windows({
1260 let mut cx = cx.to_async();
1261 Box::new(move || {
1262 handle
1263 .update(&mut cx, |_, _window, cx| {
1264 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1265 })
1266 .log_err();
1267 })
1268 });
1269 platform_window.on_select_next_tab({
1270 let mut cx = cx.to_async();
1271 Box::new(move || {
1272 handle
1273 .update(&mut cx, |_, _window, cx| {
1274 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1275 })
1276 .log_err();
1277 })
1278 });
1279 platform_window.on_select_previous_tab({
1280 let mut cx = cx.to_async();
1281 Box::new(move || {
1282 handle
1283 .update(&mut cx, |_, _window, cx| {
1284 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1285 })
1286 .log_err();
1287 })
1288 });
1289 platform_window.on_toggle_tab_bar({
1290 let mut cx = cx.to_async();
1291 Box::new(move || {
1292 handle
1293 .update(&mut cx, |_, window, cx| {
1294 let tab_bar_visible = window.platform_window.tab_bar_visible();
1295 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1296 })
1297 .log_err();
1298 })
1299 });
1300
1301 if let Some(app_id) = app_id {
1302 platform_window.set_app_id(&app_id);
1303 }
1304
1305 platform_window.map_window().unwrap();
1306
1307 Ok(Window {
1308 handle,
1309 invalidator,
1310 removed: false,
1311 platform_window,
1312 display_id,
1313 sprite_atlas,
1314 text_system,
1315 rem_size: px(16.),
1316 rem_size_override_stack: SmallVec::new(),
1317 viewport_size: content_size,
1318 layout_engine: Some(TaffyLayoutEngine::new()),
1319 root: None,
1320 element_id_stack: SmallVec::default(),
1321 text_style_stack: Vec::new(),
1322 rendered_entity_stack: Vec::new(),
1323 element_offset_stack: Vec::new(),
1324 content_mask_stack: Vec::new(),
1325 element_opacity: 1.0,
1326 requested_autoscroll: None,
1327 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1328 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1329 next_frame_callbacks,
1330 next_hitbox_id: HitboxId(0),
1331 next_tooltip_id: TooltipId::default(),
1332 tooltip_bounds: None,
1333 dirty_views: FxHashSet::default(),
1334 focus_listeners: SubscriberSet::new(),
1335 focus_lost_listeners: SubscriberSet::new(),
1336 default_prevented: true,
1337 mouse_position,
1338 mouse_hit_test: HitTest::default(),
1339 modifiers,
1340 capslock,
1341 scale_factor,
1342 bounds_observers: SubscriberSet::new(),
1343 appearance,
1344 appearance_observers: SubscriberSet::new(),
1345 active,
1346 hovered,
1347 needs_present,
1348 input_rate_tracker,
1349 last_input_modality: InputModality::Mouse,
1350 refreshing: false,
1351 activation_observers: SubscriberSet::new(),
1352 focus: None,
1353 focus_enabled: true,
1354 pending_input: None,
1355 pending_modifier: ModifierState::default(),
1356 pending_input_observers: SubscriberSet::new(),
1357 prompt: None,
1358 client_inset: None,
1359 image_cache_stack: Vec::new(),
1360 #[cfg(any(feature = "inspector", debug_assertions))]
1361 inspector: None,
1362 })
1363 }
1364
1365 pub(crate) fn new_focus_listener(
1366 &self,
1367 value: AnyWindowFocusListener,
1368 ) -> (Subscription, impl FnOnce() + use<>) {
1369 self.focus_listeners.insert((), value)
1370 }
1371}
1372
1373#[derive(Clone, Debug, Default, PartialEq, Eq)]
1374pub(crate) struct DispatchEventResult {
1375 pub propagate: bool,
1376 pub default_prevented: bool,
1377}
1378
1379/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1380/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1381/// to leave room to support more complex shapes in the future.
1382#[derive(Clone, Debug, Default, PartialEq, Eq)]
1383#[repr(C)]
1384pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1385 /// The bounds
1386 pub bounds: Bounds<P>,
1387}
1388
1389impl ContentMask<Pixels> {
1390 /// Scale the content mask's pixel units by the given scaling factor.
1391 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1392 ContentMask {
1393 bounds: self.bounds.scale(factor),
1394 }
1395 }
1396
1397 /// Intersect the content mask with the given content mask.
1398 pub fn intersect(&self, other: &Self) -> Self {
1399 let bounds = self.bounds.intersect(&other.bounds);
1400 ContentMask { bounds }
1401 }
1402}
1403
1404impl Window {
1405 fn mark_view_dirty(&mut self, view_id: EntityId) {
1406 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1407 // should already be dirty.
1408 for view_id in self
1409 .rendered_frame
1410 .dispatch_tree
1411 .view_path_reversed(view_id)
1412 {
1413 if !self.dirty_views.insert(view_id) {
1414 break;
1415 }
1416 }
1417 }
1418
1419 /// Registers a callback to be invoked when the window appearance changes.
1420 pub fn observe_window_appearance(
1421 &self,
1422 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1423 ) -> Subscription {
1424 let (subscription, activate) = self.appearance_observers.insert(
1425 (),
1426 Box::new(move |window, cx| {
1427 callback(window, cx);
1428 true
1429 }),
1430 );
1431 activate();
1432 subscription
1433 }
1434
1435 /// Replaces the root entity of the window with a new one.
1436 pub fn replace_root<E>(
1437 &mut self,
1438 cx: &mut App,
1439 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1440 ) -> Entity<E>
1441 where
1442 E: 'static + Render,
1443 {
1444 let view = cx.new(|cx| build_view(self, cx));
1445 self.root = Some(view.clone().into());
1446 self.refresh();
1447 view
1448 }
1449
1450 /// Returns the root entity of the window, if it has one.
1451 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1452 where
1453 E: 'static + Render,
1454 {
1455 self.root
1456 .as_ref()
1457 .map(|view| view.clone().downcast::<E>().ok())
1458 }
1459
1460 /// Obtain a handle to the window that belongs to this context.
1461 pub fn window_handle(&self) -> AnyWindowHandle {
1462 self.handle
1463 }
1464
1465 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1466 pub fn refresh(&mut self) {
1467 if self.invalidator.not_drawing() {
1468 self.refreshing = true;
1469 self.invalidator.set_dirty(true);
1470 }
1471 }
1472
1473 /// Close this window.
1474 pub fn remove_window(&mut self) {
1475 self.removed = true;
1476 }
1477
1478 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1479 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1480 self.focus
1481 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1482 }
1483
1484 /// Move focus to the element associated with the given [`FocusHandle`].
1485 pub fn focus(&mut self, handle: &FocusHandle, cx: &mut App) {
1486 if !self.focus_enabled || self.focus == Some(handle.id) {
1487 return;
1488 }
1489
1490 self.focus = Some(handle.id);
1491 self.clear_pending_keystrokes();
1492
1493 // Avoid re-entrant entity updates by deferring observer notifications to the end of the
1494 // current effect cycle, and only for this window.
1495 let window_handle = self.handle;
1496 cx.defer(move |cx| {
1497 window_handle
1498 .update(cx, |_, window, cx| {
1499 window.pending_input_changed(cx);
1500 })
1501 .ok();
1502 });
1503
1504 self.refresh();
1505 }
1506
1507 /// Remove focus from all elements within this context's window.
1508 pub fn blur(&mut self) {
1509 if !self.focus_enabled {
1510 return;
1511 }
1512
1513 self.focus = None;
1514 self.refresh();
1515 }
1516
1517 /// Blur the window and don't allow anything in it to be focused again.
1518 pub fn disable_focus(&mut self) {
1519 self.blur();
1520 self.focus_enabled = false;
1521 }
1522
1523 /// Move focus to next tab stop.
1524 pub fn focus_next(&mut self, cx: &mut App) {
1525 if !self.focus_enabled {
1526 return;
1527 }
1528
1529 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1530 self.focus(&handle, cx)
1531 }
1532 }
1533
1534 /// Move focus to previous tab stop.
1535 pub fn focus_prev(&mut self, cx: &mut App) {
1536 if !self.focus_enabled {
1537 return;
1538 }
1539
1540 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1541 self.focus(&handle, cx)
1542 }
1543 }
1544
1545 /// Accessor for the text system.
1546 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1547 &self.text_system
1548 }
1549
1550 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1551 pub fn text_style(&self) -> TextStyle {
1552 let mut style = TextStyle::default();
1553 for refinement in &self.text_style_stack {
1554 style.refine(refinement);
1555 }
1556 style
1557 }
1558
1559 /// Check if the platform window is maximized.
1560 ///
1561 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1562 pub fn is_maximized(&self) -> bool {
1563 self.platform_window.is_maximized()
1564 }
1565
1566 /// request a certain window decoration (Wayland)
1567 pub fn request_decorations(&self, decorations: WindowDecorations) {
1568 self.platform_window.request_decorations(decorations);
1569 }
1570
1571 /// Start a window resize operation (Wayland)
1572 pub fn start_window_resize(&self, edge: ResizeEdge) {
1573 self.platform_window.start_window_resize(edge);
1574 }
1575
1576 /// Return the `WindowBounds` to indicate that how a window should be opened
1577 /// after it has been closed
1578 pub fn window_bounds(&self) -> WindowBounds {
1579 self.platform_window.window_bounds()
1580 }
1581
1582 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1583 pub fn inner_window_bounds(&self) -> WindowBounds {
1584 self.platform_window.inner_window_bounds()
1585 }
1586
1587 /// Dispatch the given action on the currently focused element.
1588 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1589 let focus_id = self.focused(cx).map(|handle| handle.id);
1590
1591 let window = self.handle;
1592 cx.defer(move |cx| {
1593 window
1594 .update(cx, |_, window, cx| {
1595 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1596 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1597 })
1598 .log_err();
1599 })
1600 }
1601
1602 pub(crate) fn dispatch_keystroke_observers(
1603 &mut self,
1604 event: &dyn Any,
1605 action: Option<Box<dyn Action>>,
1606 context_stack: Vec<KeyContext>,
1607 cx: &mut App,
1608 ) {
1609 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1610 return;
1611 };
1612
1613 cx.keystroke_observers.clone().retain(&(), move |callback| {
1614 (callback)(
1615 &KeystrokeEvent {
1616 keystroke: key_down_event.keystroke.clone(),
1617 action: action.as_ref().map(|action| action.boxed_clone()),
1618 context_stack: context_stack.clone(),
1619 },
1620 self,
1621 cx,
1622 )
1623 });
1624 }
1625
1626 pub(crate) fn dispatch_keystroke_interceptors(
1627 &mut self,
1628 event: &dyn Any,
1629 context_stack: Vec<KeyContext>,
1630 cx: &mut App,
1631 ) {
1632 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1633 return;
1634 };
1635
1636 cx.keystroke_interceptors
1637 .clone()
1638 .retain(&(), move |callback| {
1639 (callback)(
1640 &KeystrokeEvent {
1641 keystroke: key_down_event.keystroke.clone(),
1642 action: None,
1643 context_stack: context_stack.clone(),
1644 },
1645 self,
1646 cx,
1647 )
1648 });
1649 }
1650
1651 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1652 /// that are currently on the stack to be returned to the app.
1653 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1654 let handle = self.handle;
1655 cx.defer(move |cx| {
1656 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1657 });
1658 }
1659
1660 /// Subscribe to events emitted by a entity.
1661 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1662 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1663 pub fn observe<T: 'static>(
1664 &mut self,
1665 observed: &Entity<T>,
1666 cx: &mut App,
1667 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1668 ) -> Subscription {
1669 let entity_id = observed.entity_id();
1670 let observed = observed.downgrade();
1671 let window_handle = self.handle;
1672 cx.new_observer(
1673 entity_id,
1674 Box::new(move |cx| {
1675 window_handle
1676 .update(cx, |_, window, cx| {
1677 if let Some(handle) = observed.upgrade() {
1678 on_notify(handle, window, cx);
1679 true
1680 } else {
1681 false
1682 }
1683 })
1684 .unwrap_or(false)
1685 }),
1686 )
1687 }
1688
1689 /// Subscribe to events emitted by a entity.
1690 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1691 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1692 pub fn subscribe<Emitter, Evt>(
1693 &mut self,
1694 entity: &Entity<Emitter>,
1695 cx: &mut App,
1696 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1697 ) -> Subscription
1698 where
1699 Emitter: EventEmitter<Evt>,
1700 Evt: 'static,
1701 {
1702 let entity_id = entity.entity_id();
1703 let handle = entity.downgrade();
1704 let window_handle = self.handle;
1705 cx.new_subscription(
1706 entity_id,
1707 (
1708 TypeId::of::<Evt>(),
1709 Box::new(move |event, cx| {
1710 window_handle
1711 .update(cx, |_, window, cx| {
1712 if let Some(entity) = handle.upgrade() {
1713 let event = event.downcast_ref().expect("invalid event type");
1714 on_event(entity, event, window, cx);
1715 true
1716 } else {
1717 false
1718 }
1719 })
1720 .unwrap_or(false)
1721 }),
1722 ),
1723 )
1724 }
1725
1726 /// Register a callback to be invoked when the given `Entity` is released.
1727 pub fn observe_release<T>(
1728 &self,
1729 entity: &Entity<T>,
1730 cx: &mut App,
1731 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1732 ) -> Subscription
1733 where
1734 T: 'static,
1735 {
1736 let entity_id = entity.entity_id();
1737 let window_handle = self.handle;
1738 let (subscription, activate) = cx.release_listeners.insert(
1739 entity_id,
1740 Box::new(move |entity, cx| {
1741 let entity = entity.downcast_mut().expect("invalid entity type");
1742 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1743 }),
1744 );
1745 activate();
1746 subscription
1747 }
1748
1749 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1750 /// await points in async code.
1751 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1752 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1753 }
1754
1755 /// Schedule the given closure to be run directly after the current frame is rendered.
1756 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1757 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1758 }
1759
1760 /// Schedule a frame to be drawn on the next animation frame.
1761 ///
1762 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1763 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1764 ///
1765 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1766 pub fn request_animation_frame(&self) {
1767 let entity = self.current_view();
1768 self.on_next_frame(move |_, cx| cx.notify(entity));
1769 }
1770
1771 /// Spawn the future returned by the given closure on the application thread pool.
1772 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1773 /// use within your future.
1774 #[track_caller]
1775 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1776 where
1777 R: 'static,
1778 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1779 {
1780 let handle = self.handle;
1781 cx.spawn(async move |app| {
1782 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1783 f(&mut async_window_cx).await
1784 })
1785 }
1786
1787 /// Spawn the future returned by the given closure on the application thread
1788 /// pool, with the given priority. The closure is provided a handle to the
1789 /// current window and an `AsyncWindowContext` for use within your future.
1790 #[track_caller]
1791 pub fn spawn_with_priority<AsyncFn, R>(
1792 &self,
1793 priority: Priority,
1794 cx: &App,
1795 f: AsyncFn,
1796 ) -> Task<R>
1797 where
1798 R: 'static,
1799 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1800 {
1801 let handle = self.handle;
1802 cx.spawn_with_priority(priority, async move |app| {
1803 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1804 f(&mut async_window_cx).await
1805 })
1806 }
1807
1808 fn bounds_changed(&mut self, cx: &mut App) {
1809 self.scale_factor = self.platform_window.scale_factor();
1810 self.viewport_size = self.platform_window.content_size();
1811 self.display_id = self.platform_window.display().map(|display| display.id());
1812
1813 self.refresh();
1814
1815 self.bounds_observers
1816 .clone()
1817 .retain(&(), |callback| callback(self, cx));
1818 }
1819
1820 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1821 pub fn bounds(&self) -> Bounds<Pixels> {
1822 self.platform_window.bounds()
1823 }
1824
1825 /// Set the content size of the window.
1826 pub fn resize(&mut self, size: Size<Pixels>) {
1827 self.platform_window.resize(size);
1828 }
1829
1830 /// Returns whether or not the window is currently fullscreen
1831 pub fn is_fullscreen(&self) -> bool {
1832 self.platform_window.is_fullscreen()
1833 }
1834
1835 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1836 self.appearance = self.platform_window.appearance();
1837
1838 self.appearance_observers
1839 .clone()
1840 .retain(&(), |callback| callback(self, cx));
1841 }
1842
1843 /// Returns the appearance of the current window.
1844 pub fn appearance(&self) -> WindowAppearance {
1845 self.appearance
1846 }
1847
1848 /// Returns the size of the drawable area within the window.
1849 pub fn viewport_size(&self) -> Size<Pixels> {
1850 self.viewport_size
1851 }
1852
1853 /// Returns whether this window is focused by the operating system (receiving key events).
1854 pub fn is_window_active(&self) -> bool {
1855 self.active.get()
1856 }
1857
1858 /// Returns whether this window is considered to be the window
1859 /// that currently owns the mouse cursor.
1860 /// On mac, this is equivalent to `is_window_active`.
1861 pub fn is_window_hovered(&self) -> bool {
1862 if cfg!(any(
1863 target_os = "windows",
1864 target_os = "linux",
1865 target_os = "freebsd"
1866 )) {
1867 self.hovered.get()
1868 } else {
1869 self.is_window_active()
1870 }
1871 }
1872
1873 /// Toggle zoom on the window.
1874 pub fn zoom_window(&self) {
1875 self.platform_window.zoom();
1876 }
1877
1878 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1879 pub fn show_window_menu(&self, position: Point<Pixels>) {
1880 self.platform_window.show_window_menu(position)
1881 }
1882
1883 /// Handle window movement for Linux and macOS.
1884 /// Tells the compositor to take control of window movement (Wayland and X11)
1885 ///
1886 /// Events may not be received during a move operation.
1887 pub fn start_window_move(&self) {
1888 self.platform_window.start_window_move()
1889 }
1890
1891 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1892 pub fn set_client_inset(&mut self, inset: Pixels) {
1893 self.client_inset = Some(inset);
1894 self.platform_window.set_client_inset(inset);
1895 }
1896
1897 /// Returns the client_inset value by [`Self::set_client_inset`].
1898 pub fn client_inset(&self) -> Option<Pixels> {
1899 self.client_inset
1900 }
1901
1902 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1903 pub fn window_decorations(&self) -> Decorations {
1904 self.platform_window.window_decorations()
1905 }
1906
1907 /// Returns which window controls are currently visible (Wayland)
1908 pub fn window_controls(&self) -> WindowControls {
1909 self.platform_window.window_controls()
1910 }
1911
1912 /// Updates the window's title at the platform level.
1913 pub fn set_window_title(&mut self, title: &str) {
1914 self.platform_window.set_title(title);
1915 }
1916
1917 /// Sets the application identifier.
1918 pub fn set_app_id(&mut self, app_id: &str) {
1919 self.platform_window.set_app_id(app_id);
1920 }
1921
1922 /// Sets the window background appearance.
1923 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1924 self.platform_window
1925 .set_background_appearance(background_appearance);
1926 }
1927
1928 /// Mark the window as dirty at the platform level.
1929 pub fn set_window_edited(&mut self, edited: bool) {
1930 self.platform_window.set_edited(edited);
1931 }
1932
1933 /// Determine the display on which the window is visible.
1934 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1935 cx.platform
1936 .displays()
1937 .into_iter()
1938 .find(|display| Some(display.id()) == self.display_id)
1939 }
1940
1941 /// Show the platform character palette.
1942 pub fn show_character_palette(&self) {
1943 self.platform_window.show_character_palette();
1944 }
1945
1946 /// The scale factor of the display associated with the window. For example, it could
1947 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1948 /// be rendered as two pixels on screen.
1949 pub fn scale_factor(&self) -> f32 {
1950 self.scale_factor
1951 }
1952
1953 /// The size of an em for the base font of the application. Adjusting this value allows the
1954 /// UI to scale, just like zooming a web page.
1955 pub fn rem_size(&self) -> Pixels {
1956 self.rem_size_override_stack
1957 .last()
1958 .copied()
1959 .unwrap_or(self.rem_size)
1960 }
1961
1962 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1963 /// UI to scale, just like zooming a web page.
1964 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1965 self.rem_size = rem_size.into();
1966 }
1967
1968 /// Acquire a globally unique identifier for the given ElementId.
1969 /// Only valid for the duration of the provided closure.
1970 pub fn with_global_id<R>(
1971 &mut self,
1972 element_id: ElementId,
1973 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1974 ) -> R {
1975 self.element_id_stack.push(element_id);
1976 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1977
1978 let result = f(&global_id, self);
1979 self.element_id_stack.pop();
1980 result
1981 }
1982
1983 /// Executes the provided function with the specified rem size.
1984 ///
1985 /// This method must only be called as part of element drawing.
1986 // This function is called in a highly recursive manner in editor
1987 // prepainting, make sure its inlined to reduce the stack burden
1988 #[inline]
1989 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1990 where
1991 F: FnOnce(&mut Self) -> R,
1992 {
1993 self.invalidator.debug_assert_paint_or_prepaint();
1994
1995 if let Some(rem_size) = rem_size {
1996 self.rem_size_override_stack.push(rem_size.into());
1997 let result = f(self);
1998 self.rem_size_override_stack.pop();
1999 result
2000 } else {
2001 f(self)
2002 }
2003 }
2004
2005 /// The line height associated with the current text style.
2006 pub fn line_height(&self) -> Pixels {
2007 self.text_style().line_height_in_pixels(self.rem_size())
2008 }
2009
2010 /// Call to prevent the default action of an event. Currently only used to prevent
2011 /// parent elements from becoming focused on mouse down.
2012 pub fn prevent_default(&mut self) {
2013 self.default_prevented = true;
2014 }
2015
2016 /// Obtain whether default has been prevented for the event currently being dispatched.
2017 pub fn default_prevented(&self) -> bool {
2018 self.default_prevented
2019 }
2020
2021 /// Determine whether the given action is available along the dispatch path to the currently focused element.
2022 pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
2023 let node_id =
2024 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
2025 self.rendered_frame
2026 .dispatch_tree
2027 .is_action_available(action, node_id)
2028 }
2029
2030 /// Determine whether the given action is available along the dispatch path to the given focus_handle.
2031 pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
2032 let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
2033 self.rendered_frame
2034 .dispatch_tree
2035 .is_action_available(action, node_id)
2036 }
2037
2038 /// The position of the mouse relative to the window.
2039 pub fn mouse_position(&self) -> Point<Pixels> {
2040 self.mouse_position
2041 }
2042
2043 /// The current state of the keyboard's modifiers
2044 pub fn modifiers(&self) -> Modifiers {
2045 self.modifiers
2046 }
2047
2048 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
2049 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
2050 pub fn last_input_was_keyboard(&self) -> bool {
2051 self.last_input_modality == InputModality::Keyboard
2052 }
2053
2054 /// The current state of the keyboard's capslock
2055 pub fn capslock(&self) -> Capslock {
2056 self.capslock
2057 }
2058
2059 fn complete_frame(&self) {
2060 self.platform_window.completed_frame();
2061 }
2062
2063 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2064 /// the contents of the new [`Scene`], use [`Self::present`].
2065 #[profiling::function]
2066 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2067 self.invalidate_entities();
2068 cx.entities.clear_accessed();
2069 debug_assert!(self.rendered_entity_stack.is_empty());
2070 self.invalidator.set_dirty(false);
2071 self.requested_autoscroll = None;
2072
2073 // Restore the previously-used input handler.
2074 if let Some(input_handler) = self.platform_window.take_input_handler() {
2075 self.rendered_frame.input_handlers.push(Some(input_handler));
2076 }
2077 if !cx.mode.skip_drawing() {
2078 self.draw_roots(cx);
2079 }
2080 self.dirty_views.clear();
2081 self.next_frame.window_active = self.active.get();
2082
2083 // Register requested input handler with the platform window.
2084 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2085 self.platform_window
2086 .set_input_handler(input_handler.unwrap());
2087 }
2088
2089 self.layout_engine.as_mut().unwrap().clear();
2090 self.text_system().finish_frame();
2091 self.next_frame.finish(&mut self.rendered_frame);
2092
2093 self.invalidator.set_phase(DrawPhase::Focus);
2094 let previous_focus_path = self.rendered_frame.focus_path();
2095 let previous_window_active = self.rendered_frame.window_active;
2096 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2097 self.next_frame.clear();
2098 let current_focus_path = self.rendered_frame.focus_path();
2099 let current_window_active = self.rendered_frame.window_active;
2100
2101 if previous_focus_path != current_focus_path
2102 || previous_window_active != current_window_active
2103 {
2104 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2105 self.focus_lost_listeners
2106 .clone()
2107 .retain(&(), |listener| listener(self, cx));
2108 }
2109
2110 let event = WindowFocusEvent {
2111 previous_focus_path: if previous_window_active {
2112 previous_focus_path
2113 } else {
2114 Default::default()
2115 },
2116 current_focus_path: if current_window_active {
2117 current_focus_path
2118 } else {
2119 Default::default()
2120 },
2121 };
2122 self.focus_listeners
2123 .clone()
2124 .retain(&(), |listener| listener(&event, self, cx));
2125 }
2126
2127 debug_assert!(self.rendered_entity_stack.is_empty());
2128 self.record_entities_accessed(cx);
2129 self.reset_cursor_style(cx);
2130 self.refreshing = false;
2131 self.invalidator.set_phase(DrawPhase::None);
2132 self.needs_present.set(true);
2133
2134 ArenaClearNeeded
2135 }
2136
2137 fn record_entities_accessed(&mut self, cx: &mut App) {
2138 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2139 let mut entities = mem::take(entities_ref.deref_mut());
2140 drop(entities_ref);
2141 let handle = self.handle;
2142 cx.record_entities_accessed(
2143 handle,
2144 // Try moving window invalidator into the Window
2145 self.invalidator.clone(),
2146 &entities,
2147 );
2148 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2149 mem::swap(&mut entities, entities_ref.deref_mut());
2150 }
2151
2152 fn invalidate_entities(&mut self) {
2153 let mut views = self.invalidator.take_views();
2154 for entity in views.drain() {
2155 self.mark_view_dirty(entity);
2156 }
2157 self.invalidator.replace_views(views);
2158 }
2159
2160 #[profiling::function]
2161 fn present(&self) {
2162 self.platform_window.draw(&self.rendered_frame.scene);
2163 self.needs_present.set(false);
2164 profiling::finish_frame!();
2165 }
2166
2167 fn draw_roots(&mut self, cx: &mut App) {
2168 self.invalidator.set_phase(DrawPhase::Prepaint);
2169 self.tooltip_bounds.take();
2170
2171 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2172 let root_size = {
2173 #[cfg(any(feature = "inspector", debug_assertions))]
2174 {
2175 if self.inspector.is_some() {
2176 let mut size = self.viewport_size;
2177 size.width = (size.width - _inspector_width).max(px(0.0));
2178 size
2179 } else {
2180 self.viewport_size
2181 }
2182 }
2183 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2184 {
2185 self.viewport_size
2186 }
2187 };
2188
2189 // Layout all root elements.
2190 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2191 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2192
2193 #[cfg(any(feature = "inspector", debug_assertions))]
2194 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2195
2196 let mut sorted_deferred_draws =
2197 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2198 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2199 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2200
2201 let mut prompt_element = None;
2202 let mut active_drag_element = None;
2203 let mut tooltip_element = None;
2204 if let Some(prompt) = self.prompt.take() {
2205 let mut element = prompt.view.any_view().into_any();
2206 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2207 prompt_element = Some(element);
2208 self.prompt = Some(prompt);
2209 } else if let Some(active_drag) = cx.active_drag.take() {
2210 let mut element = active_drag.view.clone().into_any();
2211 let offset = self.mouse_position() - active_drag.cursor_offset;
2212 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2213 active_drag_element = Some(element);
2214 cx.active_drag = Some(active_drag);
2215 } else {
2216 tooltip_element = self.prepaint_tooltip(cx);
2217 }
2218
2219 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2220
2221 // Now actually paint the elements.
2222 self.invalidator.set_phase(DrawPhase::Paint);
2223 root_element.paint(self, cx);
2224
2225 #[cfg(any(feature = "inspector", debug_assertions))]
2226 self.paint_inspector(inspector_element, cx);
2227
2228 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2229
2230 if let Some(mut prompt_element) = prompt_element {
2231 prompt_element.paint(self, cx);
2232 } else if let Some(mut drag_element) = active_drag_element {
2233 drag_element.paint(self, cx);
2234 } else if let Some(mut tooltip_element) = tooltip_element {
2235 tooltip_element.paint(self, cx);
2236 }
2237
2238 #[cfg(any(feature = "inspector", debug_assertions))]
2239 self.paint_inspector_hitbox(cx);
2240 }
2241
2242 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2243 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2244 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2245 let Some(Some(tooltip_request)) = self
2246 .next_frame
2247 .tooltip_requests
2248 .get(tooltip_request_index)
2249 .cloned()
2250 else {
2251 log::error!("Unexpectedly absent TooltipRequest");
2252 continue;
2253 };
2254 let mut element = tooltip_request.tooltip.view.clone().into_any();
2255 let mouse_position = tooltip_request.tooltip.mouse_position;
2256 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2257
2258 let mut tooltip_bounds =
2259 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2260 let window_bounds = Bounds {
2261 origin: Point::default(),
2262 size: self.viewport_size(),
2263 };
2264
2265 if tooltip_bounds.right() > window_bounds.right() {
2266 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2267 if new_x >= Pixels::ZERO {
2268 tooltip_bounds.origin.x = new_x;
2269 } else {
2270 tooltip_bounds.origin.x = cmp::max(
2271 Pixels::ZERO,
2272 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2273 );
2274 }
2275 }
2276
2277 if tooltip_bounds.bottom() > window_bounds.bottom() {
2278 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2279 if new_y >= Pixels::ZERO {
2280 tooltip_bounds.origin.y = new_y;
2281 } else {
2282 tooltip_bounds.origin.y = cmp::max(
2283 Pixels::ZERO,
2284 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2285 );
2286 }
2287 }
2288
2289 // It's possible for an element to have an active tooltip while not being painted (e.g.
2290 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2291 // case, instead update the tooltip's visibility here.
2292 let is_visible =
2293 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2294 if !is_visible {
2295 continue;
2296 }
2297
2298 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2299 element.prepaint(window, cx)
2300 });
2301
2302 self.tooltip_bounds = Some(TooltipBounds {
2303 id: tooltip_request.id,
2304 bounds: tooltip_bounds,
2305 });
2306 return Some(element);
2307 }
2308 None
2309 }
2310
2311 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2312 assert_eq!(self.element_id_stack.len(), 0);
2313
2314 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2315 for deferred_draw_ix in deferred_draw_indices {
2316 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2317 self.element_id_stack
2318 .clone_from(&deferred_draw.element_id_stack);
2319 self.text_style_stack
2320 .clone_from(&deferred_draw.text_style_stack);
2321 self.next_frame
2322 .dispatch_tree
2323 .set_active_node(deferred_draw.parent_node);
2324
2325 let prepaint_start = self.prepaint_index();
2326 if let Some(element) = deferred_draw.element.as_mut() {
2327 self.with_rendered_view(deferred_draw.current_view, |window| {
2328 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2329 element.prepaint(window, cx)
2330 });
2331 })
2332 } else {
2333 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2334 }
2335 let prepaint_end = self.prepaint_index();
2336 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2337 }
2338 assert_eq!(
2339 self.next_frame.deferred_draws.len(),
2340 0,
2341 "cannot call defer_draw during deferred drawing"
2342 );
2343 self.next_frame.deferred_draws = deferred_draws;
2344 self.element_id_stack.clear();
2345 self.text_style_stack.clear();
2346 }
2347
2348 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2349 assert_eq!(self.element_id_stack.len(), 0);
2350
2351 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2352 for deferred_draw_ix in deferred_draw_indices {
2353 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2354 self.element_id_stack
2355 .clone_from(&deferred_draw.element_id_stack);
2356 self.next_frame
2357 .dispatch_tree
2358 .set_active_node(deferred_draw.parent_node);
2359
2360 let paint_start = self.paint_index();
2361 if let Some(element) = deferred_draw.element.as_mut() {
2362 self.with_rendered_view(deferred_draw.current_view, |window| {
2363 element.paint(window, cx);
2364 })
2365 } else {
2366 self.reuse_paint(deferred_draw.paint_range.clone());
2367 }
2368 let paint_end = self.paint_index();
2369 deferred_draw.paint_range = paint_start..paint_end;
2370 }
2371 self.next_frame.deferred_draws = deferred_draws;
2372 self.element_id_stack.clear();
2373 }
2374
2375 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2376 PrepaintStateIndex {
2377 hitboxes_index: self.next_frame.hitboxes.len(),
2378 tooltips_index: self.next_frame.tooltip_requests.len(),
2379 deferred_draws_index: self.next_frame.deferred_draws.len(),
2380 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2381 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2382 line_layout_index: self.text_system.layout_index(),
2383 }
2384 }
2385
2386 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2387 self.next_frame.hitboxes.extend(
2388 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2389 .iter()
2390 .cloned(),
2391 );
2392 self.next_frame.tooltip_requests.extend(
2393 self.rendered_frame.tooltip_requests
2394 [range.start.tooltips_index..range.end.tooltips_index]
2395 .iter_mut()
2396 .map(|request| request.take()),
2397 );
2398 self.next_frame.accessed_element_states.extend(
2399 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2400 ..range.end.accessed_element_states_index]
2401 .iter()
2402 .map(|(id, type_id)| (id.clone(), *type_id)),
2403 );
2404 self.text_system
2405 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2406
2407 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2408 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2409 &mut self.rendered_frame.dispatch_tree,
2410 self.focus,
2411 );
2412
2413 if reused_subtree.contains_focus() {
2414 self.next_frame.focus = self.focus;
2415 }
2416
2417 self.next_frame.deferred_draws.extend(
2418 self.rendered_frame.deferred_draws
2419 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2420 .iter()
2421 .map(|deferred_draw| DeferredDraw {
2422 current_view: deferred_draw.current_view,
2423 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2424 element_id_stack: deferred_draw.element_id_stack.clone(),
2425 text_style_stack: deferred_draw.text_style_stack.clone(),
2426 priority: deferred_draw.priority,
2427 element: None,
2428 absolute_offset: deferred_draw.absolute_offset,
2429 prepaint_range: deferred_draw.prepaint_range.clone(),
2430 paint_range: deferred_draw.paint_range.clone(),
2431 }),
2432 );
2433 }
2434
2435 pub(crate) fn paint_index(&self) -> PaintIndex {
2436 PaintIndex {
2437 scene_index: self.next_frame.scene.len(),
2438 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2439 input_handlers_index: self.next_frame.input_handlers.len(),
2440 cursor_styles_index: self.next_frame.cursor_styles.len(),
2441 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2442 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2443 line_layout_index: self.text_system.layout_index(),
2444 }
2445 }
2446
2447 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2448 self.next_frame.cursor_styles.extend(
2449 self.rendered_frame.cursor_styles
2450 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2451 .iter()
2452 .cloned(),
2453 );
2454 self.next_frame.input_handlers.extend(
2455 self.rendered_frame.input_handlers
2456 [range.start.input_handlers_index..range.end.input_handlers_index]
2457 .iter_mut()
2458 .map(|handler| handler.take()),
2459 );
2460 self.next_frame.mouse_listeners.extend(
2461 self.rendered_frame.mouse_listeners
2462 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2463 .iter_mut()
2464 .map(|listener| listener.take()),
2465 );
2466 self.next_frame.accessed_element_states.extend(
2467 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2468 ..range.end.accessed_element_states_index]
2469 .iter()
2470 .map(|(id, type_id)| (id.clone(), *type_id)),
2471 );
2472 self.next_frame.tab_stops.replay(
2473 &self.rendered_frame.tab_stops.insertion_history
2474 [range.start.tab_handle_index..range.end.tab_handle_index],
2475 );
2476
2477 self.text_system
2478 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2479 self.next_frame.scene.replay(
2480 range.start.scene_index..range.end.scene_index,
2481 &self.rendered_frame.scene,
2482 );
2483 }
2484
2485 /// Push a text style onto the stack, and call a function with that style active.
2486 /// Use [`Window::text_style`] to get the current, combined text style. This method
2487 /// should only be called as part of element drawing.
2488 // This function is called in a highly recursive manner in editor
2489 // prepainting, make sure its inlined to reduce the stack burden
2490 #[inline]
2491 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2492 where
2493 F: FnOnce(&mut Self) -> R,
2494 {
2495 self.invalidator.debug_assert_paint_or_prepaint();
2496 if let Some(style) = style {
2497 self.text_style_stack.push(style);
2498 let result = f(self);
2499 self.text_style_stack.pop();
2500 result
2501 } else {
2502 f(self)
2503 }
2504 }
2505
2506 /// Updates the cursor style at the platform level. This method should only be called
2507 /// during the paint phase of element drawing.
2508 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2509 self.invalidator.debug_assert_paint();
2510 self.next_frame.cursor_styles.push(CursorStyleRequest {
2511 hitbox_id: Some(hitbox.id),
2512 style,
2513 });
2514 }
2515
2516 /// Updates the cursor style for the entire window at the platform level. A cursor
2517 /// style using this method will have precedence over any cursor style set using
2518 /// `set_cursor_style`. This method should only be called during the paint
2519 /// phase of element drawing.
2520 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2521 self.invalidator.debug_assert_paint();
2522 self.next_frame.cursor_styles.push(CursorStyleRequest {
2523 hitbox_id: None,
2524 style,
2525 })
2526 }
2527
2528 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2529 /// during the paint phase of element drawing.
2530 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2531 self.invalidator.debug_assert_prepaint();
2532 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2533 self.next_frame
2534 .tooltip_requests
2535 .push(Some(TooltipRequest { id, tooltip }));
2536 id
2537 }
2538
2539 /// Invoke the given function with the given content mask after intersecting it
2540 /// with the current mask. This method should only be called during element drawing.
2541 // This function is called in a highly recursive manner in editor
2542 // prepainting, make sure its inlined to reduce the stack burden
2543 #[inline]
2544 pub fn with_content_mask<R>(
2545 &mut self,
2546 mask: Option<ContentMask<Pixels>>,
2547 f: impl FnOnce(&mut Self) -> R,
2548 ) -> R {
2549 self.invalidator.debug_assert_paint_or_prepaint();
2550 if let Some(mask) = mask {
2551 let mask = mask.intersect(&self.content_mask());
2552 self.content_mask_stack.push(mask);
2553 let result = f(self);
2554 self.content_mask_stack.pop();
2555 result
2556 } else {
2557 f(self)
2558 }
2559 }
2560
2561 /// Updates the global element offset relative to the current offset. This is used to implement
2562 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2563 pub fn with_element_offset<R>(
2564 &mut self,
2565 offset: Point<Pixels>,
2566 f: impl FnOnce(&mut Self) -> R,
2567 ) -> R {
2568 self.invalidator.debug_assert_prepaint();
2569
2570 if offset.is_zero() {
2571 return f(self);
2572 };
2573
2574 let abs_offset = self.element_offset() + offset;
2575 self.with_absolute_element_offset(abs_offset, f)
2576 }
2577
2578 /// Updates the global element offset based on the given offset. This is used to implement
2579 /// drag handles and other manual painting of elements. This method should only be called during
2580 /// the prepaint phase of element drawing.
2581 pub fn with_absolute_element_offset<R>(
2582 &mut self,
2583 offset: Point<Pixels>,
2584 f: impl FnOnce(&mut Self) -> R,
2585 ) -> R {
2586 self.invalidator.debug_assert_prepaint();
2587 self.element_offset_stack.push(offset);
2588 let result = f(self);
2589 self.element_offset_stack.pop();
2590 result
2591 }
2592
2593 pub(crate) fn with_element_opacity<R>(
2594 &mut self,
2595 opacity: Option<f32>,
2596 f: impl FnOnce(&mut Self) -> R,
2597 ) -> R {
2598 self.invalidator.debug_assert_paint_or_prepaint();
2599
2600 let Some(opacity) = opacity else {
2601 return f(self);
2602 };
2603
2604 let previous_opacity = self.element_opacity;
2605 self.element_opacity = previous_opacity * opacity;
2606 let result = f(self);
2607 self.element_opacity = previous_opacity;
2608 result
2609 }
2610
2611 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2612 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2613 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2614 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2615 /// called during the prepaint phase of element drawing.
2616 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2617 self.invalidator.debug_assert_prepaint();
2618 let index = self.prepaint_index();
2619 let result = f(self);
2620 if result.is_err() {
2621 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2622 self.next_frame
2623 .tooltip_requests
2624 .truncate(index.tooltips_index);
2625 self.next_frame
2626 .deferred_draws
2627 .truncate(index.deferred_draws_index);
2628 self.next_frame
2629 .dispatch_tree
2630 .truncate(index.dispatch_tree_index);
2631 self.next_frame
2632 .accessed_element_states
2633 .truncate(index.accessed_element_states_index);
2634 self.text_system.truncate_layouts(index.line_layout_index);
2635 }
2636 result
2637 }
2638
2639 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2640 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2641 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2642 /// that supports this method being called on the elements it contains. This method should only be
2643 /// called during the prepaint phase of element drawing.
2644 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2645 self.invalidator.debug_assert_prepaint();
2646 self.requested_autoscroll = Some(bounds);
2647 }
2648
2649 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2650 /// described in [`Self::request_autoscroll`].
2651 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2652 self.invalidator.debug_assert_prepaint();
2653 self.requested_autoscroll.take()
2654 }
2655
2656 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2657 /// Your view will be re-drawn once the asset has finished loading.
2658 ///
2659 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2660 /// time.
2661 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2662 let (task, is_first) = cx.fetch_asset::<A>(source);
2663 task.clone().now_or_never().or_else(|| {
2664 if is_first {
2665 let entity_id = self.current_view();
2666 self.spawn(cx, {
2667 let task = task.clone();
2668 async move |cx| {
2669 task.await;
2670
2671 cx.on_next_frame(move |_, cx| {
2672 cx.notify(entity_id);
2673 });
2674 }
2675 })
2676 .detach();
2677 }
2678
2679 None
2680 })
2681 }
2682
2683 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2684 /// Your view will not be re-drawn once the asset has finished loading.
2685 ///
2686 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2687 /// time.
2688 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2689 let (task, _) = cx.fetch_asset::<A>(source);
2690 task.now_or_never()
2691 }
2692 /// Obtain the current element offset. This method should only be called during the
2693 /// prepaint phase of element drawing.
2694 pub fn element_offset(&self) -> Point<Pixels> {
2695 self.invalidator.debug_assert_prepaint();
2696 self.element_offset_stack
2697 .last()
2698 .copied()
2699 .unwrap_or_default()
2700 }
2701
2702 /// Obtain the current element opacity. This method should only be called during the
2703 /// prepaint phase of element drawing.
2704 #[inline]
2705 pub(crate) fn element_opacity(&self) -> f32 {
2706 self.invalidator.debug_assert_paint_or_prepaint();
2707 self.element_opacity
2708 }
2709
2710 /// Obtain the current content mask. This method should only be called during element drawing.
2711 pub fn content_mask(&self) -> ContentMask<Pixels> {
2712 self.invalidator.debug_assert_paint_or_prepaint();
2713 self.content_mask_stack
2714 .last()
2715 .cloned()
2716 .unwrap_or_else(|| ContentMask {
2717 bounds: Bounds {
2718 origin: Point::default(),
2719 size: self.viewport_size,
2720 },
2721 })
2722 }
2723
2724 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2725 /// This can be used within a custom element to distinguish multiple sets of child elements.
2726 pub fn with_element_namespace<R>(
2727 &mut self,
2728 element_id: impl Into<ElementId>,
2729 f: impl FnOnce(&mut Self) -> R,
2730 ) -> R {
2731 self.element_id_stack.push(element_id.into());
2732 let result = f(self);
2733 self.element_id_stack.pop();
2734 result
2735 }
2736
2737 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2738 pub fn use_keyed_state<S: 'static>(
2739 &mut self,
2740 key: impl Into<ElementId>,
2741 cx: &mut App,
2742 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2743 ) -> Entity<S> {
2744 let current_view = self.current_view();
2745 self.with_global_id(key.into(), |global_id, window| {
2746 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2747 if let Some(state) = state {
2748 (state.clone(), state)
2749 } else {
2750 let new_state = cx.new(|cx| init(window, cx));
2751 cx.observe(&new_state, move |_, cx| {
2752 cx.notify(current_view);
2753 })
2754 .detach();
2755 (new_state.clone(), new_state)
2756 }
2757 })
2758 })
2759 }
2760
2761 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2762 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2763 self.with_global_id(id.into(), |_, window| f(window))
2764 }
2765
2766 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2767 ///
2768 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2769 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2770 /// you can provide a custom ElementID using the `use_keyed_state` method.
2771 #[track_caller]
2772 pub fn use_state<S: 'static>(
2773 &mut self,
2774 cx: &mut App,
2775 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2776 ) -> Entity<S> {
2777 self.use_keyed_state(
2778 ElementId::CodeLocation(*core::panic::Location::caller()),
2779 cx,
2780 init,
2781 )
2782 }
2783
2784 /// Updates or initializes state for an element with the given id that lives across multiple
2785 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2786 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2787 /// when drawing the next frame. This method should only be called as part of element drawing.
2788 pub fn with_element_state<S, R>(
2789 &mut self,
2790 global_id: &GlobalElementId,
2791 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2792 ) -> R
2793 where
2794 S: 'static,
2795 {
2796 self.invalidator.debug_assert_paint_or_prepaint();
2797
2798 let key = (global_id.clone(), TypeId::of::<S>());
2799 self.next_frame.accessed_element_states.push(key.clone());
2800
2801 if let Some(any) = self
2802 .next_frame
2803 .element_states
2804 .remove(&key)
2805 .or_else(|| self.rendered_frame.element_states.remove(&key))
2806 {
2807 let ElementStateBox {
2808 inner,
2809 #[cfg(debug_assertions)]
2810 type_name,
2811 } = any;
2812 // Using the extra inner option to avoid needing to reallocate a new box.
2813 let mut state_box = inner
2814 .downcast::<Option<S>>()
2815 .map_err(|_| {
2816 #[cfg(debug_assertions)]
2817 {
2818 anyhow::anyhow!(
2819 "invalid element state type for id, requested {:?}, actual: {:?}",
2820 std::any::type_name::<S>(),
2821 type_name
2822 )
2823 }
2824
2825 #[cfg(not(debug_assertions))]
2826 {
2827 anyhow::anyhow!(
2828 "invalid element state type for id, requested {:?}",
2829 std::any::type_name::<S>(),
2830 )
2831 }
2832 })
2833 .unwrap();
2834
2835 let state = state_box.take().expect(
2836 "reentrant call to with_element_state for the same state type and element id",
2837 );
2838 let (result, state) = f(Some(state), self);
2839 state_box.replace(state);
2840 self.next_frame.element_states.insert(
2841 key,
2842 ElementStateBox {
2843 inner: state_box,
2844 #[cfg(debug_assertions)]
2845 type_name,
2846 },
2847 );
2848 result
2849 } else {
2850 let (result, state) = f(None, self);
2851 self.next_frame.element_states.insert(
2852 key,
2853 ElementStateBox {
2854 inner: Box::new(Some(state)),
2855 #[cfg(debug_assertions)]
2856 type_name: std::any::type_name::<S>(),
2857 },
2858 );
2859 result
2860 }
2861 }
2862
2863 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2864 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2865 /// when the element is guaranteed to have an id.
2866 ///
2867 /// The first option means 'no ID provided'
2868 /// The second option means 'not yet initialized'
2869 pub fn with_optional_element_state<S, R>(
2870 &mut self,
2871 global_id: Option<&GlobalElementId>,
2872 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2873 ) -> R
2874 where
2875 S: 'static,
2876 {
2877 self.invalidator.debug_assert_paint_or_prepaint();
2878
2879 if let Some(global_id) = global_id {
2880 self.with_element_state(global_id, |state, cx| {
2881 let (result, state) = f(Some(state), cx);
2882 let state =
2883 state.expect("you must return some state when you pass some element id");
2884 (result, state)
2885 })
2886 } else {
2887 let (result, state) = f(None, self);
2888 debug_assert!(
2889 state.is_none(),
2890 "you must not return an element state when passing None for the global id"
2891 );
2892 result
2893 }
2894 }
2895
2896 /// Executes the given closure within the context of a tab group.
2897 #[inline]
2898 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2899 if let Some(index) = index {
2900 self.next_frame.tab_stops.begin_group(index);
2901 let result = f(self);
2902 self.next_frame.tab_stops.end_group();
2903 result
2904 } else {
2905 f(self)
2906 }
2907 }
2908
2909 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2910 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2911 /// with higher values being drawn on top.
2912 ///
2913 /// This method should only be called as part of the prepaint phase of element drawing.
2914 pub fn defer_draw(
2915 &mut self,
2916 element: AnyElement,
2917 absolute_offset: Point<Pixels>,
2918 priority: usize,
2919 ) {
2920 self.invalidator.debug_assert_prepaint();
2921 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2922 self.next_frame.deferred_draws.push(DeferredDraw {
2923 current_view: self.current_view(),
2924 parent_node,
2925 element_id_stack: self.element_id_stack.clone(),
2926 text_style_stack: self.text_style_stack.clone(),
2927 priority,
2928 element: Some(element),
2929 absolute_offset,
2930 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2931 paint_range: PaintIndex::default()..PaintIndex::default(),
2932 });
2933 }
2934
2935 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2936 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2937 /// for performance reasons.
2938 ///
2939 /// This method should only be called as part of the paint phase of element drawing.
2940 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2941 self.invalidator.debug_assert_paint();
2942
2943 let scale_factor = self.scale_factor();
2944 let content_mask = self.content_mask();
2945 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2946 if !clipped_bounds.is_empty() {
2947 self.next_frame
2948 .scene
2949 .push_layer(clipped_bounds.scale(scale_factor));
2950 }
2951
2952 let result = f(self);
2953
2954 if !clipped_bounds.is_empty() {
2955 self.next_frame.scene.pop_layer();
2956 }
2957
2958 result
2959 }
2960
2961 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2962 ///
2963 /// This method should only be called as part of the paint phase of element drawing.
2964 pub fn paint_shadows(
2965 &mut self,
2966 bounds: Bounds<Pixels>,
2967 corner_radii: Corners<Pixels>,
2968 shadows: &[BoxShadow],
2969 ) {
2970 self.invalidator.debug_assert_paint();
2971
2972 let scale_factor = self.scale_factor();
2973 let content_mask = self.content_mask();
2974 let opacity = self.element_opacity();
2975 for shadow in shadows {
2976 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2977 self.next_frame.scene.insert_primitive(Shadow {
2978 order: 0,
2979 blur_radius: shadow.blur_radius.scale(scale_factor),
2980 bounds: shadow_bounds.scale(scale_factor),
2981 content_mask: content_mask.scale(scale_factor),
2982 corner_radii: corner_radii.scale(scale_factor),
2983 color: shadow.color.opacity(opacity),
2984 });
2985 }
2986 }
2987
2988 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2989 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2990 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2991 ///
2992 /// This method should only be called as part of the paint phase of element drawing.
2993 ///
2994 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2995 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2996 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2997 pub fn paint_quad(&mut self, quad: PaintQuad) {
2998 self.invalidator.debug_assert_paint();
2999
3000 let scale_factor = self.scale_factor();
3001 let content_mask = self.content_mask();
3002 let opacity = self.element_opacity();
3003 self.next_frame.scene.insert_primitive(Quad {
3004 order: 0,
3005 bounds: quad.bounds.scale(scale_factor),
3006 content_mask: content_mask.scale(scale_factor),
3007 background: quad.background.opacity(opacity),
3008 border_color: quad.border_color.opacity(opacity),
3009 corner_radii: quad.corner_radii.scale(scale_factor),
3010 border_widths: quad.border_widths.scale(scale_factor),
3011 border_style: quad.border_style,
3012 });
3013 }
3014
3015 /// Paint the given `Path` into the scene for the next frame at the current z-index.
3016 ///
3017 /// This method should only be called as part of the paint phase of element drawing.
3018 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
3019 self.invalidator.debug_assert_paint();
3020
3021 let scale_factor = self.scale_factor();
3022 let content_mask = self.content_mask();
3023 let opacity = self.element_opacity();
3024 path.content_mask = content_mask;
3025 let color: Background = color.into();
3026 path.color = color.opacity(opacity);
3027 self.next_frame
3028 .scene
3029 .insert_primitive(path.scale(scale_factor));
3030 }
3031
3032 /// Paint an underline into the scene for the next frame at the current z-index.
3033 ///
3034 /// This method should only be called as part of the paint phase of element drawing.
3035 pub fn paint_underline(
3036 &mut self,
3037 origin: Point<Pixels>,
3038 width: Pixels,
3039 style: &UnderlineStyle,
3040 ) {
3041 self.invalidator.debug_assert_paint();
3042
3043 let scale_factor = self.scale_factor();
3044 let height = if style.wavy {
3045 style.thickness * 3.
3046 } else {
3047 style.thickness
3048 };
3049 let bounds = Bounds {
3050 origin,
3051 size: size(width, height),
3052 };
3053 let content_mask = self.content_mask();
3054 let element_opacity = self.element_opacity();
3055
3056 self.next_frame.scene.insert_primitive(Underline {
3057 order: 0,
3058 pad: 0,
3059 bounds: bounds.scale(scale_factor),
3060 content_mask: content_mask.scale(scale_factor),
3061 color: style.color.unwrap_or_default().opacity(element_opacity),
3062 thickness: style.thickness.scale(scale_factor),
3063 wavy: if style.wavy { 1 } else { 0 },
3064 });
3065 }
3066
3067 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3068 ///
3069 /// This method should only be called as part of the paint phase of element drawing.
3070 pub fn paint_strikethrough(
3071 &mut self,
3072 origin: Point<Pixels>,
3073 width: Pixels,
3074 style: &StrikethroughStyle,
3075 ) {
3076 self.invalidator.debug_assert_paint();
3077
3078 let scale_factor = self.scale_factor();
3079 let height = style.thickness;
3080 let bounds = Bounds {
3081 origin,
3082 size: size(width, height),
3083 };
3084 let content_mask = self.content_mask();
3085 let opacity = self.element_opacity();
3086
3087 self.next_frame.scene.insert_primitive(Underline {
3088 order: 0,
3089 pad: 0,
3090 bounds: bounds.scale(scale_factor),
3091 content_mask: content_mask.scale(scale_factor),
3092 thickness: style.thickness.scale(scale_factor),
3093 color: style.color.unwrap_or_default().opacity(opacity),
3094 wavy: 0,
3095 });
3096 }
3097
3098 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3099 ///
3100 /// The y component of the origin is the baseline of the glyph.
3101 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3102 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3103 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3104 ///
3105 /// This method should only be called as part of the paint phase of element drawing.
3106 pub fn paint_glyph(
3107 &mut self,
3108 origin: Point<Pixels>,
3109 font_id: FontId,
3110 glyph_id: GlyphId,
3111 font_size: Pixels,
3112 color: Hsla,
3113 ) -> Result<()> {
3114 self.invalidator.debug_assert_paint();
3115
3116 let element_opacity = self.element_opacity();
3117 let scale_factor = self.scale_factor();
3118 let glyph_origin = origin.scale(scale_factor);
3119
3120 let subpixel_variant = Point {
3121 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3122 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3123 };
3124 let params = RenderGlyphParams {
3125 font_id,
3126 glyph_id,
3127 font_size,
3128 subpixel_variant,
3129 scale_factor,
3130 is_emoji: false,
3131 };
3132
3133 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3134 if !raster_bounds.is_zero() {
3135 let tile = self
3136 .sprite_atlas
3137 .get_or_insert_with(¶ms.clone().into(), &mut || {
3138 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3139 Ok(Some((size, Cow::Owned(bytes))))
3140 })?
3141 .expect("Callback above only errors or returns Some");
3142 let bounds = Bounds {
3143 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3144 size: tile.bounds.size.map(Into::into),
3145 };
3146 let content_mask = self.content_mask().scale(scale_factor);
3147 self.next_frame.scene.insert_primitive(MonochromeSprite {
3148 order: 0,
3149 pad: 0,
3150 bounds,
3151 content_mask,
3152 color: color.opacity(element_opacity),
3153 tile,
3154 transformation: TransformationMatrix::unit(),
3155 });
3156 }
3157 Ok(())
3158 }
3159
3160 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3161 ///
3162 /// The y component of the origin is the baseline of the glyph.
3163 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3164 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3165 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3166 ///
3167 /// This method should only be called as part of the paint phase of element drawing.
3168 pub fn paint_emoji(
3169 &mut self,
3170 origin: Point<Pixels>,
3171 font_id: FontId,
3172 glyph_id: GlyphId,
3173 font_size: Pixels,
3174 ) -> Result<()> {
3175 self.invalidator.debug_assert_paint();
3176
3177 let scale_factor = self.scale_factor();
3178 let glyph_origin = origin.scale(scale_factor);
3179 let params = RenderGlyphParams {
3180 font_id,
3181 glyph_id,
3182 font_size,
3183 // We don't render emojis with subpixel variants.
3184 subpixel_variant: Default::default(),
3185 scale_factor,
3186 is_emoji: true,
3187 };
3188
3189 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3190 if !raster_bounds.is_zero() {
3191 let tile = self
3192 .sprite_atlas
3193 .get_or_insert_with(¶ms.clone().into(), &mut || {
3194 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3195 Ok(Some((size, Cow::Owned(bytes))))
3196 })?
3197 .expect("Callback above only errors or returns Some");
3198
3199 let bounds = Bounds {
3200 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3201 size: tile.bounds.size.map(Into::into),
3202 };
3203 let content_mask = self.content_mask().scale(scale_factor);
3204 let opacity = self.element_opacity();
3205
3206 self.next_frame.scene.insert_primitive(PolychromeSprite {
3207 order: 0,
3208 pad: 0,
3209 grayscale: false,
3210 bounds,
3211 corner_radii: Default::default(),
3212 content_mask,
3213 tile,
3214 opacity,
3215 });
3216 }
3217 Ok(())
3218 }
3219
3220 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3221 ///
3222 /// This method should only be called as part of the paint phase of element drawing.
3223 pub fn paint_svg(
3224 &mut self,
3225 bounds: Bounds<Pixels>,
3226 path: SharedString,
3227 mut data: Option<&[u8]>,
3228 transformation: TransformationMatrix,
3229 color: Hsla,
3230 cx: &App,
3231 ) -> Result<()> {
3232 self.invalidator.debug_assert_paint();
3233
3234 let element_opacity = self.element_opacity();
3235 let scale_factor = self.scale_factor();
3236
3237 let bounds = bounds.scale(scale_factor);
3238 let params = RenderSvgParams {
3239 path,
3240 size: bounds.size.map(|pixels| {
3241 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3242 }),
3243 };
3244
3245 let Some(tile) =
3246 self.sprite_atlas
3247 .get_or_insert_with(¶ms.clone().into(), &mut || {
3248 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3249 else {
3250 return Ok(None);
3251 };
3252 Ok(Some((size, Cow::Owned(bytes))))
3253 })?
3254 else {
3255 return Ok(());
3256 };
3257 let content_mask = self.content_mask().scale(scale_factor);
3258 let svg_bounds = Bounds {
3259 origin: bounds.center()
3260 - Point::new(
3261 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3262 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3263 ),
3264 size: tile
3265 .bounds
3266 .size
3267 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3268 };
3269
3270 self.next_frame.scene.insert_primitive(MonochromeSprite {
3271 order: 0,
3272 pad: 0,
3273 bounds: svg_bounds
3274 .map_origin(|origin| origin.round())
3275 .map_size(|size| size.ceil()),
3276 content_mask,
3277 color: color.opacity(element_opacity),
3278 tile,
3279 transformation,
3280 });
3281
3282 Ok(())
3283 }
3284
3285 /// Paint an image into the scene for the next frame at the current z-index.
3286 /// This method will panic if the frame_index is not valid
3287 ///
3288 /// This method should only be called as part of the paint phase of element drawing.
3289 pub fn paint_image(
3290 &mut self,
3291 bounds: Bounds<Pixels>,
3292 corner_radii: Corners<Pixels>,
3293 data: Arc<RenderImage>,
3294 frame_index: usize,
3295 grayscale: bool,
3296 ) -> Result<()> {
3297 self.invalidator.debug_assert_paint();
3298
3299 let scale_factor = self.scale_factor();
3300 let bounds = bounds.scale(scale_factor);
3301 let params = RenderImageParams {
3302 image_id: data.id,
3303 frame_index,
3304 };
3305
3306 let tile = self
3307 .sprite_atlas
3308 .get_or_insert_with(¶ms.into(), &mut || {
3309 Ok(Some((
3310 data.size(frame_index),
3311 Cow::Borrowed(
3312 data.as_bytes(frame_index)
3313 .expect("It's the caller's job to pass a valid frame index"),
3314 ),
3315 )))
3316 })?
3317 .expect("Callback above only returns Some");
3318 let content_mask = self.content_mask().scale(scale_factor);
3319 let corner_radii = corner_radii.scale(scale_factor);
3320 let opacity = self.element_opacity();
3321
3322 self.next_frame.scene.insert_primitive(PolychromeSprite {
3323 order: 0,
3324 pad: 0,
3325 grayscale,
3326 bounds: bounds
3327 .map_origin(|origin| origin.floor())
3328 .map_size(|size| size.ceil()),
3329 content_mask,
3330 corner_radii,
3331 tile,
3332 opacity,
3333 });
3334 Ok(())
3335 }
3336
3337 /// Paint a surface into the scene for the next frame at the current z-index.
3338 ///
3339 /// This method should only be called as part of the paint phase of element drawing.
3340 #[cfg(target_os = "macos")]
3341 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3342 use crate::PaintSurface;
3343
3344 self.invalidator.debug_assert_paint();
3345
3346 let scale_factor = self.scale_factor();
3347 let bounds = bounds.scale(scale_factor);
3348 let content_mask = self.content_mask().scale(scale_factor);
3349 self.next_frame.scene.insert_primitive(PaintSurface {
3350 order: 0,
3351 bounds,
3352 content_mask,
3353 image_buffer,
3354 });
3355 }
3356
3357 /// Removes an image from the sprite atlas.
3358 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3359 for frame_index in 0..data.frame_count() {
3360 let params = RenderImageParams {
3361 image_id: data.id,
3362 frame_index,
3363 };
3364
3365 self.sprite_atlas.remove(¶ms.clone().into());
3366 }
3367
3368 Ok(())
3369 }
3370
3371 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3372 /// layout is being requested, along with the layout ids of any children. This method is called during
3373 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3374 ///
3375 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3376 #[must_use]
3377 pub fn request_layout(
3378 &mut self,
3379 style: Style,
3380 children: impl IntoIterator<Item = LayoutId>,
3381 cx: &mut App,
3382 ) -> LayoutId {
3383 self.invalidator.debug_assert_prepaint();
3384
3385 cx.layout_id_buffer.clear();
3386 cx.layout_id_buffer.extend(children);
3387 let rem_size = self.rem_size();
3388 let scale_factor = self.scale_factor();
3389
3390 self.layout_engine.as_mut().unwrap().request_layout(
3391 style,
3392 rem_size,
3393 scale_factor,
3394 &cx.layout_id_buffer,
3395 )
3396 }
3397
3398 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3399 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3400 /// determine the element's size. One place this is used internally is when measuring text.
3401 ///
3402 /// The given closure is invoked at layout time with the known dimensions and available space and
3403 /// returns a `Size`.
3404 ///
3405 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3406 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3407 where
3408 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3409 + 'static,
3410 {
3411 self.invalidator.debug_assert_prepaint();
3412
3413 let rem_size = self.rem_size();
3414 let scale_factor = self.scale_factor();
3415 self.layout_engine
3416 .as_mut()
3417 .unwrap()
3418 .request_measured_layout(style, rem_size, scale_factor, measure)
3419 }
3420
3421 /// Compute the layout for the given id within the given available space.
3422 /// This method is called for its side effect, typically by the framework prior to painting.
3423 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3424 ///
3425 /// This method should only be called as part of the prepaint phase of element drawing.
3426 pub fn compute_layout(
3427 &mut self,
3428 layout_id: LayoutId,
3429 available_space: Size<AvailableSpace>,
3430 cx: &mut App,
3431 ) {
3432 self.invalidator.debug_assert_prepaint();
3433
3434 let mut layout_engine = self.layout_engine.take().unwrap();
3435 layout_engine.compute_layout(layout_id, available_space, self, cx);
3436 self.layout_engine = Some(layout_engine);
3437 }
3438
3439 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3440 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3441 ///
3442 /// This method should only be called as part of element drawing.
3443 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3444 self.invalidator.debug_assert_prepaint();
3445
3446 let scale_factor = self.scale_factor();
3447 let mut bounds = self
3448 .layout_engine
3449 .as_mut()
3450 .unwrap()
3451 .layout_bounds(layout_id, scale_factor)
3452 .map(Into::into);
3453 bounds.origin += self.element_offset();
3454 bounds
3455 }
3456
3457 /// This method should be called during `prepaint`. You can use
3458 /// the returned [Hitbox] during `paint` or in an event handler
3459 /// to determine whether the inserted hitbox was the topmost.
3460 ///
3461 /// This method should only be called as part of the prepaint phase of element drawing.
3462 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3463 self.invalidator.debug_assert_prepaint();
3464
3465 let content_mask = self.content_mask();
3466 let mut id = self.next_hitbox_id;
3467 self.next_hitbox_id = self.next_hitbox_id.next();
3468 let hitbox = Hitbox {
3469 id,
3470 bounds,
3471 content_mask,
3472 behavior,
3473 };
3474 self.next_frame.hitboxes.push(hitbox.clone());
3475 hitbox
3476 }
3477
3478 /// Set a hitbox which will act as a control area of the platform window.
3479 ///
3480 /// This method should only be called as part of the paint phase of element drawing.
3481 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3482 self.invalidator.debug_assert_paint();
3483 self.next_frame.window_control_hitboxes.push((area, hitbox));
3484 }
3485
3486 /// Sets the key context for the current element. This context will be used to translate
3487 /// keybindings into actions.
3488 ///
3489 /// This method should only be called as part of the paint phase of element drawing.
3490 pub fn set_key_context(&mut self, context: KeyContext) {
3491 self.invalidator.debug_assert_paint();
3492 self.next_frame.dispatch_tree.set_key_context(context);
3493 }
3494
3495 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3496 /// and keyboard event dispatch for the element.
3497 ///
3498 /// This method should only be called as part of the prepaint phase of element drawing.
3499 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3500 self.invalidator.debug_assert_prepaint();
3501 if focus_handle.is_focused(self) {
3502 self.next_frame.focus = Some(focus_handle.id);
3503 }
3504 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3505 }
3506
3507 /// Sets the view id for the current element, which will be used to manage view caching.
3508 ///
3509 /// This method should only be called as part of element prepaint. We plan on removing this
3510 /// method eventually when we solve some issues that require us to construct editor elements
3511 /// directly instead of always using editors via views.
3512 pub fn set_view_id(&mut self, view_id: EntityId) {
3513 self.invalidator.debug_assert_prepaint();
3514 self.next_frame.dispatch_tree.set_view_id(view_id);
3515 }
3516
3517 /// Get the entity ID for the currently rendering view
3518 pub fn current_view(&self) -> EntityId {
3519 self.invalidator.debug_assert_paint_or_prepaint();
3520 self.rendered_entity_stack.last().copied().unwrap()
3521 }
3522
3523 pub(crate) fn with_rendered_view<R>(
3524 &mut self,
3525 id: EntityId,
3526 f: impl FnOnce(&mut Self) -> R,
3527 ) -> R {
3528 self.rendered_entity_stack.push(id);
3529 let result = f(self);
3530 self.rendered_entity_stack.pop();
3531 result
3532 }
3533
3534 /// Executes the provided function with the specified image cache.
3535 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3536 where
3537 F: FnOnce(&mut Self) -> R,
3538 {
3539 if let Some(image_cache) = image_cache {
3540 self.image_cache_stack.push(image_cache);
3541 let result = f(self);
3542 self.image_cache_stack.pop();
3543 result
3544 } else {
3545 f(self)
3546 }
3547 }
3548
3549 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3550 /// platform to receive textual input with proper integration with concerns such
3551 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3552 /// rendered.
3553 ///
3554 /// This method should only be called as part of the paint phase of element drawing.
3555 ///
3556 /// [element_input_handler]: crate::ElementInputHandler
3557 pub fn handle_input(
3558 &mut self,
3559 focus_handle: &FocusHandle,
3560 input_handler: impl InputHandler,
3561 cx: &App,
3562 ) {
3563 self.invalidator.debug_assert_paint();
3564
3565 if focus_handle.is_focused(self) {
3566 let cx = self.to_async(cx);
3567 self.next_frame
3568 .input_handlers
3569 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3570 }
3571 }
3572
3573 /// Register a mouse event listener on the window for the next frame. The type of event
3574 /// is determined by the first parameter of the given listener. When the next frame is rendered
3575 /// the listener will be cleared.
3576 ///
3577 /// This method should only be called as part of the paint phase of element drawing.
3578 pub fn on_mouse_event<Event: MouseEvent>(
3579 &mut self,
3580 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3581 ) {
3582 self.invalidator.debug_assert_paint();
3583
3584 self.next_frame.mouse_listeners.push(Some(Box::new(
3585 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3586 if let Some(event) = event.downcast_ref() {
3587 listener(event, phase, window, cx)
3588 }
3589 },
3590 )));
3591 }
3592
3593 /// Register a key event listener on this node for the next frame. The type of event
3594 /// is determined by the first parameter of the given listener. When the next frame is rendered
3595 /// the listener will be cleared.
3596 ///
3597 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3598 /// a specific need to register a listener yourself.
3599 ///
3600 /// This method should only be called as part of the paint phase of element drawing.
3601 pub fn on_key_event<Event: KeyEvent>(
3602 &mut self,
3603 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3604 ) {
3605 self.invalidator.debug_assert_paint();
3606
3607 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3608 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3609 if let Some(event) = event.downcast_ref::<Event>() {
3610 listener(event, phase, window, cx)
3611 }
3612 },
3613 ));
3614 }
3615
3616 /// Register a modifiers changed event listener on the window for the next frame.
3617 ///
3618 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3619 /// a specific need to register a global listener.
3620 ///
3621 /// This method should only be called as part of the paint phase of element drawing.
3622 pub fn on_modifiers_changed(
3623 &mut self,
3624 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3625 ) {
3626 self.invalidator.debug_assert_paint();
3627
3628 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3629 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3630 listener(event, window, cx)
3631 },
3632 ));
3633 }
3634
3635 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3636 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3637 /// Returns a subscription and persists until the subscription is dropped.
3638 pub fn on_focus_in(
3639 &mut self,
3640 handle: &FocusHandle,
3641 cx: &mut App,
3642 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3643 ) -> Subscription {
3644 let focus_id = handle.id;
3645 let (subscription, activate) =
3646 self.new_focus_listener(Box::new(move |event, window, cx| {
3647 if event.is_focus_in(focus_id) {
3648 listener(window, cx);
3649 }
3650 true
3651 }));
3652 cx.defer(move |_| activate());
3653 subscription
3654 }
3655
3656 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3657 /// Returns a subscription and persists until the subscription is dropped.
3658 pub fn on_focus_out(
3659 &mut self,
3660 handle: &FocusHandle,
3661 cx: &mut App,
3662 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3663 ) -> Subscription {
3664 let focus_id = handle.id;
3665 let (subscription, activate) =
3666 self.new_focus_listener(Box::new(move |event, window, cx| {
3667 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3668 && event.is_focus_out(focus_id)
3669 {
3670 let event = FocusOutEvent {
3671 blurred: WeakFocusHandle {
3672 id: blurred_id,
3673 handles: Arc::downgrade(&cx.focus_handles),
3674 },
3675 };
3676 listener(event, window, cx)
3677 }
3678 true
3679 }));
3680 cx.defer(move |_| activate());
3681 subscription
3682 }
3683
3684 fn reset_cursor_style(&self, cx: &mut App) {
3685 // Set the cursor only if we're the active window.
3686 if self.is_window_hovered() {
3687 let style = self
3688 .rendered_frame
3689 .cursor_style(self)
3690 .unwrap_or(CursorStyle::Arrow);
3691 cx.platform.set_cursor_style(style);
3692 }
3693 }
3694
3695 /// Dispatch a given keystroke as though the user had typed it.
3696 /// You can create a keystroke with Keystroke::parse("").
3697 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3698 let keystroke = keystroke.with_simulated_ime();
3699 let result = self.dispatch_event(
3700 PlatformInput::KeyDown(KeyDownEvent {
3701 keystroke: keystroke.clone(),
3702 is_held: false,
3703 prefer_character_input: false,
3704 }),
3705 cx,
3706 );
3707 if !result.propagate {
3708 return true;
3709 }
3710
3711 if let Some(input) = keystroke.key_char
3712 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3713 {
3714 input_handler.dispatch_input(&input, self, cx);
3715 self.platform_window.set_input_handler(input_handler);
3716 return true;
3717 }
3718
3719 false
3720 }
3721
3722 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3723 /// binding for the action (last binding added to the keymap).
3724 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3725 self.highest_precedence_binding_for_action(action)
3726 .map(|binding| {
3727 binding
3728 .keystrokes()
3729 .iter()
3730 .map(ToString::to_string)
3731 .collect::<Vec<_>>()
3732 .join(" ")
3733 })
3734 .unwrap_or_else(|| action.name().to_string())
3735 }
3736
3737 /// Dispatch a mouse or keyboard event on the window.
3738 #[profiling::function]
3739 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3740 // Track whether this input was keyboard-based for focus-visible styling
3741 self.last_input_modality = match &event {
3742 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3743 InputModality::Keyboard
3744 }
3745 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3746 _ => self.last_input_modality,
3747 };
3748
3749 // Handlers may set this to false by calling `stop_propagation`.
3750 cx.propagate_event = true;
3751 // Handlers may set this to true by calling `prevent_default`.
3752 self.default_prevented = false;
3753
3754 let event = match event {
3755 // Track the mouse position with our own state, since accessing the platform
3756 // API for the mouse position can only occur on the main thread.
3757 PlatformInput::MouseMove(mouse_move) => {
3758 self.mouse_position = mouse_move.position;
3759 self.modifiers = mouse_move.modifiers;
3760 PlatformInput::MouseMove(mouse_move)
3761 }
3762 PlatformInput::MouseDown(mouse_down) => {
3763 self.mouse_position = mouse_down.position;
3764 self.modifiers = mouse_down.modifiers;
3765 PlatformInput::MouseDown(mouse_down)
3766 }
3767 PlatformInput::MouseUp(mouse_up) => {
3768 self.mouse_position = mouse_up.position;
3769 self.modifiers = mouse_up.modifiers;
3770 PlatformInput::MouseUp(mouse_up)
3771 }
3772 PlatformInput::MousePressure(mouse_pressure) => {
3773 PlatformInput::MousePressure(mouse_pressure)
3774 }
3775 PlatformInput::MouseExited(mouse_exited) => {
3776 self.modifiers = mouse_exited.modifiers;
3777 PlatformInput::MouseExited(mouse_exited)
3778 }
3779 PlatformInput::ModifiersChanged(modifiers_changed) => {
3780 self.modifiers = modifiers_changed.modifiers;
3781 self.capslock = modifiers_changed.capslock;
3782 PlatformInput::ModifiersChanged(modifiers_changed)
3783 }
3784 PlatformInput::ScrollWheel(scroll_wheel) => {
3785 self.mouse_position = scroll_wheel.position;
3786 self.modifiers = scroll_wheel.modifiers;
3787 PlatformInput::ScrollWheel(scroll_wheel)
3788 }
3789 // Translate dragging and dropping of external files from the operating system
3790 // to internal drag and drop events.
3791 PlatformInput::FileDrop(file_drop) => match file_drop {
3792 FileDropEvent::Entered { position, paths } => {
3793 self.mouse_position = position;
3794 if cx.active_drag.is_none() {
3795 cx.active_drag = Some(AnyDrag {
3796 value: Arc::new(paths.clone()),
3797 view: cx.new(|_| paths).into(),
3798 cursor_offset: position,
3799 cursor_style: None,
3800 });
3801 }
3802 PlatformInput::MouseMove(MouseMoveEvent {
3803 position,
3804 pressed_button: Some(MouseButton::Left),
3805 modifiers: Modifiers::default(),
3806 })
3807 }
3808 FileDropEvent::Pending { position } => {
3809 self.mouse_position = position;
3810 PlatformInput::MouseMove(MouseMoveEvent {
3811 position,
3812 pressed_button: Some(MouseButton::Left),
3813 modifiers: Modifiers::default(),
3814 })
3815 }
3816 FileDropEvent::Submit { position } => {
3817 cx.activate(true);
3818 self.mouse_position = position;
3819 PlatformInput::MouseUp(MouseUpEvent {
3820 button: MouseButton::Left,
3821 position,
3822 modifiers: Modifiers::default(),
3823 click_count: 1,
3824 })
3825 }
3826 FileDropEvent::Exited => {
3827 cx.active_drag.take();
3828 PlatformInput::FileDrop(FileDropEvent::Exited)
3829 }
3830 },
3831 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3832 };
3833
3834 if let Some(any_mouse_event) = event.mouse_event() {
3835 self.dispatch_mouse_event(any_mouse_event, cx);
3836 } else if let Some(any_key_event) = event.keyboard_event() {
3837 self.dispatch_key_event(any_key_event, cx);
3838 }
3839
3840 if self.invalidator.is_dirty() {
3841 self.input_rate_tracker.borrow_mut().record_input();
3842 }
3843
3844 DispatchEventResult {
3845 propagate: cx.propagate_event,
3846 default_prevented: self.default_prevented,
3847 }
3848 }
3849
3850 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3851 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3852 if hit_test != self.mouse_hit_test {
3853 self.mouse_hit_test = hit_test;
3854 self.reset_cursor_style(cx);
3855 }
3856
3857 #[cfg(any(feature = "inspector", debug_assertions))]
3858 if self.is_inspector_picking(cx) {
3859 self.handle_inspector_mouse_event(event, cx);
3860 // When inspector is picking, all other mouse handling is skipped.
3861 return;
3862 }
3863
3864 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3865
3866 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3867 // special purposes, such as detecting events outside of a given Bounds.
3868 for listener in &mut mouse_listeners {
3869 let listener = listener.as_mut().unwrap();
3870 listener(event, DispatchPhase::Capture, self, cx);
3871 if !cx.propagate_event {
3872 break;
3873 }
3874 }
3875
3876 // Bubble phase, where most normal handlers do their work.
3877 if cx.propagate_event {
3878 for listener in mouse_listeners.iter_mut().rev() {
3879 let listener = listener.as_mut().unwrap();
3880 listener(event, DispatchPhase::Bubble, self, cx);
3881 if !cx.propagate_event {
3882 break;
3883 }
3884 }
3885 }
3886
3887 self.rendered_frame.mouse_listeners = mouse_listeners;
3888
3889 if cx.has_active_drag() {
3890 if event.is::<MouseMoveEvent>() {
3891 // If this was a mouse move event, redraw the window so that the
3892 // active drag can follow the mouse cursor.
3893 self.refresh();
3894 } else if event.is::<MouseUpEvent>() {
3895 // If this was a mouse up event, cancel the active drag and redraw
3896 // the window.
3897 cx.active_drag = None;
3898 self.refresh();
3899 }
3900 }
3901 }
3902
3903 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3904 if self.invalidator.is_dirty() {
3905 self.draw(cx).clear();
3906 }
3907
3908 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3909 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3910
3911 let mut keystroke: Option<Keystroke> = None;
3912
3913 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3914 if event.modifiers.number_of_modifiers() == 0
3915 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3916 && !self.pending_modifier.saw_keystroke
3917 {
3918 let key = match self.pending_modifier.modifiers {
3919 modifiers if modifiers.shift => Some("shift"),
3920 modifiers if modifiers.control => Some("control"),
3921 modifiers if modifiers.alt => Some("alt"),
3922 modifiers if modifiers.platform => Some("platform"),
3923 modifiers if modifiers.function => Some("function"),
3924 _ => None,
3925 };
3926 if let Some(key) = key {
3927 keystroke = Some(Keystroke {
3928 key: key.to_string(),
3929 key_char: None,
3930 modifiers: Modifiers::default(),
3931 });
3932 }
3933 }
3934
3935 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3936 && event.modifiers.number_of_modifiers() == 1
3937 {
3938 self.pending_modifier.saw_keystroke = false
3939 }
3940 self.pending_modifier.modifiers = event.modifiers
3941 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3942 self.pending_modifier.saw_keystroke = true;
3943 keystroke = Some(key_down_event.keystroke.clone());
3944 }
3945
3946 let Some(keystroke) = keystroke else {
3947 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3948 return;
3949 };
3950
3951 cx.propagate_event = true;
3952 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3953 if !cx.propagate_event {
3954 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3955 return;
3956 }
3957
3958 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3959 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3960 currently_pending = PendingInput::default();
3961 }
3962
3963 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3964 currently_pending.keystrokes,
3965 keystroke,
3966 &dispatch_path,
3967 );
3968
3969 if !match_result.to_replay.is_empty() {
3970 self.replay_pending_input(match_result.to_replay, cx);
3971 cx.propagate_event = true;
3972 }
3973
3974 if !match_result.pending.is_empty() {
3975 currently_pending.timer.take();
3976 currently_pending.keystrokes = match_result.pending;
3977 currently_pending.focus = self.focus;
3978
3979 let text_input_requires_timeout = event
3980 .downcast_ref::<KeyDownEvent>()
3981 .filter(|key_down| key_down.keystroke.key_char.is_some())
3982 .and_then(|_| self.platform_window.take_input_handler())
3983 .map_or(false, |mut input_handler| {
3984 let accepts = input_handler.accepts_text_input(self, cx);
3985 self.platform_window.set_input_handler(input_handler);
3986 accepts
3987 });
3988
3989 currently_pending.needs_timeout |=
3990 match_result.pending_has_binding || text_input_requires_timeout;
3991
3992 if currently_pending.needs_timeout {
3993 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3994 cx.background_executor.timer(Duration::from_secs(1)).await;
3995 cx.update(move |window, cx| {
3996 let Some(currently_pending) = window
3997 .pending_input
3998 .take()
3999 .filter(|pending| pending.focus == window.focus)
4000 else {
4001 return;
4002 };
4003
4004 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
4005 let dispatch_path =
4006 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
4007
4008 let to_replay = window
4009 .rendered_frame
4010 .dispatch_tree
4011 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
4012
4013 window.pending_input_changed(cx);
4014 window.replay_pending_input(to_replay, cx)
4015 })
4016 .log_err();
4017 }));
4018 } else {
4019 currently_pending.timer = None;
4020 }
4021 self.pending_input = Some(currently_pending);
4022 self.pending_input_changed(cx);
4023 cx.propagate_event = false;
4024 return;
4025 }
4026
4027 let skip_bindings = event
4028 .downcast_ref::<KeyDownEvent>()
4029 .filter(|key_down_event| key_down_event.prefer_character_input)
4030 .map(|_| {
4031 self.platform_window
4032 .take_input_handler()
4033 .map_or(false, |mut input_handler| {
4034 let accepts = input_handler.accepts_text_input(self, cx);
4035 self.platform_window.set_input_handler(input_handler);
4036 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
4037 // we prefer the text input over bindings.
4038 accepts
4039 })
4040 })
4041 .unwrap_or(false);
4042
4043 if !skip_bindings {
4044 for binding in match_result.bindings {
4045 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4046 if !cx.propagate_event {
4047 self.dispatch_keystroke_observers(
4048 event,
4049 Some(binding.action),
4050 match_result.context_stack,
4051 cx,
4052 );
4053 self.pending_input_changed(cx);
4054 return;
4055 }
4056 }
4057 }
4058
4059 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4060 self.pending_input_changed(cx);
4061 }
4062
4063 fn finish_dispatch_key_event(
4064 &mut self,
4065 event: &dyn Any,
4066 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4067 context_stack: Vec<KeyContext>,
4068 cx: &mut App,
4069 ) {
4070 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4071 if !cx.propagate_event {
4072 return;
4073 }
4074
4075 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4076 if !cx.propagate_event {
4077 return;
4078 }
4079
4080 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4081 }
4082
4083 pub(crate) fn pending_input_changed(&mut self, cx: &mut App) {
4084 self.pending_input_observers
4085 .clone()
4086 .retain(&(), |callback| callback(self, cx));
4087 }
4088
4089 fn dispatch_key_down_up_event(
4090 &mut self,
4091 event: &dyn Any,
4092 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4093 cx: &mut App,
4094 ) {
4095 // Capture phase
4096 for node_id in dispatch_path {
4097 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4098
4099 for key_listener in node.key_listeners.clone() {
4100 key_listener(event, DispatchPhase::Capture, self, cx);
4101 if !cx.propagate_event {
4102 return;
4103 }
4104 }
4105 }
4106
4107 // Bubble phase
4108 for node_id in dispatch_path.iter().rev() {
4109 // Handle low level key events
4110 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4111 for key_listener in node.key_listeners.clone() {
4112 key_listener(event, DispatchPhase::Bubble, self, cx);
4113 if !cx.propagate_event {
4114 return;
4115 }
4116 }
4117 }
4118 }
4119
4120 fn dispatch_modifiers_changed_event(
4121 &mut self,
4122 event: &dyn Any,
4123 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4124 cx: &mut App,
4125 ) {
4126 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4127 return;
4128 };
4129 for node_id in dispatch_path.iter().rev() {
4130 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4131 for listener in node.modifiers_changed_listeners.clone() {
4132 listener(event, self, cx);
4133 if !cx.propagate_event {
4134 return;
4135 }
4136 }
4137 }
4138 }
4139
4140 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4141 pub fn has_pending_keystrokes(&self) -> bool {
4142 self.pending_input.is_some()
4143 }
4144
4145 pub(crate) fn clear_pending_keystrokes(&mut self) {
4146 self.pending_input.take();
4147 }
4148
4149 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4150 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4151 self.pending_input
4152 .as_ref()
4153 .map(|pending_input| pending_input.keystrokes.as_slice())
4154 }
4155
4156 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4157 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4158 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4159
4160 'replay: for replay in replays {
4161 let event = KeyDownEvent {
4162 keystroke: replay.keystroke.clone(),
4163 is_held: false,
4164 prefer_character_input: true,
4165 };
4166
4167 cx.propagate_event = true;
4168 for binding in replay.bindings {
4169 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4170 if !cx.propagate_event {
4171 self.dispatch_keystroke_observers(
4172 &event,
4173 Some(binding.action),
4174 Vec::default(),
4175 cx,
4176 );
4177 continue 'replay;
4178 }
4179 }
4180
4181 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4182 if !cx.propagate_event {
4183 continue 'replay;
4184 }
4185 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4186 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4187 {
4188 input_handler.dispatch_input(&input, self, cx);
4189 self.platform_window.set_input_handler(input_handler)
4190 }
4191 }
4192 }
4193
4194 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4195 focus_id
4196 .and_then(|focus_id| {
4197 self.rendered_frame
4198 .dispatch_tree
4199 .focusable_node_id(focus_id)
4200 })
4201 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4202 }
4203
4204 fn dispatch_action_on_node(
4205 &mut self,
4206 node_id: DispatchNodeId,
4207 action: &dyn Action,
4208 cx: &mut App,
4209 ) {
4210 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4211
4212 // Capture phase for global actions.
4213 cx.propagate_event = true;
4214 if let Some(mut global_listeners) = cx
4215 .global_action_listeners
4216 .remove(&action.as_any().type_id())
4217 {
4218 for listener in &global_listeners {
4219 listener(action.as_any(), DispatchPhase::Capture, cx);
4220 if !cx.propagate_event {
4221 break;
4222 }
4223 }
4224
4225 global_listeners.extend(
4226 cx.global_action_listeners
4227 .remove(&action.as_any().type_id())
4228 .unwrap_or_default(),
4229 );
4230
4231 cx.global_action_listeners
4232 .insert(action.as_any().type_id(), global_listeners);
4233 }
4234
4235 if !cx.propagate_event {
4236 return;
4237 }
4238
4239 // Capture phase for window actions.
4240 for node_id in &dispatch_path {
4241 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4242 for DispatchActionListener {
4243 action_type,
4244 listener,
4245 } in node.action_listeners.clone()
4246 {
4247 let any_action = action.as_any();
4248 if action_type == any_action.type_id() {
4249 listener(any_action, DispatchPhase::Capture, self, cx);
4250
4251 if !cx.propagate_event {
4252 return;
4253 }
4254 }
4255 }
4256 }
4257
4258 // Bubble phase for window actions.
4259 for node_id in dispatch_path.iter().rev() {
4260 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4261 for DispatchActionListener {
4262 action_type,
4263 listener,
4264 } in node.action_listeners.clone()
4265 {
4266 let any_action = action.as_any();
4267 if action_type == any_action.type_id() {
4268 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4269 listener(any_action, DispatchPhase::Bubble, self, cx);
4270
4271 if !cx.propagate_event {
4272 return;
4273 }
4274 }
4275 }
4276 }
4277
4278 // Bubble phase for global actions.
4279 if let Some(mut global_listeners) = cx
4280 .global_action_listeners
4281 .remove(&action.as_any().type_id())
4282 {
4283 for listener in global_listeners.iter().rev() {
4284 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4285
4286 listener(action.as_any(), DispatchPhase::Bubble, cx);
4287 if !cx.propagate_event {
4288 break;
4289 }
4290 }
4291
4292 global_listeners.extend(
4293 cx.global_action_listeners
4294 .remove(&action.as_any().type_id())
4295 .unwrap_or_default(),
4296 );
4297
4298 cx.global_action_listeners
4299 .insert(action.as_any().type_id(), global_listeners);
4300 }
4301 }
4302
4303 /// Register the given handler to be invoked whenever the global of the given type
4304 /// is updated.
4305 pub fn observe_global<G: Global>(
4306 &mut self,
4307 cx: &mut App,
4308 f: impl Fn(&mut Window, &mut App) + 'static,
4309 ) -> Subscription {
4310 let window_handle = self.handle;
4311 let (subscription, activate) = cx.global_observers.insert(
4312 TypeId::of::<G>(),
4313 Box::new(move |cx| {
4314 window_handle
4315 .update(cx, |_, window, cx| f(window, cx))
4316 .is_ok()
4317 }),
4318 );
4319 cx.defer(move |_| activate());
4320 subscription
4321 }
4322
4323 /// Focus the current window and bring it to the foreground at the platform level.
4324 pub fn activate_window(&self) {
4325 self.platform_window.activate();
4326 }
4327
4328 /// Minimize the current window at the platform level.
4329 pub fn minimize_window(&self) {
4330 self.platform_window.minimize();
4331 }
4332
4333 /// Toggle full screen status on the current window at the platform level.
4334 pub fn toggle_fullscreen(&self) {
4335 self.platform_window.toggle_fullscreen();
4336 }
4337
4338 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4339 pub fn invalidate_character_coordinates(&self) {
4340 self.on_next_frame(|window, cx| {
4341 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4342 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4343 window.platform_window.update_ime_position(bounds);
4344 }
4345 window.platform_window.set_input_handler(input_handler);
4346 }
4347 });
4348 }
4349
4350 /// Present a platform dialog.
4351 /// The provided message will be presented, along with buttons for each answer.
4352 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4353 pub fn prompt<T>(
4354 &mut self,
4355 level: PromptLevel,
4356 message: &str,
4357 detail: Option<&str>,
4358 answers: &[T],
4359 cx: &mut App,
4360 ) -> oneshot::Receiver<usize>
4361 where
4362 T: Clone + Into<PromptButton>,
4363 {
4364 let prompt_builder = cx.prompt_builder.take();
4365 let Some(prompt_builder) = prompt_builder else {
4366 unreachable!("Re-entrant window prompting is not supported by GPUI");
4367 };
4368
4369 let answers = answers
4370 .iter()
4371 .map(|answer| answer.clone().into())
4372 .collect::<Vec<_>>();
4373
4374 let receiver = match &prompt_builder {
4375 PromptBuilder::Default => self
4376 .platform_window
4377 .prompt(level, message, detail, &answers)
4378 .unwrap_or_else(|| {
4379 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4380 }),
4381 PromptBuilder::Custom(_) => {
4382 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4383 }
4384 };
4385
4386 cx.prompt_builder = Some(prompt_builder);
4387
4388 receiver
4389 }
4390
4391 fn build_custom_prompt(
4392 &mut self,
4393 prompt_builder: &PromptBuilder,
4394 level: PromptLevel,
4395 message: &str,
4396 detail: Option<&str>,
4397 answers: &[PromptButton],
4398 cx: &mut App,
4399 ) -> oneshot::Receiver<usize> {
4400 let (sender, receiver) = oneshot::channel();
4401 let handle = PromptHandle::new(sender);
4402 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4403 self.prompt = Some(handle);
4404 receiver
4405 }
4406
4407 /// Returns the current context stack.
4408 pub fn context_stack(&self) -> Vec<KeyContext> {
4409 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4410 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4411 dispatch_tree
4412 .dispatch_path(node_id)
4413 .iter()
4414 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4415 .collect()
4416 }
4417
4418 /// Returns all available actions for the focused element.
4419 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4420 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4421 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4422 for action_type in cx.global_action_listeners.keys() {
4423 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4424 let action = cx.actions.build_action_type(action_type).ok();
4425 if let Some(action) = action {
4426 actions.insert(ix, action);
4427 }
4428 }
4429 }
4430 actions
4431 }
4432
4433 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4434 /// returned in the order they were added. For display, the last binding should take precedence.
4435 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4436 self.rendered_frame
4437 .dispatch_tree
4438 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4439 }
4440
4441 /// Returns the highest precedence key binding that invokes an action on the currently focused
4442 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4443 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4444 self.rendered_frame
4445 .dispatch_tree
4446 .highest_precedence_binding_for_action(
4447 action,
4448 &self.rendered_frame.dispatch_tree.context_stack,
4449 )
4450 }
4451
4452 /// Returns the key bindings for an action in a context.
4453 pub fn bindings_for_action_in_context(
4454 &self,
4455 action: &dyn Action,
4456 context: KeyContext,
4457 ) -> Vec<KeyBinding> {
4458 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4459 dispatch_tree.bindings_for_action(action, &[context])
4460 }
4461
4462 /// Returns the highest precedence key binding for an action in a context. This is more
4463 /// efficient than getting the last result of `bindings_for_action_in_context`.
4464 pub fn highest_precedence_binding_for_action_in_context(
4465 &self,
4466 action: &dyn Action,
4467 context: KeyContext,
4468 ) -> Option<KeyBinding> {
4469 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4470 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4471 }
4472
4473 /// Returns any bindings that would invoke an action on the given focus handle if it were
4474 /// focused. Bindings are returned in the order they were added. For display, the last binding
4475 /// should take precedence.
4476 pub fn bindings_for_action_in(
4477 &self,
4478 action: &dyn Action,
4479 focus_handle: &FocusHandle,
4480 ) -> Vec<KeyBinding> {
4481 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4482 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4483 return vec![];
4484 };
4485 dispatch_tree.bindings_for_action(action, &context_stack)
4486 }
4487
4488 /// Returns the highest precedence key binding that would invoke an action on the given focus
4489 /// handle if it were focused. This is more efficient than getting the last result of
4490 /// `bindings_for_action_in`.
4491 pub fn highest_precedence_binding_for_action_in(
4492 &self,
4493 action: &dyn Action,
4494 focus_handle: &FocusHandle,
4495 ) -> Option<KeyBinding> {
4496 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4497 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4498 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4499 }
4500
4501 /// Find the bindings that can follow the current input sequence for the current context stack.
4502 pub fn possible_bindings_for_input(&self, input: &[Keystroke]) -> Vec<KeyBinding> {
4503 self.rendered_frame
4504 .dispatch_tree
4505 .possible_next_bindings_for_input(input, &self.context_stack())
4506 }
4507
4508 fn context_stack_for_focus_handle(
4509 &self,
4510 focus_handle: &FocusHandle,
4511 ) -> Option<Vec<KeyContext>> {
4512 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4513 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4514 let context_stack: Vec<_> = dispatch_tree
4515 .dispatch_path(node_id)
4516 .into_iter()
4517 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4518 .collect();
4519 Some(context_stack)
4520 }
4521
4522 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4523 pub fn listener_for<T: 'static, E>(
4524 &self,
4525 view: &Entity<T>,
4526 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4527 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4528 let view = view.downgrade();
4529 move |e: &E, window: &mut Window, cx: &mut App| {
4530 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4531 }
4532 }
4533
4534 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4535 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4536 &self,
4537 entity: &Entity<E>,
4538 f: Callback,
4539 ) -> impl Fn(&mut Window, &mut App) + 'static {
4540 let entity = entity.downgrade();
4541 move |window: &mut Window, cx: &mut App| {
4542 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4543 }
4544 }
4545
4546 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4547 /// If the callback returns false, the window won't be closed.
4548 pub fn on_window_should_close(
4549 &self,
4550 cx: &App,
4551 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4552 ) {
4553 let mut cx = self.to_async(cx);
4554 self.platform_window.on_should_close(Box::new(move || {
4555 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4556 }))
4557 }
4558
4559 /// Register an action listener on this node for the next frame. The type of action
4560 /// is determined by the first parameter of the given listener. When the next frame is rendered
4561 /// the listener will be cleared.
4562 ///
4563 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4564 /// a specific need to register a listener yourself.
4565 ///
4566 /// This method should only be called as part of the paint phase of element drawing.
4567 pub fn on_action(
4568 &mut self,
4569 action_type: TypeId,
4570 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4571 ) {
4572 self.invalidator.debug_assert_paint();
4573
4574 self.next_frame
4575 .dispatch_tree
4576 .on_action(action_type, Rc::new(listener));
4577 }
4578
4579 /// Register a capturing action listener on this node for the next frame if the condition is true.
4580 /// The type of action is determined by the first parameter of the given listener. When the next
4581 /// frame is rendered the listener will be cleared.
4582 ///
4583 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4584 /// a specific need to register a listener yourself.
4585 ///
4586 /// This method should only be called as part of the paint phase of element drawing.
4587 pub fn on_action_when(
4588 &mut self,
4589 condition: bool,
4590 action_type: TypeId,
4591 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4592 ) {
4593 self.invalidator.debug_assert_paint();
4594
4595 if condition {
4596 self.next_frame
4597 .dispatch_tree
4598 .on_action(action_type, Rc::new(listener));
4599 }
4600 }
4601
4602 /// Read information about the GPU backing this window.
4603 /// Currently returns None on Mac and Windows.
4604 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4605 self.platform_window.gpu_specs()
4606 }
4607
4608 /// Perform titlebar double-click action.
4609 /// This is macOS specific.
4610 pub fn titlebar_double_click(&self) {
4611 self.platform_window.titlebar_double_click();
4612 }
4613
4614 /// Gets the window's title at the platform level.
4615 /// This is macOS specific.
4616 pub fn window_title(&self) -> String {
4617 self.platform_window.get_title()
4618 }
4619
4620 /// Returns a list of all tabbed windows and their titles.
4621 /// This is macOS specific.
4622 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4623 self.platform_window.tabbed_windows()
4624 }
4625
4626 /// Returns the tab bar visibility.
4627 /// This is macOS specific.
4628 pub fn tab_bar_visible(&self) -> bool {
4629 self.platform_window.tab_bar_visible()
4630 }
4631
4632 /// Merges all open windows into a single tabbed window.
4633 /// This is macOS specific.
4634 pub fn merge_all_windows(&self) {
4635 self.platform_window.merge_all_windows()
4636 }
4637
4638 /// Moves the tab to a new containing window.
4639 /// This is macOS specific.
4640 pub fn move_tab_to_new_window(&self) {
4641 self.platform_window.move_tab_to_new_window()
4642 }
4643
4644 /// Shows or hides the window tab overview.
4645 /// This is macOS specific.
4646 pub fn toggle_window_tab_overview(&self) {
4647 self.platform_window.toggle_window_tab_overview()
4648 }
4649
4650 /// Sets the tabbing identifier for the window.
4651 /// This is macOS specific.
4652 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4653 self.platform_window
4654 .set_tabbing_identifier(tabbing_identifier)
4655 }
4656
4657 /// Toggles the inspector mode on this window.
4658 #[cfg(any(feature = "inspector", debug_assertions))]
4659 pub fn toggle_inspector(&mut self, cx: &mut App) {
4660 self.inspector = match self.inspector {
4661 None => Some(cx.new(|_| Inspector::new())),
4662 Some(_) => None,
4663 };
4664 self.refresh();
4665 }
4666
4667 /// Returns true if the window is in inspector mode.
4668 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4669 #[cfg(any(feature = "inspector", debug_assertions))]
4670 {
4671 if let Some(inspector) = &self.inspector {
4672 return inspector.read(_cx).is_picking();
4673 }
4674 }
4675 false
4676 }
4677
4678 /// Executes the provided function with mutable access to an inspector state.
4679 #[cfg(any(feature = "inspector", debug_assertions))]
4680 pub fn with_inspector_state<T: 'static, R>(
4681 &mut self,
4682 _inspector_id: Option<&crate::InspectorElementId>,
4683 cx: &mut App,
4684 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4685 ) -> R {
4686 if let Some(inspector_id) = _inspector_id
4687 && let Some(inspector) = &self.inspector
4688 {
4689 let inspector = inspector.clone();
4690 let active_element_id = inspector.read(cx).active_element_id();
4691 if Some(inspector_id) == active_element_id {
4692 return inspector.update(cx, |inspector, _cx| {
4693 inspector.with_active_element_state(self, f)
4694 });
4695 }
4696 }
4697 f(&mut None, self)
4698 }
4699
4700 #[cfg(any(feature = "inspector", debug_assertions))]
4701 pub(crate) fn build_inspector_element_id(
4702 &mut self,
4703 path: crate::InspectorElementPath,
4704 ) -> crate::InspectorElementId {
4705 self.invalidator.debug_assert_paint_or_prepaint();
4706 let path = Rc::new(path);
4707 let next_instance_id = self
4708 .next_frame
4709 .next_inspector_instance_ids
4710 .entry(path.clone())
4711 .or_insert(0);
4712 let instance_id = *next_instance_id;
4713 *next_instance_id += 1;
4714 crate::InspectorElementId { path, instance_id }
4715 }
4716
4717 #[cfg(any(feature = "inspector", debug_assertions))]
4718 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4719 if let Some(inspector) = self.inspector.take() {
4720 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4721 inspector_element.prepaint_as_root(
4722 point(self.viewport_size.width - inspector_width, px(0.0)),
4723 size(inspector_width, self.viewport_size.height).into(),
4724 self,
4725 cx,
4726 );
4727 self.inspector = Some(inspector);
4728 Some(inspector_element)
4729 } else {
4730 None
4731 }
4732 }
4733
4734 #[cfg(any(feature = "inspector", debug_assertions))]
4735 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4736 if let Some(mut inspector_element) = inspector_element {
4737 inspector_element.paint(self, cx);
4738 };
4739 }
4740
4741 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4742 /// inspect UI elements by clicking on them.
4743 #[cfg(any(feature = "inspector", debug_assertions))]
4744 pub fn insert_inspector_hitbox(
4745 &mut self,
4746 hitbox_id: HitboxId,
4747 inspector_id: Option<&crate::InspectorElementId>,
4748 cx: &App,
4749 ) {
4750 self.invalidator.debug_assert_paint_or_prepaint();
4751 if !self.is_inspector_picking(cx) {
4752 return;
4753 }
4754 if let Some(inspector_id) = inspector_id {
4755 self.next_frame
4756 .inspector_hitboxes
4757 .insert(hitbox_id, inspector_id.clone());
4758 }
4759 }
4760
4761 #[cfg(any(feature = "inspector", debug_assertions))]
4762 fn paint_inspector_hitbox(&mut self, cx: &App) {
4763 if let Some(inspector) = self.inspector.as_ref() {
4764 let inspector = inspector.read(cx);
4765 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4766 && let Some(hitbox) = self
4767 .next_frame
4768 .hitboxes
4769 .iter()
4770 .find(|hitbox| hitbox.id == hitbox_id)
4771 {
4772 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4773 }
4774 }
4775 }
4776
4777 #[cfg(any(feature = "inspector", debug_assertions))]
4778 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4779 let Some(inspector) = self.inspector.clone() else {
4780 return;
4781 };
4782 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4783 inspector.update(cx, |inspector, _cx| {
4784 if let Some((_, inspector_id)) =
4785 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4786 {
4787 inspector.hover(inspector_id, self);
4788 }
4789 });
4790 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4791 inspector.update(cx, |inspector, _cx| {
4792 if let Some((_, inspector_id)) =
4793 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4794 {
4795 inspector.select(inspector_id, self);
4796 }
4797 });
4798 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4799 // This should be kept in sync with SCROLL_LINES in x11 platform.
4800 const SCROLL_LINES: f32 = 3.0;
4801 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4802 let delta_y = event
4803 .delta
4804 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4805 .y;
4806 if let Some(inspector) = self.inspector.clone() {
4807 inspector.update(cx, |inspector, _cx| {
4808 if let Some(depth) = inspector.pick_depth.as_mut() {
4809 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4810 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4811 if *depth < 0.0 {
4812 *depth = 0.0;
4813 } else if *depth > max_depth {
4814 *depth = max_depth;
4815 }
4816 if let Some((_, inspector_id)) =
4817 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4818 {
4819 inspector.set_active_element_id(inspector_id, self);
4820 }
4821 }
4822 });
4823 }
4824 }
4825 }
4826
4827 #[cfg(any(feature = "inspector", debug_assertions))]
4828 fn hovered_inspector_hitbox(
4829 &self,
4830 inspector: &Inspector,
4831 frame: &Frame,
4832 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4833 if let Some(pick_depth) = inspector.pick_depth {
4834 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4835 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4836 let skip_count = (depth as usize).min(max_skipped);
4837 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4838 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4839 return Some((*hitbox_id, inspector_id.clone()));
4840 }
4841 }
4842 }
4843 None
4844 }
4845
4846 /// For testing: set the current modifier keys state.
4847 /// This does not generate any events.
4848 #[cfg(any(test, feature = "test-support"))]
4849 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4850 self.modifiers = modifiers;
4851 }
4852}
4853
4854// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4855slotmap::new_key_type! {
4856 /// A unique identifier for a window.
4857 pub struct WindowId;
4858}
4859
4860impl WindowId {
4861 /// Converts this window ID to a `u64`.
4862 pub fn as_u64(&self) -> u64 {
4863 self.0.as_ffi()
4864 }
4865}
4866
4867impl From<u64> for WindowId {
4868 fn from(value: u64) -> Self {
4869 WindowId(slotmap::KeyData::from_ffi(value))
4870 }
4871}
4872
4873/// A handle to a window with a specific root view type.
4874/// Note that this does not keep the window alive on its own.
4875#[derive(Deref, DerefMut)]
4876pub struct WindowHandle<V> {
4877 #[deref]
4878 #[deref_mut]
4879 pub(crate) any_handle: AnyWindowHandle,
4880 state_type: PhantomData<fn(V) -> V>,
4881}
4882
4883impl<V> Debug for WindowHandle<V> {
4884 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4885 f.debug_struct("WindowHandle")
4886 .field("any_handle", &self.any_handle.id.as_u64())
4887 .finish()
4888 }
4889}
4890
4891impl<V: 'static + Render> WindowHandle<V> {
4892 /// Creates a new handle from a window ID.
4893 /// This does not check if the root type of the window is `V`.
4894 pub fn new(id: WindowId) -> Self {
4895 WindowHandle {
4896 any_handle: AnyWindowHandle {
4897 id,
4898 state_type: TypeId::of::<V>(),
4899 },
4900 state_type: PhantomData,
4901 }
4902 }
4903
4904 /// Get the root view out of this window.
4905 ///
4906 /// This will fail if the window is closed or if the root view's type does not match `V`.
4907 #[cfg(any(test, feature = "test-support"))]
4908 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4909 where
4910 C: AppContext,
4911 {
4912 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4913 root_view
4914 .downcast::<V>()
4915 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4916 }))
4917 }
4918
4919 /// Updates the root view of this window.
4920 ///
4921 /// This will fail if the window has been closed or if the root view's type does not match
4922 pub fn update<C, R>(
4923 &self,
4924 cx: &mut C,
4925 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4926 ) -> Result<R>
4927 where
4928 C: AppContext,
4929 {
4930 cx.update_window(self.any_handle, |root_view, window, cx| {
4931 let view = root_view
4932 .downcast::<V>()
4933 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4934
4935 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4936 })?
4937 }
4938
4939 /// Read the root view out of this window.
4940 ///
4941 /// This will fail if the window is closed or if the root view's type does not match `V`.
4942 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4943 let x = cx
4944 .windows
4945 .get(self.id)
4946 .and_then(|window| {
4947 window
4948 .as_deref()
4949 .and_then(|window| window.root.clone())
4950 .map(|root_view| root_view.downcast::<V>())
4951 })
4952 .context("window not found")?
4953 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4954
4955 Ok(x.read(cx))
4956 }
4957
4958 /// Read the root view out of this window, with a callback
4959 ///
4960 /// This will fail if the window is closed or if the root view's type does not match `V`.
4961 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4962 where
4963 C: AppContext,
4964 {
4965 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4966 }
4967
4968 /// Read the root view pointer off of this window.
4969 ///
4970 /// This will fail if the window is closed or if the root view's type does not match `V`.
4971 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4972 where
4973 C: AppContext,
4974 {
4975 cx.read_window(self, |root_view, _cx| root_view)
4976 }
4977
4978 /// Check if this window is 'active'.
4979 ///
4980 /// Will return `None` if the window is closed or currently
4981 /// borrowed.
4982 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4983 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4984 .ok()
4985 }
4986}
4987
4988impl<V> Copy for WindowHandle<V> {}
4989
4990impl<V> Clone for WindowHandle<V> {
4991 fn clone(&self) -> Self {
4992 *self
4993 }
4994}
4995
4996impl<V> PartialEq for WindowHandle<V> {
4997 fn eq(&self, other: &Self) -> bool {
4998 self.any_handle == other.any_handle
4999 }
5000}
5001
5002impl<V> Eq for WindowHandle<V> {}
5003
5004impl<V> Hash for WindowHandle<V> {
5005 fn hash<H: Hasher>(&self, state: &mut H) {
5006 self.any_handle.hash(state);
5007 }
5008}
5009
5010impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
5011 fn from(val: WindowHandle<V>) -> Self {
5012 val.any_handle
5013 }
5014}
5015
5016/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
5017#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
5018pub struct AnyWindowHandle {
5019 pub(crate) id: WindowId,
5020 state_type: TypeId,
5021}
5022
5023impl AnyWindowHandle {
5024 /// Get the ID of this window.
5025 pub fn window_id(&self) -> WindowId {
5026 self.id
5027 }
5028
5029 /// Attempt to convert this handle to a window handle with a specific root view type.
5030 /// If the types do not match, this will return `None`.
5031 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
5032 if TypeId::of::<T>() == self.state_type {
5033 Some(WindowHandle {
5034 any_handle: *self,
5035 state_type: PhantomData,
5036 })
5037 } else {
5038 None
5039 }
5040 }
5041
5042 /// Updates the state of the root view of this window.
5043 ///
5044 /// This will fail if the window has been closed.
5045 pub fn update<C, R>(
5046 self,
5047 cx: &mut C,
5048 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
5049 ) -> Result<R>
5050 where
5051 C: AppContext,
5052 {
5053 cx.update_window(self, update)
5054 }
5055
5056 /// Read the state of the root view of this window.
5057 ///
5058 /// This will fail if the window has been closed.
5059 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
5060 where
5061 C: AppContext,
5062 T: 'static,
5063 {
5064 let view = self
5065 .downcast::<T>()
5066 .context("the type of the window's root view has changed")?;
5067
5068 cx.read_window(&view, read)
5069 }
5070}
5071
5072impl HasWindowHandle for Window {
5073 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5074 self.platform_window.window_handle()
5075 }
5076}
5077
5078impl HasDisplayHandle for Window {
5079 fn display_handle(
5080 &self,
5081 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5082 self.platform_window.display_handle()
5083 }
5084}
5085
5086/// An identifier for an [`Element`].
5087///
5088/// Can be constructed with a string, a number, or both, as well
5089/// as other internal representations.
5090#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5091pub enum ElementId {
5092 /// The ID of a View element
5093 View(EntityId),
5094 /// An integer ID.
5095 Integer(u64),
5096 /// A string based ID.
5097 Name(SharedString),
5098 /// A UUID.
5099 Uuid(Uuid),
5100 /// An ID that's equated with a focus handle.
5101 FocusHandle(FocusId),
5102 /// A combination of a name and an integer.
5103 NamedInteger(SharedString, u64),
5104 /// A path.
5105 Path(Arc<std::path::Path>),
5106 /// A code location.
5107 CodeLocation(core::panic::Location<'static>),
5108 /// A labeled child of an element.
5109 NamedChild(Arc<ElementId>, SharedString),
5110}
5111
5112impl ElementId {
5113 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5114 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5115 Self::NamedInteger(name.into(), integer as u64)
5116 }
5117}
5118
5119impl Display for ElementId {
5120 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5121 match self {
5122 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5123 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5124 ElementId::Name(name) => write!(f, "{}", name)?,
5125 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5126 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5127 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5128 ElementId::Path(path) => write!(f, "{}", path.display())?,
5129 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5130 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5131 }
5132
5133 Ok(())
5134 }
5135}
5136
5137impl TryInto<SharedString> for ElementId {
5138 type Error = anyhow::Error;
5139
5140 fn try_into(self) -> anyhow::Result<SharedString> {
5141 if let ElementId::Name(name) = self {
5142 Ok(name)
5143 } else {
5144 anyhow::bail!("element id is not string")
5145 }
5146 }
5147}
5148
5149impl From<usize> for ElementId {
5150 fn from(id: usize) -> Self {
5151 ElementId::Integer(id as u64)
5152 }
5153}
5154
5155impl From<i32> for ElementId {
5156 fn from(id: i32) -> Self {
5157 Self::Integer(id as u64)
5158 }
5159}
5160
5161impl From<SharedString> for ElementId {
5162 fn from(name: SharedString) -> Self {
5163 ElementId::Name(name)
5164 }
5165}
5166
5167impl From<String> for ElementId {
5168 fn from(name: String) -> Self {
5169 ElementId::Name(name.into())
5170 }
5171}
5172
5173impl From<Arc<str>> for ElementId {
5174 fn from(name: Arc<str>) -> Self {
5175 ElementId::Name(name.into())
5176 }
5177}
5178
5179impl From<Arc<std::path::Path>> for ElementId {
5180 fn from(path: Arc<std::path::Path>) -> Self {
5181 ElementId::Path(path)
5182 }
5183}
5184
5185impl From<&'static str> for ElementId {
5186 fn from(name: &'static str) -> Self {
5187 ElementId::Name(name.into())
5188 }
5189}
5190
5191impl<'a> From<&'a FocusHandle> for ElementId {
5192 fn from(handle: &'a FocusHandle) -> Self {
5193 ElementId::FocusHandle(handle.id)
5194 }
5195}
5196
5197impl From<(&'static str, EntityId)> for ElementId {
5198 fn from((name, id): (&'static str, EntityId)) -> Self {
5199 ElementId::NamedInteger(name.into(), id.as_u64())
5200 }
5201}
5202
5203impl From<(&'static str, usize)> for ElementId {
5204 fn from((name, id): (&'static str, usize)) -> Self {
5205 ElementId::NamedInteger(name.into(), id as u64)
5206 }
5207}
5208
5209impl From<(SharedString, usize)> for ElementId {
5210 fn from((name, id): (SharedString, usize)) -> Self {
5211 ElementId::NamedInteger(name, id as u64)
5212 }
5213}
5214
5215impl From<(&'static str, u64)> for ElementId {
5216 fn from((name, id): (&'static str, u64)) -> Self {
5217 ElementId::NamedInteger(name.into(), id)
5218 }
5219}
5220
5221impl From<Uuid> for ElementId {
5222 fn from(value: Uuid) -> Self {
5223 Self::Uuid(value)
5224 }
5225}
5226
5227impl From<(&'static str, u32)> for ElementId {
5228 fn from((name, id): (&'static str, u32)) -> Self {
5229 ElementId::NamedInteger(name.into(), id.into())
5230 }
5231}
5232
5233impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5234 fn from((id, name): (ElementId, T)) -> Self {
5235 ElementId::NamedChild(Arc::new(id), name.into())
5236 }
5237}
5238
5239impl From<&'static core::panic::Location<'static>> for ElementId {
5240 fn from(location: &'static core::panic::Location<'static>) -> Self {
5241 ElementId::CodeLocation(*location)
5242 }
5243}
5244
5245/// A rectangle to be rendered in the window at the given position and size.
5246/// Passed as an argument [`Window::paint_quad`].
5247#[derive(Clone)]
5248pub struct PaintQuad {
5249 /// The bounds of the quad within the window.
5250 pub bounds: Bounds<Pixels>,
5251 /// The radii of the quad's corners.
5252 pub corner_radii: Corners<Pixels>,
5253 /// The background color of the quad.
5254 pub background: Background,
5255 /// The widths of the quad's borders.
5256 pub border_widths: Edges<Pixels>,
5257 /// The color of the quad's borders.
5258 pub border_color: Hsla,
5259 /// The style of the quad's borders.
5260 pub border_style: BorderStyle,
5261}
5262
5263impl PaintQuad {
5264 /// Sets the corner radii of the quad.
5265 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5266 PaintQuad {
5267 corner_radii: corner_radii.into(),
5268 ..self
5269 }
5270 }
5271
5272 /// Sets the border widths of the quad.
5273 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5274 PaintQuad {
5275 border_widths: border_widths.into(),
5276 ..self
5277 }
5278 }
5279
5280 /// Sets the border color of the quad.
5281 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5282 PaintQuad {
5283 border_color: border_color.into(),
5284 ..self
5285 }
5286 }
5287
5288 /// Sets the background color of the quad.
5289 pub fn background(self, background: impl Into<Background>) -> Self {
5290 PaintQuad {
5291 background: background.into(),
5292 ..self
5293 }
5294 }
5295}
5296
5297/// Creates a quad with the given parameters.
5298pub fn quad(
5299 bounds: Bounds<Pixels>,
5300 corner_radii: impl Into<Corners<Pixels>>,
5301 background: impl Into<Background>,
5302 border_widths: impl Into<Edges<Pixels>>,
5303 border_color: impl Into<Hsla>,
5304 border_style: BorderStyle,
5305) -> PaintQuad {
5306 PaintQuad {
5307 bounds,
5308 corner_radii: corner_radii.into(),
5309 background: background.into(),
5310 border_widths: border_widths.into(),
5311 border_color: border_color.into(),
5312 border_style,
5313 }
5314}
5315
5316/// Creates a filled quad with the given bounds and background color.
5317pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5318 PaintQuad {
5319 bounds: bounds.into(),
5320 corner_radii: (0.).into(),
5321 background: background.into(),
5322 border_widths: (0.).into(),
5323 border_color: transparent_black(),
5324 border_style: BorderStyle::default(),
5325 }
5326}
5327
5328/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5329pub fn outline(
5330 bounds: impl Into<Bounds<Pixels>>,
5331 border_color: impl Into<Hsla>,
5332 border_style: BorderStyle,
5333) -> PaintQuad {
5334 PaintQuad {
5335 bounds: bounds.into(),
5336 corner_radii: (0.).into(),
5337 background: transparent_black().into(),
5338 border_widths: (1.).into(),
5339 border_color: border_color.into(),
5340 border_style,
5341 }
5342}