1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::{
35 any::{Any, TypeId},
36 borrow::Cow,
37 cell::{Cell, RefCell},
38 cmp,
39 fmt::{Debug, Display},
40 hash::{Hash, Hasher},
41 marker::PhantomData,
42 mem,
43 ops::{DerefMut, Range},
44 rc::Rc,
45 sync::{
46 Arc, Weak,
47 atomic::{AtomicUsize, Ordering::SeqCst},
48 },
49 time::{Duration, Instant},
50};
51use util::post_inc;
52use util::{ResultExt, measure};
53use uuid::Uuid;
54
55mod prompts;
56
57use crate::util::atomic_incr_if_not_zero;
58pub use prompts::*;
59
60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
61
62/// Represents the two different phases when dispatching events.
63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
64pub enum DispatchPhase {
65 /// After the capture phase comes the bubble phase, in which mouse event listeners are
66 /// invoked front to back and keyboard event listeners are invoked from the focused element
67 /// to the root of the element tree. This is the phase you'll most commonly want to use when
68 /// registering event listeners.
69 #[default]
70 Bubble,
71 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
72 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
73 /// is used for special purposes such as clearing the "pressed" state for click events. If
74 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
75 /// outside of the immediate region may rely on detecting non-local events during this phase.
76 Capture,
77}
78
79impl DispatchPhase {
80 /// Returns true if this represents the "bubble" phase.
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 /// Returns true if this represents the "capture" phase.
86 pub fn capture(self) -> bool {
87 self == DispatchPhase::Capture
88 }
89}
90
91struct WindowInvalidatorInner {
92 pub dirty: bool,
93 pub draw_phase: DrawPhase,
94 pub dirty_views: FxHashSet<EntityId>,
95}
96
97#[derive(Clone)]
98pub(crate) struct WindowInvalidator {
99 inner: Rc<RefCell<WindowInvalidatorInner>>,
100}
101
102impl WindowInvalidator {
103 pub fn new() -> Self {
104 WindowInvalidator {
105 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
106 dirty: true,
107 draw_phase: DrawPhase::None,
108 dirty_views: FxHashSet::default(),
109 })),
110 }
111 }
112
113 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
114 let mut inner = self.inner.borrow_mut();
115 inner.dirty_views.insert(entity);
116 if inner.draw_phase == DrawPhase::None {
117 inner.dirty = true;
118 cx.push_effect(Effect::Notify { emitter: entity });
119 true
120 } else {
121 false
122 }
123 }
124
125 pub fn is_dirty(&self) -> bool {
126 self.inner.borrow().dirty
127 }
128
129 pub fn set_dirty(&self, dirty: bool) {
130 self.inner.borrow_mut().dirty = dirty
131 }
132
133 pub fn set_phase(&self, phase: DrawPhase) {
134 self.inner.borrow_mut().draw_phase = phase
135 }
136
137 pub fn take_views(&self) -> FxHashSet<EntityId> {
138 mem::take(&mut self.inner.borrow_mut().dirty_views)
139 }
140
141 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
142 self.inner.borrow_mut().dirty_views = views;
143 }
144
145 pub fn not_drawing(&self) -> bool {
146 self.inner.borrow().draw_phase == DrawPhase::None
147 }
148
149 #[track_caller]
150 pub fn debug_assert_paint(&self) {
151 debug_assert!(
152 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
153 "this method can only be called during paint"
154 );
155 }
156
157 #[track_caller]
158 pub fn debug_assert_prepaint(&self) {
159 debug_assert!(
160 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
161 "this method can only be called during request_layout, or prepaint"
162 );
163 }
164
165 #[track_caller]
166 pub fn debug_assert_paint_or_prepaint(&self) {
167 debug_assert!(
168 matches!(
169 self.inner.borrow().draw_phase,
170 DrawPhase::Paint | DrawPhase::Prepaint
171 ),
172 "this method can only be called during request_layout, prepaint, or paint"
173 );
174 }
175}
176
177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) type AnyWindowFocusListener =
180 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) struct WindowFocusEvent {
183 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
184 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
185}
186
187impl WindowFocusEvent {
188 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
189 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
190 }
191
192 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
193 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
194 }
195}
196
197/// This is provided when subscribing for `Context::on_focus_out` events.
198pub struct FocusOutEvent {
199 /// A weak focus handle representing what was blurred.
200 pub blurred: WeakFocusHandle,
201}
202
203slotmap::new_key_type! {
204 /// A globally unique identifier for a focusable element.
205 pub struct FocusId;
206}
207
208thread_local! {
209 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
210}
211
212/// Returned when the element arena has been used and so must be cleared before the next draw.
213#[must_use]
214pub struct ArenaClearNeeded;
215
216impl ArenaClearNeeded {
217 /// Clear the element arena.
218 pub fn clear(self) {
219 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
220 element_arena.clear();
221 });
222 }
223}
224
225pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
226
227impl FocusId {
228 /// Obtains whether the element associated with this handle is currently focused.
229 pub fn is_focused(&self, window: &Window) -> bool {
230 window.focus == Some(*self)
231 }
232
233 /// Obtains whether the element associated with this handle contains the focused
234 /// element or is itself focused.
235 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
236 window
237 .focused(cx)
238 .map_or(false, |focused| self.contains(focused.id, window))
239 }
240
241 /// Obtains whether the element associated with this handle is contained within the
242 /// focused element or is itself focused.
243 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
244 let focused = window.focused(cx);
245 focused.map_or(false, |focused| focused.id.contains(*self, window))
246 }
247
248 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
249 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
250 window
251 .rendered_frame
252 .dispatch_tree
253 .focus_contains(*self, other)
254 }
255}
256
257/// A handle which can be used to track and manipulate the focused element in a window.
258pub struct FocusHandle {
259 pub(crate) id: FocusId,
260 handles: Arc<FocusMap>,
261}
262
263impl std::fmt::Debug for FocusHandle {
264 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
265 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
266 }
267}
268
269impl FocusHandle {
270 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
271 let id = handles.write().insert(AtomicUsize::new(1));
272 Self {
273 id,
274 handles: handles.clone(),
275 }
276 }
277
278 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
279 let lock = handles.read();
280 let ref_count = lock.get(id)?;
281 if atomic_incr_if_not_zero(ref_count) == 0 {
282 return None;
283 }
284 Some(Self {
285 id,
286 handles: handles.clone(),
287 })
288 }
289
290 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
291 pub fn downgrade(&self) -> WeakFocusHandle {
292 WeakFocusHandle {
293 id: self.id,
294 handles: Arc::downgrade(&self.handles),
295 }
296 }
297
298 /// Moves the focus to the element associated with this handle.
299 pub fn focus(&self, window: &mut Window) {
300 window.focus(self)
301 }
302
303 /// Obtains whether the element associated with this handle is currently focused.
304 pub fn is_focused(&self, window: &Window) -> bool {
305 self.id.is_focused(window)
306 }
307
308 /// Obtains whether the element associated with this handle contains the focused
309 /// element or is itself focused.
310 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
311 self.id.contains_focused(window, cx)
312 }
313
314 /// Obtains whether the element associated with this handle is contained within the
315 /// focused element or is itself focused.
316 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
317 self.id.within_focused(window, cx)
318 }
319
320 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
321 pub fn contains(&self, other: &Self, window: &Window) -> bool {
322 self.id.contains(other.id, window)
323 }
324
325 /// Dispatch an action on the element that rendered this focus handle
326 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
327 if let Some(node_id) = window
328 .rendered_frame
329 .dispatch_tree
330 .focusable_node_id(self.id)
331 {
332 window.dispatch_action_on_node(node_id, action, cx)
333 }
334 }
335}
336
337impl Clone for FocusHandle {
338 fn clone(&self) -> Self {
339 Self::for_id(self.id, &self.handles).unwrap()
340 }
341}
342
343impl PartialEq for FocusHandle {
344 fn eq(&self, other: &Self) -> bool {
345 self.id == other.id
346 }
347}
348
349impl Eq for FocusHandle {}
350
351impl Drop for FocusHandle {
352 fn drop(&mut self) {
353 self.handles
354 .read()
355 .get(self.id)
356 .unwrap()
357 .fetch_sub(1, SeqCst);
358 }
359}
360
361/// A weak reference to a focus handle.
362#[derive(Clone, Debug)]
363pub struct WeakFocusHandle {
364 pub(crate) id: FocusId,
365 pub(crate) handles: Weak<FocusMap>,
366}
367
368impl WeakFocusHandle {
369 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
370 pub fn upgrade(&self) -> Option<FocusHandle> {
371 let handles = self.handles.upgrade()?;
372 FocusHandle::for_id(self.id, &handles)
373 }
374}
375
376impl PartialEq for WeakFocusHandle {
377 fn eq(&self, other: &WeakFocusHandle) -> bool {
378 self.id == other.id
379 }
380}
381
382impl Eq for WeakFocusHandle {}
383
384impl PartialEq<FocusHandle> for WeakFocusHandle {
385 fn eq(&self, other: &FocusHandle) -> bool {
386 self.id == other.id
387 }
388}
389
390impl PartialEq<WeakFocusHandle> for FocusHandle {
391 fn eq(&self, other: &WeakFocusHandle) -> bool {
392 self.id == other.id
393 }
394}
395
396/// Focusable allows users of your view to easily
397/// focus it (using window.focus_view(cx, view))
398pub trait Focusable: 'static {
399 /// Returns the focus handle associated with this view.
400 fn focus_handle(&self, cx: &App) -> FocusHandle;
401}
402
403impl<V: Focusable> Focusable for Entity<V> {
404 fn focus_handle(&self, cx: &App) -> FocusHandle {
405 self.read(cx).focus_handle(cx)
406 }
407}
408
409/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
410/// where the lifecycle of the view is handled by another view.
411pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
412
413impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
414
415/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
416pub struct DismissEvent;
417
418type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
419
420pub(crate) type AnyMouseListener =
421 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
422
423#[derive(Clone)]
424pub(crate) struct CursorStyleRequest {
425 pub(crate) hitbox_id: Option<HitboxId>,
426 pub(crate) style: CursorStyle,
427}
428
429#[derive(Default, Eq, PartialEq)]
430pub(crate) struct HitTest {
431 pub(crate) ids: SmallVec<[HitboxId; 8]>,
432 pub(crate) hover_hitbox_count: usize,
433}
434
435/// A type of window control area that corresponds to the platform window.
436#[derive(Clone, Copy, Debug, Eq, PartialEq)]
437pub enum WindowControlArea {
438 /// An area that allows dragging of the platform window.
439 Drag,
440 /// An area that allows closing of the platform window.
441 Close,
442 /// An area that allows maximizing of the platform window.
443 Max,
444 /// An area that allows minimizing of the platform window.
445 Min,
446}
447
448/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
449#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
450pub struct HitboxId(u64);
451
452impl HitboxId {
453 /// Checks if the hitbox with this ID is currently hovered. Except when handling
454 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
455 /// events or paint hover styles.
456 ///
457 /// See [`Hitbox::is_hovered`] for details.
458 pub fn is_hovered(self, window: &Window) -> bool {
459 let hit_test = &window.mouse_hit_test;
460 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
461 if self == *id {
462 return true;
463 }
464 }
465 return false;
466 }
467
468 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
469 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
470 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
471 /// this distinction.
472 pub fn should_handle_scroll(self, window: &Window) -> bool {
473 window.mouse_hit_test.ids.contains(&self)
474 }
475
476 fn next(mut self) -> HitboxId {
477 HitboxId(self.0.wrapping_add(1))
478 }
479}
480
481/// A rectangular region that potentially blocks hitboxes inserted prior.
482/// See [Window::insert_hitbox] for more details.
483#[derive(Clone, Debug, Deref)]
484pub struct Hitbox {
485 /// A unique identifier for the hitbox.
486 pub id: HitboxId,
487 /// The bounds of the hitbox.
488 #[deref]
489 pub bounds: Bounds<Pixels>,
490 /// The content mask when the hitbox was inserted.
491 pub content_mask: ContentMask<Pixels>,
492 /// Flags that specify hitbox behavior.
493 pub behavior: HitboxBehavior,
494}
495
496impl Hitbox {
497 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
498 /// typically what you want when determining whether to handle mouse events or paint hover
499 /// styles.
500 ///
501 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
502 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
503 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
504 ///
505 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
506 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
507 /// non-interactive while still allowing scrolling. More abstractly, this is because
508 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
509 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
510 /// container.
511 pub fn is_hovered(&self, window: &Window) -> bool {
512 self.id.is_hovered(window)
513 }
514
515 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
516 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
517 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
518 ///
519 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
520 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
521 pub fn should_handle_scroll(&self, window: &Window) -> bool {
522 self.id.should_handle_scroll(window)
523 }
524}
525
526/// How the hitbox affects mouse behavior.
527#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
528pub enum HitboxBehavior {
529 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
530 #[default]
531 Normal,
532
533 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
534 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
535 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
536 /// [`InteractiveElement::occlude`].
537 ///
538 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
539 /// bubble-phase handler for every mouse event type:
540 ///
541 /// ```
542 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
543 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
544 /// cx.stop_propagation();
545 /// }
546 /// }
547 /// ```
548 ///
549 /// This has effects beyond event handling - any use of hitbox checking, such as hover
550 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
551 /// alternative might be to not affect mouse event handling - but this would allow
552 /// inconsistent UI where clicks and moves interact with elements that are not considered to
553 /// be hovered.
554 BlockMouse,
555
556 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
557 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
558 /// interaction except scroll events to be ignored - see the documentation of
559 /// [`Hitbox::is_hovered`] for details. This flag is set by
560 /// [`InteractiveElement::block_mouse_except_scroll`].
561 ///
562 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
563 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
564 ///
565 /// ```
566 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
567 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
568 /// cx.stop_propagation();
569 /// }
570 /// }
571 /// ```
572 ///
573 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
574 /// handled differently than other mouse events. If also blocking these scroll events is
575 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
576 ///
577 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
578 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
579 /// An alternative might be to not affect mouse event handling - but this would allow
580 /// inconsistent UI where clicks and moves interact with elements that are not considered to
581 /// be hovered.
582 BlockMouseExceptScroll,
583}
584
585/// An identifier for a tooltip.
586#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
587pub struct TooltipId(usize);
588
589impl TooltipId {
590 /// Checks if the tooltip is currently hovered.
591 pub fn is_hovered(&self, window: &Window) -> bool {
592 window
593 .tooltip_bounds
594 .as_ref()
595 .map_or(false, |tooltip_bounds| {
596 tooltip_bounds.id == *self
597 && tooltip_bounds.bounds.contains(&window.mouse_position())
598 })
599 }
600}
601
602pub(crate) struct TooltipBounds {
603 id: TooltipId,
604 bounds: Bounds<Pixels>,
605}
606
607#[derive(Clone)]
608pub(crate) struct TooltipRequest {
609 id: TooltipId,
610 tooltip: AnyTooltip,
611}
612
613pub(crate) struct DeferredDraw {
614 current_view: EntityId,
615 priority: usize,
616 parent_node: DispatchNodeId,
617 element_id_stack: SmallVec<[ElementId; 32]>,
618 text_style_stack: Vec<TextStyleRefinement>,
619 element: Option<AnyElement>,
620 absolute_offset: Point<Pixels>,
621 prepaint_range: Range<PrepaintStateIndex>,
622 paint_range: Range<PaintIndex>,
623}
624
625pub(crate) struct Frame {
626 pub(crate) focus: Option<FocusId>,
627 pub(crate) window_active: bool,
628 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
629 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
630 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
631 pub(crate) dispatch_tree: DispatchTree,
632 pub(crate) scene: Scene,
633 pub(crate) hitboxes: Vec<Hitbox>,
634 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
635 pub(crate) deferred_draws: Vec<DeferredDraw>,
636 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
637 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
638 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
639 #[cfg(any(test, feature = "test-support"))]
640 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
641 #[cfg(any(feature = "inspector", debug_assertions))]
642 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
643 #[cfg(any(feature = "inspector", debug_assertions))]
644 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
645}
646
647#[derive(Clone, Default)]
648pub(crate) struct PrepaintStateIndex {
649 hitboxes_index: usize,
650 tooltips_index: usize,
651 deferred_draws_index: usize,
652 dispatch_tree_index: usize,
653 accessed_element_states_index: usize,
654 line_layout_index: LineLayoutIndex,
655}
656
657#[derive(Clone, Default)]
658pub(crate) struct PaintIndex {
659 scene_index: usize,
660 mouse_listeners_index: usize,
661 input_handlers_index: usize,
662 cursor_styles_index: usize,
663 accessed_element_states_index: usize,
664 line_layout_index: LineLayoutIndex,
665}
666
667impl Frame {
668 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
669 Frame {
670 focus: None,
671 window_active: false,
672 element_states: FxHashMap::default(),
673 accessed_element_states: Vec::new(),
674 mouse_listeners: Vec::new(),
675 dispatch_tree,
676 scene: Scene::default(),
677 hitboxes: Vec::new(),
678 window_control_hitboxes: Vec::new(),
679 deferred_draws: Vec::new(),
680 input_handlers: Vec::new(),
681 tooltip_requests: Vec::new(),
682 cursor_styles: Vec::new(),
683
684 #[cfg(any(test, feature = "test-support"))]
685 debug_bounds: FxHashMap::default(),
686
687 #[cfg(any(feature = "inspector", debug_assertions))]
688 next_inspector_instance_ids: FxHashMap::default(),
689
690 #[cfg(any(feature = "inspector", debug_assertions))]
691 inspector_hitboxes: FxHashMap::default(),
692 }
693 }
694
695 pub(crate) fn clear(&mut self) {
696 self.element_states.clear();
697 self.accessed_element_states.clear();
698 self.mouse_listeners.clear();
699 self.dispatch_tree.clear();
700 self.scene.clear();
701 self.input_handlers.clear();
702 self.tooltip_requests.clear();
703 self.cursor_styles.clear();
704 self.hitboxes.clear();
705 self.window_control_hitboxes.clear();
706 self.deferred_draws.clear();
707 self.focus = None;
708
709 #[cfg(any(feature = "inspector", debug_assertions))]
710 {
711 self.next_inspector_instance_ids.clear();
712 self.inspector_hitboxes.clear();
713 }
714 }
715
716 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
717 self.cursor_styles
718 .iter()
719 .rev()
720 .fold_while(None, |style, request| match request.hitbox_id {
721 None => Done(Some(request.style)),
722 Some(hitbox_id) => Continue(
723 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
724 ),
725 })
726 .into_inner()
727 }
728
729 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
730 let mut set_hover_hitbox_count = false;
731 let mut hit_test = HitTest::default();
732 for hitbox in self.hitboxes.iter().rev() {
733 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
734 if bounds.contains(&position) {
735 hit_test.ids.push(hitbox.id);
736 if !set_hover_hitbox_count
737 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
738 {
739 hit_test.hover_hitbox_count = hit_test.ids.len();
740 set_hover_hitbox_count = true;
741 }
742 if hitbox.behavior == HitboxBehavior::BlockMouse {
743 break;
744 }
745 }
746 }
747 if !set_hover_hitbox_count {
748 hit_test.hover_hitbox_count = hit_test.ids.len();
749 }
750 hit_test
751 }
752
753 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
754 self.focus
755 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
756 .unwrap_or_default()
757 }
758
759 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
760 for element_state_key in &self.accessed_element_states {
761 if let Some((element_state_key, element_state)) =
762 prev_frame.element_states.remove_entry(element_state_key)
763 {
764 self.element_states.insert(element_state_key, element_state);
765 }
766 }
767
768 self.scene.finish();
769 }
770}
771
772/// Holds the state for a specific window.
773pub struct Window {
774 pub(crate) handle: AnyWindowHandle,
775 pub(crate) invalidator: WindowInvalidator,
776 pub(crate) removed: bool,
777 pub(crate) platform_window: Box<dyn PlatformWindow>,
778 display_id: Option<DisplayId>,
779 sprite_atlas: Arc<dyn PlatformAtlas>,
780 text_system: Arc<WindowTextSystem>,
781 rem_size: Pixels,
782 /// The stack of override values for the window's rem size.
783 ///
784 /// This is used by `with_rem_size` to allow rendering an element tree with
785 /// a given rem size.
786 rem_size_override_stack: SmallVec<[Pixels; 8]>,
787 pub(crate) viewport_size: Size<Pixels>,
788 layout_engine: Option<TaffyLayoutEngine>,
789 pub(crate) root: Option<AnyView>,
790 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
791 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
792 pub(crate) rendered_entity_stack: Vec<EntityId>,
793 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
794 pub(crate) element_opacity: Option<f32>,
795 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
796 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
797 pub(crate) image_cache_stack: Vec<AnyImageCache>,
798 pub(crate) rendered_frame: Frame,
799 pub(crate) next_frame: Frame,
800 next_hitbox_id: HitboxId,
801 pub(crate) next_tooltip_id: TooltipId,
802 pub(crate) tooltip_bounds: Option<TooltipBounds>,
803 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
804 pub(crate) dirty_views: FxHashSet<EntityId>,
805 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
806 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
807 default_prevented: bool,
808 mouse_position: Point<Pixels>,
809 mouse_hit_test: HitTest,
810 modifiers: Modifiers,
811 capslock: Capslock,
812 scale_factor: f32,
813 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
814 appearance: WindowAppearance,
815 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
816 active: Rc<Cell<bool>>,
817 hovered: Rc<Cell<bool>>,
818 pub(crate) needs_present: Rc<Cell<bool>>,
819 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
820 pub(crate) refreshing: bool,
821 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
822 pub(crate) focus: Option<FocusId>,
823 focus_enabled: bool,
824 pending_input: Option<PendingInput>,
825 pending_modifier: ModifierState,
826 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
827 prompt: Option<RenderablePromptHandle>,
828 pub(crate) client_inset: Option<Pixels>,
829 #[cfg(any(feature = "inspector", debug_assertions))]
830 inspector: Option<Entity<Inspector>>,
831}
832
833#[derive(Clone, Debug, Default)]
834struct ModifierState {
835 modifiers: Modifiers,
836 saw_keystroke: bool,
837}
838
839#[derive(Clone, Copy, Debug, Eq, PartialEq)]
840pub(crate) enum DrawPhase {
841 None,
842 Prepaint,
843 Paint,
844 Focus,
845}
846
847#[derive(Default, Debug)]
848struct PendingInput {
849 keystrokes: SmallVec<[Keystroke; 1]>,
850 focus: Option<FocusId>,
851 timer: Option<Task<()>>,
852}
853
854pub(crate) struct ElementStateBox {
855 pub(crate) inner: Box<dyn Any>,
856 #[cfg(debug_assertions)]
857 pub(crate) type_name: &'static str,
858}
859
860fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
861 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
862
863 // TODO, BUG: if you open a window with the currently active window
864 // on the stack, this will erroneously select the 'unwrap_or_else'
865 // code path
866 cx.active_window()
867 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
868 .map(|mut bounds| {
869 bounds.origin += DEFAULT_WINDOW_OFFSET;
870 bounds
871 })
872 .unwrap_or_else(|| {
873 let display = display_id
874 .map(|id| cx.find_display(id))
875 .unwrap_or_else(|| cx.primary_display());
876
877 display
878 .map(|display| display.default_bounds())
879 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
880 })
881}
882
883impl Window {
884 pub(crate) fn new(
885 handle: AnyWindowHandle,
886 options: WindowOptions,
887 cx: &mut App,
888 ) -> Result<Self> {
889 let WindowOptions {
890 window_bounds,
891 titlebar,
892 focus,
893 show,
894 kind,
895 is_movable,
896 display_id,
897 window_background,
898 app_id,
899 window_min_size,
900 window_decorations,
901 } = options;
902
903 let bounds = window_bounds
904 .map(|bounds| bounds.get_bounds())
905 .unwrap_or_else(|| default_bounds(display_id, cx));
906 let mut platform_window = cx.platform.open_window(
907 handle,
908 WindowParams {
909 bounds,
910 titlebar,
911 kind,
912 is_movable,
913 focus,
914 show,
915 display_id,
916 window_min_size,
917 },
918 )?;
919 let display_id = platform_window.display().map(|display| display.id());
920 let sprite_atlas = platform_window.sprite_atlas();
921 let mouse_position = platform_window.mouse_position();
922 let modifiers = platform_window.modifiers();
923 let capslock = platform_window.capslock();
924 let content_size = platform_window.content_size();
925 let scale_factor = platform_window.scale_factor();
926 let appearance = platform_window.appearance();
927 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
928 let invalidator = WindowInvalidator::new();
929 let active = Rc::new(Cell::new(platform_window.is_active()));
930 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
931 let needs_present = Rc::new(Cell::new(false));
932 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
933 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
934
935 platform_window
936 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
937 platform_window.set_background_appearance(window_background);
938
939 if let Some(ref window_open_state) = window_bounds {
940 match window_open_state {
941 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
942 WindowBounds::Maximized(_) => platform_window.zoom(),
943 WindowBounds::Windowed(_) => {}
944 }
945 }
946
947 platform_window.on_close(Box::new({
948 let mut cx = cx.to_async();
949 move || {
950 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
951 }
952 }));
953 platform_window.on_request_frame(Box::new({
954 let mut cx = cx.to_async();
955 let invalidator = invalidator.clone();
956 let active = active.clone();
957 let needs_present = needs_present.clone();
958 let next_frame_callbacks = next_frame_callbacks.clone();
959 let last_input_timestamp = last_input_timestamp.clone();
960 move |request_frame_options| {
961 let next_frame_callbacks = next_frame_callbacks.take();
962 if !next_frame_callbacks.is_empty() {
963 handle
964 .update(&mut cx, |_, window, cx| {
965 for callback in next_frame_callbacks {
966 callback(window, cx);
967 }
968 })
969 .log_err();
970 }
971
972 // Keep presenting the current scene for 1 extra second since the
973 // last input to prevent the display from underclocking the refresh rate.
974 let needs_present = request_frame_options.require_presentation
975 || needs_present.get()
976 || (active.get()
977 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
978
979 if invalidator.is_dirty() {
980 measure("frame duration", || {
981 handle
982 .update(&mut cx, |_, window, cx| {
983 let arena_clear_needed = window.draw(cx);
984 window.present();
985 // drop the arena elements after present to reduce latency
986 arena_clear_needed.clear();
987 })
988 .log_err();
989 })
990 } else if needs_present {
991 handle
992 .update(&mut cx, |_, window, _| window.present())
993 .log_err();
994 }
995
996 handle
997 .update(&mut cx, |_, window, _| {
998 window.complete_frame();
999 })
1000 .log_err();
1001 }
1002 }));
1003 platform_window.on_resize(Box::new({
1004 let mut cx = cx.to_async();
1005 move |_, _| {
1006 handle
1007 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1008 .log_err();
1009 }
1010 }));
1011 platform_window.on_moved(Box::new({
1012 let mut cx = cx.to_async();
1013 move || {
1014 handle
1015 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1016 .log_err();
1017 }
1018 }));
1019 platform_window.on_appearance_changed(Box::new({
1020 let mut cx = cx.to_async();
1021 move || {
1022 handle
1023 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1024 .log_err();
1025 }
1026 }));
1027 platform_window.on_active_status_change(Box::new({
1028 let mut cx = cx.to_async();
1029 move |active| {
1030 handle
1031 .update(&mut cx, |_, window, cx| {
1032 window.active.set(active);
1033 window.modifiers = window.platform_window.modifiers();
1034 window.capslock = window.platform_window.capslock();
1035 window
1036 .activation_observers
1037 .clone()
1038 .retain(&(), |callback| callback(window, cx));
1039 window.refresh();
1040 })
1041 .log_err();
1042 }
1043 }));
1044 platform_window.on_hover_status_change(Box::new({
1045 let mut cx = cx.to_async();
1046 move |active| {
1047 handle
1048 .update(&mut cx, |_, window, _| {
1049 window.hovered.set(active);
1050 window.refresh();
1051 })
1052 .log_err();
1053 }
1054 }));
1055 platform_window.on_input({
1056 let mut cx = cx.to_async();
1057 Box::new(move |event| {
1058 handle
1059 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1060 .log_err()
1061 .unwrap_or(DispatchEventResult::default())
1062 })
1063 });
1064 platform_window.on_hit_test_window_control({
1065 let mut cx = cx.to_async();
1066 Box::new(move || {
1067 handle
1068 .update(&mut cx, |_, window, _cx| {
1069 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1070 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1071 return Some(*area);
1072 }
1073 }
1074 None
1075 })
1076 .log_err()
1077 .unwrap_or(None)
1078 })
1079 });
1080
1081 if let Some(app_id) = app_id {
1082 platform_window.set_app_id(&app_id);
1083 }
1084
1085 platform_window.map_window().unwrap();
1086
1087 Ok(Window {
1088 handle,
1089 invalidator,
1090 removed: false,
1091 platform_window,
1092 display_id,
1093 sprite_atlas,
1094 text_system,
1095 rem_size: px(16.),
1096 rem_size_override_stack: SmallVec::new(),
1097 viewport_size: content_size,
1098 layout_engine: Some(TaffyLayoutEngine::new()),
1099 root: None,
1100 element_id_stack: SmallVec::default(),
1101 text_style_stack: Vec::new(),
1102 rendered_entity_stack: Vec::new(),
1103 element_offset_stack: Vec::new(),
1104 content_mask_stack: Vec::new(),
1105 element_opacity: None,
1106 requested_autoscroll: None,
1107 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1108 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1109 next_frame_callbacks,
1110 next_hitbox_id: HitboxId(0),
1111 next_tooltip_id: TooltipId::default(),
1112 tooltip_bounds: None,
1113 dirty_views: FxHashSet::default(),
1114 focus_listeners: SubscriberSet::new(),
1115 focus_lost_listeners: SubscriberSet::new(),
1116 default_prevented: true,
1117 mouse_position,
1118 mouse_hit_test: HitTest::default(),
1119 modifiers,
1120 capslock,
1121 scale_factor,
1122 bounds_observers: SubscriberSet::new(),
1123 appearance,
1124 appearance_observers: SubscriberSet::new(),
1125 active,
1126 hovered,
1127 needs_present,
1128 last_input_timestamp,
1129 refreshing: false,
1130 activation_observers: SubscriberSet::new(),
1131 focus: None,
1132 focus_enabled: true,
1133 pending_input: None,
1134 pending_modifier: ModifierState::default(),
1135 pending_input_observers: SubscriberSet::new(),
1136 prompt: None,
1137 client_inset: None,
1138 image_cache_stack: Vec::new(),
1139 #[cfg(any(feature = "inspector", debug_assertions))]
1140 inspector: None,
1141 })
1142 }
1143
1144 pub(crate) fn new_focus_listener(
1145 &self,
1146 value: AnyWindowFocusListener,
1147 ) -> (Subscription, impl FnOnce() + use<>) {
1148 self.focus_listeners.insert((), value)
1149 }
1150}
1151
1152#[derive(Clone, Debug, Default, PartialEq, Eq)]
1153pub(crate) struct DispatchEventResult {
1154 pub propagate: bool,
1155 pub default_prevented: bool,
1156}
1157
1158/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1159/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1160/// to leave room to support more complex shapes in the future.
1161#[derive(Clone, Debug, Default, PartialEq, Eq)]
1162#[repr(C)]
1163pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1164 /// The bounds
1165 pub bounds: Bounds<P>,
1166}
1167
1168impl ContentMask<Pixels> {
1169 /// Scale the content mask's pixel units by the given scaling factor.
1170 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1171 ContentMask {
1172 bounds: self.bounds.scale(factor),
1173 }
1174 }
1175
1176 /// Intersect the content mask with the given content mask.
1177 pub fn intersect(&self, other: &Self) -> Self {
1178 let bounds = self.bounds.intersect(&other.bounds);
1179 ContentMask { bounds }
1180 }
1181}
1182
1183impl Window {
1184 fn mark_view_dirty(&mut self, view_id: EntityId) {
1185 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1186 // should already be dirty.
1187 for view_id in self
1188 .rendered_frame
1189 .dispatch_tree
1190 .view_path(view_id)
1191 .into_iter()
1192 .rev()
1193 {
1194 if !self.dirty_views.insert(view_id) {
1195 break;
1196 }
1197 }
1198 }
1199
1200 /// Registers a callback to be invoked when the window appearance changes.
1201 pub fn observe_window_appearance(
1202 &self,
1203 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1204 ) -> Subscription {
1205 let (subscription, activate) = self.appearance_observers.insert(
1206 (),
1207 Box::new(move |window, cx| {
1208 callback(window, cx);
1209 true
1210 }),
1211 );
1212 activate();
1213 subscription
1214 }
1215
1216 /// Replaces the root entity of the window with a new one.
1217 pub fn replace_root<E>(
1218 &mut self,
1219 cx: &mut App,
1220 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1221 ) -> Entity<E>
1222 where
1223 E: 'static + Render,
1224 {
1225 let view = cx.new(|cx| build_view(self, cx));
1226 self.root = Some(view.clone().into());
1227 self.refresh();
1228 view
1229 }
1230
1231 /// Returns the root entity of the window, if it has one.
1232 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1233 where
1234 E: 'static + Render,
1235 {
1236 self.root
1237 .as_ref()
1238 .map(|view| view.clone().downcast::<E>().ok())
1239 }
1240
1241 /// Obtain a handle to the window that belongs to this context.
1242 pub fn window_handle(&self) -> AnyWindowHandle {
1243 self.handle
1244 }
1245
1246 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1247 pub fn refresh(&mut self) {
1248 if self.invalidator.not_drawing() {
1249 self.refreshing = true;
1250 self.invalidator.set_dirty(true);
1251 }
1252 }
1253
1254 /// Close this window.
1255 pub fn remove_window(&mut self) {
1256 self.removed = true;
1257 }
1258
1259 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1260 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1261 self.focus
1262 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1263 }
1264
1265 /// Move focus to the element associated with the given [`FocusHandle`].
1266 pub fn focus(&mut self, handle: &FocusHandle) {
1267 println!(
1268 "Setting focus to {:?} on platform {:?}",
1269 handle.id,
1270 std::env::consts::OS
1271 );
1272
1273 if !self.focus_enabled || self.focus == Some(handle.id) {
1274 return;
1275 }
1276 println!("actually setting focus");
1277 self.focus = Some(handle.id);
1278 self.clear_pending_keystrokes();
1279 self.refresh();
1280 }
1281
1282 /// Remove focus from all elements within this context's window.
1283 pub fn blur(&mut self) {
1284 if !self.focus_enabled {
1285 return;
1286 }
1287
1288 self.focus = None;
1289 self.refresh();
1290 }
1291
1292 /// Blur the window and don't allow anything in it to be focused again.
1293 pub fn disable_focus(&mut self) {
1294 self.blur();
1295 self.focus_enabled = false;
1296 }
1297
1298 /// Accessor for the text system.
1299 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1300 &self.text_system
1301 }
1302
1303 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1304 pub fn text_style(&self) -> TextStyle {
1305 let mut style = TextStyle::default();
1306 for refinement in &self.text_style_stack {
1307 style.refine(refinement);
1308 }
1309 style
1310 }
1311
1312 /// Check if the platform window is maximized
1313 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1314 pub fn is_maximized(&self) -> bool {
1315 self.platform_window.is_maximized()
1316 }
1317
1318 /// request a certain window decoration (Wayland)
1319 pub fn request_decorations(&self, decorations: WindowDecorations) {
1320 self.platform_window.request_decorations(decorations);
1321 }
1322
1323 /// Start a window resize operation (Wayland)
1324 pub fn start_window_resize(&self, edge: ResizeEdge) {
1325 self.platform_window.start_window_resize(edge);
1326 }
1327
1328 /// Return the `WindowBounds` to indicate that how a window should be opened
1329 /// after it has been closed
1330 pub fn window_bounds(&self) -> WindowBounds {
1331 self.platform_window.window_bounds()
1332 }
1333
1334 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1335 pub fn inner_window_bounds(&self) -> WindowBounds {
1336 self.platform_window.inner_window_bounds()
1337 }
1338
1339 /// Dispatch the given action on the currently focused element.
1340 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1341 let focus_id = self.focused(cx).map(|handle| handle.id);
1342 dbg!(&focus_id);
1343 let window = self.handle;
1344 cx.defer(move |cx| {
1345 window
1346 .update(cx, |_, window, cx| {
1347 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1348 dbg!(&node_id);
1349 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1350 })
1351 .log_err();
1352 })
1353 }
1354
1355 pub(crate) fn dispatch_keystroke_observers(
1356 &mut self,
1357 event: &dyn Any,
1358 action: Option<Box<dyn Action>>,
1359 context_stack: Vec<KeyContext>,
1360 cx: &mut App,
1361 ) {
1362 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1363 return;
1364 };
1365
1366 cx.keystroke_observers.clone().retain(&(), move |callback| {
1367 (callback)(
1368 &KeystrokeEvent {
1369 keystroke: key_down_event.keystroke.clone(),
1370 action: action.as_ref().map(|action| action.boxed_clone()),
1371 context_stack: context_stack.clone(),
1372 },
1373 self,
1374 cx,
1375 )
1376 });
1377 }
1378
1379 pub(crate) fn dispatch_keystroke_interceptors(
1380 &mut self,
1381 event: &dyn Any,
1382 context_stack: Vec<KeyContext>,
1383 cx: &mut App,
1384 ) {
1385 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1386 return;
1387 };
1388
1389 cx.keystroke_interceptors
1390 .clone()
1391 .retain(&(), move |callback| {
1392 (callback)(
1393 &KeystrokeEvent {
1394 keystroke: key_down_event.keystroke.clone(),
1395 action: None,
1396 context_stack: context_stack.clone(),
1397 },
1398 self,
1399 cx,
1400 )
1401 });
1402 }
1403
1404 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1405 /// that are currently on the stack to be returned to the app.
1406 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1407 let handle = self.handle;
1408 cx.defer(move |cx| {
1409 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1410 });
1411 }
1412
1413 /// Subscribe to events emitted by a entity.
1414 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1415 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1416 pub fn observe<T: 'static>(
1417 &mut self,
1418 observed: &Entity<T>,
1419 cx: &mut App,
1420 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1421 ) -> Subscription {
1422 let entity_id = observed.entity_id();
1423 let observed = observed.downgrade();
1424 let window_handle = self.handle;
1425 cx.new_observer(
1426 entity_id,
1427 Box::new(move |cx| {
1428 window_handle
1429 .update(cx, |_, window, cx| {
1430 if let Some(handle) = observed.upgrade() {
1431 on_notify(handle, window, cx);
1432 true
1433 } else {
1434 false
1435 }
1436 })
1437 .unwrap_or(false)
1438 }),
1439 )
1440 }
1441
1442 /// Subscribe to events emitted by a entity.
1443 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1444 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1445 pub fn subscribe<Emitter, Evt>(
1446 &mut self,
1447 entity: &Entity<Emitter>,
1448 cx: &mut App,
1449 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1450 ) -> Subscription
1451 where
1452 Emitter: EventEmitter<Evt>,
1453 Evt: 'static,
1454 {
1455 let entity_id = entity.entity_id();
1456 let handle = entity.downgrade();
1457 let window_handle = self.handle;
1458 cx.new_subscription(
1459 entity_id,
1460 (
1461 TypeId::of::<Evt>(),
1462 Box::new(move |event, cx| {
1463 window_handle
1464 .update(cx, |_, window, cx| {
1465 if let Some(entity) = handle.upgrade() {
1466 let event = event.downcast_ref().expect("invalid event type");
1467 on_event(entity, event, window, cx);
1468 true
1469 } else {
1470 false
1471 }
1472 })
1473 .unwrap_or(false)
1474 }),
1475 ),
1476 )
1477 }
1478
1479 /// Register a callback to be invoked when the given `Entity` is released.
1480 pub fn observe_release<T>(
1481 &self,
1482 entity: &Entity<T>,
1483 cx: &mut App,
1484 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1485 ) -> Subscription
1486 where
1487 T: 'static,
1488 {
1489 let entity_id = entity.entity_id();
1490 let window_handle = self.handle;
1491 let (subscription, activate) = cx.release_listeners.insert(
1492 entity_id,
1493 Box::new(move |entity, cx| {
1494 let entity = entity.downcast_mut().expect("invalid entity type");
1495 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1496 }),
1497 );
1498 activate();
1499 subscription
1500 }
1501
1502 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1503 /// await points in async code.
1504 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1505 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1506 }
1507
1508 /// Schedule the given closure to be run directly after the current frame is rendered.
1509 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1510 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1511 }
1512
1513 /// Schedule a frame to be drawn on the next animation frame.
1514 ///
1515 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1516 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1517 ///
1518 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1519 pub fn request_animation_frame(&self) {
1520 let entity = self.current_view();
1521 self.on_next_frame(move |_, cx| cx.notify(entity));
1522 }
1523
1524 /// Spawn the future returned by the given closure on the application thread pool.
1525 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1526 /// use within your future.
1527 #[track_caller]
1528 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1529 where
1530 R: 'static,
1531 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1532 {
1533 let handle = self.handle;
1534 cx.spawn(async move |app| {
1535 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1536 f(&mut async_window_cx).await
1537 })
1538 }
1539
1540 fn bounds_changed(&mut self, cx: &mut App) {
1541 self.scale_factor = self.platform_window.scale_factor();
1542 self.viewport_size = self.platform_window.content_size();
1543 self.display_id = self.platform_window.display().map(|display| display.id());
1544
1545 self.refresh();
1546
1547 self.bounds_observers
1548 .clone()
1549 .retain(&(), |callback| callback(self, cx));
1550 }
1551
1552 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1553 pub fn bounds(&self) -> Bounds<Pixels> {
1554 self.platform_window.bounds()
1555 }
1556
1557 /// Set the content size of the window.
1558 pub fn resize(&mut self, size: Size<Pixels>) {
1559 self.platform_window.resize(size);
1560 }
1561
1562 /// Returns whether or not the window is currently fullscreen
1563 pub fn is_fullscreen(&self) -> bool {
1564 self.platform_window.is_fullscreen()
1565 }
1566
1567 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1568 self.appearance = self.platform_window.appearance();
1569
1570 self.appearance_observers
1571 .clone()
1572 .retain(&(), |callback| callback(self, cx));
1573 }
1574
1575 /// Returns the appearance of the current window.
1576 pub fn appearance(&self) -> WindowAppearance {
1577 self.appearance
1578 }
1579
1580 /// Returns the size of the drawable area within the window.
1581 pub fn viewport_size(&self) -> Size<Pixels> {
1582 self.viewport_size
1583 }
1584
1585 /// Returns whether this window is focused by the operating system (receiving key events).
1586 pub fn is_window_active(&self) -> bool {
1587 self.active.get()
1588 }
1589
1590 /// Returns whether this window is considered to be the window
1591 /// that currently owns the mouse cursor.
1592 /// On mac, this is equivalent to `is_window_active`.
1593 pub fn is_window_hovered(&self) -> bool {
1594 if cfg!(any(
1595 target_os = "windows",
1596 target_os = "linux",
1597 target_os = "freebsd"
1598 )) {
1599 self.hovered.get()
1600 } else {
1601 self.is_window_active()
1602 }
1603 }
1604
1605 /// Toggle zoom on the window.
1606 pub fn zoom_window(&self) {
1607 self.platform_window.zoom();
1608 }
1609
1610 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1611 pub fn show_window_menu(&self, position: Point<Pixels>) {
1612 self.platform_window.show_window_menu(position)
1613 }
1614
1615 /// Tells the compositor to take control of window movement (Wayland and X11)
1616 ///
1617 /// Events may not be received during a move operation.
1618 pub fn start_window_move(&self) {
1619 self.platform_window.start_window_move()
1620 }
1621
1622 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1623 pub fn set_client_inset(&mut self, inset: Pixels) {
1624 self.client_inset = Some(inset);
1625 self.platform_window.set_client_inset(inset);
1626 }
1627
1628 /// Returns the client_inset value by [`Self::set_client_inset`].
1629 pub fn client_inset(&self) -> Option<Pixels> {
1630 self.client_inset
1631 }
1632
1633 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1634 pub fn window_decorations(&self) -> Decorations {
1635 self.platform_window.window_decorations()
1636 }
1637
1638 /// Returns which window controls are currently visible (Wayland)
1639 pub fn window_controls(&self) -> WindowControls {
1640 self.platform_window.window_controls()
1641 }
1642
1643 /// Updates the window's title at the platform level.
1644 pub fn set_window_title(&mut self, title: &str) {
1645 self.platform_window.set_title(title);
1646 }
1647
1648 /// Sets the application identifier.
1649 pub fn set_app_id(&mut self, app_id: &str) {
1650 self.platform_window.set_app_id(app_id);
1651 }
1652
1653 /// Sets the window background appearance.
1654 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1655 self.platform_window
1656 .set_background_appearance(background_appearance);
1657 }
1658
1659 /// Mark the window as dirty at the platform level.
1660 pub fn set_window_edited(&mut self, edited: bool) {
1661 self.platform_window.set_edited(edited);
1662 }
1663
1664 /// Determine the display on which the window is visible.
1665 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1666 cx.platform
1667 .displays()
1668 .into_iter()
1669 .find(|display| Some(display.id()) == self.display_id)
1670 }
1671
1672 /// Show the platform character palette.
1673 pub fn show_character_palette(&self) {
1674 self.platform_window.show_character_palette();
1675 }
1676
1677 /// The scale factor of the display associated with the window. For example, it could
1678 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1679 /// be rendered as two pixels on screen.
1680 pub fn scale_factor(&self) -> f32 {
1681 self.scale_factor
1682 }
1683
1684 /// The size of an em for the base font of the application. Adjusting this value allows the
1685 /// UI to scale, just like zooming a web page.
1686 pub fn rem_size(&self) -> Pixels {
1687 self.rem_size_override_stack
1688 .last()
1689 .copied()
1690 .unwrap_or(self.rem_size)
1691 }
1692
1693 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1694 /// UI to scale, just like zooming a web page.
1695 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1696 self.rem_size = rem_size.into();
1697 }
1698
1699 /// Acquire a globally unique identifier for the given ElementId.
1700 /// Only valid for the duration of the provided closure.
1701 pub fn with_global_id<R>(
1702 &mut self,
1703 element_id: ElementId,
1704 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1705 ) -> R {
1706 self.element_id_stack.push(element_id);
1707 let global_id = GlobalElementId(self.element_id_stack.clone());
1708 let result = f(&global_id, self);
1709 self.element_id_stack.pop();
1710 result
1711 }
1712
1713 /// Executes the provided function with the specified rem size.
1714 ///
1715 /// This method must only be called as part of element drawing.
1716 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1717 where
1718 F: FnOnce(&mut Self) -> R,
1719 {
1720 self.invalidator.debug_assert_paint_or_prepaint();
1721
1722 if let Some(rem_size) = rem_size {
1723 self.rem_size_override_stack.push(rem_size.into());
1724 let result = f(self);
1725 self.rem_size_override_stack.pop();
1726 result
1727 } else {
1728 f(self)
1729 }
1730 }
1731
1732 /// The line height associated with the current text style.
1733 pub fn line_height(&self) -> Pixels {
1734 self.text_style().line_height_in_pixels(self.rem_size())
1735 }
1736
1737 /// Call to prevent the default action of an event. Currently only used to prevent
1738 /// parent elements from becoming focused on mouse down.
1739 pub fn prevent_default(&mut self) {
1740 self.default_prevented = true;
1741 }
1742
1743 /// Obtain whether default has been prevented for the event currently being dispatched.
1744 pub fn default_prevented(&self) -> bool {
1745 self.default_prevented
1746 }
1747
1748 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1749 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1750 let node_id =
1751 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1752 self.rendered_frame
1753 .dispatch_tree
1754 .is_action_available(action, node_id)
1755 }
1756
1757 /// The position of the mouse relative to the window.
1758 pub fn mouse_position(&self) -> Point<Pixels> {
1759 self.mouse_position
1760 }
1761
1762 /// The current state of the keyboard's modifiers
1763 pub fn modifiers(&self) -> Modifiers {
1764 self.modifiers
1765 }
1766
1767 /// The current state of the keyboard's capslock
1768 pub fn capslock(&self) -> Capslock {
1769 self.capslock
1770 }
1771
1772 fn complete_frame(&self) {
1773 self.platform_window.completed_frame();
1774 }
1775
1776 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1777 /// the contents of the new [Scene], use [present].
1778 #[profiling::function]
1779 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1780 self.invalidate_entities();
1781 cx.entities.clear_accessed();
1782 debug_assert!(self.rendered_entity_stack.is_empty());
1783 self.invalidator.set_dirty(false);
1784 self.requested_autoscroll = None;
1785
1786 // Restore the previously-used input handler.
1787 if let Some(input_handler) = self.platform_window.take_input_handler() {
1788 self.rendered_frame.input_handlers.push(Some(input_handler));
1789 }
1790 self.draw_roots(cx);
1791 self.dirty_views.clear();
1792 self.next_frame.window_active = self.active.get();
1793
1794 // Register requested input handler with the platform window.
1795 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1796 self.platform_window
1797 .set_input_handler(input_handler.unwrap());
1798 }
1799
1800 self.layout_engine.as_mut().unwrap().clear();
1801 self.text_system().finish_frame();
1802 self.next_frame.finish(&mut self.rendered_frame);
1803
1804 self.invalidator.set_phase(DrawPhase::Focus);
1805 let previous_focus_path = self.rendered_frame.focus_path();
1806 let previous_window_active = self.rendered_frame.window_active;
1807 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1808 self.next_frame.clear();
1809 let current_focus_path = self.rendered_frame.focus_path();
1810 let current_window_active = self.rendered_frame.window_active;
1811
1812 dbg!(
1813 &previous_focus_path,
1814 ¤t_focus_path,
1815 &previous_window_active,
1816 ¤t_window_active
1817 );
1818
1819 if previous_focus_path != current_focus_path
1820 || previous_window_active != current_window_active
1821 {
1822 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1823 self.focus_lost_listeners
1824 .clone()
1825 .retain(&(), |listener| listener(self, cx));
1826 }
1827
1828 let event = WindowFocusEvent {
1829 previous_focus_path: if previous_window_active {
1830 previous_focus_path
1831 } else {
1832 Default::default()
1833 },
1834 current_focus_path: if current_window_active {
1835 current_focus_path
1836 } else {
1837 Default::default()
1838 },
1839 };
1840 self.focus_listeners
1841 .clone()
1842 .retain(&(), |listener| listener(&event, self, cx));
1843 }
1844
1845 debug_assert!(self.rendered_entity_stack.is_empty());
1846 self.record_entities_accessed(cx);
1847 self.reset_cursor_style(cx);
1848 self.refreshing = false;
1849 self.invalidator.set_phase(DrawPhase::None);
1850 self.needs_present.set(true);
1851
1852 ArenaClearNeeded
1853 }
1854
1855 fn record_entities_accessed(&mut self, cx: &mut App) {
1856 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1857 let mut entities = mem::take(entities_ref.deref_mut());
1858 drop(entities_ref);
1859 let handle = self.handle;
1860 cx.record_entities_accessed(
1861 handle,
1862 // Try moving window invalidator into the Window
1863 self.invalidator.clone(),
1864 &entities,
1865 );
1866 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1867 mem::swap(&mut entities, entities_ref.deref_mut());
1868 }
1869
1870 fn invalidate_entities(&mut self) {
1871 let mut views = self.invalidator.take_views();
1872 for entity in views.drain() {
1873 self.mark_view_dirty(entity);
1874 }
1875 self.invalidator.replace_views(views);
1876 }
1877
1878 #[profiling::function]
1879 fn present(&self) {
1880 self.platform_window.draw(&self.rendered_frame.scene);
1881 self.needs_present.set(false);
1882 profiling::finish_frame!();
1883 }
1884
1885 fn draw_roots(&mut self, cx: &mut App) {
1886 self.invalidator.set_phase(DrawPhase::Prepaint);
1887 self.tooltip_bounds.take();
1888
1889 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1890 let root_size = {
1891 #[cfg(any(feature = "inspector", debug_assertions))]
1892 {
1893 if self.inspector.is_some() {
1894 let mut size = self.viewport_size;
1895 size.width = (size.width - _inspector_width).max(px(0.0));
1896 size
1897 } else {
1898 self.viewport_size
1899 }
1900 }
1901 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1902 {
1903 self.viewport_size
1904 }
1905 };
1906
1907 // Layout all root elements.
1908 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1909 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1910
1911 #[cfg(any(feature = "inspector", debug_assertions))]
1912 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1913
1914 let mut sorted_deferred_draws =
1915 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1916 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1917 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1918
1919 let mut prompt_element = None;
1920 let mut active_drag_element = None;
1921 let mut tooltip_element = None;
1922 if let Some(prompt) = self.prompt.take() {
1923 let mut element = prompt.view.any_view().into_any();
1924 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1925 prompt_element = Some(element);
1926 self.prompt = Some(prompt);
1927 } else if let Some(active_drag) = cx.active_drag.take() {
1928 let mut element = active_drag.view.clone().into_any();
1929 let offset = self.mouse_position() - active_drag.cursor_offset;
1930 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1931 active_drag_element = Some(element);
1932 cx.active_drag = Some(active_drag);
1933 } else {
1934 tooltip_element = self.prepaint_tooltip(cx);
1935 }
1936
1937 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1938
1939 // Now actually paint the elements.
1940 self.invalidator.set_phase(DrawPhase::Paint);
1941 root_element.paint(self, cx);
1942
1943 #[cfg(any(feature = "inspector", debug_assertions))]
1944 self.paint_inspector(inspector_element, cx);
1945
1946 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1947
1948 if let Some(mut prompt_element) = prompt_element {
1949 prompt_element.paint(self, cx);
1950 } else if let Some(mut drag_element) = active_drag_element {
1951 drag_element.paint(self, cx);
1952 } else if let Some(mut tooltip_element) = tooltip_element {
1953 tooltip_element.paint(self, cx);
1954 }
1955
1956 #[cfg(any(feature = "inspector", debug_assertions))]
1957 self.paint_inspector_hitbox(cx);
1958 }
1959
1960 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1961 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1962 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1963 let Some(Some(tooltip_request)) = self
1964 .next_frame
1965 .tooltip_requests
1966 .get(tooltip_request_index)
1967 .cloned()
1968 else {
1969 log::error!("Unexpectedly absent TooltipRequest");
1970 continue;
1971 };
1972 let mut element = tooltip_request.tooltip.view.clone().into_any();
1973 let mouse_position = tooltip_request.tooltip.mouse_position;
1974 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1975
1976 let mut tooltip_bounds =
1977 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1978 let window_bounds = Bounds {
1979 origin: Point::default(),
1980 size: self.viewport_size(),
1981 };
1982
1983 if tooltip_bounds.right() > window_bounds.right() {
1984 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1985 if new_x >= Pixels::ZERO {
1986 tooltip_bounds.origin.x = new_x;
1987 } else {
1988 tooltip_bounds.origin.x = cmp::max(
1989 Pixels::ZERO,
1990 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1991 );
1992 }
1993 }
1994
1995 if tooltip_bounds.bottom() > window_bounds.bottom() {
1996 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1997 if new_y >= Pixels::ZERO {
1998 tooltip_bounds.origin.y = new_y;
1999 } else {
2000 tooltip_bounds.origin.y = cmp::max(
2001 Pixels::ZERO,
2002 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2003 );
2004 }
2005 }
2006
2007 // It's possible for an element to have an active tooltip while not being painted (e.g.
2008 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2009 // case, instead update the tooltip's visibility here.
2010 let is_visible =
2011 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2012 if !is_visible {
2013 continue;
2014 }
2015
2016 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2017 element.prepaint(window, cx)
2018 });
2019
2020 self.tooltip_bounds = Some(TooltipBounds {
2021 id: tooltip_request.id,
2022 bounds: tooltip_bounds,
2023 });
2024 return Some(element);
2025 }
2026 None
2027 }
2028
2029 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2030 assert_eq!(self.element_id_stack.len(), 0);
2031
2032 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2033 for deferred_draw_ix in deferred_draw_indices {
2034 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2035 self.element_id_stack
2036 .clone_from(&deferred_draw.element_id_stack);
2037 self.text_style_stack
2038 .clone_from(&deferred_draw.text_style_stack);
2039 self.next_frame
2040 .dispatch_tree
2041 .set_active_node(deferred_draw.parent_node);
2042
2043 let prepaint_start = self.prepaint_index();
2044 if let Some(element) = deferred_draw.element.as_mut() {
2045 self.with_rendered_view(deferred_draw.current_view, |window| {
2046 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2047 element.prepaint(window, cx)
2048 });
2049 })
2050 } else {
2051 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2052 }
2053 let prepaint_end = self.prepaint_index();
2054 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2055 }
2056 assert_eq!(
2057 self.next_frame.deferred_draws.len(),
2058 0,
2059 "cannot call defer_draw during deferred drawing"
2060 );
2061 self.next_frame.deferred_draws = deferred_draws;
2062 self.element_id_stack.clear();
2063 self.text_style_stack.clear();
2064 }
2065
2066 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2067 assert_eq!(self.element_id_stack.len(), 0);
2068
2069 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2070 for deferred_draw_ix in deferred_draw_indices {
2071 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2072 self.element_id_stack
2073 .clone_from(&deferred_draw.element_id_stack);
2074 self.next_frame
2075 .dispatch_tree
2076 .set_active_node(deferred_draw.parent_node);
2077
2078 let paint_start = self.paint_index();
2079 if let Some(element) = deferred_draw.element.as_mut() {
2080 self.with_rendered_view(deferred_draw.current_view, |window| {
2081 element.paint(window, cx);
2082 })
2083 } else {
2084 self.reuse_paint(deferred_draw.paint_range.clone());
2085 }
2086 let paint_end = self.paint_index();
2087 deferred_draw.paint_range = paint_start..paint_end;
2088 }
2089 self.next_frame.deferred_draws = deferred_draws;
2090 self.element_id_stack.clear();
2091 }
2092
2093 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2094 PrepaintStateIndex {
2095 hitboxes_index: self.next_frame.hitboxes.len(),
2096 tooltips_index: self.next_frame.tooltip_requests.len(),
2097 deferred_draws_index: self.next_frame.deferred_draws.len(),
2098 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2099 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2100 line_layout_index: self.text_system.layout_index(),
2101 }
2102 }
2103
2104 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2105 self.next_frame.hitboxes.extend(
2106 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2107 .iter()
2108 .cloned(),
2109 );
2110 self.next_frame.tooltip_requests.extend(
2111 self.rendered_frame.tooltip_requests
2112 [range.start.tooltips_index..range.end.tooltips_index]
2113 .iter_mut()
2114 .map(|request| request.take()),
2115 );
2116 self.next_frame.accessed_element_states.extend(
2117 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2118 ..range.end.accessed_element_states_index]
2119 .iter()
2120 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2121 );
2122 self.text_system
2123 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2124
2125 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2126 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2127 &mut self.rendered_frame.dispatch_tree,
2128 self.focus,
2129 );
2130
2131 if reused_subtree.contains_focus() {
2132 self.next_frame.focus = self.focus;
2133 }
2134
2135 self.next_frame.deferred_draws.extend(
2136 self.rendered_frame.deferred_draws
2137 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2138 .iter()
2139 .map(|deferred_draw| DeferredDraw {
2140 current_view: deferred_draw.current_view,
2141 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2142 element_id_stack: deferred_draw.element_id_stack.clone(),
2143 text_style_stack: deferred_draw.text_style_stack.clone(),
2144 priority: deferred_draw.priority,
2145 element: None,
2146 absolute_offset: deferred_draw.absolute_offset,
2147 prepaint_range: deferred_draw.prepaint_range.clone(),
2148 paint_range: deferred_draw.paint_range.clone(),
2149 }),
2150 );
2151 }
2152
2153 pub(crate) fn paint_index(&self) -> PaintIndex {
2154 PaintIndex {
2155 scene_index: self.next_frame.scene.len(),
2156 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2157 input_handlers_index: self.next_frame.input_handlers.len(),
2158 cursor_styles_index: self.next_frame.cursor_styles.len(),
2159 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2160 line_layout_index: self.text_system.layout_index(),
2161 }
2162 }
2163
2164 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2165 self.next_frame.cursor_styles.extend(
2166 self.rendered_frame.cursor_styles
2167 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2168 .iter()
2169 .cloned(),
2170 );
2171 self.next_frame.input_handlers.extend(
2172 self.rendered_frame.input_handlers
2173 [range.start.input_handlers_index..range.end.input_handlers_index]
2174 .iter_mut()
2175 .map(|handler| handler.take()),
2176 );
2177 self.next_frame.mouse_listeners.extend(
2178 self.rendered_frame.mouse_listeners
2179 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2180 .iter_mut()
2181 .map(|listener| listener.take()),
2182 );
2183 self.next_frame.accessed_element_states.extend(
2184 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2185 ..range.end.accessed_element_states_index]
2186 .iter()
2187 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2188 );
2189
2190 self.text_system
2191 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2192 self.next_frame.scene.replay(
2193 range.start.scene_index..range.end.scene_index,
2194 &self.rendered_frame.scene,
2195 );
2196 }
2197
2198 /// Push a text style onto the stack, and call a function with that style active.
2199 /// Use [`Window::text_style`] to get the current, combined text style. This method
2200 /// should only be called as part of element drawing.
2201 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2202 where
2203 F: FnOnce(&mut Self) -> R,
2204 {
2205 self.invalidator.debug_assert_paint_or_prepaint();
2206 if let Some(style) = style {
2207 self.text_style_stack.push(style);
2208 let result = f(self);
2209 self.text_style_stack.pop();
2210 result
2211 } else {
2212 f(self)
2213 }
2214 }
2215
2216 /// Updates the cursor style at the platform level. This method should only be called
2217 /// during the prepaint phase of element drawing.
2218 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2219 self.invalidator.debug_assert_paint();
2220 self.next_frame.cursor_styles.push(CursorStyleRequest {
2221 hitbox_id: Some(hitbox.id),
2222 style,
2223 });
2224 }
2225
2226 /// Updates the cursor style for the entire window at the platform level. A cursor
2227 /// style using this method will have precedence over any cursor style set using
2228 /// `set_cursor_style`. This method should only be called during the prepaint
2229 /// phase of element drawing.
2230 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2231 self.invalidator.debug_assert_paint();
2232 self.next_frame.cursor_styles.push(CursorStyleRequest {
2233 hitbox_id: None,
2234 style,
2235 })
2236 }
2237
2238 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2239 /// during the paint phase of element drawing.
2240 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2241 self.invalidator.debug_assert_prepaint();
2242 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2243 self.next_frame
2244 .tooltip_requests
2245 .push(Some(TooltipRequest { id, tooltip }));
2246 id
2247 }
2248
2249 /// Invoke the given function with the given content mask after intersecting it
2250 /// with the current mask. This method should only be called during element drawing.
2251 pub fn with_content_mask<R>(
2252 &mut self,
2253 mask: Option<ContentMask<Pixels>>,
2254 f: impl FnOnce(&mut Self) -> R,
2255 ) -> R {
2256 self.invalidator.debug_assert_paint_or_prepaint();
2257 if let Some(mask) = mask {
2258 let mask = mask.intersect(&self.content_mask());
2259 self.content_mask_stack.push(mask);
2260 let result = f(self);
2261 self.content_mask_stack.pop();
2262 result
2263 } else {
2264 f(self)
2265 }
2266 }
2267
2268 /// Updates the global element offset relative to the current offset. This is used to implement
2269 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2270 pub fn with_element_offset<R>(
2271 &mut self,
2272 offset: Point<Pixels>,
2273 f: impl FnOnce(&mut Self) -> R,
2274 ) -> R {
2275 self.invalidator.debug_assert_prepaint();
2276
2277 if offset.is_zero() {
2278 return f(self);
2279 };
2280
2281 let abs_offset = self.element_offset() + offset;
2282 self.with_absolute_element_offset(abs_offset, f)
2283 }
2284
2285 /// Updates the global element offset based on the given offset. This is used to implement
2286 /// drag handles and other manual painting of elements. This method should only be called during
2287 /// the prepaint phase of element drawing.
2288 pub fn with_absolute_element_offset<R>(
2289 &mut self,
2290 offset: Point<Pixels>,
2291 f: impl FnOnce(&mut Self) -> R,
2292 ) -> R {
2293 self.invalidator.debug_assert_prepaint();
2294 self.element_offset_stack.push(offset);
2295 let result = f(self);
2296 self.element_offset_stack.pop();
2297 result
2298 }
2299
2300 pub(crate) fn with_element_opacity<R>(
2301 &mut self,
2302 opacity: Option<f32>,
2303 f: impl FnOnce(&mut Self) -> R,
2304 ) -> R {
2305 if opacity.is_none() {
2306 return f(self);
2307 }
2308
2309 self.invalidator.debug_assert_paint_or_prepaint();
2310 self.element_opacity = opacity;
2311 let result = f(self);
2312 self.element_opacity = None;
2313 result
2314 }
2315
2316 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2317 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2318 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2319 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2320 /// called during the prepaint phase of element drawing.
2321 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2322 self.invalidator.debug_assert_prepaint();
2323 let index = self.prepaint_index();
2324 let result = f(self);
2325 if result.is_err() {
2326 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2327 self.next_frame
2328 .tooltip_requests
2329 .truncate(index.tooltips_index);
2330 self.next_frame
2331 .deferred_draws
2332 .truncate(index.deferred_draws_index);
2333 self.next_frame
2334 .dispatch_tree
2335 .truncate(index.dispatch_tree_index);
2336 self.next_frame
2337 .accessed_element_states
2338 .truncate(index.accessed_element_states_index);
2339 self.text_system.truncate_layouts(index.line_layout_index);
2340 }
2341 result
2342 }
2343
2344 /// When you call this method during [`prepaint`], containing elements will attempt to
2345 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2346 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2347 /// that supports this method being called on the elements it contains. This method should only be
2348 /// called during the prepaint phase of element drawing.
2349 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2350 self.invalidator.debug_assert_prepaint();
2351 self.requested_autoscroll = Some(bounds);
2352 }
2353
2354 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2355 /// described in [`request_autoscroll`].
2356 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2357 self.invalidator.debug_assert_prepaint();
2358 self.requested_autoscroll.take()
2359 }
2360
2361 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2362 /// Your view will be re-drawn once the asset has finished loading.
2363 ///
2364 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2365 /// time.
2366 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2367 let (task, is_first) = cx.fetch_asset::<A>(source);
2368 task.clone().now_or_never().or_else(|| {
2369 if is_first {
2370 let entity_id = self.current_view();
2371 self.spawn(cx, {
2372 let task = task.clone();
2373 async move |cx| {
2374 task.await;
2375
2376 cx.on_next_frame(move |_, cx| {
2377 cx.notify(entity_id);
2378 });
2379 }
2380 })
2381 .detach();
2382 }
2383
2384 None
2385 })
2386 }
2387
2388 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2389 /// Your view will not be re-drawn once the asset has finished loading.
2390 ///
2391 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2392 /// time.
2393 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2394 let (task, _) = cx.fetch_asset::<A>(source);
2395 task.clone().now_or_never()
2396 }
2397 /// Obtain the current element offset. This method should only be called during the
2398 /// prepaint phase of element drawing.
2399 pub fn element_offset(&self) -> Point<Pixels> {
2400 self.invalidator.debug_assert_prepaint();
2401 self.element_offset_stack
2402 .last()
2403 .copied()
2404 .unwrap_or_default()
2405 }
2406
2407 /// Obtain the current element opacity. This method should only be called during the
2408 /// prepaint phase of element drawing.
2409 pub(crate) fn element_opacity(&self) -> f32 {
2410 self.invalidator.debug_assert_paint_or_prepaint();
2411 self.element_opacity.unwrap_or(1.0)
2412 }
2413
2414 /// Obtain the current content mask. This method should only be called during element drawing.
2415 pub fn content_mask(&self) -> ContentMask<Pixels> {
2416 self.invalidator.debug_assert_paint_or_prepaint();
2417 self.content_mask_stack
2418 .last()
2419 .cloned()
2420 .unwrap_or_else(|| ContentMask {
2421 bounds: Bounds {
2422 origin: Point::default(),
2423 size: self.viewport_size,
2424 },
2425 })
2426 }
2427
2428 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2429 /// This can be used within a custom element to distinguish multiple sets of child elements.
2430 pub fn with_element_namespace<R>(
2431 &mut self,
2432 element_id: impl Into<ElementId>,
2433 f: impl FnOnce(&mut Self) -> R,
2434 ) -> R {
2435 self.element_id_stack.push(element_id.into());
2436 let result = f(self);
2437 self.element_id_stack.pop();
2438 result
2439 }
2440
2441 /// Updates or initializes state for an element with the given id that lives across multiple
2442 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2443 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2444 /// when drawing the next frame. This method should only be called as part of element drawing.
2445 pub fn with_element_state<S, R>(
2446 &mut self,
2447 global_id: &GlobalElementId,
2448 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2449 ) -> R
2450 where
2451 S: 'static,
2452 {
2453 self.invalidator.debug_assert_paint_or_prepaint();
2454
2455 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2456 self.next_frame
2457 .accessed_element_states
2458 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2459
2460 if let Some(any) = self
2461 .next_frame
2462 .element_states
2463 .remove(&key)
2464 .or_else(|| self.rendered_frame.element_states.remove(&key))
2465 {
2466 let ElementStateBox {
2467 inner,
2468 #[cfg(debug_assertions)]
2469 type_name,
2470 } = any;
2471 // Using the extra inner option to avoid needing to reallocate a new box.
2472 let mut state_box = inner
2473 .downcast::<Option<S>>()
2474 .map_err(|_| {
2475 #[cfg(debug_assertions)]
2476 {
2477 anyhow::anyhow!(
2478 "invalid element state type for id, requested {:?}, actual: {:?}",
2479 std::any::type_name::<S>(),
2480 type_name
2481 )
2482 }
2483
2484 #[cfg(not(debug_assertions))]
2485 {
2486 anyhow::anyhow!(
2487 "invalid element state type for id, requested {:?}",
2488 std::any::type_name::<S>(),
2489 )
2490 }
2491 })
2492 .unwrap();
2493
2494 let state = state_box.take().expect(
2495 "reentrant call to with_element_state for the same state type and element id",
2496 );
2497 let (result, state) = f(Some(state), self);
2498 state_box.replace(state);
2499 self.next_frame.element_states.insert(
2500 key,
2501 ElementStateBox {
2502 inner: state_box,
2503 #[cfg(debug_assertions)]
2504 type_name,
2505 },
2506 );
2507 result
2508 } else {
2509 let (result, state) = f(None, self);
2510 self.next_frame.element_states.insert(
2511 key,
2512 ElementStateBox {
2513 inner: Box::new(Some(state)),
2514 #[cfg(debug_assertions)]
2515 type_name: std::any::type_name::<S>(),
2516 },
2517 );
2518 result
2519 }
2520 }
2521
2522 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2523 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2524 /// when the element is guaranteed to have an id.
2525 ///
2526 /// The first option means 'no ID provided'
2527 /// The second option means 'not yet initialized'
2528 pub fn with_optional_element_state<S, R>(
2529 &mut self,
2530 global_id: Option<&GlobalElementId>,
2531 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2532 ) -> R
2533 where
2534 S: 'static,
2535 {
2536 self.invalidator.debug_assert_paint_or_prepaint();
2537
2538 if let Some(global_id) = global_id {
2539 self.with_element_state(global_id, |state, cx| {
2540 let (result, state) = f(Some(state), cx);
2541 let state =
2542 state.expect("you must return some state when you pass some element id");
2543 (result, state)
2544 })
2545 } else {
2546 let (result, state) = f(None, self);
2547 debug_assert!(
2548 state.is_none(),
2549 "you must not return an element state when passing None for the global id"
2550 );
2551 result
2552 }
2553 }
2554
2555 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2556 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2557 /// with higher values being drawn on top.
2558 ///
2559 /// This method should only be called as part of the prepaint phase of element drawing.
2560 pub fn defer_draw(
2561 &mut self,
2562 element: AnyElement,
2563 absolute_offset: Point<Pixels>,
2564 priority: usize,
2565 ) {
2566 self.invalidator.debug_assert_prepaint();
2567 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2568 self.next_frame.deferred_draws.push(DeferredDraw {
2569 current_view: self.current_view(),
2570 parent_node,
2571 element_id_stack: self.element_id_stack.clone(),
2572 text_style_stack: self.text_style_stack.clone(),
2573 priority,
2574 element: Some(element),
2575 absolute_offset,
2576 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2577 paint_range: PaintIndex::default()..PaintIndex::default(),
2578 });
2579 }
2580
2581 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2582 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2583 /// for performance reasons.
2584 ///
2585 /// This method should only be called as part of the paint phase of element drawing.
2586 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2587 self.invalidator.debug_assert_paint();
2588
2589 let scale_factor = self.scale_factor();
2590 let content_mask = self.content_mask();
2591 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2592 if !clipped_bounds.is_empty() {
2593 self.next_frame
2594 .scene
2595 .push_layer(clipped_bounds.scale(scale_factor));
2596 }
2597
2598 let result = f(self);
2599
2600 if !clipped_bounds.is_empty() {
2601 self.next_frame.scene.pop_layer();
2602 }
2603
2604 result
2605 }
2606
2607 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2608 ///
2609 /// This method should only be called as part of the paint phase of element drawing.
2610 pub fn paint_shadows(
2611 &mut self,
2612 bounds: Bounds<Pixels>,
2613 corner_radii: Corners<Pixels>,
2614 shadows: &[BoxShadow],
2615 ) {
2616 self.invalidator.debug_assert_paint();
2617
2618 let scale_factor = self.scale_factor();
2619 let content_mask = self.content_mask();
2620 let opacity = self.element_opacity();
2621 for shadow in shadows {
2622 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2623 self.next_frame.scene.insert_primitive(Shadow {
2624 order: 0,
2625 blur_radius: shadow.blur_radius.scale(scale_factor),
2626 bounds: shadow_bounds.scale(scale_factor),
2627 content_mask: content_mask.scale(scale_factor),
2628 corner_radii: corner_radii.scale(scale_factor),
2629 color: shadow.color.opacity(opacity),
2630 });
2631 }
2632 }
2633
2634 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2635 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2636 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2637 ///
2638 /// This method should only be called as part of the paint phase of element drawing.
2639 ///
2640 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2641 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2642 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2643 pub fn paint_quad(&mut self, quad: PaintQuad) {
2644 self.invalidator.debug_assert_paint();
2645
2646 let scale_factor = self.scale_factor();
2647 let content_mask = self.content_mask();
2648 let opacity = self.element_opacity();
2649 self.next_frame.scene.insert_primitive(Quad {
2650 order: 0,
2651 bounds: quad.bounds.scale(scale_factor),
2652 content_mask: content_mask.scale(scale_factor),
2653 background: quad.background.opacity(opacity),
2654 border_color: quad.border_color.opacity(opacity),
2655 corner_radii: quad.corner_radii.scale(scale_factor),
2656 border_widths: quad.border_widths.scale(scale_factor),
2657 border_style: quad.border_style,
2658 });
2659 }
2660
2661 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2662 ///
2663 /// This method should only be called as part of the paint phase of element drawing.
2664 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2665 self.invalidator.debug_assert_paint();
2666
2667 let scale_factor = self.scale_factor();
2668 let content_mask = self.content_mask();
2669 let opacity = self.element_opacity();
2670 path.content_mask = content_mask;
2671 let color: Background = color.into();
2672 path.color = color.opacity(opacity);
2673 self.next_frame
2674 .scene
2675 .insert_primitive(path.apply_scale(scale_factor));
2676 }
2677
2678 /// Paint an underline into the scene for the next frame at the current z-index.
2679 ///
2680 /// This method should only be called as part of the paint phase of element drawing.
2681 pub fn paint_underline(
2682 &mut self,
2683 origin: Point<Pixels>,
2684 width: Pixels,
2685 style: &UnderlineStyle,
2686 ) {
2687 self.invalidator.debug_assert_paint();
2688
2689 let scale_factor = self.scale_factor();
2690 let height = if style.wavy {
2691 style.thickness * 3.
2692 } else {
2693 style.thickness
2694 };
2695 let bounds = Bounds {
2696 origin,
2697 size: size(width, height),
2698 };
2699 let content_mask = self.content_mask();
2700 let element_opacity = self.element_opacity();
2701
2702 self.next_frame.scene.insert_primitive(Underline {
2703 order: 0,
2704 pad: 0,
2705 bounds: bounds.scale(scale_factor),
2706 content_mask: content_mask.scale(scale_factor),
2707 color: style.color.unwrap_or_default().opacity(element_opacity),
2708 thickness: style.thickness.scale(scale_factor),
2709 wavy: style.wavy,
2710 });
2711 }
2712
2713 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2714 ///
2715 /// This method should only be called as part of the paint phase of element drawing.
2716 pub fn paint_strikethrough(
2717 &mut self,
2718 origin: Point<Pixels>,
2719 width: Pixels,
2720 style: &StrikethroughStyle,
2721 ) {
2722 self.invalidator.debug_assert_paint();
2723
2724 let scale_factor = self.scale_factor();
2725 let height = style.thickness;
2726 let bounds = Bounds {
2727 origin,
2728 size: size(width, height),
2729 };
2730 let content_mask = self.content_mask();
2731 let opacity = self.element_opacity();
2732
2733 self.next_frame.scene.insert_primitive(Underline {
2734 order: 0,
2735 pad: 0,
2736 bounds: bounds.scale(scale_factor),
2737 content_mask: content_mask.scale(scale_factor),
2738 thickness: style.thickness.scale(scale_factor),
2739 color: style.color.unwrap_or_default().opacity(opacity),
2740 wavy: false,
2741 });
2742 }
2743
2744 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2745 ///
2746 /// The y component of the origin is the baseline of the glyph.
2747 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2748 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2749 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2750 ///
2751 /// This method should only be called as part of the paint phase of element drawing.
2752 pub fn paint_glyph(
2753 &mut self,
2754 origin: Point<Pixels>,
2755 font_id: FontId,
2756 glyph_id: GlyphId,
2757 font_size: Pixels,
2758 color: Hsla,
2759 ) -> Result<()> {
2760 self.invalidator.debug_assert_paint();
2761
2762 let element_opacity = self.element_opacity();
2763 let scale_factor = self.scale_factor();
2764 let glyph_origin = origin.scale(scale_factor);
2765 let subpixel_variant = Point {
2766 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2767 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2768 };
2769 let params = RenderGlyphParams {
2770 font_id,
2771 glyph_id,
2772 font_size,
2773 subpixel_variant,
2774 scale_factor,
2775 is_emoji: false,
2776 };
2777
2778 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2779 if !raster_bounds.is_zero() {
2780 let tile = self
2781 .sprite_atlas
2782 .get_or_insert_with(¶ms.clone().into(), &mut || {
2783 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2784 Ok(Some((size, Cow::Owned(bytes))))
2785 })?
2786 .expect("Callback above only errors or returns Some");
2787 let bounds = Bounds {
2788 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2789 size: tile.bounds.size.map(Into::into),
2790 };
2791 let content_mask = self.content_mask().scale(scale_factor);
2792 self.next_frame.scene.insert_primitive(MonochromeSprite {
2793 order: 0,
2794 pad: 0,
2795 bounds,
2796 content_mask,
2797 color: color.opacity(element_opacity),
2798 tile,
2799 transformation: TransformationMatrix::unit(),
2800 });
2801 }
2802 Ok(())
2803 }
2804
2805 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2806 ///
2807 /// The y component of the origin is the baseline of the glyph.
2808 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2809 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2810 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2811 ///
2812 /// This method should only be called as part of the paint phase of element drawing.
2813 pub fn paint_emoji(
2814 &mut self,
2815 origin: Point<Pixels>,
2816 font_id: FontId,
2817 glyph_id: GlyphId,
2818 font_size: Pixels,
2819 ) -> Result<()> {
2820 self.invalidator.debug_assert_paint();
2821
2822 let scale_factor = self.scale_factor();
2823 let glyph_origin = origin.scale(scale_factor);
2824 let params = RenderGlyphParams {
2825 font_id,
2826 glyph_id,
2827 font_size,
2828 // We don't render emojis with subpixel variants.
2829 subpixel_variant: Default::default(),
2830 scale_factor,
2831 is_emoji: true,
2832 };
2833
2834 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2835 if !raster_bounds.is_zero() {
2836 let tile = self
2837 .sprite_atlas
2838 .get_or_insert_with(¶ms.clone().into(), &mut || {
2839 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2840 Ok(Some((size, Cow::Owned(bytes))))
2841 })?
2842 .expect("Callback above only errors or returns Some");
2843
2844 let bounds = Bounds {
2845 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2846 size: tile.bounds.size.map(Into::into),
2847 };
2848 let content_mask = self.content_mask().scale(scale_factor);
2849 let opacity = self.element_opacity();
2850
2851 self.next_frame.scene.insert_primitive(PolychromeSprite {
2852 order: 0,
2853 pad: 0,
2854 grayscale: false,
2855 bounds,
2856 corner_radii: Default::default(),
2857 content_mask,
2858 tile,
2859 opacity,
2860 });
2861 }
2862 Ok(())
2863 }
2864
2865 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2866 ///
2867 /// This method should only be called as part of the paint phase of element drawing.
2868 pub fn paint_svg(
2869 &mut self,
2870 bounds: Bounds<Pixels>,
2871 path: SharedString,
2872 transformation: TransformationMatrix,
2873 color: Hsla,
2874 cx: &App,
2875 ) -> Result<()> {
2876 self.invalidator.debug_assert_paint();
2877
2878 let element_opacity = self.element_opacity();
2879 let scale_factor = self.scale_factor();
2880 let bounds = bounds.scale(scale_factor);
2881 let params = RenderSvgParams {
2882 path,
2883 size: bounds.size.map(|pixels| {
2884 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2885 }),
2886 };
2887
2888 let Some(tile) =
2889 self.sprite_atlas
2890 .get_or_insert_with(¶ms.clone().into(), &mut || {
2891 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2892 return Ok(None);
2893 };
2894 Ok(Some((params.size, Cow::Owned(bytes))))
2895 })?
2896 else {
2897 return Ok(());
2898 };
2899 let content_mask = self.content_mask().scale(scale_factor);
2900
2901 self.next_frame.scene.insert_primitive(MonochromeSprite {
2902 order: 0,
2903 pad: 0,
2904 bounds: bounds
2905 .map_origin(|origin| origin.floor())
2906 .map_size(|size| size.ceil()),
2907 content_mask,
2908 color: color.opacity(element_opacity),
2909 tile,
2910 transformation,
2911 });
2912
2913 Ok(())
2914 }
2915
2916 /// Paint an image into the scene for the next frame at the current z-index.
2917 /// This method will panic if the frame_index is not valid
2918 ///
2919 /// This method should only be called as part of the paint phase of element drawing.
2920 pub fn paint_image(
2921 &mut self,
2922 bounds: Bounds<Pixels>,
2923 corner_radii: Corners<Pixels>,
2924 data: Arc<RenderImage>,
2925 frame_index: usize,
2926 grayscale: bool,
2927 ) -> Result<()> {
2928 self.invalidator.debug_assert_paint();
2929
2930 let scale_factor = self.scale_factor();
2931 let bounds = bounds.scale(scale_factor);
2932 let params = RenderImageParams {
2933 image_id: data.id,
2934 frame_index,
2935 };
2936
2937 let tile = self
2938 .sprite_atlas
2939 .get_or_insert_with(¶ms.clone().into(), &mut || {
2940 Ok(Some((
2941 data.size(frame_index),
2942 Cow::Borrowed(
2943 data.as_bytes(frame_index)
2944 .expect("It's the caller's job to pass a valid frame index"),
2945 ),
2946 )))
2947 })?
2948 .expect("Callback above only returns Some");
2949 let content_mask = self.content_mask().scale(scale_factor);
2950 let corner_radii = corner_radii.scale(scale_factor);
2951 let opacity = self.element_opacity();
2952
2953 self.next_frame.scene.insert_primitive(PolychromeSprite {
2954 order: 0,
2955 pad: 0,
2956 grayscale,
2957 bounds: bounds
2958 .map_origin(|origin| origin.floor())
2959 .map_size(|size| size.ceil()),
2960 content_mask,
2961 corner_radii,
2962 tile,
2963 opacity,
2964 });
2965 Ok(())
2966 }
2967
2968 /// Paint a surface into the scene for the next frame at the current z-index.
2969 ///
2970 /// This method should only be called as part of the paint phase of element drawing.
2971 #[cfg(target_os = "macos")]
2972 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2973 use crate::PaintSurface;
2974
2975 self.invalidator.debug_assert_paint();
2976
2977 let scale_factor = self.scale_factor();
2978 let bounds = bounds.scale(scale_factor);
2979 let content_mask = self.content_mask().scale(scale_factor);
2980 self.next_frame.scene.insert_primitive(PaintSurface {
2981 order: 0,
2982 bounds,
2983 content_mask,
2984 image_buffer,
2985 });
2986 }
2987
2988 /// Removes an image from the sprite atlas.
2989 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2990 for frame_index in 0..data.frame_count() {
2991 let params = RenderImageParams {
2992 image_id: data.id,
2993 frame_index,
2994 };
2995
2996 self.sprite_atlas.remove(¶ms.clone().into());
2997 }
2998
2999 Ok(())
3000 }
3001
3002 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3003 /// layout is being requested, along with the layout ids of any children. This method is called during
3004 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3005 ///
3006 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3007 #[must_use]
3008 pub fn request_layout(
3009 &mut self,
3010 style: Style,
3011 children: impl IntoIterator<Item = LayoutId>,
3012 cx: &mut App,
3013 ) -> LayoutId {
3014 self.invalidator.debug_assert_prepaint();
3015
3016 cx.layout_id_buffer.clear();
3017 cx.layout_id_buffer.extend(children);
3018 let rem_size = self.rem_size();
3019
3020 self.layout_engine
3021 .as_mut()
3022 .unwrap()
3023 .request_layout(style, rem_size, &cx.layout_id_buffer)
3024 }
3025
3026 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3027 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3028 /// determine the element's size. One place this is used internally is when measuring text.
3029 ///
3030 /// The given closure is invoked at layout time with the known dimensions and available space and
3031 /// returns a `Size`.
3032 ///
3033 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3034 pub fn request_measured_layout<
3035 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3036 + 'static,
3037 >(
3038 &mut self,
3039 style: Style,
3040 measure: F,
3041 ) -> LayoutId {
3042 self.invalidator.debug_assert_prepaint();
3043
3044 let rem_size = self.rem_size();
3045 self.layout_engine
3046 .as_mut()
3047 .unwrap()
3048 .request_measured_layout(style, rem_size, measure)
3049 }
3050
3051 /// Compute the layout for the given id within the given available space.
3052 /// This method is called for its side effect, typically by the framework prior to painting.
3053 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3054 ///
3055 /// This method should only be called as part of the prepaint phase of element drawing.
3056 pub fn compute_layout(
3057 &mut self,
3058 layout_id: LayoutId,
3059 available_space: Size<AvailableSpace>,
3060 cx: &mut App,
3061 ) {
3062 self.invalidator.debug_assert_prepaint();
3063
3064 let mut layout_engine = self.layout_engine.take().unwrap();
3065 layout_engine.compute_layout(layout_id, available_space, self, cx);
3066 self.layout_engine = Some(layout_engine);
3067 }
3068
3069 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3070 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3071 ///
3072 /// This method should only be called as part of element drawing.
3073 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3074 self.invalidator.debug_assert_prepaint();
3075
3076 let mut bounds = self
3077 .layout_engine
3078 .as_mut()
3079 .unwrap()
3080 .layout_bounds(layout_id)
3081 .map(Into::into);
3082 bounds.origin += self.element_offset();
3083 bounds
3084 }
3085
3086 /// This method should be called during `prepaint`. You can use
3087 /// the returned [Hitbox] during `paint` or in an event handler
3088 /// to determine whether the inserted hitbox was the topmost.
3089 ///
3090 /// This method should only be called as part of the prepaint phase of element drawing.
3091 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3092 self.invalidator.debug_assert_prepaint();
3093
3094 let content_mask = self.content_mask();
3095 let mut id = self.next_hitbox_id;
3096 self.next_hitbox_id = self.next_hitbox_id.next();
3097 let hitbox = Hitbox {
3098 id,
3099 bounds,
3100 content_mask,
3101 behavior,
3102 };
3103 self.next_frame.hitboxes.push(hitbox.clone());
3104 hitbox
3105 }
3106
3107 /// Set a hitbox which will act as a control area of the platform window.
3108 ///
3109 /// This method should only be called as part of the paint phase of element drawing.
3110 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3111 self.invalidator.debug_assert_paint();
3112 self.next_frame.window_control_hitboxes.push((area, hitbox));
3113 }
3114
3115 /// Sets the key context for the current element. This context will be used to translate
3116 /// keybindings into actions.
3117 ///
3118 /// This method should only be called as part of the paint phase of element drawing.
3119 pub fn set_key_context(&mut self, context: KeyContext) {
3120 self.invalidator.debug_assert_paint();
3121 self.next_frame.dispatch_tree.set_key_context(context);
3122 }
3123
3124 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3125 /// and keyboard event dispatch for the element.
3126 ///
3127 /// This method should only be called as part of the prepaint phase of element drawing.
3128 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3129 self.invalidator.debug_assert_prepaint();
3130 if focus_handle.is_focused(self) {
3131 self.next_frame.focus = Some(focus_handle.id);
3132 }
3133 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3134 }
3135
3136 /// Sets the view id for the current element, which will be used to manage view caching.
3137 ///
3138 /// This method should only be called as part of element prepaint. We plan on removing this
3139 /// method eventually when we solve some issues that require us to construct editor elements
3140 /// directly instead of always using editors via views.
3141 pub fn set_view_id(&mut self, view_id: EntityId) {
3142 self.invalidator.debug_assert_prepaint();
3143 self.next_frame.dispatch_tree.set_view_id(view_id);
3144 }
3145
3146 /// Get the entity ID for the currently rendering view
3147 pub fn current_view(&self) -> EntityId {
3148 self.invalidator.debug_assert_paint_or_prepaint();
3149 self.rendered_entity_stack.last().copied().unwrap()
3150 }
3151
3152 pub(crate) fn with_rendered_view<R>(
3153 &mut self,
3154 id: EntityId,
3155 f: impl FnOnce(&mut Self) -> R,
3156 ) -> R {
3157 self.rendered_entity_stack.push(id);
3158 let result = f(self);
3159 self.rendered_entity_stack.pop();
3160 result
3161 }
3162
3163 /// Executes the provided function with the specified image cache.
3164 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3165 where
3166 F: FnOnce(&mut Self) -> R,
3167 {
3168 if let Some(image_cache) = image_cache {
3169 self.image_cache_stack.push(image_cache);
3170 let result = f(self);
3171 self.image_cache_stack.pop();
3172 result
3173 } else {
3174 f(self)
3175 }
3176 }
3177
3178 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3179 /// platform to receive textual input with proper integration with concerns such
3180 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3181 /// rendered.
3182 ///
3183 /// This method should only be called as part of the paint phase of element drawing.
3184 ///
3185 /// [element_input_handler]: crate::ElementInputHandler
3186 pub fn handle_input(
3187 &mut self,
3188 focus_handle: &FocusHandle,
3189 input_handler: impl InputHandler,
3190 cx: &App,
3191 ) {
3192 self.invalidator.debug_assert_paint();
3193
3194 if focus_handle.is_focused(self) {
3195 let cx = self.to_async(cx);
3196 self.next_frame
3197 .input_handlers
3198 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3199 }
3200 }
3201
3202 /// Register a mouse event listener on the window for the next frame. The type of event
3203 /// is determined by the first parameter of the given listener. When the next frame is rendered
3204 /// the listener will be cleared.
3205 ///
3206 /// This method should only be called as part of the paint phase of element drawing.
3207 pub fn on_mouse_event<Event: MouseEvent>(
3208 &mut self,
3209 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3210 ) {
3211 self.invalidator.debug_assert_paint();
3212
3213 self.next_frame.mouse_listeners.push(Some(Box::new(
3214 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3215 if let Some(event) = event.downcast_ref() {
3216 handler(event, phase, window, cx)
3217 }
3218 },
3219 )));
3220 }
3221
3222 /// Register a key event listener on the window for the next frame. The type of event
3223 /// is determined by the first parameter of the given listener. When the next frame is rendered
3224 /// the listener will be cleared.
3225 ///
3226 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3227 /// a specific need to register a global listener.
3228 ///
3229 /// This method should only be called as part of the paint phase of element drawing.
3230 pub fn on_key_event<Event: KeyEvent>(
3231 &mut self,
3232 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3233 ) {
3234 self.invalidator.debug_assert_paint();
3235
3236 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3237 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3238 if let Some(event) = event.downcast_ref::<Event>() {
3239 listener(event, phase, window, cx)
3240 }
3241 },
3242 ));
3243 }
3244
3245 /// Register a modifiers changed event listener on the window for the next frame.
3246 ///
3247 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3248 /// a specific need to register a global listener.
3249 ///
3250 /// This method should only be called as part of the paint phase of element drawing.
3251 pub fn on_modifiers_changed(
3252 &mut self,
3253 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3254 ) {
3255 self.invalidator.debug_assert_paint();
3256
3257 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3258 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3259 listener(event, window, cx)
3260 },
3261 ));
3262 }
3263
3264 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3265 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3266 /// Returns a subscription and persists until the subscription is dropped.
3267 pub fn on_focus_in(
3268 &mut self,
3269 handle: &FocusHandle,
3270 cx: &mut App,
3271 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3272 ) -> Subscription {
3273 let focus_id = handle.id;
3274 let (subscription, activate) =
3275 self.new_focus_listener(Box::new(move |event, window, cx| {
3276 if event.is_focus_in(focus_id) {
3277 listener(window, cx);
3278 }
3279 true
3280 }));
3281 cx.defer(move |_| activate());
3282 subscription
3283 }
3284
3285 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3286 /// Returns a subscription and persists until the subscription is dropped.
3287 pub fn on_focus_out(
3288 &mut self,
3289 handle: &FocusHandle,
3290 cx: &mut App,
3291 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3292 ) -> Subscription {
3293 let focus_id = handle.id;
3294 let (subscription, activate) =
3295 self.new_focus_listener(Box::new(move |event, window, cx| {
3296 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3297 if event.is_focus_out(focus_id) {
3298 let event = FocusOutEvent {
3299 blurred: WeakFocusHandle {
3300 id: blurred_id,
3301 handles: Arc::downgrade(&cx.focus_handles),
3302 },
3303 };
3304 listener(event, window, cx)
3305 }
3306 }
3307 true
3308 }));
3309 cx.defer(move |_| activate());
3310 subscription
3311 }
3312
3313 fn reset_cursor_style(&self, cx: &mut App) {
3314 // Set the cursor only if we're the active window.
3315 if self.is_window_hovered() {
3316 let style = self
3317 .rendered_frame
3318 .cursor_style(self)
3319 .unwrap_or(CursorStyle::Arrow);
3320 cx.platform.set_cursor_style(style);
3321 }
3322 }
3323
3324 /// Dispatch a given keystroke as though the user had typed it.
3325 /// You can create a keystroke with Keystroke::parse("").
3326 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3327 let keystroke = keystroke.with_simulated_ime();
3328 let result = self.dispatch_event(
3329 PlatformInput::KeyDown(KeyDownEvent {
3330 keystroke: keystroke.clone(),
3331 is_held: false,
3332 }),
3333 cx,
3334 );
3335 if !result.propagate {
3336 return true;
3337 }
3338
3339 if let Some(input) = keystroke.key_char {
3340 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3341 input_handler.dispatch_input(&input, self, cx);
3342 self.platform_window.set_input_handler(input_handler);
3343 return true;
3344 }
3345 }
3346
3347 false
3348 }
3349
3350 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3351 /// binding for the action (last binding added to the keymap).
3352 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3353 self.highest_precedence_binding_for_action(action)
3354 .map(|binding| {
3355 binding
3356 .keystrokes()
3357 .iter()
3358 .map(ToString::to_string)
3359 .collect::<Vec<_>>()
3360 .join(" ")
3361 })
3362 .unwrap_or_else(|| action.name().to_string())
3363 }
3364
3365 /// Dispatch a mouse or keyboard event on the window.
3366 #[profiling::function]
3367 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3368 self.last_input_timestamp.set(Instant::now());
3369 // Handlers may set this to false by calling `stop_propagation`.
3370 cx.propagate_event = true;
3371 // Handlers may set this to true by calling `prevent_default`.
3372 self.default_prevented = false;
3373
3374 let event = match event {
3375 // Track the mouse position with our own state, since accessing the platform
3376 // API for the mouse position can only occur on the main thread.
3377 PlatformInput::MouseMove(mouse_move) => {
3378 self.mouse_position = mouse_move.position;
3379 self.modifiers = mouse_move.modifiers;
3380 PlatformInput::MouseMove(mouse_move)
3381 }
3382 PlatformInput::MouseDown(mouse_down) => {
3383 self.mouse_position = mouse_down.position;
3384 self.modifiers = mouse_down.modifiers;
3385 PlatformInput::MouseDown(mouse_down)
3386 }
3387 PlatformInput::MouseUp(mouse_up) => {
3388 self.mouse_position = mouse_up.position;
3389 self.modifiers = mouse_up.modifiers;
3390 PlatformInput::MouseUp(mouse_up)
3391 }
3392 PlatformInput::MouseExited(mouse_exited) => {
3393 self.modifiers = mouse_exited.modifiers;
3394 PlatformInput::MouseExited(mouse_exited)
3395 }
3396 PlatformInput::ModifiersChanged(modifiers_changed) => {
3397 self.modifiers = modifiers_changed.modifiers;
3398 self.capslock = modifiers_changed.capslock;
3399 PlatformInput::ModifiersChanged(modifiers_changed)
3400 }
3401 PlatformInput::ScrollWheel(scroll_wheel) => {
3402 self.mouse_position = scroll_wheel.position;
3403 self.modifiers = scroll_wheel.modifiers;
3404 PlatformInput::ScrollWheel(scroll_wheel)
3405 }
3406 // Translate dragging and dropping of external files from the operating system
3407 // to internal drag and drop events.
3408 PlatformInput::FileDrop(file_drop) => match file_drop {
3409 FileDropEvent::Entered { position, paths } => {
3410 self.mouse_position = position;
3411 if cx.active_drag.is_none() {
3412 cx.active_drag = Some(AnyDrag {
3413 value: Arc::new(paths.clone()),
3414 view: cx.new(|_| paths).into(),
3415 cursor_offset: position,
3416 cursor_style: None,
3417 });
3418 }
3419 PlatformInput::MouseMove(MouseMoveEvent {
3420 position,
3421 pressed_button: Some(MouseButton::Left),
3422 modifiers: Modifiers::default(),
3423 })
3424 }
3425 FileDropEvent::Pending { position } => {
3426 self.mouse_position = position;
3427 PlatformInput::MouseMove(MouseMoveEvent {
3428 position,
3429 pressed_button: Some(MouseButton::Left),
3430 modifiers: Modifiers::default(),
3431 })
3432 }
3433 FileDropEvent::Submit { position } => {
3434 cx.activate(true);
3435 self.mouse_position = position;
3436 PlatformInput::MouseUp(MouseUpEvent {
3437 button: MouseButton::Left,
3438 position,
3439 modifiers: Modifiers::default(),
3440 click_count: 1,
3441 })
3442 }
3443 FileDropEvent::Exited => {
3444 cx.active_drag.take();
3445 PlatformInput::FileDrop(FileDropEvent::Exited)
3446 }
3447 },
3448 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3449 };
3450
3451 if let Some(any_mouse_event) = event.mouse_event() {
3452 self.dispatch_mouse_event(any_mouse_event, cx);
3453 } else if let Some(any_key_event) = event.keyboard_event() {
3454 self.dispatch_key_event(any_key_event, cx);
3455 }
3456
3457 DispatchEventResult {
3458 propagate: cx.propagate_event,
3459 default_prevented: self.default_prevented,
3460 }
3461 }
3462
3463 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3464 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3465 if hit_test != self.mouse_hit_test {
3466 self.mouse_hit_test = hit_test;
3467 self.reset_cursor_style(cx);
3468 }
3469
3470 #[cfg(any(feature = "inspector", debug_assertions))]
3471 if self.is_inspector_picking(cx) {
3472 self.handle_inspector_mouse_event(event, cx);
3473 // When inspector is picking, all other mouse handling is skipped.
3474 return;
3475 }
3476
3477 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3478
3479 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3480 // special purposes, such as detecting events outside of a given Bounds.
3481 for listener in &mut mouse_listeners {
3482 let listener = listener.as_mut().unwrap();
3483 listener(event, DispatchPhase::Capture, self, cx);
3484 if !cx.propagate_event {
3485 break;
3486 }
3487 }
3488
3489 // Bubble phase, where most normal handlers do their work.
3490 if cx.propagate_event {
3491 for listener in mouse_listeners.iter_mut().rev() {
3492 let listener = listener.as_mut().unwrap();
3493 listener(event, DispatchPhase::Bubble, self, cx);
3494 if !cx.propagate_event {
3495 break;
3496 }
3497 }
3498 }
3499
3500 self.rendered_frame.mouse_listeners = mouse_listeners;
3501
3502 if cx.has_active_drag() {
3503 if event.is::<MouseMoveEvent>() {
3504 // If this was a mouse move event, redraw the window so that the
3505 // active drag can follow the mouse cursor.
3506 self.refresh();
3507 } else if event.is::<MouseUpEvent>() {
3508 // If this was a mouse up event, cancel the active drag and redraw
3509 // the window.
3510 cx.active_drag = None;
3511 self.refresh();
3512 }
3513 }
3514 }
3515
3516 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3517 if self.invalidator.is_dirty() {
3518 self.draw(cx).clear();
3519 }
3520
3521 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3522 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3523
3524 let mut keystroke: Option<Keystroke> = None;
3525
3526 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3527 if event.modifiers.number_of_modifiers() == 0
3528 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3529 && !self.pending_modifier.saw_keystroke
3530 {
3531 let key = match self.pending_modifier.modifiers {
3532 modifiers if modifiers.shift => Some("shift"),
3533 modifiers if modifiers.control => Some("control"),
3534 modifiers if modifiers.alt => Some("alt"),
3535 modifiers if modifiers.platform => Some("platform"),
3536 modifiers if modifiers.function => Some("function"),
3537 _ => None,
3538 };
3539 if let Some(key) = key {
3540 keystroke = Some(Keystroke {
3541 key: key.to_string(),
3542 key_char: None,
3543 modifiers: Modifiers::default(),
3544 });
3545 }
3546 }
3547
3548 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3549 && event.modifiers.number_of_modifiers() == 1
3550 {
3551 self.pending_modifier.saw_keystroke = false
3552 }
3553 self.pending_modifier.modifiers = event.modifiers
3554 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3555 self.pending_modifier.saw_keystroke = true;
3556 keystroke = Some(key_down_event.keystroke.clone());
3557 }
3558
3559 let Some(keystroke) = keystroke else {
3560 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3561 return;
3562 };
3563
3564 cx.propagate_event = true;
3565 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3566 if !cx.propagate_event {
3567 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3568 return;
3569 }
3570
3571 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3572 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3573 currently_pending = PendingInput::default();
3574 }
3575
3576 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3577 currently_pending.keystrokes,
3578 keystroke,
3579 &dispatch_path,
3580 );
3581
3582 if !match_result.to_replay.is_empty() {
3583 self.replay_pending_input(match_result.to_replay, cx)
3584 }
3585
3586 if !match_result.pending.is_empty() {
3587 currently_pending.keystrokes = match_result.pending;
3588 currently_pending.focus = self.focus;
3589 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3590 cx.background_executor.timer(Duration::from_secs(1)).await;
3591 cx.update(move |window, cx| {
3592 let Some(currently_pending) = window
3593 .pending_input
3594 .take()
3595 .filter(|pending| pending.focus == window.focus)
3596 else {
3597 return;
3598 };
3599
3600 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3601 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3602
3603 let to_replay = window
3604 .rendered_frame
3605 .dispatch_tree
3606 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3607
3608 window.pending_input_changed(cx);
3609 window.replay_pending_input(to_replay, cx)
3610 })
3611 .log_err();
3612 }));
3613 self.pending_input = Some(currently_pending);
3614 self.pending_input_changed(cx);
3615 cx.propagate_event = false;
3616 return;
3617 }
3618
3619 for binding in match_result.bindings {
3620 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3621 if !cx.propagate_event {
3622 self.dispatch_keystroke_observers(
3623 event,
3624 Some(binding.action),
3625 match_result.context_stack.clone(),
3626 cx,
3627 );
3628 self.pending_input_changed(cx);
3629 return;
3630 }
3631 }
3632
3633 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3634 self.pending_input_changed(cx);
3635 }
3636
3637 fn finish_dispatch_key_event(
3638 &mut self,
3639 event: &dyn Any,
3640 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3641 context_stack: Vec<KeyContext>,
3642 cx: &mut App,
3643 ) {
3644 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3645 if !cx.propagate_event {
3646 return;
3647 }
3648
3649 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3650 if !cx.propagate_event {
3651 return;
3652 }
3653
3654 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3655 }
3656
3657 fn pending_input_changed(&mut self, cx: &mut App) {
3658 self.pending_input_observers
3659 .clone()
3660 .retain(&(), |callback| callback(self, cx));
3661 }
3662
3663 fn dispatch_key_down_up_event(
3664 &mut self,
3665 event: &dyn Any,
3666 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3667 cx: &mut App,
3668 ) {
3669 // Capture phase
3670 for node_id in dispatch_path {
3671 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3672
3673 for key_listener in node.key_listeners.clone() {
3674 key_listener(event, DispatchPhase::Capture, self, cx);
3675 if !cx.propagate_event {
3676 return;
3677 }
3678 }
3679 }
3680
3681 // Bubble phase
3682 for node_id in dispatch_path.iter().rev() {
3683 // Handle low level key events
3684 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3685 for key_listener in node.key_listeners.clone() {
3686 key_listener(event, DispatchPhase::Bubble, self, cx);
3687 if !cx.propagate_event {
3688 return;
3689 }
3690 }
3691 }
3692 }
3693
3694 fn dispatch_modifiers_changed_event(
3695 &mut self,
3696 event: &dyn Any,
3697 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3698 cx: &mut App,
3699 ) {
3700 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3701 return;
3702 };
3703 for node_id in dispatch_path.iter().rev() {
3704 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3705 for listener in node.modifiers_changed_listeners.clone() {
3706 listener(event, self, cx);
3707 if !cx.propagate_event {
3708 return;
3709 }
3710 }
3711 }
3712 }
3713
3714 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3715 pub fn has_pending_keystrokes(&self) -> bool {
3716 self.pending_input.is_some()
3717 }
3718
3719 pub(crate) fn clear_pending_keystrokes(&mut self) {
3720 self.pending_input.take();
3721 }
3722
3723 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3724 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3725 self.pending_input
3726 .as_ref()
3727 .map(|pending_input| pending_input.keystrokes.as_slice())
3728 }
3729
3730 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3731 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3732 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3733
3734 'replay: for replay in replays {
3735 let event = KeyDownEvent {
3736 keystroke: replay.keystroke.clone(),
3737 is_held: false,
3738 };
3739
3740 cx.propagate_event = true;
3741 for binding in replay.bindings {
3742 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3743 if !cx.propagate_event {
3744 self.dispatch_keystroke_observers(
3745 &event,
3746 Some(binding.action),
3747 Vec::default(),
3748 cx,
3749 );
3750 continue 'replay;
3751 }
3752 }
3753
3754 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3755 if !cx.propagate_event {
3756 continue 'replay;
3757 }
3758 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3759 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3760 input_handler.dispatch_input(&input, self, cx);
3761 self.platform_window.set_input_handler(input_handler)
3762 }
3763 }
3764 }
3765 }
3766
3767 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3768 focus_id
3769 .and_then(|focus_id| {
3770 self.rendered_frame
3771 .dispatch_tree
3772 .focusable_node_id(focus_id)
3773 })
3774 .unwrap_or_else(|| {
3775 println!("root node id");
3776 self.rendered_frame.dispatch_tree.root_node_id()
3777 })
3778 }
3779
3780 fn dispatch_action_on_node(
3781 &mut self,
3782 node_id: DispatchNodeId,
3783 action: &dyn Action,
3784 cx: &mut App,
3785 ) {
3786 dbg!("dispatch_action_on_node");
3787 dbg!(action.name());
3788 dbg!(action.as_any().type_id());
3789 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3790 dbg!(&dispatch_path);
3791
3792 // Capture phase for global actions.
3793 cx.propagate_event = true;
3794 if let Some(mut global_listeners) = cx
3795 .global_action_listeners
3796 .remove(&action.as_any().type_id())
3797 {
3798 dbg!(
3799 "Found global listeners for capture phase",
3800 global_listeners.len()
3801 );
3802 for listener in &global_listeners {
3803 dbg!("Executing global listener in capture phase");
3804 listener(action.as_any(), DispatchPhase::Capture, cx);
3805 if !cx.propagate_event {
3806 dbg!("Event propagation stopped in global capture phase");
3807 break;
3808 }
3809 }
3810
3811 global_listeners.extend(
3812 cx.global_action_listeners
3813 .remove(&action.as_any().type_id())
3814 .unwrap_or_default(),
3815 );
3816
3817 cx.global_action_listeners
3818 .insert(action.as_any().type_id(), global_listeners);
3819 }
3820
3821 if !cx.propagate_event {
3822 return;
3823 }
3824
3825 // Capture phase for window actions.
3826 for node_id in &dispatch_path {
3827 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3828 for DispatchActionListener {
3829 action_type,
3830 listener,
3831 } in node.action_listeners.clone()
3832 {
3833 let any_action = action.as_any();
3834 if action_type == any_action.type_id() {
3835 dbg!("Found window action listener in capture phase", node_id);
3836 listener(any_action, DispatchPhase::Capture, self, cx);
3837
3838 if !cx.propagate_event {
3839 dbg!("Event propagation stopped in window capture phase");
3840 return;
3841 }
3842 }
3843 }
3844 }
3845
3846 // Bubble phase for window actions.
3847 for node_id in dispatch_path.iter().rev() {
3848 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3849 for DispatchActionListener {
3850 action_type,
3851 listener,
3852 } in node.action_listeners.clone()
3853 {
3854 let any_action = action.as_any();
3855 if action_type == any_action.type_id() {
3856 dbg!("Found window action listener in bubble phase", node_id);
3857 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3858 listener(any_action, DispatchPhase::Bubble, self, cx);
3859
3860 if !cx.propagate_event {
3861 dbg!("Event propagation stopped in window bubble phase");
3862 return;
3863 }
3864 }
3865 }
3866 }
3867
3868 // Bubble phase for global actions.
3869 if let Some(mut global_listeners) = cx
3870 .global_action_listeners
3871 .remove(&action.as_any().type_id())
3872 {
3873 dbg!(
3874 "Found global listeners for bubble phase",
3875 global_listeners.len()
3876 );
3877 for listener in global_listeners.iter().rev() {
3878 dbg!("Executing global listener in bubble phase");
3879 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3880
3881 listener(action.as_any(), DispatchPhase::Bubble, cx);
3882 if !cx.propagate_event {
3883 dbg!("Event propagation stopped in global bubble phase");
3884 break;
3885 }
3886 }
3887
3888 global_listeners.extend(
3889 cx.global_action_listeners
3890 .remove(&action.as_any().type_id())
3891 .unwrap_or_default(),
3892 );
3893
3894 cx.global_action_listeners
3895 .insert(action.as_any().type_id(), global_listeners);
3896 }
3897 }
3898
3899 /// Register the given handler to be invoked whenever the global of the given type
3900 /// is updated.
3901 pub fn observe_global<G: Global>(
3902 &mut self,
3903 cx: &mut App,
3904 f: impl Fn(&mut Window, &mut App) + 'static,
3905 ) -> Subscription {
3906 let window_handle = self.handle;
3907 let (subscription, activate) = cx.global_observers.insert(
3908 TypeId::of::<G>(),
3909 Box::new(move |cx| {
3910 window_handle
3911 .update(cx, |_, window, cx| f(window, cx))
3912 .is_ok()
3913 }),
3914 );
3915 cx.defer(move |_| activate());
3916 subscription
3917 }
3918
3919 /// Focus the current window and bring it to the foreground at the platform level.
3920 pub fn activate_window(&self) {
3921 self.platform_window.activate();
3922 }
3923
3924 /// Minimize the current window at the platform level.
3925 pub fn minimize_window(&self) {
3926 self.platform_window.minimize();
3927 }
3928
3929 /// Toggle full screen status on the current window at the platform level.
3930 pub fn toggle_fullscreen(&self) {
3931 self.platform_window.toggle_fullscreen();
3932 }
3933
3934 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3935 pub fn invalidate_character_coordinates(&self) {
3936 self.on_next_frame(|window, cx| {
3937 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3938 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3939 window
3940 .platform_window
3941 .update_ime_position(bounds.scale(window.scale_factor()));
3942 }
3943 window.platform_window.set_input_handler(input_handler);
3944 }
3945 });
3946 }
3947
3948 /// Present a platform dialog.
3949 /// The provided message will be presented, along with buttons for each answer.
3950 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3951 pub fn prompt<T>(
3952 &mut self,
3953 level: PromptLevel,
3954 message: &str,
3955 detail: Option<&str>,
3956 answers: &[T],
3957 cx: &mut App,
3958 ) -> oneshot::Receiver<usize>
3959 where
3960 T: Clone + Into<PromptButton>,
3961 {
3962 let prompt_builder = cx.prompt_builder.take();
3963 let Some(prompt_builder) = prompt_builder else {
3964 unreachable!("Re-entrant window prompting is not supported by GPUI");
3965 };
3966
3967 let answers = answers
3968 .iter()
3969 .map(|answer| answer.clone().into())
3970 .collect::<Vec<_>>();
3971
3972 let receiver = match &prompt_builder {
3973 PromptBuilder::Default => self
3974 .platform_window
3975 .prompt(level, message, detail, &answers)
3976 .unwrap_or_else(|| {
3977 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3978 }),
3979 PromptBuilder::Custom(_) => {
3980 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3981 }
3982 };
3983
3984 cx.prompt_builder = Some(prompt_builder);
3985
3986 receiver
3987 }
3988
3989 fn build_custom_prompt(
3990 &mut self,
3991 prompt_builder: &PromptBuilder,
3992 level: PromptLevel,
3993 message: &str,
3994 detail: Option<&str>,
3995 answers: &[PromptButton],
3996 cx: &mut App,
3997 ) -> oneshot::Receiver<usize> {
3998 let (sender, receiver) = oneshot::channel();
3999 let handle = PromptHandle::new(sender);
4000 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4001 self.prompt = Some(handle);
4002 receiver
4003 }
4004
4005 /// Returns the current context stack.
4006 pub fn context_stack(&self) -> Vec<KeyContext> {
4007 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4008 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4009 dispatch_tree
4010 .dispatch_path(node_id)
4011 .iter()
4012 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4013 .collect()
4014 }
4015
4016 /// Returns all available actions for the focused element.
4017 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4018 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4019 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4020 for action_type in cx.global_action_listeners.keys() {
4021 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4022 let action = cx.actions.build_action_type(action_type).ok();
4023 if let Some(action) = action {
4024 actions.insert(ix, action);
4025 }
4026 }
4027 }
4028 actions
4029 }
4030
4031 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4032 /// returned in the order they were added. For display, the last binding should take precedence.
4033 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4034 self.rendered_frame
4035 .dispatch_tree
4036 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4037 }
4038
4039 /// Returns the highest precedence key binding that invokes an action on the currently focused
4040 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4041 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4042 self.rendered_frame
4043 .dispatch_tree
4044 .highest_precedence_binding_for_action(
4045 action,
4046 &self.rendered_frame.dispatch_tree.context_stack,
4047 )
4048 }
4049
4050 /// Returns the key bindings for an action in a context.
4051 pub fn bindings_for_action_in_context(
4052 &self,
4053 action: &dyn Action,
4054 context: KeyContext,
4055 ) -> Vec<KeyBinding> {
4056 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4057 dispatch_tree.bindings_for_action(action, &[context])
4058 }
4059
4060 /// Returns the highest precedence key binding for an action in a context. This is more
4061 /// efficient than getting the last result of `bindings_for_action_in_context`.
4062 pub fn highest_precedence_binding_for_action_in_context(
4063 &self,
4064 action: &dyn Action,
4065 context: KeyContext,
4066 ) -> Option<KeyBinding> {
4067 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4068 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4069 }
4070
4071 /// Returns any bindings that would invoke an action on the given focus handle if it were
4072 /// focused. Bindings are returned in the order they were added. For display, the last binding
4073 /// should take precedence.
4074 pub fn bindings_for_action_in(
4075 &self,
4076 action: &dyn Action,
4077 focus_handle: &FocusHandle,
4078 ) -> Vec<KeyBinding> {
4079 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4080 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4081 return vec![];
4082 };
4083 dispatch_tree.bindings_for_action(action, &context_stack)
4084 }
4085
4086 /// Returns the highest precedence key binding that would invoke an action on the given focus
4087 /// handle if it were focused. This is more efficient than getting the last result of
4088 /// `bindings_for_action_in`.
4089 pub fn highest_precedence_binding_for_action_in(
4090 &self,
4091 action: &dyn Action,
4092 focus_handle: &FocusHandle,
4093 ) -> Option<KeyBinding> {
4094 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4095 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4096 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4097 }
4098
4099 fn context_stack_for_focus_handle(
4100 &self,
4101 focus_handle: &FocusHandle,
4102 ) -> Option<Vec<KeyContext>> {
4103 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4104 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4105 let context_stack: Vec<_> = dispatch_tree
4106 .dispatch_path(node_id)
4107 .into_iter()
4108 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4109 .collect();
4110 Some(context_stack)
4111 }
4112
4113 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4114 pub fn listener_for<V: Render, E>(
4115 &self,
4116 view: &Entity<V>,
4117 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4118 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4119 let view = view.downgrade();
4120 move |e: &E, window: &mut Window, cx: &mut App| {
4121 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4122 }
4123 }
4124
4125 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4126 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4127 &self,
4128 view: &Entity<V>,
4129 f: Callback,
4130 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4131 let view = view.downgrade();
4132 move |window: &mut Window, cx: &mut App| {
4133 view.update(cx, |view, cx| f(view, window, cx)).ok();
4134 }
4135 }
4136
4137 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4138 /// If the callback returns false, the window won't be closed.
4139 pub fn on_window_should_close(
4140 &self,
4141 cx: &App,
4142 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4143 ) {
4144 let mut cx = self.to_async(cx);
4145 self.platform_window.on_should_close(Box::new(move || {
4146 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4147 }))
4148 }
4149
4150 /// Register an action listener on the window for the next frame. The type of action
4151 /// is determined by the first parameter of the given listener. When the next frame is rendered
4152 /// the listener will be cleared.
4153 ///
4154 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4155 /// a specific need to register a global listener.
4156 pub fn on_action(
4157 &mut self,
4158 action_type: TypeId,
4159 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4160 ) {
4161 self.next_frame
4162 .dispatch_tree
4163 .on_action(action_type, Rc::new(listener));
4164 }
4165
4166 /// Read information about the GPU backing this window.
4167 /// Currently returns None on Mac and Windows.
4168 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4169 self.platform_window.gpu_specs()
4170 }
4171
4172 /// Perform titlebar double-click action.
4173 /// This is MacOS specific.
4174 pub fn titlebar_double_click(&self) {
4175 self.platform_window.titlebar_double_click();
4176 }
4177
4178 /// Toggles the inspector mode on this window.
4179 #[cfg(any(feature = "inspector", debug_assertions))]
4180 pub fn toggle_inspector(&mut self, cx: &mut App) {
4181 self.inspector = match self.inspector {
4182 None => Some(cx.new(|_| Inspector::new())),
4183 Some(_) => None,
4184 };
4185 self.refresh();
4186 }
4187
4188 /// Returns true if the window is in inspector mode.
4189 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4190 #[cfg(any(feature = "inspector", debug_assertions))]
4191 {
4192 if let Some(inspector) = &self.inspector {
4193 return inspector.read(_cx).is_picking();
4194 }
4195 }
4196 false
4197 }
4198
4199 /// Executes the provided function with mutable access to an inspector state.
4200 #[cfg(any(feature = "inspector", debug_assertions))]
4201 pub fn with_inspector_state<T: 'static, R>(
4202 &mut self,
4203 _inspector_id: Option<&crate::InspectorElementId>,
4204 cx: &mut App,
4205 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4206 ) -> R {
4207 if let Some(inspector_id) = _inspector_id {
4208 if let Some(inspector) = &self.inspector {
4209 let inspector = inspector.clone();
4210 let active_element_id = inspector.read(cx).active_element_id();
4211 if Some(inspector_id) == active_element_id {
4212 return inspector.update(cx, |inspector, _cx| {
4213 inspector.with_active_element_state(self, f)
4214 });
4215 }
4216 }
4217 }
4218 f(&mut None, self)
4219 }
4220
4221 #[cfg(any(feature = "inspector", debug_assertions))]
4222 pub(crate) fn build_inspector_element_id(
4223 &mut self,
4224 path: crate::InspectorElementPath,
4225 ) -> crate::InspectorElementId {
4226 self.invalidator.debug_assert_paint_or_prepaint();
4227 let path = Rc::new(path);
4228 let next_instance_id = self
4229 .next_frame
4230 .next_inspector_instance_ids
4231 .entry(path.clone())
4232 .or_insert(0);
4233 let instance_id = *next_instance_id;
4234 *next_instance_id += 1;
4235 crate::InspectorElementId { path, instance_id }
4236 }
4237
4238 #[cfg(any(feature = "inspector", debug_assertions))]
4239 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4240 if let Some(inspector) = self.inspector.take() {
4241 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4242 inspector_element.prepaint_as_root(
4243 point(self.viewport_size.width - inspector_width, px(0.0)),
4244 size(inspector_width, self.viewport_size.height).into(),
4245 self,
4246 cx,
4247 );
4248 self.inspector = Some(inspector);
4249 Some(inspector_element)
4250 } else {
4251 None
4252 }
4253 }
4254
4255 #[cfg(any(feature = "inspector", debug_assertions))]
4256 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4257 if let Some(mut inspector_element) = inspector_element {
4258 inspector_element.paint(self, cx);
4259 };
4260 }
4261
4262 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4263 /// inspect UI elements by clicking on them.
4264 #[cfg(any(feature = "inspector", debug_assertions))]
4265 pub fn insert_inspector_hitbox(
4266 &mut self,
4267 hitbox_id: HitboxId,
4268 inspector_id: Option<&crate::InspectorElementId>,
4269 cx: &App,
4270 ) {
4271 self.invalidator.debug_assert_paint_or_prepaint();
4272 if !self.is_inspector_picking(cx) {
4273 return;
4274 }
4275 if let Some(inspector_id) = inspector_id {
4276 self.next_frame
4277 .inspector_hitboxes
4278 .insert(hitbox_id, inspector_id.clone());
4279 }
4280 }
4281
4282 #[cfg(any(feature = "inspector", debug_assertions))]
4283 fn paint_inspector_hitbox(&mut self, cx: &App) {
4284 if let Some(inspector) = self.inspector.as_ref() {
4285 let inspector = inspector.read(cx);
4286 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4287 {
4288 if let Some(hitbox) = self
4289 .next_frame
4290 .hitboxes
4291 .iter()
4292 .find(|hitbox| hitbox.id == hitbox_id)
4293 {
4294 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4295 }
4296 }
4297 }
4298 }
4299
4300 #[cfg(any(feature = "inspector", debug_assertions))]
4301 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4302 let Some(inspector) = self.inspector.clone() else {
4303 return;
4304 };
4305 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4306 inspector.update(cx, |inspector, _cx| {
4307 if let Some((_, inspector_id)) =
4308 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4309 {
4310 inspector.hover(inspector_id, self);
4311 }
4312 });
4313 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4314 inspector.update(cx, |inspector, _cx| {
4315 if let Some((_, inspector_id)) =
4316 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4317 {
4318 inspector.select(inspector_id, self);
4319 }
4320 });
4321 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4322 // This should be kept in sync with SCROLL_LINES in x11 platform.
4323 const SCROLL_LINES: f32 = 3.0;
4324 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4325 let delta_y = event
4326 .delta
4327 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4328 .y;
4329 if let Some(inspector) = self.inspector.clone() {
4330 inspector.update(cx, |inspector, _cx| {
4331 if let Some(depth) = inspector.pick_depth.as_mut() {
4332 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4333 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4334 if *depth < 0.0 {
4335 *depth = 0.0;
4336 } else if *depth > max_depth {
4337 *depth = max_depth;
4338 }
4339 if let Some((_, inspector_id)) =
4340 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4341 {
4342 inspector.set_active_element_id(inspector_id.clone(), self);
4343 }
4344 }
4345 });
4346 }
4347 }
4348 }
4349
4350 #[cfg(any(feature = "inspector", debug_assertions))]
4351 fn hovered_inspector_hitbox(
4352 &self,
4353 inspector: &Inspector,
4354 frame: &Frame,
4355 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4356 if let Some(pick_depth) = inspector.pick_depth {
4357 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4358 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4359 let skip_count = (depth as usize).min(max_skipped);
4360 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4361 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4362 return Some((*hitbox_id, inspector_id.clone()));
4363 }
4364 }
4365 }
4366 return None;
4367 }
4368}
4369
4370// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4371slotmap::new_key_type! {
4372 /// A unique identifier for a window.
4373 pub struct WindowId;
4374}
4375
4376impl WindowId {
4377 /// Converts this window ID to a `u64`.
4378 pub fn as_u64(&self) -> u64 {
4379 self.0.as_ffi()
4380 }
4381}
4382
4383impl From<u64> for WindowId {
4384 fn from(value: u64) -> Self {
4385 WindowId(slotmap::KeyData::from_ffi(value))
4386 }
4387}
4388
4389/// A handle to a window with a specific root view type.
4390/// Note that this does not keep the window alive on its own.
4391#[derive(Deref, DerefMut)]
4392pub struct WindowHandle<V> {
4393 #[deref]
4394 #[deref_mut]
4395 pub(crate) any_handle: AnyWindowHandle,
4396 state_type: PhantomData<V>,
4397}
4398
4399impl<V: 'static + Render> WindowHandle<V> {
4400 /// Creates a new handle from a window ID.
4401 /// This does not check if the root type of the window is `V`.
4402 pub fn new(id: WindowId) -> Self {
4403 WindowHandle {
4404 any_handle: AnyWindowHandle {
4405 id,
4406 state_type: TypeId::of::<V>(),
4407 },
4408 state_type: PhantomData,
4409 }
4410 }
4411
4412 /// Get the root view out of this window.
4413 ///
4414 /// This will fail if the window is closed or if the root view's type does not match `V`.
4415 #[cfg(any(test, feature = "test-support"))]
4416 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4417 where
4418 C: AppContext,
4419 {
4420 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4421 root_view
4422 .downcast::<V>()
4423 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4424 }))
4425 }
4426
4427 /// Updates the root view of this window.
4428 ///
4429 /// This will fail if the window has been closed or if the root view's type does not match
4430 pub fn update<C, R>(
4431 &self,
4432 cx: &mut C,
4433 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4434 ) -> Result<R>
4435 where
4436 C: AppContext,
4437 {
4438 cx.update_window(self.any_handle, |root_view, window, cx| {
4439 let view = root_view
4440 .downcast::<V>()
4441 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4442
4443 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4444 })?
4445 }
4446
4447 /// Read the root view out of this window.
4448 ///
4449 /// This will fail if the window is closed or if the root view's type does not match `V`.
4450 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4451 let x = cx
4452 .windows
4453 .get(self.id)
4454 .and_then(|window| {
4455 window
4456 .as_ref()
4457 .and_then(|window| window.root.clone())
4458 .map(|root_view| root_view.downcast::<V>())
4459 })
4460 .context("window not found")?
4461 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4462
4463 Ok(x.read(cx))
4464 }
4465
4466 /// Read the root view out of this window, with a callback
4467 ///
4468 /// This will fail if the window is closed or if the root view's type does not match `V`.
4469 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4470 where
4471 C: AppContext,
4472 {
4473 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4474 }
4475
4476 /// Read the root view pointer off of this window.
4477 ///
4478 /// This will fail if the window is closed or if the root view's type does not match `V`.
4479 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4480 where
4481 C: AppContext,
4482 {
4483 cx.read_window(self, |root_view, _cx| root_view.clone())
4484 }
4485
4486 /// Check if this window is 'active'.
4487 ///
4488 /// Will return `None` if the window is closed or currently
4489 /// borrowed.
4490 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4491 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4492 .ok()
4493 }
4494}
4495
4496impl<V> Copy for WindowHandle<V> {}
4497
4498impl<V> Clone for WindowHandle<V> {
4499 fn clone(&self) -> Self {
4500 *self
4501 }
4502}
4503
4504impl<V> PartialEq for WindowHandle<V> {
4505 fn eq(&self, other: &Self) -> bool {
4506 self.any_handle == other.any_handle
4507 }
4508}
4509
4510impl<V> Eq for WindowHandle<V> {}
4511
4512impl<V> Hash for WindowHandle<V> {
4513 fn hash<H: Hasher>(&self, state: &mut H) {
4514 self.any_handle.hash(state);
4515 }
4516}
4517
4518impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4519 fn from(val: WindowHandle<V>) -> Self {
4520 val.any_handle
4521 }
4522}
4523
4524unsafe impl<V> Send for WindowHandle<V> {}
4525unsafe impl<V> Sync for WindowHandle<V> {}
4526
4527/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4528#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4529pub struct AnyWindowHandle {
4530 pub(crate) id: WindowId,
4531 state_type: TypeId,
4532}
4533
4534impl AnyWindowHandle {
4535 /// Get the ID of this window.
4536 pub fn window_id(&self) -> WindowId {
4537 self.id
4538 }
4539
4540 /// Attempt to convert this handle to a window handle with a specific root view type.
4541 /// If the types do not match, this will return `None`.
4542 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4543 if TypeId::of::<T>() == self.state_type {
4544 Some(WindowHandle {
4545 any_handle: *self,
4546 state_type: PhantomData,
4547 })
4548 } else {
4549 None
4550 }
4551 }
4552
4553 /// Updates the state of the root view of this window.
4554 ///
4555 /// This will fail if the window has been closed.
4556 pub fn update<C, R>(
4557 self,
4558 cx: &mut C,
4559 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4560 ) -> Result<R>
4561 where
4562 C: AppContext,
4563 {
4564 cx.update_window(self, update)
4565 }
4566
4567 /// Read the state of the root view of this window.
4568 ///
4569 /// This will fail if the window has been closed.
4570 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4571 where
4572 C: AppContext,
4573 T: 'static,
4574 {
4575 let view = self
4576 .downcast::<T>()
4577 .context("the type of the window's root view has changed")?;
4578
4579 cx.read_window(&view, read)
4580 }
4581}
4582
4583impl HasWindowHandle for Window {
4584 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4585 self.platform_window.window_handle()
4586 }
4587}
4588
4589impl HasDisplayHandle for Window {
4590 fn display_handle(
4591 &self,
4592 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4593 self.platform_window.display_handle()
4594 }
4595}
4596
4597/// An identifier for an [`Element`](crate::Element).
4598///
4599/// Can be constructed with a string, a number, or both, as well
4600/// as other internal representations.
4601#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4602pub enum ElementId {
4603 /// The ID of a View element
4604 View(EntityId),
4605 /// An integer ID.
4606 Integer(u64),
4607 /// A string based ID.
4608 Name(SharedString),
4609 /// A UUID.
4610 Uuid(Uuid),
4611 /// An ID that's equated with a focus handle.
4612 FocusHandle(FocusId),
4613 /// A combination of a name and an integer.
4614 NamedInteger(SharedString, u64),
4615 /// A path.
4616 Path(Arc<std::path::Path>),
4617}
4618
4619impl ElementId {
4620 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4621 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4622 Self::NamedInteger(name.into(), integer as u64)
4623 }
4624}
4625
4626impl Display for ElementId {
4627 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4628 match self {
4629 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4630 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4631 ElementId::Name(name) => write!(f, "{}", name)?,
4632 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4633 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4634 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4635 ElementId::Path(path) => write!(f, "{}", path.display())?,
4636 }
4637
4638 Ok(())
4639 }
4640}
4641
4642impl TryInto<SharedString> for ElementId {
4643 type Error = anyhow::Error;
4644
4645 fn try_into(self) -> anyhow::Result<SharedString> {
4646 if let ElementId::Name(name) = self {
4647 Ok(name)
4648 } else {
4649 anyhow::bail!("element id is not string")
4650 }
4651 }
4652}
4653
4654impl From<usize> for ElementId {
4655 fn from(id: usize) -> Self {
4656 ElementId::Integer(id as u64)
4657 }
4658}
4659
4660impl From<i32> for ElementId {
4661 fn from(id: i32) -> Self {
4662 Self::Integer(id as u64)
4663 }
4664}
4665
4666impl From<SharedString> for ElementId {
4667 fn from(name: SharedString) -> Self {
4668 ElementId::Name(name)
4669 }
4670}
4671
4672impl From<Arc<std::path::Path>> for ElementId {
4673 fn from(path: Arc<std::path::Path>) -> Self {
4674 ElementId::Path(path)
4675 }
4676}
4677
4678impl From<&'static str> for ElementId {
4679 fn from(name: &'static str) -> Self {
4680 ElementId::Name(name.into())
4681 }
4682}
4683
4684impl<'a> From<&'a FocusHandle> for ElementId {
4685 fn from(handle: &'a FocusHandle) -> Self {
4686 ElementId::FocusHandle(handle.id)
4687 }
4688}
4689
4690impl From<(&'static str, EntityId)> for ElementId {
4691 fn from((name, id): (&'static str, EntityId)) -> Self {
4692 ElementId::NamedInteger(name.into(), id.as_u64())
4693 }
4694}
4695
4696impl From<(&'static str, usize)> for ElementId {
4697 fn from((name, id): (&'static str, usize)) -> Self {
4698 ElementId::NamedInteger(name.into(), id as u64)
4699 }
4700}
4701
4702impl From<(SharedString, usize)> for ElementId {
4703 fn from((name, id): (SharedString, usize)) -> Self {
4704 ElementId::NamedInteger(name, id as u64)
4705 }
4706}
4707
4708impl From<(&'static str, u64)> for ElementId {
4709 fn from((name, id): (&'static str, u64)) -> Self {
4710 ElementId::NamedInteger(name.into(), id)
4711 }
4712}
4713
4714impl From<Uuid> for ElementId {
4715 fn from(value: Uuid) -> Self {
4716 Self::Uuid(value)
4717 }
4718}
4719
4720impl From<(&'static str, u32)> for ElementId {
4721 fn from((name, id): (&'static str, u32)) -> Self {
4722 ElementId::NamedInteger(name.into(), id.into())
4723 }
4724}
4725
4726/// A rectangle to be rendered in the window at the given position and size.
4727/// Passed as an argument [`Window::paint_quad`].
4728#[derive(Clone)]
4729pub struct PaintQuad {
4730 /// The bounds of the quad within the window.
4731 pub bounds: Bounds<Pixels>,
4732 /// The radii of the quad's corners.
4733 pub corner_radii: Corners<Pixels>,
4734 /// The background color of the quad.
4735 pub background: Background,
4736 /// The widths of the quad's borders.
4737 pub border_widths: Edges<Pixels>,
4738 /// The color of the quad's borders.
4739 pub border_color: Hsla,
4740 /// The style of the quad's borders.
4741 pub border_style: BorderStyle,
4742}
4743
4744impl PaintQuad {
4745 /// Sets the corner radii of the quad.
4746 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4747 PaintQuad {
4748 corner_radii: corner_radii.into(),
4749 ..self
4750 }
4751 }
4752
4753 /// Sets the border widths of the quad.
4754 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4755 PaintQuad {
4756 border_widths: border_widths.into(),
4757 ..self
4758 }
4759 }
4760
4761 /// Sets the border color of the quad.
4762 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4763 PaintQuad {
4764 border_color: border_color.into(),
4765 ..self
4766 }
4767 }
4768
4769 /// Sets the background color of the quad.
4770 pub fn background(self, background: impl Into<Background>) -> Self {
4771 PaintQuad {
4772 background: background.into(),
4773 ..self
4774 }
4775 }
4776}
4777
4778/// Creates a quad with the given parameters.
4779pub fn quad(
4780 bounds: Bounds<Pixels>,
4781 corner_radii: impl Into<Corners<Pixels>>,
4782 background: impl Into<Background>,
4783 border_widths: impl Into<Edges<Pixels>>,
4784 border_color: impl Into<Hsla>,
4785 border_style: BorderStyle,
4786) -> PaintQuad {
4787 PaintQuad {
4788 bounds,
4789 corner_radii: corner_radii.into(),
4790 background: background.into(),
4791 border_widths: border_widths.into(),
4792 border_color: border_color.into(),
4793 border_style,
4794 }
4795}
4796
4797/// Creates a filled quad with the given bounds and background color.
4798pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4799 PaintQuad {
4800 bounds: bounds.into(),
4801 corner_radii: (0.).into(),
4802 background: background.into(),
4803 border_widths: (0.).into(),
4804 border_color: transparent_black(),
4805 border_style: BorderStyle::default(),
4806 }
4807}
4808
4809/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4810pub fn outline(
4811 bounds: impl Into<Bounds<Pixels>>,
4812 border_color: impl Into<Hsla>,
4813 border_style: BorderStyle,
4814) -> PaintQuad {
4815 PaintQuad {
4816 bounds: bounds.into(),
4817 corner_radii: (0.).into(),
4818 background: transparent_black().into(),
4819 border_widths: (1.).into(),
4820 border_color: border_color.into(),
4821 border_style,
4822 }
4823}