cloud.rs

  1use super::open_ai::count_open_ai_tokens;
  2use crate::{
  3    settings::AllLanguageModelSettings, CloudModel, LanguageModel, LanguageModelId,
  4    LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
  5    LanguageModelProviderState, LanguageModelRequest, RateLimiter,
  6};
  7use anyhow::{anyhow, Context as _, Result};
  8use client::Client;
  9use collections::BTreeMap;
 10use futures::{future::BoxFuture, stream::BoxStream, FutureExt, StreamExt};
 11use gpui::{AnyView, AppContext, AsyncAppContext, ModelContext, Subscription, Task};
 12use schemars::JsonSchema;
 13use serde::{Deserialize, Serialize};
 14use settings::{Settings, SettingsStore};
 15use std::{future, sync::Arc};
 16use strum::IntoEnumIterator;
 17use ui::prelude::*;
 18
 19use crate::LanguageModelProvider;
 20
 21use super::anthropic::count_anthropic_tokens;
 22
 23pub const PROVIDER_ID: &str = "zed.dev";
 24pub const PROVIDER_NAME: &str = "zed.dev";
 25
 26#[derive(Default, Clone, Debug, PartialEq)]
 27pub struct ZedDotDevSettings {
 28    pub available_models: Vec<AvailableModel>,
 29}
 30
 31#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 32#[serde(rename_all = "lowercase")]
 33pub enum AvailableProvider {
 34    Anthropic,
 35    OpenAi,
 36    Google,
 37}
 38
 39#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 40pub struct AvailableModel {
 41    provider: AvailableProvider,
 42    name: String,
 43    max_tokens: usize,
 44    tool_override: Option<String>,
 45}
 46
 47pub struct CloudLanguageModelProvider {
 48    client: Arc<Client>,
 49    state: gpui::Model<State>,
 50    _maintain_client_status: Task<()>,
 51}
 52
 53pub struct State {
 54    client: Arc<Client>,
 55    status: client::Status,
 56    _subscription: Subscription,
 57}
 58
 59impl State {
 60    fn authenticate(&self, cx: &mut ModelContext<Self>) -> Task<Result<()>> {
 61        let client = self.client.clone();
 62        cx.spawn(move |this, mut cx| async move {
 63            client.authenticate_and_connect(true, &cx).await?;
 64            this.update(&mut cx, |_, cx| cx.notify())
 65        })
 66    }
 67}
 68
 69impl CloudLanguageModelProvider {
 70    pub fn new(client: Arc<Client>, cx: &mut AppContext) -> Self {
 71        let mut status_rx = client.status();
 72        let status = *status_rx.borrow();
 73
 74        let state = cx.new_model(|cx| State {
 75            client: client.clone(),
 76            status,
 77            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 78                cx.notify();
 79            }),
 80        });
 81
 82        let state_ref = state.downgrade();
 83        let maintain_client_status = cx.spawn(|mut cx| async move {
 84            while let Some(status) = status_rx.next().await {
 85                if let Some(this) = state_ref.upgrade() {
 86                    _ = this.update(&mut cx, |this, cx| {
 87                        this.status = status;
 88                        cx.notify();
 89                    });
 90                } else {
 91                    break;
 92                }
 93            }
 94        });
 95
 96        Self {
 97            client,
 98            state,
 99            _maintain_client_status: maintain_client_status,
100        }
101    }
102}
103
104impl LanguageModelProviderState for CloudLanguageModelProvider {
105    type ObservableEntity = State;
106
107    fn observable_entity(&self) -> Option<gpui::Model<Self::ObservableEntity>> {
108        Some(self.state.clone())
109    }
110}
111
112impl LanguageModelProvider for CloudLanguageModelProvider {
113    fn id(&self) -> LanguageModelProviderId {
114        LanguageModelProviderId(PROVIDER_ID.into())
115    }
116
117    fn name(&self) -> LanguageModelProviderName {
118        LanguageModelProviderName(PROVIDER_NAME.into())
119    }
120
121    fn provided_models(&self, cx: &AppContext) -> Vec<Arc<dyn LanguageModel>> {
122        let mut models = BTreeMap::default();
123
124        for model in anthropic::Model::iter() {
125            if !matches!(model, anthropic::Model::Custom { .. }) {
126                models.insert(model.id().to_string(), CloudModel::Anthropic(model));
127            }
128        }
129        for model in open_ai::Model::iter() {
130            if !matches!(model, open_ai::Model::Custom { .. }) {
131                models.insert(model.id().to_string(), CloudModel::OpenAi(model));
132            }
133        }
134        for model in google_ai::Model::iter() {
135            if !matches!(model, google_ai::Model::Custom { .. }) {
136                models.insert(model.id().to_string(), CloudModel::Google(model));
137            }
138        }
139
140        // Override with available models from settings
141        for model in &AllLanguageModelSettings::get_global(cx)
142            .zed_dot_dev
143            .available_models
144        {
145            let model = match model.provider {
146                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
147                    name: model.name.clone(),
148                    max_tokens: model.max_tokens,
149                    tool_override: model.tool_override.clone(),
150                }),
151                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
152                    name: model.name.clone(),
153                    max_tokens: model.max_tokens,
154                }),
155                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
156                    name: model.name.clone(),
157                    max_tokens: model.max_tokens,
158                }),
159            };
160            models.insert(model.id().to_string(), model.clone());
161        }
162
163        models
164            .into_values()
165            .map(|model| {
166                Arc::new(CloudLanguageModel {
167                    id: LanguageModelId::from(model.id().to_string()),
168                    model,
169                    client: self.client.clone(),
170                    request_limiter: RateLimiter::new(4),
171                }) as Arc<dyn LanguageModel>
172            })
173            .collect()
174    }
175
176    fn is_authenticated(&self, cx: &AppContext) -> bool {
177        self.state.read(cx).status.is_connected()
178    }
179
180    fn authenticate(&self, cx: &mut AppContext) -> Task<Result<()>> {
181        self.state.update(cx, |state, cx| state.authenticate(cx))
182    }
183
184    fn authentication_prompt(&self, cx: &mut WindowContext) -> AnyView {
185        cx.new_view(|_cx| AuthenticationPrompt {
186            state: self.state.clone(),
187        })
188        .into()
189    }
190
191    fn reset_credentials(&self, _cx: &mut AppContext) -> Task<Result<()>> {
192        Task::ready(Ok(()))
193    }
194}
195
196pub struct CloudLanguageModel {
197    id: LanguageModelId,
198    model: CloudModel,
199    client: Arc<Client>,
200    request_limiter: RateLimiter,
201}
202
203impl LanguageModel for CloudLanguageModel {
204    fn id(&self) -> LanguageModelId {
205        self.id.clone()
206    }
207
208    fn name(&self) -> LanguageModelName {
209        LanguageModelName::from(self.model.display_name().to_string())
210    }
211
212    fn provider_id(&self) -> LanguageModelProviderId {
213        LanguageModelProviderId(PROVIDER_ID.into())
214    }
215
216    fn provider_name(&self) -> LanguageModelProviderName {
217        LanguageModelProviderName(PROVIDER_NAME.into())
218    }
219
220    fn telemetry_id(&self) -> String {
221        format!("zed.dev/{}", self.model.id())
222    }
223
224    fn max_token_count(&self) -> usize {
225        self.model.max_token_count()
226    }
227
228    fn count_tokens(
229        &self,
230        request: LanguageModelRequest,
231        cx: &AppContext,
232    ) -> BoxFuture<'static, Result<usize>> {
233        match self.model.clone() {
234            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
235            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
236            CloudModel::Google(model) => {
237                let client = self.client.clone();
238                let request = request.into_google(model.id().into());
239                let request = google_ai::CountTokensRequest {
240                    contents: request.contents,
241                };
242                async move {
243                    let request = serde_json::to_string(&request)?;
244                    let response = client
245                        .request(proto::CountLanguageModelTokens {
246                            provider: proto::LanguageModelProvider::Google as i32,
247                            request,
248                        })
249                        .await?;
250                    Ok(response.token_count as usize)
251                }
252                .boxed()
253            }
254        }
255    }
256
257    fn stream_completion(
258        &self,
259        request: LanguageModelRequest,
260        _: &AsyncAppContext,
261    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
262        match &self.model {
263            CloudModel::Anthropic(model) => {
264                let client = self.client.clone();
265                let request = request.into_anthropic(model.id().into());
266                let future = self.request_limiter.stream(async move {
267                    let request = serde_json::to_string(&request)?;
268                    let stream = client
269                        .request_stream(proto::StreamCompleteWithLanguageModel {
270                            provider: proto::LanguageModelProvider::Anthropic as i32,
271                            request,
272                        })
273                        .await?;
274                    Ok(anthropic::extract_text_from_events(
275                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
276                    ))
277                });
278                async move { Ok(future.await?.boxed()) }.boxed()
279            }
280            CloudModel::OpenAi(model) => {
281                let client = self.client.clone();
282                let request = request.into_open_ai(model.id().into());
283                let future = self.request_limiter.stream(async move {
284                    let request = serde_json::to_string(&request)?;
285                    let stream = client
286                        .request_stream(proto::StreamCompleteWithLanguageModel {
287                            provider: proto::LanguageModelProvider::OpenAi as i32,
288                            request,
289                        })
290                        .await?;
291                    Ok(open_ai::extract_text_from_events(
292                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
293                    ))
294                });
295                async move { Ok(future.await?.boxed()) }.boxed()
296            }
297            CloudModel::Google(model) => {
298                let client = self.client.clone();
299                let request = request.into_google(model.id().into());
300                let future = self.request_limiter.stream(async move {
301                    let request = serde_json::to_string(&request)?;
302                    let stream = client
303                        .request_stream(proto::StreamCompleteWithLanguageModel {
304                            provider: proto::LanguageModelProvider::Google as i32,
305                            request,
306                        })
307                        .await?;
308                    Ok(google_ai::extract_text_from_events(
309                        stream.map(|item| Ok(serde_json::from_str(&item?.event)?)),
310                    ))
311                });
312                async move { Ok(future.await?.boxed()) }.boxed()
313            }
314        }
315    }
316
317    fn use_any_tool(
318        &self,
319        request: LanguageModelRequest,
320        tool_name: String,
321        tool_description: String,
322        input_schema: serde_json::Value,
323        _cx: &AsyncAppContext,
324    ) -> BoxFuture<'static, Result<serde_json::Value>> {
325        match &self.model {
326            CloudModel::Anthropic(model) => {
327                let client = self.client.clone();
328                let mut request = request.into_anthropic(model.tool_model_id().into());
329                request.tool_choice = Some(anthropic::ToolChoice::Tool {
330                    name: tool_name.clone(),
331                });
332                request.tools = vec![anthropic::Tool {
333                    name: tool_name.clone(),
334                    description: tool_description,
335                    input_schema,
336                }];
337
338                self.request_limiter
339                    .run(async move {
340                        let request = serde_json::to_string(&request)?;
341                        let response = client
342                            .request(proto::CompleteWithLanguageModel {
343                                provider: proto::LanguageModelProvider::Anthropic as i32,
344                                request,
345                            })
346                            .await?;
347                        let response: anthropic::Response =
348                            serde_json::from_str(&response.completion)?;
349                        response
350                            .content
351                            .into_iter()
352                            .find_map(|content| {
353                                if let anthropic::Content::ToolUse { name, input, .. } = content {
354                                    if name == tool_name {
355                                        Some(input)
356                                    } else {
357                                        None
358                                    }
359                                } else {
360                                    None
361                                }
362                            })
363                            .context("tool not used")
364                    })
365                    .boxed()
366            }
367            CloudModel::OpenAi(_) => {
368                future::ready(Err(anyhow!("tool use not implemented for OpenAI"))).boxed()
369            }
370            CloudModel::Google(_) => {
371                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
372            }
373        }
374    }
375}
376
377struct AuthenticationPrompt {
378    state: gpui::Model<State>,
379}
380
381impl Render for AuthenticationPrompt {
382    fn render(&mut self, cx: &mut ViewContext<Self>) -> impl IntoElement {
383        const LABEL: &str = "Generate and analyze code with language models. You can dialog with the assistant in this panel or transform code inline.";
384
385        v_flex().gap_6().p_4().child(Label::new(LABEL)).child(
386            v_flex()
387                .gap_2()
388                .child(
389                    Button::new("sign_in", "Sign in")
390                        .icon_color(Color::Muted)
391                        .icon(IconName::Github)
392                        .icon_position(IconPosition::Start)
393                        .style(ButtonStyle::Filled)
394                        .full_width()
395                        .on_click(cx.listener(move |this, _, cx| {
396                            this.state.update(cx, |provider, cx| {
397                                provider.authenticate(cx).detach_and_log_err(cx);
398                                cx.notify();
399                            });
400                        })),
401                )
402                .child(
403                    div().flex().w_full().items_center().child(
404                        Label::new("Sign in to enable collaboration.")
405                            .color(Color::Muted)
406                            .size(LabelSize::Small),
407                    ),
408                ),
409        )
410    }
411}