1#![deny(missing_docs)]
2
3use crate::{
4 px, size, transparent_black, Action, AnyDrag, AnyTooltip, AnyView, AppContext, Arena,
5 AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle,
6 DevicePixels, DispatchActionListener, DispatchNodeId, DispatchTree, DisplayId, Edges, Effect,
7 Entity, EntityId, EventEmitter, FileDropEvent, Flatten, FontId, GlobalElementId, GlyphId, Hsla,
8 ImageData, IsZero, KeyBinding, KeyContext, KeyDownEvent, KeyEvent, KeystrokeEvent, LayoutId,
9 Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent,
10 MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
11 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render,
12 RenderGlyphParams, RenderImageParams, RenderSvgParams, ScaledPixels, Scene, Shadow,
13 SharedString, Size, Style, SubscriberSet, Subscription, Surface, TaffyLayoutEngine, Task,
14 Underline, UnderlineStyle, View, VisualContext, WeakView, WindowBounds, WindowOptions,
15 SUBPIXEL_VARIANTS,
16};
17use anyhow::{anyhow, Context as _, Result};
18use collections::{FxHashMap, FxHashSet};
19use derive_more::{Deref, DerefMut};
20use futures::{
21 channel::{mpsc, oneshot},
22 StreamExt,
23};
24use media::core_video::CVImageBuffer;
25use parking_lot::RwLock;
26use slotmap::SlotMap;
27use smallvec::SmallVec;
28use std::{
29 any::{Any, TypeId},
30 borrow::{Borrow, BorrowMut, Cow},
31 cell::RefCell,
32 collections::hash_map::Entry,
33 fmt::{Debug, Display},
34 future::Future,
35 hash::{Hash, Hasher},
36 marker::PhantomData,
37 mem,
38 rc::Rc,
39 sync::{
40 atomic::{AtomicUsize, Ordering::SeqCst},
41 Arc,
42 },
43};
44use util::{post_inc, ResultExt};
45
46const ACTIVE_DRAG_Z_INDEX: u16 = 1;
47
48/// A global stacking order, which is created by stacking successive z-index values.
49/// Each z-index will always be interpreted in the context of its parent z-index.
50#[derive(Debug, Deref, DerefMut, Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
51pub struct StackingOrder(SmallVec<[StackingContext; 64]>);
52
53/// A single entry in a primitive's z-index stacking order
54#[derive(Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
55pub struct StackingContext {
56 z_index: u16,
57 id: u16,
58}
59
60impl std::fmt::Debug for StackingContext {
61 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
62 write!(f, "{{{}.{}}} ", self.z_index, self.id)
63 }
64}
65
66/// Represents the two different phases when dispatching events.
67#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
68pub enum DispatchPhase {
69 /// After the capture phase comes the bubble phase, in which mouse event listeners are
70 /// invoked front to back and keyboard event listeners are invoked from the focused element
71 /// to the root of the element tree. This is the phase you'll most commonly want to use when
72 /// registering event listeners.
73 #[default]
74 Bubble,
75 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
76 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
77 /// is used for special purposes such as clearing the "pressed" state for click events. If
78 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
79 /// outside of the immediate region may rely on detecting non-local events during this phase.
80 Capture,
81}
82
83impl DispatchPhase {
84 /// Returns true if this represents the "bubble" phase.
85 pub fn bubble(self) -> bool {
86 self == DispatchPhase::Bubble
87 }
88
89 /// Returns true if this represents the "capture" phase.
90 pub fn capture(self) -> bool {
91 self == DispatchPhase::Capture
92 }
93}
94
95type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
96type AnyMouseListener = Box<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
97type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
98
99struct FocusEvent {
100 previous_focus_path: SmallVec<[FocusId; 8]>,
101 current_focus_path: SmallVec<[FocusId; 8]>,
102}
103
104slotmap::new_key_type! {
105 /// A globally unique identifier for a focusable element.
106 pub struct FocusId;
107}
108
109thread_local! {
110 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(4 * 1024 * 1024));
111}
112
113impl FocusId {
114 /// Obtains whether the element associated with this handle is currently focused.
115 pub fn is_focused(&self, cx: &WindowContext) -> bool {
116 cx.window.focus == Some(*self)
117 }
118
119 /// Obtains whether the element associated with this handle contains the focused
120 /// element or is itself focused.
121 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
122 cx.focused()
123 .map_or(false, |focused| self.contains(focused.id, cx))
124 }
125
126 /// Obtains whether the element associated with this handle is contained within the
127 /// focused element or is itself focused.
128 pub fn within_focused(&self, cx: &WindowContext) -> bool {
129 let focused = cx.focused();
130 focused.map_or(false, |focused| focused.id.contains(*self, cx))
131 }
132
133 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
134 pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
135 cx.window
136 .rendered_frame
137 .dispatch_tree
138 .focus_contains(*self, other)
139 }
140}
141
142/// A handle which can be used to track and manipulate the focused element in a window.
143pub struct FocusHandle {
144 pub(crate) id: FocusId,
145 handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
146}
147
148impl std::fmt::Debug for FocusHandle {
149 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
150 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
151 }
152}
153
154impl FocusHandle {
155 pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
156 let id = handles.write().insert(AtomicUsize::new(1));
157 Self {
158 id,
159 handles: handles.clone(),
160 }
161 }
162
163 pub(crate) fn for_id(
164 id: FocusId,
165 handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
166 ) -> Option<Self> {
167 let lock = handles.read();
168 let ref_count = lock.get(id)?;
169 if ref_count.load(SeqCst) == 0 {
170 None
171 } else {
172 ref_count.fetch_add(1, SeqCst);
173 Some(Self {
174 id,
175 handles: handles.clone(),
176 })
177 }
178 }
179
180 /// Moves the focus to the element associated with this handle.
181 pub fn focus(&self, cx: &mut WindowContext) {
182 cx.focus(self)
183 }
184
185 /// Obtains whether the element associated with this handle is currently focused.
186 pub fn is_focused(&self, cx: &WindowContext) -> bool {
187 self.id.is_focused(cx)
188 }
189
190 /// Obtains whether the element associated with this handle contains the focused
191 /// element or is itself focused.
192 pub fn contains_focused(&self, cx: &WindowContext) -> bool {
193 self.id.contains_focused(cx)
194 }
195
196 /// Obtains whether the element associated with this handle is contained within the
197 /// focused element or is itself focused.
198 pub fn within_focused(&self, cx: &WindowContext) -> bool {
199 self.id.within_focused(cx)
200 }
201
202 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
203 pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
204 self.id.contains(other.id, cx)
205 }
206}
207
208impl Clone for FocusHandle {
209 fn clone(&self) -> Self {
210 Self::for_id(self.id, &self.handles).unwrap()
211 }
212}
213
214impl PartialEq for FocusHandle {
215 fn eq(&self, other: &Self) -> bool {
216 self.id == other.id
217 }
218}
219
220impl Eq for FocusHandle {}
221
222impl Drop for FocusHandle {
223 fn drop(&mut self) {
224 self.handles
225 .read()
226 .get(self.id)
227 .unwrap()
228 .fetch_sub(1, SeqCst);
229 }
230}
231
232/// FocusableView allows users of your view to easily
233/// focus it (using cx.focus_view(view))
234pub trait FocusableView: 'static + Render {
235 /// Returns the focus handle associated with this view.
236 fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
237}
238
239/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
240/// where the lifecycle of the view is handled by another view.
241pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
242
243impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
244
245/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
246pub struct DismissEvent;
247
248// Holds the state for a specific window.
249#[doc(hidden)]
250pub struct Window {
251 pub(crate) handle: AnyWindowHandle,
252 pub(crate) removed: bool,
253 pub(crate) platform_window: Box<dyn PlatformWindow>,
254 display_id: DisplayId,
255 sprite_atlas: Arc<dyn PlatformAtlas>,
256 rem_size: Pixels,
257 viewport_size: Size<Pixels>,
258 layout_engine: Option<TaffyLayoutEngine>,
259 pub(crate) root_view: Option<AnyView>,
260 pub(crate) element_id_stack: GlobalElementId,
261 pub(crate) rendered_frame: Frame,
262 pub(crate) next_frame: Frame,
263 pub(crate) dirty_views: FxHashSet<EntityId>,
264 pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
265 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
266 focus_lost_listeners: SubscriberSet<(), AnyObserver>,
267 default_prevented: bool,
268 mouse_position: Point<Pixels>,
269 modifiers: Modifiers,
270 scale_factor: f32,
271 bounds: WindowBounds,
272 bounds_observers: SubscriberSet<(), AnyObserver>,
273 active: bool,
274 pub(crate) dirty: bool,
275 pub(crate) refreshing: bool,
276 pub(crate) drawing: bool,
277 activation_observers: SubscriberSet<(), AnyObserver>,
278 pub(crate) focus: Option<FocusId>,
279 focus_enabled: bool,
280
281 #[cfg(any(test, feature = "test-support"))]
282 pub(crate) focus_invalidated: bool,
283}
284
285pub(crate) struct ElementStateBox {
286 inner: Box<dyn Any>,
287 parent_view_id: EntityId,
288 #[cfg(debug_assertions)]
289 type_name: &'static str,
290}
291
292struct RequestedInputHandler {
293 view_id: EntityId,
294 handler: Option<Box<dyn PlatformInputHandler>>,
295}
296
297struct TooltipRequest {
298 view_id: EntityId,
299 tooltip: AnyTooltip,
300}
301
302pub(crate) struct Frame {
303 focus: Option<FocusId>,
304 window_active: bool,
305 pub(crate) element_states: FxHashMap<GlobalElementId, ElementStateBox>,
306 mouse_listeners: FxHashMap<TypeId, Vec<(StackingOrder, EntityId, AnyMouseListener)>>,
307 pub(crate) dispatch_tree: DispatchTree,
308 pub(crate) scene: Scene,
309 pub(crate) depth_map: Vec<(StackingOrder, EntityId, Bounds<Pixels>)>,
310 pub(crate) z_index_stack: StackingOrder,
311 next_stacking_order_id: u16,
312 next_root_z_index: u16,
313 content_mask_stack: Vec<ContentMask<Pixels>>,
314 element_offset_stack: Vec<Point<Pixels>>,
315 requested_input_handler: Option<RequestedInputHandler>,
316 tooltip_request: Option<TooltipRequest>,
317 cursor_styles: FxHashMap<EntityId, CursorStyle>,
318 requested_cursor_style: Option<CursorStyle>,
319 pub(crate) view_stack: Vec<EntityId>,
320 pub(crate) reused_views: FxHashSet<EntityId>,
321
322 #[cfg(any(test, feature = "test-support"))]
323 pub(crate) debug_bounds: collections::FxHashMap<String, Bounds<Pixels>>,
324}
325
326impl Frame {
327 fn new(dispatch_tree: DispatchTree) -> Self {
328 Frame {
329 focus: None,
330 window_active: false,
331 element_states: FxHashMap::default(),
332 mouse_listeners: FxHashMap::default(),
333 dispatch_tree,
334 scene: Scene::default(),
335 depth_map: Vec::new(),
336 z_index_stack: StackingOrder::default(),
337 next_stacking_order_id: 0,
338 next_root_z_index: 0,
339 content_mask_stack: Vec::new(),
340 element_offset_stack: Vec::new(),
341 requested_input_handler: None,
342 tooltip_request: None,
343 cursor_styles: FxHashMap::default(),
344 requested_cursor_style: None,
345 view_stack: Vec::new(),
346 reused_views: FxHashSet::default(),
347
348 #[cfg(any(test, feature = "test-support"))]
349 debug_bounds: FxHashMap::default(),
350 }
351 }
352
353 fn clear(&mut self) {
354 self.element_states.clear();
355 self.mouse_listeners.values_mut().for_each(Vec::clear);
356 self.dispatch_tree.clear();
357 self.depth_map.clear();
358 self.next_stacking_order_id = 0;
359 self.next_root_z_index = 0;
360 self.reused_views.clear();
361 self.scene.clear();
362 self.requested_input_handler.take();
363 self.tooltip_request.take();
364 self.cursor_styles.clear();
365 self.requested_cursor_style.take();
366 debug_assert_eq!(self.view_stack.len(), 0);
367 }
368
369 fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
370 self.focus
371 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
372 .unwrap_or_default()
373 }
374
375 fn finish(&mut self, prev_frame: &mut Self) {
376 // Reuse mouse listeners that didn't change since the last frame.
377 for (type_id, listeners) in &mut prev_frame.mouse_listeners {
378 let next_listeners = self.mouse_listeners.entry(*type_id).or_default();
379 for (order, view_id, listener) in listeners.drain(..) {
380 if self.reused_views.contains(&view_id) {
381 next_listeners.push((order, view_id, listener));
382 }
383 }
384 }
385
386 // Reuse entries in the depth map that didn't change since the last frame.
387 for (order, view_id, bounds) in prev_frame.depth_map.drain(..) {
388 if self.reused_views.contains(&view_id) {
389 match self
390 .depth_map
391 .binary_search_by(|(level, _, _)| order.cmp(level))
392 {
393 Ok(i) | Err(i) => self.depth_map.insert(i, (order, view_id, bounds)),
394 }
395 }
396 }
397
398 // Retain element states for views that didn't change since the last frame.
399 for (element_id, state) in prev_frame.element_states.drain() {
400 if self.reused_views.contains(&state.parent_view_id) {
401 self.element_states.entry(element_id).or_insert(state);
402 }
403 }
404
405 // Reuse geometry that didn't change since the last frame.
406 self.scene
407 .reuse_views(&self.reused_views, &mut prev_frame.scene);
408 self.scene.finish();
409 }
410}
411
412impl Window {
413 pub(crate) fn new(
414 handle: AnyWindowHandle,
415 options: WindowOptions,
416 cx: &mut AppContext,
417 ) -> Self {
418 let platform_window = cx.platform.open_window(handle, options);
419 let display_id = platform_window.display().id();
420 let sprite_atlas = platform_window.sprite_atlas();
421 let mouse_position = platform_window.mouse_position();
422 let modifiers = platform_window.modifiers();
423 let content_size = platform_window.content_size();
424 let scale_factor = platform_window.scale_factor();
425 let bounds = platform_window.bounds();
426
427 platform_window.on_request_frame(Box::new({
428 let mut cx = cx.to_async();
429 move || {
430 handle.update(&mut cx, |_, cx| cx.draw()).log_err();
431 }
432 }));
433 platform_window.on_resize(Box::new({
434 let mut cx = cx.to_async();
435 move |_, _| {
436 handle
437 .update(&mut cx, |_, cx| cx.window_bounds_changed())
438 .log_err();
439 }
440 }));
441 platform_window.on_moved(Box::new({
442 let mut cx = cx.to_async();
443 move || {
444 handle
445 .update(&mut cx, |_, cx| cx.window_bounds_changed())
446 .log_err();
447 }
448 }));
449 platform_window.on_active_status_change(Box::new({
450 let mut cx = cx.to_async();
451 move |active| {
452 handle
453 .update(&mut cx, |_, cx| {
454 cx.window.active = active;
455 cx.window
456 .activation_observers
457 .clone()
458 .retain(&(), |callback| callback(cx));
459 })
460 .log_err();
461 }
462 }));
463
464 platform_window.on_input({
465 let mut cx = cx.to_async();
466 Box::new(move |event| {
467 handle
468 .update(&mut cx, |_, cx| cx.dispatch_event(event))
469 .log_err()
470 .unwrap_or(false)
471 })
472 });
473
474 Window {
475 handle,
476 removed: false,
477 platform_window,
478 display_id,
479 sprite_atlas,
480 rem_size: px(16.),
481 viewport_size: content_size,
482 layout_engine: Some(TaffyLayoutEngine::new()),
483 root_view: None,
484 element_id_stack: GlobalElementId::default(),
485 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
486 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
487 dirty_views: FxHashSet::default(),
488 focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
489 focus_listeners: SubscriberSet::new(),
490 focus_lost_listeners: SubscriberSet::new(),
491 default_prevented: true,
492 mouse_position,
493 modifiers,
494 scale_factor,
495 bounds,
496 bounds_observers: SubscriberSet::new(),
497 active: false,
498 dirty: false,
499 refreshing: false,
500 drawing: false,
501 activation_observers: SubscriberSet::new(),
502 focus: None,
503 focus_enabled: true,
504
505 #[cfg(any(test, feature = "test-support"))]
506 focus_invalidated: false,
507 }
508 }
509}
510
511/// Indicates which region of the window is visible. Content falling outside of this mask will not be
512/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
513/// to leave room to support more complex shapes in the future.
514#[derive(Clone, Debug, Default, PartialEq, Eq)]
515#[repr(C)]
516pub struct ContentMask<P: Clone + Default + Debug> {
517 /// The bounds
518 pub bounds: Bounds<P>,
519}
520
521impl ContentMask<Pixels> {
522 /// Scale the content mask's pixel units by the given scaling factor.
523 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
524 ContentMask {
525 bounds: self.bounds.scale(factor),
526 }
527 }
528
529 /// Intersect the content mask with the given content mask.
530 pub fn intersect(&self, other: &Self) -> Self {
531 let bounds = self.bounds.intersect(&other.bounds);
532 ContentMask { bounds }
533 }
534}
535
536/// Provides access to application state in the context of a single window. Derefs
537/// to an [`AppContext`], so you can also pass a [`WindowContext`] to any method that takes
538/// an [`AppContext`] and call any [`AppContext`] methods.
539pub struct WindowContext<'a> {
540 pub(crate) app: &'a mut AppContext,
541 pub(crate) window: &'a mut Window,
542}
543
544impl<'a> WindowContext<'a> {
545 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
546 Self { app, window }
547 }
548
549 /// Obtain a handle to the window that belongs to this context.
550 pub fn window_handle(&self) -> AnyWindowHandle {
551 self.window.handle
552 }
553
554 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
555 pub fn refresh(&mut self) {
556 if !self.window.drawing {
557 self.window.refreshing = true;
558 self.window.dirty = true;
559 }
560 }
561
562 /// Close this window.
563 pub fn remove_window(&mut self) {
564 self.window.removed = true;
565 }
566
567 /// Obtain a new [`FocusHandle`], which allows you to track and manipulate the keyboard focus
568 /// for elements rendered within this window.
569 pub fn focus_handle(&mut self) -> FocusHandle {
570 FocusHandle::new(&self.window.focus_handles)
571 }
572
573 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
574 pub fn focused(&self) -> Option<FocusHandle> {
575 self.window
576 .focus
577 .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
578 }
579
580 /// Move focus to the element associated with the given [`FocusHandle`].
581 pub fn focus(&mut self, handle: &FocusHandle) {
582 if !self.window.focus_enabled || self.window.focus == Some(handle.id) {
583 return;
584 }
585
586 self.window.focus = Some(handle.id);
587 self.window
588 .rendered_frame
589 .dispatch_tree
590 .clear_pending_keystrokes();
591
592 #[cfg(any(test, feature = "test-support"))]
593 {
594 self.window.focus_invalidated = true;
595 }
596
597 self.refresh();
598 }
599
600 /// Remove focus from all elements within this context's window.
601 pub fn blur(&mut self) {
602 if !self.window.focus_enabled {
603 return;
604 }
605
606 self.window.focus = None;
607 self.refresh();
608 }
609
610 /// Blur the window and don't allow anything in it to be focused again.
611 pub fn disable_focus(&mut self) {
612 self.blur();
613 self.window.focus_enabled = false;
614 }
615
616 /// Dispatch the given action on the currently focused element.
617 pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
618 let focus_handle = self.focused();
619
620 self.defer(move |cx| {
621 let node_id = focus_handle
622 .and_then(|handle| {
623 cx.window
624 .rendered_frame
625 .dispatch_tree
626 .focusable_node_id(handle.id)
627 })
628 .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
629
630 cx.propagate_event = true;
631 cx.dispatch_action_on_node(node_id, action);
632 })
633 }
634
635 pub(crate) fn dispatch_keystroke_observers(
636 &mut self,
637 event: &dyn Any,
638 action: Option<Box<dyn Action>>,
639 ) {
640 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
641 return;
642 };
643
644 self.keystroke_observers
645 .clone()
646 .retain(&(), move |callback| {
647 (callback)(
648 &KeystrokeEvent {
649 keystroke: key_down_event.keystroke.clone(),
650 action: action.as_ref().map(|action| action.boxed_clone()),
651 },
652 self,
653 );
654 true
655 });
656 }
657
658 pub(crate) fn clear_pending_keystrokes(&mut self) {
659 self.window
660 .rendered_frame
661 .dispatch_tree
662 .clear_pending_keystrokes();
663 self.window
664 .next_frame
665 .dispatch_tree
666 .clear_pending_keystrokes();
667 }
668
669 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
670 /// that are currently on the stack to be returned to the app.
671 pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
672 let handle = self.window.handle;
673 self.app.defer(move |cx| {
674 handle.update(cx, |_, cx| f(cx)).ok();
675 });
676 }
677
678 /// Subscribe to events emitted by a model or view.
679 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
680 /// The callback will be invoked a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a window context for the current window.
681 pub fn subscribe<Emitter, E, Evt>(
682 &mut self,
683 entity: &E,
684 mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
685 ) -> Subscription
686 where
687 Emitter: EventEmitter<Evt>,
688 E: Entity<Emitter>,
689 Evt: 'static,
690 {
691 let entity_id = entity.entity_id();
692 let entity = entity.downgrade();
693 let window_handle = self.window.handle;
694 let (subscription, activate) = self.app.event_listeners.insert(
695 entity_id,
696 (
697 TypeId::of::<Evt>(),
698 Box::new(move |event, cx| {
699 window_handle
700 .update(cx, |_, cx| {
701 if let Some(handle) = E::upgrade_from(&entity) {
702 let event = event.downcast_ref().expect("invalid event type");
703 on_event(handle, event, cx);
704 true
705 } else {
706 false
707 }
708 })
709 .unwrap_or(false)
710 }),
711 ),
712 );
713 self.app.defer(move |_| activate());
714 subscription
715 }
716
717 /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
718 /// await points in async code.
719 pub fn to_async(&self) -> AsyncWindowContext {
720 AsyncWindowContext::new(self.app.to_async(), self.window.handle)
721 }
722
723 /// Schedule the given closure to be run directly after the current frame is rendered.
724 pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
725 let handle = self.window.handle;
726 let display_id = self.window.display_id;
727
728 let mut frame_consumers = std::mem::take(&mut self.app.frame_consumers);
729 if let Entry::Vacant(e) = frame_consumers.entry(display_id) {
730 let (tx, mut rx) = mpsc::unbounded::<()>();
731 self.platform.set_display_link_output_callback(
732 display_id,
733 Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
734 );
735
736 let consumer_task = self.app.spawn(|cx| async move {
737 while rx.next().await.is_some() {
738 cx.update(|cx| {
739 for callback in cx
740 .next_frame_callbacks
741 .get_mut(&display_id)
742 .unwrap()
743 .drain(..)
744 .collect::<SmallVec<[_; 32]>>()
745 {
746 callback(cx);
747 }
748 })
749 .ok();
750
751 // Flush effects, then stop the display link if no new next_frame_callbacks have been added.
752
753 cx.update(|cx| {
754 if cx.next_frame_callbacks.is_empty() {
755 cx.platform.stop_display_link(display_id);
756 }
757 })
758 .ok();
759 }
760 });
761 e.insert(consumer_task);
762 }
763 debug_assert!(self.app.frame_consumers.is_empty());
764 self.app.frame_consumers = frame_consumers;
765
766 if self.next_frame_callbacks.is_empty() {
767 self.platform.start_display_link(display_id);
768 }
769
770 self.next_frame_callbacks
771 .entry(display_id)
772 .or_default()
773 .push(Box::new(move |cx: &mut AppContext| {
774 cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
775 }));
776 }
777
778 /// Spawn the future returned by the given closure on the application thread pool.
779 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
780 /// use within your future.
781 pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
782 where
783 R: 'static,
784 Fut: Future<Output = R> + 'static,
785 {
786 self.app
787 .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
788 }
789
790 /// Update the global of the given type. The given closure is given simultaneous mutable
791 /// access both to the global and the context.
792 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
793 where
794 G: 'static,
795 {
796 let mut global = self.app.lease_global::<G>();
797 let result = f(&mut global, self);
798 self.app.end_global_lease(global);
799 result
800 }
801
802 #[must_use]
803 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
804 /// layout is being requested, along with the layout ids of any children. This method is called during
805 /// calls to the `Element::layout` trait method and enables any element to participate in layout.
806 pub fn request_layout(
807 &mut self,
808 style: &Style,
809 children: impl IntoIterator<Item = LayoutId>,
810 ) -> LayoutId {
811 self.app.layout_id_buffer.clear();
812 self.app.layout_id_buffer.extend(children);
813 let rem_size = self.rem_size();
814
815 self.window.layout_engine.as_mut().unwrap().request_layout(
816 style,
817 rem_size,
818 &self.app.layout_id_buffer,
819 )
820 }
821
822 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
823 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
824 /// determine the element's size. One place this is used internally is when measuring text.
825 ///
826 /// The given closure is invoked at layout time with the known dimensions and available space and
827 /// returns a `Size`.
828 pub fn request_measured_layout<
829 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
830 + 'static,
831 >(
832 &mut self,
833 style: Style,
834 measure: F,
835 ) -> LayoutId {
836 let rem_size = self.rem_size();
837 self.window
838 .layout_engine
839 .as_mut()
840 .unwrap()
841 .request_measured_layout(style, rem_size, measure)
842 }
843
844 pub(crate) fn layout_style(&self, layout_id: LayoutId) -> Option<&Style> {
845 self.window
846 .layout_engine
847 .as_ref()
848 .unwrap()
849 .requested_style(layout_id)
850 }
851
852 /// Compute the layout for the given id within the given available space.
853 /// This method is called for its side effect, typically by the framework prior to painting.
854 /// After calling it, you can request the bounds of the given layout node id or any descendant.
855 pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
856 let mut layout_engine = self.window.layout_engine.take().unwrap();
857 layout_engine.compute_layout(layout_id, available_space, self);
858 self.window.layout_engine = Some(layout_engine);
859 }
860
861 /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
862 /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
863 /// in order to pass your element its `Bounds` automatically.
864 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
865 let mut bounds = self
866 .window
867 .layout_engine
868 .as_mut()
869 .unwrap()
870 .layout_bounds(layout_id)
871 .map(Into::into);
872 bounds.origin += self.element_offset();
873 bounds
874 }
875
876 fn window_bounds_changed(&mut self) {
877 self.window.scale_factor = self.window.platform_window.scale_factor();
878 self.window.viewport_size = self.window.platform_window.content_size();
879 self.window.bounds = self.window.platform_window.bounds();
880 self.window.display_id = self.window.platform_window.display().id();
881 self.refresh();
882
883 self.window
884 .bounds_observers
885 .clone()
886 .retain(&(), |callback| callback(self));
887 }
888
889 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
890 pub fn window_bounds(&self) -> WindowBounds {
891 self.window.bounds
892 }
893
894 /// Returns the size of the drawable area within the window.
895 pub fn viewport_size(&self) -> Size<Pixels> {
896 self.window.viewport_size
897 }
898
899 /// Returns whether this window is focused by the operating system (receiving key events).
900 pub fn is_window_active(&self) -> bool {
901 self.window.active
902 }
903
904 /// Toggle zoom on the window.
905 pub fn zoom_window(&self) {
906 self.window.platform_window.zoom();
907 }
908
909 /// Update the window's title at the platform level.
910 pub fn set_window_title(&mut self, title: &str) {
911 self.window.platform_window.set_title(title);
912 }
913
914 /// Mark the window as dirty at the platform level.
915 pub fn set_window_edited(&mut self, edited: bool) {
916 self.window.platform_window.set_edited(edited);
917 }
918
919 /// Determine the display on which the window is visible.
920 pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
921 self.platform
922 .displays()
923 .into_iter()
924 .find(|display| display.id() == self.window.display_id)
925 }
926
927 /// Show the platform character palette.
928 pub fn show_character_palette(&self) {
929 self.window.platform_window.show_character_palette();
930 }
931
932 /// The scale factor of the display associated with the window. For example, it could
933 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
934 /// be rendered as two pixels on screen.
935 pub fn scale_factor(&self) -> f32 {
936 self.window.scale_factor
937 }
938
939 /// The size of an em for the base font of the application. Adjusting this value allows the
940 /// UI to scale, just like zooming a web page.
941 pub fn rem_size(&self) -> Pixels {
942 self.window.rem_size
943 }
944
945 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
946 /// UI to scale, just like zooming a web page.
947 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
948 self.window.rem_size = rem_size.into();
949 }
950
951 /// The line height associated with the current text style.
952 pub fn line_height(&self) -> Pixels {
953 let rem_size = self.rem_size();
954 let text_style = self.text_style();
955 text_style
956 .line_height
957 .to_pixels(text_style.font_size, rem_size)
958 }
959
960 /// Call to prevent the default action of an event. Currently only used to prevent
961 /// parent elements from becoming focused on mouse down.
962 pub fn prevent_default(&mut self) {
963 self.window.default_prevented = true;
964 }
965
966 /// Obtain whether default has been prevented for the event currently being dispatched.
967 pub fn default_prevented(&self) -> bool {
968 self.window.default_prevented
969 }
970
971 /// Register a mouse event listener on the window for the next frame. The type of event
972 /// is determined by the first parameter of the given listener. When the next frame is rendered
973 /// the listener will be cleared.
974 pub fn on_mouse_event<Event: MouseEvent>(
975 &mut self,
976 mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static,
977 ) {
978 let view_id = self.parent_view_id();
979 let order = self.window.next_frame.z_index_stack.clone();
980 self.window
981 .next_frame
982 .mouse_listeners
983 .entry(TypeId::of::<Event>())
984 .or_default()
985 .push((
986 order,
987 view_id,
988 Box::new(
989 move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| {
990 handler(event.downcast_ref().unwrap(), phase, cx)
991 },
992 ),
993 ))
994 }
995
996 /// Register a key event listener on the window for the next frame. The type of event
997 /// is determined by the first parameter of the given listener. When the next frame is rendered
998 /// the listener will be cleared.
999 ///
1000 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
1001 /// a specific need to register a global listener.
1002 pub fn on_key_event<Event: KeyEvent>(
1003 &mut self,
1004 listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
1005 ) {
1006 self.window.next_frame.dispatch_tree.on_key_event(Rc::new(
1007 move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| {
1008 if let Some(event) = event.downcast_ref::<Event>() {
1009 listener(event, phase, cx)
1010 }
1011 },
1012 ));
1013 }
1014
1015 /// Register an action listener on the window for the next frame. The type of action
1016 /// is determined by the first parameter of the given listener. When the next frame is rendered
1017 /// the listener will be cleared.
1018 ///
1019 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
1020 /// a specific need to register a global listener.
1021 pub fn on_action(
1022 &mut self,
1023 action_type: TypeId,
1024 listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
1025 ) {
1026 self.window
1027 .next_frame
1028 .dispatch_tree
1029 .on_action(action_type, Rc::new(listener));
1030 }
1031
1032 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1033 pub fn is_action_available(&self, action: &dyn Action) -> bool {
1034 let target = self
1035 .focused()
1036 .and_then(|focused_handle| {
1037 self.window
1038 .rendered_frame
1039 .dispatch_tree
1040 .focusable_node_id(focused_handle.id)
1041 })
1042 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1043 self.window
1044 .rendered_frame
1045 .dispatch_tree
1046 .is_action_available(action, target)
1047 }
1048
1049 /// The position of the mouse relative to the window.
1050 pub fn mouse_position(&self) -> Point<Pixels> {
1051 self.window.mouse_position
1052 }
1053
1054 /// The current state of the keyboard's modifiers
1055 pub fn modifiers(&self) -> Modifiers {
1056 self.window.modifiers
1057 }
1058
1059 /// Update the cursor style at the platform level.
1060 pub fn set_cursor_style(&mut self, style: CursorStyle) {
1061 let view_id = self.parent_view_id();
1062 self.window.next_frame.cursor_styles.insert(view_id, style);
1063 self.window.next_frame.requested_cursor_style = Some(style);
1064 }
1065
1066 /// Set a tooltip to be rendered for the upcoming frame
1067 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) {
1068 let view_id = self.parent_view_id();
1069 self.window.next_frame.tooltip_request = Some(TooltipRequest { view_id, tooltip });
1070 }
1071
1072 /// Called during painting to track which z-index is on top at each pixel position
1073 pub fn add_opaque_layer(&mut self, bounds: Bounds<Pixels>) {
1074 let stacking_order = self.window.next_frame.z_index_stack.clone();
1075 let view_id = self.parent_view_id();
1076 let depth_map = &mut self.window.next_frame.depth_map;
1077 match depth_map.binary_search_by(|(level, _, _)| stacking_order.cmp(level)) {
1078 Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, view_id, bounds)),
1079 }
1080 }
1081
1082 /// Returns true if there is no opaque layer containing the given point
1083 /// on top of the given level. Layers whose level is an extension of the
1084 /// level are not considered to be on top of the level.
1085 pub fn was_top_layer(&self, point: &Point<Pixels>, level: &StackingOrder) -> bool {
1086 for (opaque_level, _, bounds) in self.window.rendered_frame.depth_map.iter() {
1087 if level >= opaque_level {
1088 break;
1089 }
1090
1091 if bounds.contains(point) && !opaque_level.starts_with(level) {
1092 return false;
1093 }
1094 }
1095 true
1096 }
1097
1098 pub(crate) fn was_top_layer_under_active_drag(
1099 &self,
1100 point: &Point<Pixels>,
1101 level: &StackingOrder,
1102 ) -> bool {
1103 for (opaque_level, _, bounds) in self.window.rendered_frame.depth_map.iter() {
1104 if level >= opaque_level {
1105 break;
1106 }
1107 if opaque_level
1108 .first()
1109 .map(|c| c.z_index == ACTIVE_DRAG_Z_INDEX)
1110 .unwrap_or(false)
1111 {
1112 continue;
1113 }
1114
1115 if bounds.contains(point) && !opaque_level.starts_with(level) {
1116 return false;
1117 }
1118 }
1119 true
1120 }
1121
1122 /// Called during painting to get the current stacking order.
1123 pub fn stacking_order(&self) -> &StackingOrder {
1124 &self.window.next_frame.z_index_stack
1125 }
1126
1127 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
1128 pub fn paint_shadows(
1129 &mut self,
1130 bounds: Bounds<Pixels>,
1131 corner_radii: Corners<Pixels>,
1132 shadows: &[BoxShadow],
1133 ) {
1134 let scale_factor = self.scale_factor();
1135 let content_mask = self.content_mask();
1136 let view_id = self.parent_view_id();
1137 let window = &mut *self.window;
1138 for shadow in shadows {
1139 let mut shadow_bounds = bounds;
1140 shadow_bounds.origin += shadow.offset;
1141 shadow_bounds.dilate(shadow.spread_radius);
1142 window.next_frame.scene.insert(
1143 &window.next_frame.z_index_stack,
1144 Shadow {
1145 view_id: view_id.into(),
1146 layer_id: 0,
1147 order: 0,
1148 bounds: shadow_bounds.scale(scale_factor),
1149 content_mask: content_mask.scale(scale_factor),
1150 corner_radii: corner_radii.scale(scale_factor),
1151 color: shadow.color,
1152 blur_radius: shadow.blur_radius.scale(scale_factor),
1153 },
1154 );
1155 }
1156 }
1157
1158 /// Paint one or more quads into the scene for the next frame at the current stacking context.
1159 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
1160 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
1161 pub fn paint_quad(&mut self, quad: PaintQuad) {
1162 let scale_factor = self.scale_factor();
1163 let content_mask = self.content_mask();
1164 let view_id = self.parent_view_id();
1165
1166 let window = &mut *self.window;
1167 window.next_frame.scene.insert(
1168 &window.next_frame.z_index_stack,
1169 Quad {
1170 view_id: view_id.into(),
1171 layer_id: 0,
1172 order: 0,
1173 bounds: quad.bounds.scale(scale_factor),
1174 content_mask: content_mask.scale(scale_factor),
1175 background: quad.background,
1176 border_color: quad.border_color,
1177 corner_radii: quad.corner_radii.scale(scale_factor),
1178 border_widths: quad.border_widths.scale(scale_factor),
1179 },
1180 );
1181 }
1182
1183 /// Paint the given `Path` into the scene for the next frame at the current z-index.
1184 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
1185 let scale_factor = self.scale_factor();
1186 let content_mask = self.content_mask();
1187 let view_id = self.parent_view_id();
1188
1189 path.content_mask = content_mask;
1190 path.color = color.into();
1191 path.view_id = view_id.into();
1192 let window = &mut *self.window;
1193 window
1194 .next_frame
1195 .scene
1196 .insert(&window.next_frame.z_index_stack, path.scale(scale_factor));
1197 }
1198
1199 /// Paint an underline into the scene for the next frame at the current z-index.
1200 pub fn paint_underline(
1201 &mut self,
1202 origin: Point<Pixels>,
1203 width: Pixels,
1204 style: &UnderlineStyle,
1205 ) {
1206 let scale_factor = self.scale_factor();
1207 let height = if style.wavy {
1208 style.thickness * 3.
1209 } else {
1210 style.thickness
1211 };
1212 let bounds = Bounds {
1213 origin,
1214 size: size(width, height),
1215 };
1216 let content_mask = self.content_mask();
1217 let view_id = self.parent_view_id();
1218
1219 let window = &mut *self.window;
1220 window.next_frame.scene.insert(
1221 &window.next_frame.z_index_stack,
1222 Underline {
1223 view_id: view_id.into(),
1224 layer_id: 0,
1225 order: 0,
1226 bounds: bounds.scale(scale_factor),
1227 content_mask: content_mask.scale(scale_factor),
1228 thickness: style.thickness.scale(scale_factor),
1229 color: style.color.unwrap_or_default(),
1230 wavy: style.wavy,
1231 },
1232 );
1233 }
1234
1235 /// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
1236 /// The y component of the origin is the baseline of the glyph.
1237 pub fn paint_glyph(
1238 &mut self,
1239 origin: Point<Pixels>,
1240 font_id: FontId,
1241 glyph_id: GlyphId,
1242 font_size: Pixels,
1243 color: Hsla,
1244 ) -> Result<()> {
1245 let scale_factor = self.scale_factor();
1246 let glyph_origin = origin.scale(scale_factor);
1247 let subpixel_variant = Point {
1248 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1249 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1250 };
1251 let params = RenderGlyphParams {
1252 font_id,
1253 glyph_id,
1254 font_size,
1255 subpixel_variant,
1256 scale_factor,
1257 is_emoji: false,
1258 };
1259
1260 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
1261 if !raster_bounds.is_zero() {
1262 let tile =
1263 self.window
1264 .sprite_atlas
1265 .get_or_insert_with(¶ms.clone().into(), &mut || {
1266 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
1267 Ok((size, Cow::Owned(bytes)))
1268 })?;
1269 let bounds = Bounds {
1270 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1271 size: tile.bounds.size.map(Into::into),
1272 };
1273 let content_mask = self.content_mask().scale(scale_factor);
1274 let view_id = self.parent_view_id();
1275 let window = &mut *self.window;
1276 window.next_frame.scene.insert(
1277 &window.next_frame.z_index_stack,
1278 MonochromeSprite {
1279 view_id: view_id.into(),
1280 layer_id: 0,
1281 order: 0,
1282 bounds,
1283 content_mask,
1284 color,
1285 tile,
1286 },
1287 );
1288 }
1289 Ok(())
1290 }
1291
1292 /// Paint an emoji glyph into the scene for the next frame at the current z-index.
1293 /// The y component of the origin is the baseline of the glyph.
1294 pub fn paint_emoji(
1295 &mut self,
1296 origin: Point<Pixels>,
1297 font_id: FontId,
1298 glyph_id: GlyphId,
1299 font_size: Pixels,
1300 ) -> Result<()> {
1301 let scale_factor = self.scale_factor();
1302 let glyph_origin = origin.scale(scale_factor);
1303 let params = RenderGlyphParams {
1304 font_id,
1305 glyph_id,
1306 font_size,
1307 // We don't render emojis with subpixel variants.
1308 subpixel_variant: Default::default(),
1309 scale_factor,
1310 is_emoji: true,
1311 };
1312
1313 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
1314 if !raster_bounds.is_zero() {
1315 let tile =
1316 self.window
1317 .sprite_atlas
1318 .get_or_insert_with(¶ms.clone().into(), &mut || {
1319 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
1320 Ok((size, Cow::Owned(bytes)))
1321 })?;
1322 let bounds = Bounds {
1323 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1324 size: tile.bounds.size.map(Into::into),
1325 };
1326 let content_mask = self.content_mask().scale(scale_factor);
1327 let view_id = self.parent_view_id();
1328 let window = &mut *self.window;
1329
1330 window.next_frame.scene.insert(
1331 &window.next_frame.z_index_stack,
1332 PolychromeSprite {
1333 view_id: view_id.into(),
1334 layer_id: 0,
1335 order: 0,
1336 bounds,
1337 corner_radii: Default::default(),
1338 content_mask,
1339 tile,
1340 grayscale: false,
1341 },
1342 );
1343 }
1344 Ok(())
1345 }
1346
1347 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
1348 pub fn paint_svg(
1349 &mut self,
1350 bounds: Bounds<Pixels>,
1351 path: SharedString,
1352 color: Hsla,
1353 ) -> Result<()> {
1354 let scale_factor = self.scale_factor();
1355 let bounds = bounds.scale(scale_factor);
1356 // Render the SVG at twice the size to get a higher quality result.
1357 let params = RenderSvgParams {
1358 path,
1359 size: bounds
1360 .size
1361 .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
1362 };
1363
1364 let tile =
1365 self.window
1366 .sprite_atlas
1367 .get_or_insert_with(¶ms.clone().into(), &mut || {
1368 let bytes = self.svg_renderer.render(¶ms)?;
1369 Ok((params.size, Cow::Owned(bytes)))
1370 })?;
1371 let content_mask = self.content_mask().scale(scale_factor);
1372 let view_id = self.parent_view_id();
1373
1374 let window = &mut *self.window;
1375 window.next_frame.scene.insert(
1376 &window.next_frame.z_index_stack,
1377 MonochromeSprite {
1378 view_id: view_id.into(),
1379 layer_id: 0,
1380 order: 0,
1381 bounds,
1382 content_mask,
1383 color,
1384 tile,
1385 },
1386 );
1387
1388 Ok(())
1389 }
1390
1391 /// Paint an image into the scene for the next frame at the current z-index.
1392 pub fn paint_image(
1393 &mut self,
1394 bounds: Bounds<Pixels>,
1395 corner_radii: Corners<Pixels>,
1396 data: Arc<ImageData>,
1397 grayscale: bool,
1398 ) -> Result<()> {
1399 let scale_factor = self.scale_factor();
1400 let bounds = bounds.scale(scale_factor);
1401 let params = RenderImageParams { image_id: data.id };
1402
1403 let tile = self
1404 .window
1405 .sprite_atlas
1406 .get_or_insert_with(¶ms.clone().into(), &mut || {
1407 Ok((data.size(), Cow::Borrowed(data.as_bytes())))
1408 })?;
1409 let content_mask = self.content_mask().scale(scale_factor);
1410 let corner_radii = corner_radii.scale(scale_factor);
1411 let view_id = self.parent_view_id();
1412
1413 let window = &mut *self.window;
1414 window.next_frame.scene.insert(
1415 &window.next_frame.z_index_stack,
1416 PolychromeSprite {
1417 view_id: view_id.into(),
1418 layer_id: 0,
1419 order: 0,
1420 bounds,
1421 content_mask,
1422 corner_radii,
1423 tile,
1424 grayscale,
1425 },
1426 );
1427 Ok(())
1428 }
1429
1430 /// Paint a surface into the scene for the next frame at the current z-index.
1431 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
1432 let scale_factor = self.scale_factor();
1433 let bounds = bounds.scale(scale_factor);
1434 let content_mask = self.content_mask().scale(scale_factor);
1435 let view_id = self.parent_view_id();
1436 let window = &mut *self.window;
1437 window.next_frame.scene.insert(
1438 &window.next_frame.z_index_stack,
1439 Surface {
1440 view_id: view_id.into(),
1441 layer_id: 0,
1442 order: 0,
1443 bounds,
1444 content_mask,
1445 image_buffer,
1446 },
1447 );
1448 }
1449
1450 pub(crate) fn reuse_view(&mut self) {
1451 let view_id = self.parent_view_id();
1452 let grafted_view_ids = self
1453 .window
1454 .next_frame
1455 .dispatch_tree
1456 .reuse_view(view_id, &mut self.window.rendered_frame.dispatch_tree);
1457 for view_id in grafted_view_ids {
1458 assert!(self.window.next_frame.reused_views.insert(view_id));
1459
1460 // Reuse the previous input handler requested during painting of the reused view.
1461 if self
1462 .window
1463 .rendered_frame
1464 .requested_input_handler
1465 .as_ref()
1466 .map_or(false, |requested| requested.view_id == view_id)
1467 {
1468 self.window.next_frame.requested_input_handler =
1469 self.window.rendered_frame.requested_input_handler.take();
1470 }
1471
1472 // Reuse the tooltip previously requested during painting of the reused view.
1473 if self
1474 .window
1475 .rendered_frame
1476 .tooltip_request
1477 .as_ref()
1478 .map_or(false, |requested| requested.view_id == view_id)
1479 {
1480 self.window.next_frame.tooltip_request =
1481 self.window.rendered_frame.tooltip_request.take();
1482 }
1483
1484 // Reuse the cursor styles previously requested during painting of the reused view.
1485 if let Some(style) = self.window.rendered_frame.cursor_styles.remove(&view_id) {
1486 self.window.next_frame.cursor_styles.insert(view_id, style);
1487 self.window.next_frame.requested_cursor_style = Some(style);
1488 }
1489 }
1490 }
1491
1492 /// Draw pixels to the display for this window based on the contents of its scene.
1493 pub(crate) fn draw(&mut self) {
1494 self.window.dirty = false;
1495 self.window.drawing = true;
1496
1497 #[cfg(any(test, feature = "test-support"))]
1498 {
1499 self.window.focus_invalidated = false;
1500 }
1501
1502 if let Some(requested_handler) = self.window.rendered_frame.requested_input_handler.as_mut()
1503 {
1504 requested_handler.handler = self.window.platform_window.take_input_handler();
1505 }
1506
1507 let root_view = self.window.root_view.take().unwrap();
1508
1509 self.with_z_index(0, |cx| {
1510 cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
1511 for (action_type, action_listeners) in &cx.app.global_action_listeners {
1512 for action_listener in action_listeners.iter().cloned() {
1513 cx.window.next_frame.dispatch_tree.on_action(
1514 *action_type,
1515 Rc::new(move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
1516 action_listener(action, phase, cx)
1517 }),
1518 )
1519 }
1520 }
1521
1522 let available_space = cx.window.viewport_size.map(Into::into);
1523 root_view.draw(Point::default(), available_space, cx);
1524 })
1525 });
1526
1527 if let Some(active_drag) = self.app.active_drag.take() {
1528 self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
1529 let offset = cx.mouse_position() - active_drag.cursor_offset;
1530 let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1531 active_drag.view.draw(offset, available_space, cx);
1532 });
1533 self.active_drag = Some(active_drag);
1534 } else if let Some(tooltip_request) = self.window.next_frame.tooltip_request.take() {
1535 self.with_z_index(1, |cx| {
1536 let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1537 tooltip_request.tooltip.view.draw(
1538 tooltip_request.tooltip.cursor_offset,
1539 available_space,
1540 cx,
1541 );
1542 });
1543 self.window.next_frame.tooltip_request = Some(tooltip_request);
1544 }
1545 self.window.dirty_views.clear();
1546
1547 self.window
1548 .next_frame
1549 .dispatch_tree
1550 .preserve_pending_keystrokes(
1551 &mut self.window.rendered_frame.dispatch_tree,
1552 self.window.focus,
1553 );
1554 self.window.next_frame.focus = self.window.focus;
1555 self.window.next_frame.window_active = self.window.active;
1556 self.window.root_view = Some(root_view);
1557
1558 // Set the cursor only if we're the active window.
1559 let cursor_style = self
1560 .window
1561 .next_frame
1562 .requested_cursor_style
1563 .take()
1564 .unwrap_or(CursorStyle::Arrow);
1565 if self.is_window_active() {
1566 self.platform.set_cursor_style(cursor_style);
1567 }
1568
1569 // Register requested input handler with the platform window.
1570 if let Some(requested_input) = self.window.next_frame.requested_input_handler.as_mut() {
1571 if let Some(handler) = requested_input.handler.take() {
1572 self.window.platform_window.set_input_handler(handler);
1573 }
1574 }
1575
1576 self.window.layout_engine.as_mut().unwrap().clear();
1577 self.text_system()
1578 .finish_frame(&self.window.next_frame.reused_views);
1579 self.window
1580 .next_frame
1581 .finish(&mut self.window.rendered_frame);
1582 ELEMENT_ARENA.with_borrow_mut(|element_arena| element_arena.clear());
1583
1584 let previous_focus_path = self.window.rendered_frame.focus_path();
1585 let previous_window_active = self.window.rendered_frame.window_active;
1586 mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
1587 self.window.next_frame.clear();
1588 let current_focus_path = self.window.rendered_frame.focus_path();
1589 let current_window_active = self.window.rendered_frame.window_active;
1590
1591 if previous_focus_path != current_focus_path
1592 || previous_window_active != current_window_active
1593 {
1594 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1595 self.window
1596 .focus_lost_listeners
1597 .clone()
1598 .retain(&(), |listener| listener(self));
1599 }
1600
1601 let event = FocusEvent {
1602 previous_focus_path: if previous_window_active {
1603 previous_focus_path
1604 } else {
1605 Default::default()
1606 },
1607 current_focus_path: if current_window_active {
1608 current_focus_path
1609 } else {
1610 Default::default()
1611 },
1612 };
1613 self.window
1614 .focus_listeners
1615 .clone()
1616 .retain(&(), |listener| listener(&event, self));
1617 }
1618
1619 self.window
1620 .platform_window
1621 .draw(&self.window.rendered_frame.scene);
1622 self.window.refreshing = false;
1623 self.window.drawing = false;
1624 }
1625
1626 /// Dispatch a mouse or keyboard event on the window.
1627 pub fn dispatch_event(&mut self, event: PlatformInput) -> bool {
1628 // Handlers may set this to false by calling `stop_propagation`.
1629 self.app.propagate_event = true;
1630 // Handlers may set this to true by calling `prevent_default`.
1631 self.window.default_prevented = false;
1632
1633 let event = match event {
1634 // Track the mouse position with our own state, since accessing the platform
1635 // API for the mouse position can only occur on the main thread.
1636 PlatformInput::MouseMove(mouse_move) => {
1637 self.window.mouse_position = mouse_move.position;
1638 self.window.modifiers = mouse_move.modifiers;
1639 PlatformInput::MouseMove(mouse_move)
1640 }
1641 PlatformInput::MouseDown(mouse_down) => {
1642 self.window.mouse_position = mouse_down.position;
1643 self.window.modifiers = mouse_down.modifiers;
1644 PlatformInput::MouseDown(mouse_down)
1645 }
1646 PlatformInput::MouseUp(mouse_up) => {
1647 self.window.mouse_position = mouse_up.position;
1648 self.window.modifiers = mouse_up.modifiers;
1649 PlatformInput::MouseUp(mouse_up)
1650 }
1651 PlatformInput::MouseExited(mouse_exited) => {
1652 self.window.modifiers = mouse_exited.modifiers;
1653 PlatformInput::MouseExited(mouse_exited)
1654 }
1655 PlatformInput::ModifiersChanged(modifiers_changed) => {
1656 self.window.modifiers = modifiers_changed.modifiers;
1657 PlatformInput::ModifiersChanged(modifiers_changed)
1658 }
1659 PlatformInput::ScrollWheel(scroll_wheel) => {
1660 self.window.mouse_position = scroll_wheel.position;
1661 self.window.modifiers = scroll_wheel.modifiers;
1662 PlatformInput::ScrollWheel(scroll_wheel)
1663 }
1664 // Translate dragging and dropping of external files from the operating system
1665 // to internal drag and drop events.
1666 PlatformInput::FileDrop(file_drop) => match file_drop {
1667 FileDropEvent::Entered { position, paths } => {
1668 self.window.mouse_position = position;
1669 if self.active_drag.is_none() {
1670 self.active_drag = Some(AnyDrag {
1671 value: Box::new(paths.clone()),
1672 view: self.new_view(|_| paths).into(),
1673 cursor_offset: position,
1674 });
1675 }
1676 PlatformInput::MouseMove(MouseMoveEvent {
1677 position,
1678 pressed_button: Some(MouseButton::Left),
1679 modifiers: Modifiers::default(),
1680 })
1681 }
1682 FileDropEvent::Pending { position } => {
1683 self.window.mouse_position = position;
1684 PlatformInput::MouseMove(MouseMoveEvent {
1685 position,
1686 pressed_button: Some(MouseButton::Left),
1687 modifiers: Modifiers::default(),
1688 })
1689 }
1690 FileDropEvent::Submit { position } => {
1691 self.activate(true);
1692 self.window.mouse_position = position;
1693 PlatformInput::MouseUp(MouseUpEvent {
1694 button: MouseButton::Left,
1695 position,
1696 modifiers: Modifiers::default(),
1697 click_count: 1,
1698 })
1699 }
1700 FileDropEvent::Exited => PlatformInput::MouseUp(MouseUpEvent {
1701 button: MouseButton::Left,
1702 position: Point::default(),
1703 modifiers: Modifiers::default(),
1704 click_count: 1,
1705 }),
1706 },
1707 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
1708 };
1709
1710 if let Some(any_mouse_event) = event.mouse_event() {
1711 self.dispatch_mouse_event(any_mouse_event);
1712 } else if let Some(any_key_event) = event.keyboard_event() {
1713 self.dispatch_key_event(any_key_event);
1714 }
1715
1716 !self.app.propagate_event
1717 }
1718
1719 fn dispatch_mouse_event(&mut self, event: &dyn Any) {
1720 if let Some(mut handlers) = self
1721 .window
1722 .rendered_frame
1723 .mouse_listeners
1724 .remove(&event.type_id())
1725 {
1726 // Because handlers may add other handlers, we sort every time.
1727 handlers.sort_by(|(a, _, _), (b, _, _)| a.cmp(b));
1728
1729 // Capture phase, events bubble from back to front. Handlers for this phase are used for
1730 // special purposes, such as detecting events outside of a given Bounds.
1731 for (_, _, handler) in &mut handlers {
1732 handler(event, DispatchPhase::Capture, self);
1733 if !self.app.propagate_event {
1734 break;
1735 }
1736 }
1737
1738 // Bubble phase, where most normal handlers do their work.
1739 if self.app.propagate_event {
1740 for (_, _, handler) in handlers.iter_mut().rev() {
1741 handler(event, DispatchPhase::Bubble, self);
1742 if !self.app.propagate_event {
1743 break;
1744 }
1745 }
1746 }
1747
1748 self.window
1749 .rendered_frame
1750 .mouse_listeners
1751 .insert(event.type_id(), handlers);
1752 }
1753
1754 if self.app.propagate_event && self.has_active_drag() {
1755 if event.is::<MouseMoveEvent>() {
1756 // If this was a mouse move event, redraw the window so that the
1757 // active drag can follow the mouse cursor.
1758 self.refresh();
1759 } else if event.is::<MouseUpEvent>() {
1760 // If this was a mouse up event, cancel the active drag and redraw
1761 // the window.
1762 self.active_drag = None;
1763 self.refresh();
1764 }
1765 }
1766 }
1767
1768 fn dispatch_key_event(&mut self, event: &dyn Any) {
1769 let node_id = self
1770 .window
1771 .focus
1772 .and_then(|focus_id| {
1773 self.window
1774 .rendered_frame
1775 .dispatch_tree
1776 .focusable_node_id(focus_id)
1777 })
1778 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1779
1780 let dispatch_path = self
1781 .window
1782 .rendered_frame
1783 .dispatch_tree
1784 .dispatch_path(node_id);
1785
1786 let mut actions: Vec<Box<dyn Action>> = Vec::new();
1787
1788 let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new();
1789 for node_id in &dispatch_path {
1790 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1791
1792 if let Some(context) = node.context.clone() {
1793 context_stack.push(context);
1794 }
1795 }
1796
1797 for node_id in dispatch_path.iter().rev() {
1798 // Match keystrokes
1799 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1800 if node.context.is_some() {
1801 if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
1802 let mut new_actions = self
1803 .window
1804 .rendered_frame
1805 .dispatch_tree
1806 .dispatch_key(&key_down_event.keystroke, &context_stack);
1807 actions.append(&mut new_actions);
1808 }
1809
1810 context_stack.pop();
1811 }
1812 }
1813
1814 if !actions.is_empty() {
1815 self.clear_pending_keystrokes();
1816 }
1817
1818 self.propagate_event = true;
1819 for action in actions {
1820 self.dispatch_action_on_node(node_id, action.boxed_clone());
1821 if !self.propagate_event {
1822 self.dispatch_keystroke_observers(event, Some(action));
1823 return;
1824 }
1825 }
1826
1827 // Capture phase
1828 for node_id in &dispatch_path {
1829 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1830
1831 for key_listener in node.key_listeners.clone() {
1832 key_listener(event, DispatchPhase::Capture, self);
1833 if !self.propagate_event {
1834 return;
1835 }
1836 }
1837 }
1838
1839 // Bubble phase
1840 for node_id in dispatch_path.iter().rev() {
1841 // Handle low level key events
1842 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1843 for key_listener in node.key_listeners.clone() {
1844 key_listener(event, DispatchPhase::Bubble, self);
1845 if !self.propagate_event {
1846 return;
1847 }
1848 }
1849 }
1850
1851 self.dispatch_keystroke_observers(event, None);
1852 }
1853
1854 /// Determine whether a potential multi-stroke key binding is in progress on this window.
1855 pub fn has_pending_keystrokes(&self) -> bool {
1856 self.window
1857 .rendered_frame
1858 .dispatch_tree
1859 .has_pending_keystrokes()
1860 }
1861
1862 fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
1863 let dispatch_path = self
1864 .window
1865 .rendered_frame
1866 .dispatch_tree
1867 .dispatch_path(node_id);
1868
1869 // Capture phase
1870 for node_id in &dispatch_path {
1871 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1872 for DispatchActionListener {
1873 action_type,
1874 listener,
1875 } in node.action_listeners.clone()
1876 {
1877 let any_action = action.as_any();
1878 if action_type == any_action.type_id() {
1879 listener(any_action, DispatchPhase::Capture, self);
1880 if !self.propagate_event {
1881 return;
1882 }
1883 }
1884 }
1885 }
1886 // Bubble phase
1887 for node_id in dispatch_path.iter().rev() {
1888 let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1889 for DispatchActionListener {
1890 action_type,
1891 listener,
1892 } in node.action_listeners.clone()
1893 {
1894 let any_action = action.as_any();
1895 if action_type == any_action.type_id() {
1896 self.propagate_event = false; // Actions stop propagation by default during the bubble phase
1897 listener(any_action, DispatchPhase::Bubble, self);
1898 if !self.propagate_event {
1899 return;
1900 }
1901 }
1902 }
1903 }
1904 }
1905
1906 /// Register the given handler to be invoked whenever the global of the given type
1907 /// is updated.
1908 pub fn observe_global<G: 'static>(
1909 &mut self,
1910 f: impl Fn(&mut WindowContext<'_>) + 'static,
1911 ) -> Subscription {
1912 let window_handle = self.window.handle;
1913 let (subscription, activate) = self.global_observers.insert(
1914 TypeId::of::<G>(),
1915 Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1916 );
1917 self.app.defer(move |_| activate());
1918 subscription
1919 }
1920
1921 /// Focus the current window and bring it to the foreground at the platform level.
1922 pub fn activate_window(&self) {
1923 self.window.platform_window.activate();
1924 }
1925
1926 /// Minimize the current window at the platform level.
1927 pub fn minimize_window(&self) {
1928 self.window.platform_window.minimize();
1929 }
1930
1931 /// Toggle full screen status on the current window at the platform level.
1932 pub fn toggle_full_screen(&self) {
1933 self.window.platform_window.toggle_full_screen();
1934 }
1935
1936 /// Present a platform dialog.
1937 /// The provided message will be presented, along with buttons for each answer.
1938 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
1939 pub fn prompt(
1940 &self,
1941 level: PromptLevel,
1942 message: &str,
1943 answers: &[&str],
1944 ) -> oneshot::Receiver<usize> {
1945 self.window.platform_window.prompt(level, message, answers)
1946 }
1947
1948 /// Returns all available actions for the focused element.
1949 pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
1950 let node_id = self
1951 .window
1952 .focus
1953 .and_then(|focus_id| {
1954 self.window
1955 .rendered_frame
1956 .dispatch_tree
1957 .focusable_node_id(focus_id)
1958 })
1959 .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1960
1961 self.window
1962 .rendered_frame
1963 .dispatch_tree
1964 .available_actions(node_id)
1965 }
1966
1967 /// Returns key bindings that invoke the given action on the currently focused element.
1968 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
1969 self.window
1970 .rendered_frame
1971 .dispatch_tree
1972 .bindings_for_action(
1973 action,
1974 &self.window.rendered_frame.dispatch_tree.context_stack,
1975 )
1976 }
1977
1978 /// Returns any bindings that would invoke the given action on the given focus handle if it were focused.
1979 pub fn bindings_for_action_in(
1980 &self,
1981 action: &dyn Action,
1982 focus_handle: &FocusHandle,
1983 ) -> Vec<KeyBinding> {
1984 let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
1985
1986 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
1987 return vec![];
1988 };
1989 let context_stack = dispatch_tree
1990 .dispatch_path(node_id)
1991 .into_iter()
1992 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
1993 .collect();
1994 dispatch_tree.bindings_for_action(action, &context_stack)
1995 }
1996
1997 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
1998 pub fn listener_for<V: Render, E>(
1999 &self,
2000 view: &View<V>,
2001 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
2002 ) -> impl Fn(&E, &mut WindowContext) + 'static {
2003 let view = view.downgrade();
2004 move |e: &E, cx: &mut WindowContext| {
2005 view.update(cx, |view, cx| f(view, e, cx)).ok();
2006 }
2007 }
2008
2009 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
2010 pub fn handler_for<V: Render>(
2011 &self,
2012 view: &View<V>,
2013 f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
2014 ) -> impl Fn(&mut WindowContext) {
2015 let view = view.downgrade();
2016 move |cx: &mut WindowContext| {
2017 view.update(cx, |view, cx| f(view, cx)).ok();
2018 }
2019 }
2020
2021 /// Invoke the given function with the given focus handle present on the key dispatch stack.
2022 /// If you want an element to participate in key dispatch, use this method to push its key context and focus handle into the stack during paint.
2023 pub fn with_key_dispatch<R>(
2024 &mut self,
2025 context: Option<KeyContext>,
2026 focus_handle: Option<FocusHandle>,
2027 f: impl FnOnce(Option<FocusHandle>, &mut Self) -> R,
2028 ) -> R {
2029 let window = &mut self.window;
2030 let focus_id = focus_handle.as_ref().map(|handle| handle.id);
2031 window
2032 .next_frame
2033 .dispatch_tree
2034 .push_node(context.clone(), focus_id, None);
2035
2036 let result = f(focus_handle, self);
2037
2038 self.window.next_frame.dispatch_tree.pop_node();
2039
2040 result
2041 }
2042
2043 /// Invoke the given function with the given view id present on the view stack.
2044 /// This is a fairly low-level method used to layout views.
2045 pub fn with_view_id<R>(&mut self, view_id: EntityId, f: impl FnOnce(&mut Self) -> R) -> R {
2046 let text_system = self.text_system().clone();
2047 text_system.with_view(view_id, || {
2048 if self.window.next_frame.view_stack.last() == Some(&view_id) {
2049 return f(self);
2050 } else {
2051 self.window.next_frame.view_stack.push(view_id);
2052 let result = f(self);
2053 self.window.next_frame.view_stack.pop();
2054 result
2055 }
2056 })
2057 }
2058
2059 /// Invoke the given function with the given view id present on the view stack.
2060 /// This is a fairly low-level method used to paint views.
2061 pub fn paint_view<R>(&mut self, view_id: EntityId, f: impl FnOnce(&mut Self) -> R) -> R {
2062 let text_system = self.text_system().clone();
2063 text_system.with_view(view_id, || {
2064 if self.window.next_frame.view_stack.last() == Some(&view_id) {
2065 return f(self);
2066 } else {
2067 self.window.next_frame.view_stack.push(view_id);
2068 self.window
2069 .next_frame
2070 .dispatch_tree
2071 .push_node(None, None, Some(view_id));
2072 let result = f(self);
2073 self.window.next_frame.dispatch_tree.pop_node();
2074 self.window.next_frame.view_stack.pop();
2075 result
2076 }
2077 })
2078 }
2079
2080 /// Update or initialize state for an element with the given id that lives across multiple
2081 /// frames. If an element with this id existed in the rendered frame, its state will be passed
2082 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2083 /// when drawing the next frame.
2084 pub(crate) fn with_element_state<S, R>(
2085 &mut self,
2086 id: ElementId,
2087 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2088 ) -> R
2089 where
2090 S: 'static,
2091 {
2092 self.with_element_id(Some(id), |cx| {
2093 let global_id = cx.window().element_id_stack.clone();
2094
2095 if let Some(any) = cx
2096 .window_mut()
2097 .next_frame
2098 .element_states
2099 .remove(&global_id)
2100 .or_else(|| {
2101 cx.window_mut()
2102 .rendered_frame
2103 .element_states
2104 .remove(&global_id)
2105 })
2106 {
2107 let ElementStateBox {
2108 inner,
2109 parent_view_id,
2110 #[cfg(debug_assertions)]
2111 type_name
2112 } = any;
2113 // Using the extra inner option to avoid needing to reallocate a new box.
2114 let mut state_box = inner
2115 .downcast::<Option<S>>()
2116 .map_err(|_| {
2117 #[cfg(debug_assertions)]
2118 {
2119 anyhow!(
2120 "invalid element state type for id, requested_type {:?}, actual type: {:?}",
2121 std::any::type_name::<S>(),
2122 type_name
2123 )
2124 }
2125
2126 #[cfg(not(debug_assertions))]
2127 {
2128 anyhow!(
2129 "invalid element state type for id, requested_type {:?}",
2130 std::any::type_name::<S>(),
2131 )
2132 }
2133 })
2134 .unwrap();
2135
2136 // Actual: Option<AnyElement> <- View
2137 // Requested: () <- AnyElement
2138 let state = state_box
2139 .take()
2140 .expect("element state is already on the stack");
2141 let (result, state) = f(Some(state), cx);
2142 state_box.replace(state);
2143 cx.window_mut()
2144 .next_frame
2145 .element_states
2146 .insert(global_id, ElementStateBox {
2147 inner: state_box,
2148 parent_view_id,
2149 #[cfg(debug_assertions)]
2150 type_name
2151 });
2152 result
2153 } else {
2154 let (result, state) = f(None, cx);
2155 let parent_view_id = cx.parent_view_id();
2156 cx.window_mut()
2157 .next_frame
2158 .element_states
2159 .insert(global_id,
2160 ElementStateBox {
2161 inner: Box::new(Some(state)),
2162 parent_view_id,
2163 #[cfg(debug_assertions)]
2164 type_name: std::any::type_name::<S>()
2165 }
2166
2167 );
2168 result
2169 }
2170 })
2171 }
2172
2173 fn parent_view_id(&self) -> EntityId {
2174 *self
2175 .window
2176 .next_frame
2177 .view_stack
2178 .last()
2179 .expect("a view should always be on the stack while drawing")
2180 }
2181
2182 /// Set an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2183 /// platform to receive textual input with proper integration with concerns such
2184 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2185 /// rendered.
2186 ///
2187 /// [element_input_handler]: crate::ElementInputHandler
2188 pub fn handle_input(
2189 &mut self,
2190 focus_handle: &FocusHandle,
2191 input_handler: impl PlatformInputHandler,
2192 ) {
2193 if focus_handle.is_focused(self) {
2194 let view_id = self.parent_view_id();
2195 self.window.next_frame.requested_input_handler = Some(RequestedInputHandler {
2196 view_id,
2197 handler: Some(Box::new(input_handler)),
2198 })
2199 }
2200 }
2201
2202 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
2203 /// If the callback returns false, the window won't be closed.
2204 pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
2205 let mut this = self.to_async();
2206 self.window
2207 .platform_window
2208 .on_should_close(Box::new(move || {
2209 this.update(|_, cx| {
2210 // Ensure that the window is removed from the app if it's been closed
2211 // by always pre-empting the system close event.
2212 if f(cx) {
2213 cx.remove_window();
2214 }
2215 false
2216 })
2217 .unwrap_or(true)
2218 }))
2219 }
2220}
2221
2222impl Context for WindowContext<'_> {
2223 type Result<T> = T;
2224
2225 fn new_model<T>(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model<T>
2226 where
2227 T: 'static,
2228 {
2229 let slot = self.app.entities.reserve();
2230 let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
2231 self.entities.insert(slot, model)
2232 }
2233
2234 fn update_model<T: 'static, R>(
2235 &mut self,
2236 model: &Model<T>,
2237 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2238 ) -> R {
2239 let mut entity = self.entities.lease(model);
2240 let result = update(
2241 &mut *entity,
2242 &mut ModelContext::new(&mut *self.app, model.downgrade()),
2243 );
2244 self.entities.end_lease(entity);
2245 result
2246 }
2247
2248 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2249 where
2250 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2251 {
2252 if window == self.window.handle {
2253 let root_view = self.window.root_view.clone().unwrap();
2254 Ok(update(root_view, self))
2255 } else {
2256 window.update(self.app, update)
2257 }
2258 }
2259
2260 fn read_model<T, R>(
2261 &self,
2262 handle: &Model<T>,
2263 read: impl FnOnce(&T, &AppContext) -> R,
2264 ) -> Self::Result<R>
2265 where
2266 T: 'static,
2267 {
2268 let entity = self.entities.read(handle);
2269 read(entity, &*self.app)
2270 }
2271
2272 fn read_window<T, R>(
2273 &self,
2274 window: &WindowHandle<T>,
2275 read: impl FnOnce(View<T>, &AppContext) -> R,
2276 ) -> Result<R>
2277 where
2278 T: 'static,
2279 {
2280 if window.any_handle == self.window.handle {
2281 let root_view = self
2282 .window
2283 .root_view
2284 .clone()
2285 .unwrap()
2286 .downcast::<T>()
2287 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2288 Ok(read(root_view, self))
2289 } else {
2290 self.app.read_window(window, read)
2291 }
2292 }
2293}
2294
2295impl VisualContext for WindowContext<'_> {
2296 fn new_view<V>(
2297 &mut self,
2298 build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
2299 ) -> Self::Result<View<V>>
2300 where
2301 V: 'static + Render,
2302 {
2303 let slot = self.app.entities.reserve();
2304 let view = View {
2305 model: slot.clone(),
2306 };
2307 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
2308 let entity = build_view_state(&mut cx);
2309 cx.entities.insert(slot, entity);
2310
2311 cx.new_view_observers
2312 .clone()
2313 .retain(&TypeId::of::<V>(), |observer| {
2314 let any_view = AnyView::from(view.clone());
2315 (observer)(any_view, self);
2316 true
2317 });
2318
2319 view
2320 }
2321
2322 /// Update the given view. Prefer calling `View::update` instead, which calls this method.
2323 fn update_view<T: 'static, R>(
2324 &mut self,
2325 view: &View<T>,
2326 update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
2327 ) -> Self::Result<R> {
2328 let mut lease = self.app.entities.lease(&view.model);
2329 let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, view);
2330 let result = update(&mut *lease, &mut cx);
2331 cx.app.entities.end_lease(lease);
2332 result
2333 }
2334
2335 fn replace_root_view<V>(
2336 &mut self,
2337 build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
2338 ) -> Self::Result<View<V>>
2339 where
2340 V: 'static + Render,
2341 {
2342 let view = self.new_view(build_view);
2343 self.window.root_view = Some(view.clone().into());
2344 self.refresh();
2345 view
2346 }
2347
2348 fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
2349 self.update_view(view, |view, cx| {
2350 view.focus_handle(cx).clone().focus(cx);
2351 })
2352 }
2353
2354 fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
2355 where
2356 V: ManagedView,
2357 {
2358 self.update_view(view, |_, cx| cx.emit(DismissEvent))
2359 }
2360}
2361
2362impl<'a> std::ops::Deref for WindowContext<'a> {
2363 type Target = AppContext;
2364
2365 fn deref(&self) -> &Self::Target {
2366 self.app
2367 }
2368}
2369
2370impl<'a> std::ops::DerefMut for WindowContext<'a> {
2371 fn deref_mut(&mut self) -> &mut Self::Target {
2372 self.app
2373 }
2374}
2375
2376impl<'a> Borrow<AppContext> for WindowContext<'a> {
2377 fn borrow(&self) -> &AppContext {
2378 self.app
2379 }
2380}
2381
2382impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
2383 fn borrow_mut(&mut self) -> &mut AppContext {
2384 self.app
2385 }
2386}
2387
2388/// This trait contains functionality that is shared across [`ViewContext`] and [`WindowContext`]
2389pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
2390 #[doc(hidden)]
2391 fn app_mut(&mut self) -> &mut AppContext {
2392 self.borrow_mut()
2393 }
2394
2395 #[doc(hidden)]
2396 fn app(&self) -> &AppContext {
2397 self.borrow()
2398 }
2399
2400 #[doc(hidden)]
2401 fn window(&self) -> &Window {
2402 self.borrow()
2403 }
2404
2405 #[doc(hidden)]
2406 fn window_mut(&mut self) -> &mut Window {
2407 self.borrow_mut()
2408 }
2409
2410 /// Pushes the given element id onto the global stack and invokes the given closure
2411 /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
2412 /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
2413 /// used to associate state with identified elements across separate frames.
2414 fn with_element_id<R>(
2415 &mut self,
2416 id: Option<impl Into<ElementId>>,
2417 f: impl FnOnce(&mut Self) -> R,
2418 ) -> R {
2419 if let Some(id) = id.map(Into::into) {
2420 let window = self.window_mut();
2421 window.element_id_stack.push(id);
2422 let result = f(self);
2423 let window: &mut Window = self.borrow_mut();
2424 window.element_id_stack.pop();
2425 result
2426 } else {
2427 f(self)
2428 }
2429 }
2430
2431 /// Invoke the given function with the given content mask after intersecting it
2432 /// with the current mask.
2433 fn with_content_mask<R>(
2434 &mut self,
2435 mask: Option<ContentMask<Pixels>>,
2436 f: impl FnOnce(&mut Self) -> R,
2437 ) -> R {
2438 if let Some(mask) = mask {
2439 let mask = mask.intersect(&self.content_mask());
2440 self.window_mut().next_frame.content_mask_stack.push(mask);
2441 let result = f(self);
2442 self.window_mut().next_frame.content_mask_stack.pop();
2443 result
2444 } else {
2445 f(self)
2446 }
2447 }
2448
2449 /// Invoke the given function with the content mask reset to that
2450 /// of the window.
2451 fn break_content_mask<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
2452 let mask = ContentMask {
2453 bounds: Bounds {
2454 origin: Point::default(),
2455 size: self.window().viewport_size,
2456 },
2457 };
2458
2459 let new_root_z_index = post_inc(&mut self.window_mut().next_frame.next_root_z_index);
2460 let new_stacking_order_id =
2461 post_inc(&mut self.window_mut().next_frame.next_stacking_order_id);
2462 let new_context = StackingContext {
2463 z_index: new_root_z_index,
2464 id: new_stacking_order_id,
2465 };
2466
2467 let old_stacking_order = mem::take(&mut self.window_mut().next_frame.z_index_stack);
2468
2469 self.window_mut().next_frame.z_index_stack.push(new_context);
2470 self.window_mut().next_frame.content_mask_stack.push(mask);
2471 let result = f(self);
2472 self.window_mut().next_frame.content_mask_stack.pop();
2473 self.window_mut().next_frame.z_index_stack = old_stacking_order;
2474
2475 result
2476 }
2477
2478 /// Called during painting to invoke the given closure in a new stacking context. The given
2479 /// z-index is interpreted relative to the previous call to `stack`.
2480 fn with_z_index<R>(&mut self, z_index: u16, f: impl FnOnce(&mut Self) -> R) -> R {
2481 let new_stacking_order_id =
2482 post_inc(&mut self.window_mut().next_frame.next_stacking_order_id);
2483 let new_context = StackingContext {
2484 z_index,
2485 id: new_stacking_order_id,
2486 };
2487
2488 self.window_mut().next_frame.z_index_stack.push(new_context);
2489 let result = f(self);
2490 self.window_mut().next_frame.z_index_stack.pop();
2491
2492 result
2493 }
2494
2495 /// Update the global element offset relative to the current offset. This is used to implement
2496 /// scrolling.
2497 fn with_element_offset<R>(
2498 &mut self,
2499 offset: Point<Pixels>,
2500 f: impl FnOnce(&mut Self) -> R,
2501 ) -> R {
2502 if offset.is_zero() {
2503 return f(self);
2504 };
2505
2506 let abs_offset = self.element_offset() + offset;
2507 self.with_absolute_element_offset(abs_offset, f)
2508 }
2509
2510 /// Update the global element offset based on the given offset. This is used to implement
2511 /// drag handles and other manual painting of elements.
2512 fn with_absolute_element_offset<R>(
2513 &mut self,
2514 offset: Point<Pixels>,
2515 f: impl FnOnce(&mut Self) -> R,
2516 ) -> R {
2517 self.window_mut()
2518 .next_frame
2519 .element_offset_stack
2520 .push(offset);
2521 let result = f(self);
2522 self.window_mut().next_frame.element_offset_stack.pop();
2523 result
2524 }
2525
2526 /// Obtain the current element offset.
2527 fn element_offset(&self) -> Point<Pixels> {
2528 self.window()
2529 .next_frame
2530 .element_offset_stack
2531 .last()
2532 .copied()
2533 .unwrap_or_default()
2534 }
2535
2536 /// Obtain the current content mask.
2537 fn content_mask(&self) -> ContentMask<Pixels> {
2538 self.window()
2539 .next_frame
2540 .content_mask_stack
2541 .last()
2542 .cloned()
2543 .unwrap_or_else(|| ContentMask {
2544 bounds: Bounds {
2545 origin: Point::default(),
2546 size: self.window().viewport_size,
2547 },
2548 })
2549 }
2550
2551 /// The size of an em for the base font of the application. Adjusting this value allows the
2552 /// UI to scale, just like zooming a web page.
2553 fn rem_size(&self) -> Pixels {
2554 self.window().rem_size
2555 }
2556}
2557
2558impl Borrow<Window> for WindowContext<'_> {
2559 fn borrow(&self) -> &Window {
2560 self.window
2561 }
2562}
2563
2564impl BorrowMut<Window> for WindowContext<'_> {
2565 fn borrow_mut(&mut self) -> &mut Window {
2566 self.window
2567 }
2568}
2569
2570impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
2571
2572/// Provides access to application state that is specialized for a particular [`View`].
2573/// Allows you to interact with focus, emit events, etc.
2574/// ViewContext also derefs to [`WindowContext`], giving you access to all of its methods as well.
2575/// When you call [`View::update`], you're passed a `&mut V` and an `&mut ViewContext<V>`.
2576pub struct ViewContext<'a, V> {
2577 window_cx: WindowContext<'a>,
2578 view: &'a View<V>,
2579}
2580
2581impl<V> Borrow<AppContext> for ViewContext<'_, V> {
2582 fn borrow(&self) -> &AppContext {
2583 &*self.window_cx.app
2584 }
2585}
2586
2587impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
2588 fn borrow_mut(&mut self) -> &mut AppContext {
2589 &mut *self.window_cx.app
2590 }
2591}
2592
2593impl<V> Borrow<Window> for ViewContext<'_, V> {
2594 fn borrow(&self) -> &Window {
2595 &*self.window_cx.window
2596 }
2597}
2598
2599impl<V> BorrowMut<Window> for ViewContext<'_, V> {
2600 fn borrow_mut(&mut self) -> &mut Window {
2601 &mut *self.window_cx.window
2602 }
2603}
2604
2605impl<'a, V: 'static> ViewContext<'a, V> {
2606 pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
2607 Self {
2608 window_cx: WindowContext::new(app, window),
2609 view,
2610 }
2611 }
2612
2613 /// Get the entity_id of this view.
2614 pub fn entity_id(&self) -> EntityId {
2615 self.view.entity_id()
2616 }
2617
2618 /// Get the view pointer underlying this context.
2619 pub fn view(&self) -> &View<V> {
2620 self.view
2621 }
2622
2623 /// Get the model underlying this view.
2624 pub fn model(&self) -> &Model<V> {
2625 &self.view.model
2626 }
2627
2628 /// Access the underlying window context.
2629 pub fn window_context(&mut self) -> &mut WindowContext<'a> {
2630 &mut self.window_cx
2631 }
2632
2633 /// Set a given callback to be run on the next frame.
2634 pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
2635 where
2636 V: 'static,
2637 {
2638 let view = self.view().clone();
2639 self.window_cx.on_next_frame(move |cx| view.update(cx, f));
2640 }
2641
2642 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
2643 /// that are currently on the stack to be returned to the app.
2644 pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
2645 let view = self.view().downgrade();
2646 self.window_cx.defer(move |cx| {
2647 view.update(cx, f).ok();
2648 });
2649 }
2650
2651 /// Observe another model or view for changes to its state, as tracked by [`ModelContext::notify`].
2652 pub fn observe<V2, E>(
2653 &mut self,
2654 entity: &E,
2655 mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
2656 ) -> Subscription
2657 where
2658 V2: 'static,
2659 V: 'static,
2660 E: Entity<V2>,
2661 {
2662 let view = self.view().downgrade();
2663 let entity_id = entity.entity_id();
2664 let entity = entity.downgrade();
2665 let window_handle = self.window.handle;
2666 let (subscription, activate) = self.app.observers.insert(
2667 entity_id,
2668 Box::new(move |cx| {
2669 window_handle
2670 .update(cx, |_, cx| {
2671 if let Some(handle) = E::upgrade_from(&entity) {
2672 view.update(cx, |this, cx| on_notify(this, handle, cx))
2673 .is_ok()
2674 } else {
2675 false
2676 }
2677 })
2678 .unwrap_or(false)
2679 }),
2680 );
2681 self.app.defer(move |_| activate());
2682 subscription
2683 }
2684
2685 /// Subscribe to events emitted by another model or view.
2686 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
2687 /// The callback will be invoked with a reference to the current view, a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a view context for the current view.
2688 pub fn subscribe<V2, E, Evt>(
2689 &mut self,
2690 entity: &E,
2691 mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
2692 ) -> Subscription
2693 where
2694 V2: EventEmitter<Evt>,
2695 E: Entity<V2>,
2696 Evt: 'static,
2697 {
2698 let view = self.view().downgrade();
2699 let entity_id = entity.entity_id();
2700 let handle = entity.downgrade();
2701 let window_handle = self.window.handle;
2702 let (subscription, activate) = self.app.event_listeners.insert(
2703 entity_id,
2704 (
2705 TypeId::of::<Evt>(),
2706 Box::new(move |event, cx| {
2707 window_handle
2708 .update(cx, |_, cx| {
2709 if let Some(handle) = E::upgrade_from(&handle) {
2710 let event = event.downcast_ref().expect("invalid event type");
2711 view.update(cx, |this, cx| on_event(this, handle, event, cx))
2712 .is_ok()
2713 } else {
2714 false
2715 }
2716 })
2717 .unwrap_or(false)
2718 }),
2719 ),
2720 );
2721 self.app.defer(move |_| activate());
2722 subscription
2723 }
2724
2725 /// Register a callback to be invoked when the view is released.
2726 ///
2727 /// The callback receives a handle to the view's window. This handle may be
2728 /// invalid, if the window was closed before the view was released.
2729 pub fn on_release(
2730 &mut self,
2731 on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static,
2732 ) -> Subscription {
2733 let window_handle = self.window.handle;
2734 let (subscription, activate) = self.app.release_listeners.insert(
2735 self.view.model.entity_id,
2736 Box::new(move |this, cx| {
2737 let this = this.downcast_mut().expect("invalid entity type");
2738 on_release(this, window_handle, cx)
2739 }),
2740 );
2741 activate();
2742 subscription
2743 }
2744
2745 /// Register a callback to be invoked when the given Model or View is released.
2746 pub fn observe_release<V2, E>(
2747 &mut self,
2748 entity: &E,
2749 mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
2750 ) -> Subscription
2751 where
2752 V: 'static,
2753 V2: 'static,
2754 E: Entity<V2>,
2755 {
2756 let view = self.view().downgrade();
2757 let entity_id = entity.entity_id();
2758 let window_handle = self.window.handle;
2759 let (subscription, activate) = self.app.release_listeners.insert(
2760 entity_id,
2761 Box::new(move |entity, cx| {
2762 let entity = entity.downcast_mut().expect("invalid entity type");
2763 let _ = window_handle.update(cx, |_, cx| {
2764 view.update(cx, |this, cx| on_release(this, entity, cx))
2765 });
2766 }),
2767 );
2768 activate();
2769 subscription
2770 }
2771
2772 /// Indicate that this view has changed, which will invoke any observers and also mark the window as dirty.
2773 /// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
2774 pub fn notify(&mut self) {
2775 for view_id in self
2776 .window
2777 .rendered_frame
2778 .dispatch_tree
2779 .view_path(self.view.entity_id())
2780 .into_iter()
2781 .rev()
2782 {
2783 if !self.window.dirty_views.insert(view_id) {
2784 break;
2785 }
2786 }
2787
2788 if !self.window.drawing {
2789 self.window_cx.window.dirty = true;
2790 self.window_cx.app.push_effect(Effect::Notify {
2791 emitter: self.view.model.entity_id,
2792 });
2793 }
2794 }
2795
2796 /// Register a callback to be invoked when the window is resized.
2797 pub fn observe_window_bounds(
2798 &mut self,
2799 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2800 ) -> Subscription {
2801 let view = self.view.downgrade();
2802 let (subscription, activate) = self.window.bounds_observers.insert(
2803 (),
2804 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2805 );
2806 activate();
2807 subscription
2808 }
2809
2810 /// Register a callback to be invoked when the window is activated or deactivated.
2811 pub fn observe_window_activation(
2812 &mut self,
2813 mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2814 ) -> Subscription {
2815 let view = self.view.downgrade();
2816 let (subscription, activate) = self.window.activation_observers.insert(
2817 (),
2818 Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2819 );
2820 activate();
2821 subscription
2822 }
2823
2824 /// Register a listener to be called when the given focus handle receives focus.
2825 /// Returns a subscription and persists until the subscription is dropped.
2826 pub fn on_focus(
2827 &mut self,
2828 handle: &FocusHandle,
2829 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2830 ) -> Subscription {
2831 let view = self.view.downgrade();
2832 let focus_id = handle.id;
2833 let (subscription, activate) = self.window.focus_listeners.insert(
2834 (),
2835 Box::new(move |event, cx| {
2836 view.update(cx, |view, cx| {
2837 if event.previous_focus_path.last() != Some(&focus_id)
2838 && event.current_focus_path.last() == Some(&focus_id)
2839 {
2840 listener(view, cx)
2841 }
2842 })
2843 .is_ok()
2844 }),
2845 );
2846 self.app.defer(move |_| activate());
2847 subscription
2848 }
2849
2850 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2851 /// Returns a subscription and persists until the subscription is dropped.
2852 pub fn on_focus_in(
2853 &mut self,
2854 handle: &FocusHandle,
2855 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2856 ) -> Subscription {
2857 let view = self.view.downgrade();
2858 let focus_id = handle.id;
2859 let (subscription, activate) = self.window.focus_listeners.insert(
2860 (),
2861 Box::new(move |event, cx| {
2862 view.update(cx, |view, cx| {
2863 if !event.previous_focus_path.contains(&focus_id)
2864 && event.current_focus_path.contains(&focus_id)
2865 {
2866 listener(view, cx)
2867 }
2868 })
2869 .is_ok()
2870 }),
2871 );
2872 self.app.defer(move |_| activate());
2873 subscription
2874 }
2875
2876 /// Register a listener to be called when the given focus handle loses focus.
2877 /// Returns a subscription and persists until the subscription is dropped.
2878 pub fn on_blur(
2879 &mut self,
2880 handle: &FocusHandle,
2881 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2882 ) -> Subscription {
2883 let view = self.view.downgrade();
2884 let focus_id = handle.id;
2885 let (subscription, activate) = self.window.focus_listeners.insert(
2886 (),
2887 Box::new(move |event, cx| {
2888 view.update(cx, |view, cx| {
2889 if event.previous_focus_path.last() == Some(&focus_id)
2890 && event.current_focus_path.last() != Some(&focus_id)
2891 {
2892 listener(view, cx)
2893 }
2894 })
2895 .is_ok()
2896 }),
2897 );
2898 self.app.defer(move |_| activate());
2899 subscription
2900 }
2901
2902 /// Register a listener to be called when nothing in the window has focus.
2903 /// This typically happens when the node that was focused is removed from the tree,
2904 /// and this callback lets you chose a default place to restore the users focus.
2905 /// Returns a subscription and persists until the subscription is dropped.
2906 pub fn on_focus_lost(
2907 &mut self,
2908 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2909 ) -> Subscription {
2910 let view = self.view.downgrade();
2911 let (subscription, activate) = self.window.focus_lost_listeners.insert(
2912 (),
2913 Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
2914 );
2915 activate();
2916 subscription
2917 }
2918
2919 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2920 /// Returns a subscription and persists until the subscription is dropped.
2921 pub fn on_focus_out(
2922 &mut self,
2923 handle: &FocusHandle,
2924 mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2925 ) -> Subscription {
2926 let view = self.view.downgrade();
2927 let focus_id = handle.id;
2928 let (subscription, activate) = self.window.focus_listeners.insert(
2929 (),
2930 Box::new(move |event, cx| {
2931 view.update(cx, |view, cx| {
2932 if event.previous_focus_path.contains(&focus_id)
2933 && !event.current_focus_path.contains(&focus_id)
2934 {
2935 listener(view, cx)
2936 }
2937 })
2938 .is_ok()
2939 }),
2940 );
2941 self.app.defer(move |_| activate());
2942 subscription
2943 }
2944
2945 /// Schedule a future to be run asynchronously.
2946 /// The given callback is invoked with a [`WeakView<V>`] to avoid leaking the view for a long-running process.
2947 /// It's also given an [`AsyncWindowContext`], which can be used to access the state of the view across await points.
2948 /// The returned future will be polled on the main thread.
2949 pub fn spawn<Fut, R>(
2950 &mut self,
2951 f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
2952 ) -> Task<R>
2953 where
2954 R: 'static,
2955 Fut: Future<Output = R> + 'static,
2956 {
2957 let view = self.view().downgrade();
2958 self.window_cx.spawn(|cx| f(view, cx))
2959 }
2960
2961 /// Update the global state of the given type.
2962 pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
2963 where
2964 G: 'static,
2965 {
2966 let mut global = self.app.lease_global::<G>();
2967 let result = f(&mut global, self);
2968 self.app.end_global_lease(global);
2969 result
2970 }
2971
2972 /// Register a callback to be invoked when the given global state changes.
2973 pub fn observe_global<G: 'static>(
2974 &mut self,
2975 mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
2976 ) -> Subscription {
2977 let window_handle = self.window.handle;
2978 let view = self.view().downgrade();
2979 let (subscription, activate) = self.global_observers.insert(
2980 TypeId::of::<G>(),
2981 Box::new(move |cx| {
2982 window_handle
2983 .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
2984 .unwrap_or(false)
2985 }),
2986 );
2987 self.app.defer(move |_| activate());
2988 subscription
2989 }
2990
2991 /// Add a listener for any mouse event that occurs in the window.
2992 /// This is a fairly low level method.
2993 /// Typically, you'll want to use methods on UI elements, which perform bounds checking etc.
2994 pub fn on_mouse_event<Event: MouseEvent>(
2995 &mut self,
2996 handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2997 ) {
2998 let handle = self.view().clone();
2999 self.window_cx.on_mouse_event(move |event, phase, cx| {
3000 handle.update(cx, |view, cx| {
3001 handler(view, event, phase, cx);
3002 })
3003 });
3004 }
3005
3006 /// Register a callback to be invoked when the given Key Event is dispatched to the window.
3007 pub fn on_key_event<Event: KeyEvent>(
3008 &mut self,
3009 handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
3010 ) {
3011 let handle = self.view().clone();
3012 self.window_cx.on_key_event(move |event, phase, cx| {
3013 handle.update(cx, |view, cx| {
3014 handler(view, event, phase, cx);
3015 })
3016 });
3017 }
3018
3019 /// Register a callback to be invoked when the given Action type is dispatched to the window.
3020 pub fn on_action(
3021 &mut self,
3022 action_type: TypeId,
3023 listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
3024 ) {
3025 let handle = self.view().clone();
3026 self.window_cx
3027 .on_action(action_type, move |action, phase, cx| {
3028 handle.update(cx, |view, cx| {
3029 listener(view, action, phase, cx);
3030 })
3031 });
3032 }
3033
3034 /// Emit an event to be handled any other views that have subscribed via [ViewContext::subscribe].
3035 pub fn emit<Evt>(&mut self, event: Evt)
3036 where
3037 Evt: 'static,
3038 V: EventEmitter<Evt>,
3039 {
3040 let emitter = self.view.model.entity_id;
3041 self.app.push_effect(Effect::Emit {
3042 emitter,
3043 event_type: TypeId::of::<Evt>(),
3044 event: Box::new(event),
3045 });
3046 }
3047
3048 /// Move focus to the current view, assuming it implements [`FocusableView`].
3049 pub fn focus_self(&mut self)
3050 where
3051 V: FocusableView,
3052 {
3053 self.defer(|view, cx| view.focus_handle(cx).focus(cx))
3054 }
3055
3056 /// Convenience method for accessing view state in an event callback.
3057 ///
3058 /// Many GPUI callbacks take the form of `Fn(&E, &mut WindowContext)`,
3059 /// but it's often useful to be able to access view state in these
3060 /// callbacks. This method provides a convenient way to do so.
3061 pub fn listener<E>(
3062 &self,
3063 f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
3064 ) -> impl Fn(&E, &mut WindowContext) + 'static {
3065 let view = self.view().downgrade();
3066 move |e: &E, cx: &mut WindowContext| {
3067 view.update(cx, |view, cx| f(view, e, cx)).ok();
3068 }
3069 }
3070}
3071
3072impl<V> Context for ViewContext<'_, V> {
3073 type Result<U> = U;
3074
3075 fn new_model<T: 'static>(
3076 &mut self,
3077 build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
3078 ) -> Model<T> {
3079 self.window_cx.new_model(build_model)
3080 }
3081
3082 fn update_model<T: 'static, R>(
3083 &mut self,
3084 model: &Model<T>,
3085 update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
3086 ) -> R {
3087 self.window_cx.update_model(model, update)
3088 }
3089
3090 fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
3091 where
3092 F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
3093 {
3094 self.window_cx.update_window(window, update)
3095 }
3096
3097 fn read_model<T, R>(
3098 &self,
3099 handle: &Model<T>,
3100 read: impl FnOnce(&T, &AppContext) -> R,
3101 ) -> Self::Result<R>
3102 where
3103 T: 'static,
3104 {
3105 self.window_cx.read_model(handle, read)
3106 }
3107
3108 fn read_window<T, R>(
3109 &self,
3110 window: &WindowHandle<T>,
3111 read: impl FnOnce(View<T>, &AppContext) -> R,
3112 ) -> Result<R>
3113 where
3114 T: 'static,
3115 {
3116 self.window_cx.read_window(window, read)
3117 }
3118}
3119
3120impl<V: 'static> VisualContext for ViewContext<'_, V> {
3121 fn new_view<W: Render + 'static>(
3122 &mut self,
3123 build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
3124 ) -> Self::Result<View<W>> {
3125 self.window_cx.new_view(build_view_state)
3126 }
3127
3128 fn update_view<V2: 'static, R>(
3129 &mut self,
3130 view: &View<V2>,
3131 update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
3132 ) -> Self::Result<R> {
3133 self.window_cx.update_view(view, update)
3134 }
3135
3136 fn replace_root_view<W>(
3137 &mut self,
3138 build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
3139 ) -> Self::Result<View<W>>
3140 where
3141 W: 'static + Render,
3142 {
3143 self.window_cx.replace_root_view(build_view)
3144 }
3145
3146 fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
3147 self.window_cx.focus_view(view)
3148 }
3149
3150 fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
3151 self.window_cx.dismiss_view(view)
3152 }
3153}
3154
3155impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
3156 type Target = WindowContext<'a>;
3157
3158 fn deref(&self) -> &Self::Target {
3159 &self.window_cx
3160 }
3161}
3162
3163impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
3164 fn deref_mut(&mut self) -> &mut Self::Target {
3165 &mut self.window_cx
3166 }
3167}
3168
3169// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3170slotmap::new_key_type! {
3171 /// A unique identifier for a window.
3172 pub struct WindowId;
3173}
3174
3175impl WindowId {
3176 /// Converts this window ID to a `u64`.
3177 pub fn as_u64(&self) -> u64 {
3178 self.0.as_ffi()
3179 }
3180}
3181
3182/// A handle to a window with a specific root view type.
3183/// Note that this does not keep the window alive on its own.
3184#[derive(Deref, DerefMut)]
3185pub struct WindowHandle<V> {
3186 #[deref]
3187 #[deref_mut]
3188 pub(crate) any_handle: AnyWindowHandle,
3189 state_type: PhantomData<V>,
3190}
3191
3192impl<V: 'static + Render> WindowHandle<V> {
3193 /// Create a new handle from a window ID.
3194 /// This does not check if the root type of the window is `V`.
3195 pub fn new(id: WindowId) -> Self {
3196 WindowHandle {
3197 any_handle: AnyWindowHandle {
3198 id,
3199 state_type: TypeId::of::<V>(),
3200 },
3201 state_type: PhantomData,
3202 }
3203 }
3204
3205 /// Get the root view out of this window.
3206 ///
3207 /// This will fail if the window is closed or if the root view's type does not match `V`.
3208 pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
3209 where
3210 C: Context,
3211 {
3212 Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
3213 root_view
3214 .downcast::<V>()
3215 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3216 }))
3217 }
3218
3219 /// Update the root view of this window.
3220 ///
3221 /// This will fail if the window has been closed or if the root view's type does not match
3222 pub fn update<C, R>(
3223 &self,
3224 cx: &mut C,
3225 update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
3226 ) -> Result<R>
3227 where
3228 C: Context,
3229 {
3230 cx.update_window(self.any_handle, |root_view, cx| {
3231 let view = root_view
3232 .downcast::<V>()
3233 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3234 Ok(cx.update_view(&view, update))
3235 })?
3236 }
3237
3238 /// Read the root view out of this window.
3239 ///
3240 /// This will fail if the window is closed or if the root view's type does not match `V`.
3241 pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
3242 let x = cx
3243 .windows
3244 .get(self.id)
3245 .and_then(|window| {
3246 window
3247 .as_ref()
3248 .and_then(|window| window.root_view.clone())
3249 .map(|root_view| root_view.downcast::<V>())
3250 })
3251 .ok_or_else(|| anyhow!("window not found"))?
3252 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3253
3254 Ok(x.read(cx))
3255 }
3256
3257 /// Read the root view out of this window, with a callback
3258 ///
3259 /// This will fail if the window is closed or if the root view's type does not match `V`.
3260 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
3261 where
3262 C: Context,
3263 {
3264 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3265 }
3266
3267 /// Read the root view pointer off of this window.
3268 ///
3269 /// This will fail if the window is closed or if the root view's type does not match `V`.
3270 pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
3271 where
3272 C: Context,
3273 {
3274 cx.read_window(self, |root_view, _cx| root_view.clone())
3275 }
3276
3277 /// Check if this window is 'active'.
3278 ///
3279 /// Will return `None` if the window is closed.
3280 pub fn is_active(&self, cx: &AppContext) -> Option<bool> {
3281 cx.windows
3282 .get(self.id)
3283 .and_then(|window| window.as_ref().map(|window| window.active))
3284 }
3285}
3286
3287impl<V> Copy for WindowHandle<V> {}
3288
3289impl<V> Clone for WindowHandle<V> {
3290 fn clone(&self) -> Self {
3291 *self
3292 }
3293}
3294
3295impl<V> PartialEq for WindowHandle<V> {
3296 fn eq(&self, other: &Self) -> bool {
3297 self.any_handle == other.any_handle
3298 }
3299}
3300
3301impl<V> Eq for WindowHandle<V> {}
3302
3303impl<V> Hash for WindowHandle<V> {
3304 fn hash<H: Hasher>(&self, state: &mut H) {
3305 self.any_handle.hash(state);
3306 }
3307}
3308
3309impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3310 fn from(val: WindowHandle<V>) -> Self {
3311 val.any_handle
3312 }
3313}
3314
3315/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3316#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3317pub struct AnyWindowHandle {
3318 pub(crate) id: WindowId,
3319 state_type: TypeId,
3320}
3321
3322impl AnyWindowHandle {
3323 /// Get the ID of this window.
3324 pub fn window_id(&self) -> WindowId {
3325 self.id
3326 }
3327
3328 /// Attempt to convert this handle to a window handle with a specific root view type.
3329 /// If the types do not match, this will return `None`.
3330 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3331 if TypeId::of::<T>() == self.state_type {
3332 Some(WindowHandle {
3333 any_handle: *self,
3334 state_type: PhantomData,
3335 })
3336 } else {
3337 None
3338 }
3339 }
3340
3341 /// Update the state of the root view of this window.
3342 ///
3343 /// This will fail if the window has been closed.
3344 pub fn update<C, R>(
3345 self,
3346 cx: &mut C,
3347 update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
3348 ) -> Result<R>
3349 where
3350 C: Context,
3351 {
3352 cx.update_window(self, update)
3353 }
3354
3355 /// Read the state of the root view of this window.
3356 ///
3357 /// This will fail if the window has been closed.
3358 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
3359 where
3360 C: Context,
3361 T: 'static,
3362 {
3363 let view = self
3364 .downcast::<T>()
3365 .context("the type of the window's root view has changed")?;
3366
3367 cx.read_window(&view, read)
3368 }
3369}
3370
3371/// An identifier for an [`Element`](crate::Element).
3372///
3373/// Can be constructed with a string, a number, or both, as well
3374/// as other internal representations.
3375#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3376pub enum ElementId {
3377 /// The ID of a View element
3378 View(EntityId),
3379 /// An integer ID.
3380 Integer(usize),
3381 /// A string based ID.
3382 Name(SharedString),
3383 /// An ID that's equated with a focus handle.
3384 FocusHandle(FocusId),
3385 /// A combination of a name and an integer.
3386 NamedInteger(SharedString, usize),
3387}
3388
3389impl Display for ElementId {
3390 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
3391 match self {
3392 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
3393 ElementId::Integer(ix) => write!(f, "{}", ix)?,
3394 ElementId::Name(name) => write!(f, "{}", name)?,
3395 ElementId::FocusHandle(__) => write!(f, "FocusHandle")?,
3396 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
3397 }
3398
3399 Ok(())
3400 }
3401}
3402
3403impl ElementId {
3404 pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
3405 ElementId::View(entity_id)
3406 }
3407}
3408
3409impl TryInto<SharedString> for ElementId {
3410 type Error = anyhow::Error;
3411
3412 fn try_into(self) -> anyhow::Result<SharedString> {
3413 if let ElementId::Name(name) = self {
3414 Ok(name)
3415 } else {
3416 Err(anyhow!("element id is not string"))
3417 }
3418 }
3419}
3420
3421impl From<usize> for ElementId {
3422 fn from(id: usize) -> Self {
3423 ElementId::Integer(id)
3424 }
3425}
3426
3427impl From<i32> for ElementId {
3428 fn from(id: i32) -> Self {
3429 Self::Integer(id as usize)
3430 }
3431}
3432
3433impl From<SharedString> for ElementId {
3434 fn from(name: SharedString) -> Self {
3435 ElementId::Name(name)
3436 }
3437}
3438
3439impl From<&'static str> for ElementId {
3440 fn from(name: &'static str) -> Self {
3441 ElementId::Name(name.into())
3442 }
3443}
3444
3445impl<'a> From<&'a FocusHandle> for ElementId {
3446 fn from(handle: &'a FocusHandle) -> Self {
3447 ElementId::FocusHandle(handle.id)
3448 }
3449}
3450
3451impl From<(&'static str, EntityId)> for ElementId {
3452 fn from((name, id): (&'static str, EntityId)) -> Self {
3453 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
3454 }
3455}
3456
3457impl From<(&'static str, usize)> for ElementId {
3458 fn from((name, id): (&'static str, usize)) -> Self {
3459 ElementId::NamedInteger(name.into(), id)
3460 }
3461}
3462
3463impl From<(&'static str, u64)> for ElementId {
3464 fn from((name, id): (&'static str, u64)) -> Self {
3465 ElementId::NamedInteger(name.into(), id as usize)
3466 }
3467}
3468
3469/// A rectangle to be rendered in the window at the given position and size.
3470/// Passed as an argument [`WindowContext::paint_quad`].
3471#[derive(Clone)]
3472pub struct PaintQuad {
3473 bounds: Bounds<Pixels>,
3474 corner_radii: Corners<Pixels>,
3475 background: Hsla,
3476 border_widths: Edges<Pixels>,
3477 border_color: Hsla,
3478}
3479
3480impl PaintQuad {
3481 /// Set the corner radii of the quad.
3482 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
3483 PaintQuad {
3484 corner_radii: corner_radii.into(),
3485 ..self
3486 }
3487 }
3488
3489 /// Set the border widths of the quad.
3490 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
3491 PaintQuad {
3492 border_widths: border_widths.into(),
3493 ..self
3494 }
3495 }
3496
3497 /// Set the border color of the quad.
3498 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
3499 PaintQuad {
3500 border_color: border_color.into(),
3501 ..self
3502 }
3503 }
3504
3505 /// Set the background color of the quad.
3506 pub fn background(self, background: impl Into<Hsla>) -> Self {
3507 PaintQuad {
3508 background: background.into(),
3509 ..self
3510 }
3511 }
3512}
3513
3514/// Create a quad with the given parameters.
3515pub fn quad(
3516 bounds: Bounds<Pixels>,
3517 corner_radii: impl Into<Corners<Pixels>>,
3518 background: impl Into<Hsla>,
3519 border_widths: impl Into<Edges<Pixels>>,
3520 border_color: impl Into<Hsla>,
3521) -> PaintQuad {
3522 PaintQuad {
3523 bounds,
3524 corner_radii: corner_radii.into(),
3525 background: background.into(),
3526 border_widths: border_widths.into(),
3527 border_color: border_color.into(),
3528 }
3529}
3530
3531/// Create a filled quad with the given bounds and background color.
3532pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
3533 PaintQuad {
3534 bounds: bounds.into(),
3535 corner_radii: (0.).into(),
3536 background: background.into(),
3537 border_widths: (0.).into(),
3538 border_color: transparent_black(),
3539 }
3540}
3541
3542/// Create a rectangle outline with the given bounds, border color, and a 1px border width
3543pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
3544 PaintQuad {
3545 bounds: bounds.into(),
3546 corner_radii: (0.).into(),
3547 background: transparent_black(),
3548 border_widths: (1.).into(),
3549 border_color: border_color.into(),
3550 }
3551}