sum_tree.rs

   1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use rayon::prelude::*;
   7use std::marker::PhantomData;
   8use std::mem;
   9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  11
  12#[cfg(test)]
  13pub const TREE_BASE: usize = 2;
  14#[cfg(not(test))]
  15pub const TREE_BASE: usize = 6;
  16
  17/// An item that can be stored in a [`SumTree`]
  18///
  19/// Must be summarized by a type that implements [`Summary`]
  20pub trait Item: Clone {
  21    type Summary: Summary;
  22
  23    fn summary(&self, cx: &<Self::Summary as Summary>::Context) -> Self::Summary;
  24}
  25
  26/// An [`Item`] whose summary has a specific key that can be used to identify it
  27pub trait KeyedItem: Item {
  28    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  29
  30    fn key(&self) -> Self::Key;
  31}
  32
  33/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  34///
  35/// Each Summary type can have multiple [`Dimension`]s that it measures,
  36/// which can be used to navigate the tree
  37pub trait Summary: Clone {
  38    type Context;
  39
  40    fn zero(cx: &Self::Context) -> Self;
  41
  42    fn add_summary(&mut self, summary: &Self, cx: &Self::Context);
  43}
  44
  45/// This type exists because we can't implement Summary for () without causing
  46/// type resolution errors
  47#[derive(Copy, Clone, PartialEq, Eq, Debug)]
  48pub struct Unit;
  49
  50impl Summary for Unit {
  51    type Context = ();
  52
  53    fn zero(_: &()) -> Self {
  54        Unit
  55    }
  56
  57    fn add_summary(&mut self, _: &Self, _: &()) {}
  58}
  59
  60/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  61///
  62/// You can use dimensions to seek to a specific location in the [`SumTree`]
  63///
  64/// # Example:
  65/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  66/// Each of these are different dimensions we may want to seek to
  67pub trait Dimension<'a, S: Summary>: Clone {
  68    fn zero(cx: &S::Context) -> Self;
  69
  70    fn add_summary(&mut self, summary: &'a S, cx: &S::Context);
  71
  72    fn from_summary(summary: &'a S, cx: &S::Context) -> Self {
  73        let mut dimension = Self::zero(cx);
  74        dimension.add_summary(summary, cx);
  75        dimension
  76    }
  77}
  78
  79impl<'a, T: Summary> Dimension<'a, T> for T {
  80    fn zero(cx: &T::Context) -> Self {
  81        Summary::zero(cx)
  82    }
  83
  84    fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
  85        Summary::add_summary(self, summary, cx);
  86    }
  87}
  88
  89pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>> {
  90    fn cmp(&self, cursor_location: &D, cx: &S::Context) -> Ordering;
  91}
  92
  93impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
  94    fn cmp(&self, cursor_location: &Self, _: &S::Context) -> Ordering {
  95        Ord::cmp(self, cursor_location)
  96    }
  97}
  98
  99impl<'a, T: Summary> Dimension<'a, T> for () {
 100    fn zero(_: &T::Context) -> Self {
 101        ()
 102    }
 103
 104    fn add_summary(&mut self, _: &'a T, _: &T::Context) {}
 105}
 106
 107impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>> Dimension<'a, T> for (D1, D2) {
 108    fn zero(cx: &T::Context) -> Self {
 109        (D1::zero(cx), D2::zero(cx))
 110    }
 111
 112    fn add_summary(&mut self, summary: &'a T, cx: &T::Context) {
 113        self.0.add_summary(summary, cx);
 114        self.1.add_summary(summary, cx);
 115    }
 116}
 117
 118impl<'a, S, D1, D2> SeekTarget<'a, S, (D1, D2)> for D1
 119where
 120    S: Summary,
 121    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
 122    D2: Dimension<'a, S>,
 123{
 124    fn cmp(&self, cursor_location: &(D1, D2), cx: &S::Context) -> Ordering {
 125        self.cmp(&cursor_location.0, cx)
 126    }
 127}
 128
 129impl<'a, S, D1, D2, D3> SeekTarget<'a, S, ((D1, D2), D3)> for D1
 130where
 131    S: Summary,
 132    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
 133    D2: Dimension<'a, S>,
 134    D3: Dimension<'a, S>,
 135{
 136    fn cmp(&self, cursor_location: &((D1, D2), D3), cx: &S::Context) -> Ordering {
 137        self.cmp(&cursor_location.0.0, cx)
 138    }
 139}
 140
 141struct End<D>(PhantomData<D>);
 142
 143impl<D> End<D> {
 144    fn new() -> Self {
 145        Self(PhantomData)
 146    }
 147}
 148
 149impl<'a, S: Summary, D: Dimension<'a, S>> SeekTarget<'a, S, D> for End<D> {
 150    fn cmp(&self, _: &D, _: &S::Context) -> Ordering {
 151        Ordering::Greater
 152    }
 153}
 154
 155impl<D> fmt::Debug for End<D> {
 156    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 157        f.debug_tuple("End").finish()
 158    }
 159}
 160
 161/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 162///
 163/// The primary use case is for text, where Bias influences
 164/// which character an offset or anchor is associated with.
 165///
 166/// # Examples
 167/// Given the buffer `AˇBCD`:
 168/// - The offset of the cursor is 1
 169/// - [Bias::Left] would attach the cursor to the character `A`
 170/// - [Bias::Right] would attach the cursor to the character `B`
 171///
 172/// Given the buffer `A«BCˇ»D`:
 173/// - The offset of the cursor is 3, and the selection is from 1 to 3
 174/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 175/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 176///
 177/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 178/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 179/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 180/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 181///   and the buffer offset would be the offset of the first character of the folded region
 182#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 183pub enum Bias {
 184    /// Attach to the character on the left
 185    #[default]
 186    Left,
 187    /// Attach to the character on the right
 188    Right,
 189}
 190
 191impl Bias {
 192    pub fn invert(self) -> Self {
 193        match self {
 194            Self::Left => Self::Right,
 195            Self::Right => Self::Left,
 196        }
 197    }
 198}
 199
 200/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
 201/// Each internal node contains a `Summary` of the items in its subtree.
 202///
 203/// The maximum number of items per node is `TREE_BASE * 2`.
 204///
 205/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 206#[derive(Clone)]
 207pub struct SumTree<T: Item>(Arc<Node<T>>);
 208
 209impl<T> fmt::Debug for SumTree<T>
 210where
 211    T: fmt::Debug + Item,
 212    T::Summary: fmt::Debug,
 213{
 214    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 215        f.debug_tuple("SumTree").field(&self.0).finish()
 216    }
 217}
 218
 219impl<T: Item> SumTree<T> {
 220    pub fn new(cx: &<T::Summary as Summary>::Context) -> Self {
 221        SumTree(Arc::new(Node::Leaf {
 222            summary: <T::Summary as Summary>::zero(cx),
 223            items: ArrayVec::new(),
 224            item_summaries: ArrayVec::new(),
 225        }))
 226    }
 227
 228    /// Useful in cases where the item type has a non-trivial context type, but the zero value of the summary type doesn't depend on that context.
 229    pub fn from_summary(summary: T::Summary) -> Self {
 230        SumTree(Arc::new(Node::Leaf {
 231            summary,
 232            items: ArrayVec::new(),
 233            item_summaries: ArrayVec::new(),
 234        }))
 235    }
 236
 237    pub fn from_item(item: T, cx: &<T::Summary as Summary>::Context) -> Self {
 238        let mut tree = Self::new(cx);
 239        tree.push(item, cx);
 240        tree
 241    }
 242
 243    pub fn from_iter<I: IntoIterator<Item = T>>(
 244        iter: I,
 245        cx: &<T::Summary as Summary>::Context,
 246    ) -> Self {
 247        let mut nodes = Vec::new();
 248
 249        let mut iter = iter.into_iter().fuse().peekable();
 250        while iter.peek().is_some() {
 251            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 252            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 253                items.iter().map(|item| item.summary(cx)).collect();
 254
 255            let mut summary = item_summaries[0].clone();
 256            for item_summary in &item_summaries[1..] {
 257                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 258            }
 259
 260            nodes.push(Node::Leaf {
 261                summary,
 262                items,
 263                item_summaries,
 264            });
 265        }
 266
 267        let mut parent_nodes = Vec::new();
 268        let mut height = 0;
 269        while nodes.len() > 1 {
 270            height += 1;
 271            let mut current_parent_node = None;
 272            for child_node in nodes.drain(..) {
 273                let parent_node = current_parent_node.get_or_insert_with(|| Node::Internal {
 274                    summary: <T::Summary as Summary>::zero(cx),
 275                    height,
 276                    child_summaries: ArrayVec::new(),
 277                    child_trees: ArrayVec::new(),
 278                });
 279                let Node::Internal {
 280                    summary,
 281                    child_summaries,
 282                    child_trees,
 283                    ..
 284                } = parent_node
 285                else {
 286                    unreachable!()
 287                };
 288                let child_summary = child_node.summary();
 289                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 290                child_summaries.push(child_summary.clone());
 291                child_trees.push(Self(Arc::new(child_node)));
 292
 293                if child_trees.len() == 2 * TREE_BASE {
 294                    parent_nodes.extend(current_parent_node.take());
 295                }
 296            }
 297            parent_nodes.extend(current_parent_node.take());
 298            mem::swap(&mut nodes, &mut parent_nodes);
 299        }
 300
 301        if nodes.is_empty() {
 302            Self::new(cx)
 303        } else {
 304            debug_assert_eq!(nodes.len(), 1);
 305            Self(Arc::new(nodes.pop().unwrap()))
 306        }
 307    }
 308
 309    pub fn from_par_iter<I, Iter>(iter: I, cx: &<T::Summary as Summary>::Context) -> Self
 310    where
 311        I: IntoParallelIterator<Iter = Iter>,
 312        Iter: IndexedParallelIterator<Item = T>,
 313        T: Send + Sync,
 314        T::Summary: Send + Sync,
 315        <T::Summary as Summary>::Context: Sync,
 316    {
 317        let mut nodes = iter
 318            .into_par_iter()
 319            .chunks(2 * TREE_BASE)
 320            .map(|items| {
 321                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
 322                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 323                    items.iter().map(|item| item.summary(cx)).collect();
 324                let mut summary = item_summaries[0].clone();
 325                for item_summary in &item_summaries[1..] {
 326                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 327                }
 328                SumTree(Arc::new(Node::Leaf {
 329                    summary,
 330                    items,
 331                    item_summaries,
 332                }))
 333            })
 334            .collect::<Vec<_>>();
 335
 336        let mut height = 0;
 337        while nodes.len() > 1 {
 338            height += 1;
 339            nodes = nodes
 340                .into_par_iter()
 341                .chunks(2 * TREE_BASE)
 342                .map(|child_nodes| {
 343                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 344                        child_nodes.into_iter().collect();
 345                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 346                        .iter()
 347                        .map(|child_tree| child_tree.summary().clone())
 348                        .collect();
 349                    let mut summary = child_summaries[0].clone();
 350                    for child_summary in &child_summaries[1..] {
 351                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
 352                    }
 353                    SumTree(Arc::new(Node::Internal {
 354                        height,
 355                        summary,
 356                        child_summaries,
 357                        child_trees,
 358                    }))
 359                })
 360                .collect::<Vec<_>>();
 361        }
 362
 363        if nodes.is_empty() {
 364            Self::new(cx)
 365        } else {
 366            debug_assert_eq!(nodes.len(), 1);
 367            nodes.pop().unwrap()
 368        }
 369    }
 370
 371    #[allow(unused)]
 372    pub fn items(&self, cx: &<T::Summary as Summary>::Context) -> Vec<T> {
 373        let mut items = Vec::new();
 374        let mut cursor = self.cursor::<()>(cx);
 375        cursor.next(cx);
 376        while let Some(item) = cursor.item() {
 377            items.push(item.clone());
 378            cursor.next(cx);
 379        }
 380        items
 381    }
 382
 383    pub fn iter(&self) -> Iter<T> {
 384        Iter::new(self)
 385    }
 386
 387    pub fn cursor<'a, S>(&'a self, cx: &<T::Summary as Summary>::Context) -> Cursor<'a, T, S>
 388    where
 389        S: Dimension<'a, T::Summary>,
 390    {
 391        Cursor::new(self, cx)
 392    }
 393
 394    /// Note: If the summary type requires a non `()` context, then the filter cursor
 395    /// that is returned cannot be used with Rust's iterators.
 396    pub fn filter<'a, F, U>(
 397        &'a self,
 398        cx: &<T::Summary as Summary>::Context,
 399        filter_node: F,
 400    ) -> FilterCursor<'a, F, T, U>
 401    where
 402        F: FnMut(&T::Summary) -> bool,
 403        U: Dimension<'a, T::Summary>,
 404    {
 405        FilterCursor::new(self, cx, filter_node)
 406    }
 407
 408    #[allow(dead_code)]
 409    pub fn first(&self) -> Option<&T> {
 410        self.leftmost_leaf().0.items().first()
 411    }
 412
 413    pub fn last(&self) -> Option<&T> {
 414        self.rightmost_leaf().0.items().last()
 415    }
 416
 417    pub fn update_last(&mut self, f: impl FnOnce(&mut T), cx: &<T::Summary as Summary>::Context) {
 418        self.update_last_recursive(f, cx);
 419    }
 420
 421    fn update_last_recursive(
 422        &mut self,
 423        f: impl FnOnce(&mut T),
 424        cx: &<T::Summary as Summary>::Context,
 425    ) -> Option<T::Summary> {
 426        match Arc::make_mut(&mut self.0) {
 427            Node::Internal {
 428                summary,
 429                child_summaries,
 430                child_trees,
 431                ..
 432            } => {
 433                let last_summary = child_summaries.last_mut().unwrap();
 434                let last_child = child_trees.last_mut().unwrap();
 435                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 436                *summary = sum(child_summaries.iter(), cx);
 437                Some(summary.clone())
 438            }
 439            Node::Leaf {
 440                summary,
 441                items,
 442                item_summaries,
 443            } => {
 444                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 445                {
 446                    (f)(item);
 447                    *item_summary = item.summary(cx);
 448                    *summary = sum(item_summaries.iter(), cx);
 449                    Some(summary.clone())
 450                } else {
 451                    None
 452                }
 453            }
 454        }
 455    }
 456
 457    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 458        &'a self,
 459        cx: &<T::Summary as Summary>::Context,
 460    ) -> D {
 461        let mut extent = D::zero(cx);
 462        match self.0.as_ref() {
 463            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 464                extent.add_summary(summary, cx);
 465            }
 466        }
 467        extent
 468    }
 469
 470    pub fn summary(&self) -> &T::Summary {
 471        match self.0.as_ref() {
 472            Node::Internal { summary, .. } => summary,
 473            Node::Leaf { summary, .. } => summary,
 474        }
 475    }
 476
 477    pub fn is_empty(&self) -> bool {
 478        match self.0.as_ref() {
 479            Node::Internal { .. } => false,
 480            Node::Leaf { items, .. } => items.is_empty(),
 481        }
 482    }
 483
 484    pub fn extend<I>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
 485    where
 486        I: IntoIterator<Item = T>,
 487    {
 488        self.append(Self::from_iter(iter, cx), cx);
 489    }
 490
 491    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: &<T::Summary as Summary>::Context)
 492    where
 493        I: IntoParallelIterator<Iter = Iter>,
 494        Iter: IndexedParallelIterator<Item = T>,
 495        T: Send + Sync,
 496        T::Summary: Send + Sync,
 497        <T::Summary as Summary>::Context: Sync,
 498    {
 499        self.append(Self::from_par_iter(iter, cx), cx);
 500    }
 501
 502    pub fn push(&mut self, item: T, cx: &<T::Summary as Summary>::Context) {
 503        let summary = item.summary(cx);
 504        self.append(
 505            SumTree(Arc::new(Node::Leaf {
 506                summary: summary.clone(),
 507                items: ArrayVec::from_iter(Some(item)),
 508                item_summaries: ArrayVec::from_iter(Some(summary)),
 509            })),
 510            cx,
 511        );
 512    }
 513
 514    pub fn append(&mut self, other: Self, cx: &<T::Summary as Summary>::Context) {
 515        if self.is_empty() {
 516            *self = other;
 517        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 518            if self.0.height() < other.0.height() {
 519                for tree in other.0.child_trees() {
 520                    self.append(tree.clone(), cx);
 521                }
 522            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 523                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 524            }
 525        }
 526    }
 527
 528    pub fn ptr_eq(&self, other: &Self) -> bool {
 529        Arc::ptr_eq(&self.0, &other.0)
 530    }
 531
 532    fn push_tree_recursive(
 533        &mut self,
 534        other: SumTree<T>,
 535        cx: &<T::Summary as Summary>::Context,
 536    ) -> Option<SumTree<T>> {
 537        match Arc::make_mut(&mut self.0) {
 538            Node::Internal {
 539                height,
 540                summary,
 541                child_summaries,
 542                child_trees,
 543                ..
 544            } => {
 545                let other_node = other.0.clone();
 546                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 547
 548                let height_delta = *height - other_node.height();
 549                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 550                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 551                if height_delta == 0 {
 552                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 553                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 554                } else if height_delta == 1 && !other_node.is_underflowing() {
 555                    summaries_to_append.push(other_node.summary().clone());
 556                    trees_to_append.push(other)
 557                } else {
 558                    let tree_to_append = child_trees
 559                        .last_mut()
 560                        .unwrap()
 561                        .push_tree_recursive(other, cx);
 562                    *child_summaries.last_mut().unwrap() =
 563                        child_trees.last().unwrap().0.summary().clone();
 564
 565                    if let Some(split_tree) = tree_to_append {
 566                        summaries_to_append.push(split_tree.0.summary().clone());
 567                        trees_to_append.push(split_tree);
 568                    }
 569                }
 570
 571                let child_count = child_trees.len() + trees_to_append.len();
 572                if child_count > 2 * TREE_BASE {
 573                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 574                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 575                    let left_trees;
 576                    let right_trees;
 577
 578                    let midpoint = (child_count + child_count % 2) / 2;
 579                    {
 580                        let mut all_summaries = child_summaries
 581                            .iter()
 582                            .chain(summaries_to_append.iter())
 583                            .cloned();
 584                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 585                        right_summaries = all_summaries.collect();
 586                        let mut all_trees =
 587                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 588                        left_trees = all_trees.by_ref().take(midpoint).collect();
 589                        right_trees = all_trees.collect();
 590                    }
 591                    *summary = sum(left_summaries.iter(), cx);
 592                    *child_summaries = left_summaries;
 593                    *child_trees = left_trees;
 594
 595                    Some(SumTree(Arc::new(Node::Internal {
 596                        height: *height,
 597                        summary: sum(right_summaries.iter(), cx),
 598                        child_summaries: right_summaries,
 599                        child_trees: right_trees,
 600                    })))
 601                } else {
 602                    child_summaries.extend(summaries_to_append);
 603                    child_trees.extend(trees_to_append);
 604                    None
 605                }
 606            }
 607            Node::Leaf {
 608                summary,
 609                items,
 610                item_summaries,
 611            } => {
 612                let other_node = other.0;
 613
 614                let child_count = items.len() + other_node.items().len();
 615                if child_count > 2 * TREE_BASE {
 616                    let left_items;
 617                    let right_items;
 618                    let left_summaries;
 619                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 620
 621                    let midpoint = (child_count + child_count % 2) / 2;
 622                    {
 623                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 624                        left_items = all_items.by_ref().take(midpoint).collect();
 625                        right_items = all_items.collect();
 626
 627                        let mut all_summaries = item_summaries
 628                            .iter()
 629                            .chain(other_node.child_summaries())
 630                            .cloned();
 631                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 632                        right_summaries = all_summaries.collect();
 633                    }
 634                    *items = left_items;
 635                    *item_summaries = left_summaries;
 636                    *summary = sum(item_summaries.iter(), cx);
 637                    Some(SumTree(Arc::new(Node::Leaf {
 638                        items: right_items,
 639                        summary: sum(right_summaries.iter(), cx),
 640                        item_summaries: right_summaries,
 641                    })))
 642                } else {
 643                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 644                    items.extend(other_node.items().iter().cloned());
 645                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 646                    None
 647                }
 648            }
 649        }
 650    }
 651
 652    fn from_child_trees(
 653        left: SumTree<T>,
 654        right: SumTree<T>,
 655        cx: &<T::Summary as Summary>::Context,
 656    ) -> Self {
 657        let height = left.0.height() + 1;
 658        let mut child_summaries = ArrayVec::new();
 659        child_summaries.push(left.0.summary().clone());
 660        child_summaries.push(right.0.summary().clone());
 661        let mut child_trees = ArrayVec::new();
 662        child_trees.push(left);
 663        child_trees.push(right);
 664        SumTree(Arc::new(Node::Internal {
 665            height,
 666            summary: sum(child_summaries.iter(), cx),
 667            child_summaries,
 668            child_trees,
 669        }))
 670    }
 671
 672    fn leftmost_leaf(&self) -> &Self {
 673        match *self.0 {
 674            Node::Leaf { .. } => self,
 675            Node::Internal {
 676                ref child_trees, ..
 677            } => child_trees.first().unwrap().leftmost_leaf(),
 678        }
 679    }
 680
 681    fn rightmost_leaf(&self) -> &Self {
 682        match *self.0 {
 683            Node::Leaf { .. } => self,
 684            Node::Internal {
 685                ref child_trees, ..
 686            } => child_trees.last().unwrap().rightmost_leaf(),
 687        }
 688    }
 689
 690    #[cfg(debug_assertions)]
 691    pub fn _debug_entries(&self) -> Vec<&T> {
 692        self.iter().collect::<Vec<_>>()
 693    }
 694}
 695
 696impl<T: Item + PartialEq> PartialEq for SumTree<T> {
 697    fn eq(&self, other: &Self) -> bool {
 698        self.iter().eq(other.iter())
 699    }
 700}
 701
 702impl<T: Item + Eq> Eq for SumTree<T> {}
 703
 704impl<T: KeyedItem> SumTree<T> {
 705    pub fn insert_or_replace(
 706        &mut self,
 707        item: T,
 708        cx: &<T::Summary as Summary>::Context,
 709    ) -> Option<T> {
 710        let mut replaced = None;
 711        *self = {
 712            let mut cursor = self.cursor::<T::Key>(cx);
 713            let mut new_tree = cursor.slice(&item.key(), Bias::Left, cx);
 714            if let Some(cursor_item) = cursor.item() {
 715                if cursor_item.key() == item.key() {
 716                    replaced = Some(cursor_item.clone());
 717                    cursor.next(cx);
 718                }
 719            }
 720            new_tree.push(item, cx);
 721            new_tree.append(cursor.suffix(cx), cx);
 722            new_tree
 723        };
 724        replaced
 725    }
 726
 727    pub fn remove(&mut self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<T> {
 728        let mut removed = None;
 729        *self = {
 730            let mut cursor = self.cursor::<T::Key>(cx);
 731            let mut new_tree = cursor.slice(key, Bias::Left, cx);
 732            if let Some(item) = cursor.item() {
 733                if item.key() == *key {
 734                    removed = Some(item.clone());
 735                    cursor.next(cx);
 736                }
 737            }
 738            new_tree.append(cursor.suffix(cx), cx);
 739            new_tree
 740        };
 741        removed
 742    }
 743
 744    pub fn edit(
 745        &mut self,
 746        mut edits: Vec<Edit<T>>,
 747        cx: &<T::Summary as Summary>::Context,
 748    ) -> Vec<T> {
 749        if edits.is_empty() {
 750            return Vec::new();
 751        }
 752
 753        let mut removed = Vec::new();
 754        edits.sort_unstable_by_key(|item| item.key());
 755
 756        *self = {
 757            let mut cursor = self.cursor::<T::Key>(cx);
 758            let mut new_tree = SumTree::new(cx);
 759            let mut buffered_items = Vec::new();
 760
 761            cursor.seek(&T::Key::zero(cx), Bias::Left, cx);
 762            for edit in edits {
 763                let new_key = edit.key();
 764                let mut old_item = cursor.item();
 765
 766                if old_item
 767                    .as_ref()
 768                    .map_or(false, |old_item| old_item.key() < new_key)
 769                {
 770                    new_tree.extend(buffered_items.drain(..), cx);
 771                    let slice = cursor.slice(&new_key, Bias::Left, cx);
 772                    new_tree.append(slice, cx);
 773                    old_item = cursor.item();
 774                }
 775
 776                if let Some(old_item) = old_item {
 777                    if old_item.key() == new_key {
 778                        removed.push(old_item.clone());
 779                        cursor.next(cx);
 780                    }
 781                }
 782
 783                match edit {
 784                    Edit::Insert(item) => {
 785                        buffered_items.push(item);
 786                    }
 787                    Edit::Remove(_) => {}
 788                }
 789            }
 790
 791            new_tree.extend(buffered_items, cx);
 792            new_tree.append(cursor.suffix(cx), cx);
 793            new_tree
 794        };
 795
 796        removed
 797    }
 798
 799    pub fn get(&self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> Option<&T> {
 800        let mut cursor = self.cursor::<T::Key>(cx);
 801        if cursor.seek(key, Bias::Left, cx) {
 802            cursor.item()
 803        } else {
 804            None
 805        }
 806    }
 807
 808    #[inline]
 809    pub fn contains(&self, key: &T::Key, cx: &<T::Summary as Summary>::Context) -> bool {
 810        self.get(key, cx).is_some()
 811    }
 812
 813    pub fn update<F, R>(
 814        &mut self,
 815        key: &T::Key,
 816        cx: &<T::Summary as Summary>::Context,
 817        f: F,
 818    ) -> Option<R>
 819    where
 820        F: FnOnce(&mut T) -> R,
 821    {
 822        let mut cursor = self.cursor::<T::Key>(cx);
 823        let mut new_tree = cursor.slice(key, Bias::Left, cx);
 824        let mut result = None;
 825        if Ord::cmp(key, &cursor.end(cx)) == Ordering::Equal {
 826            let mut updated = cursor.item().unwrap().clone();
 827            result = Some(f(&mut updated));
 828            new_tree.push(updated, cx);
 829            cursor.next(cx);
 830        }
 831        new_tree.append(cursor.suffix(cx), cx);
 832        drop(cursor);
 833        *self = new_tree;
 834        result
 835    }
 836
 837    pub fn retain<F: FnMut(&T) -> bool>(
 838        &mut self,
 839        cx: &<T::Summary as Summary>::Context,
 840        mut predicate: F,
 841    ) {
 842        let mut new_map = SumTree::new(cx);
 843
 844        let mut cursor = self.cursor::<T::Key>(cx);
 845        cursor.next(cx);
 846        while let Some(item) = cursor.item() {
 847            if predicate(&item) {
 848                new_map.push(item.clone(), cx);
 849            }
 850            cursor.next(cx);
 851        }
 852        drop(cursor);
 853
 854        *self = new_map;
 855    }
 856}
 857
 858impl<T, S> Default for SumTree<T>
 859where
 860    T: Item<Summary = S>,
 861    S: Summary<Context = ()>,
 862{
 863    fn default() -> Self {
 864        Self::new(&())
 865    }
 866}
 867
 868#[derive(Clone)]
 869pub enum Node<T: Item> {
 870    Internal {
 871        height: u8,
 872        summary: T::Summary,
 873        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 874        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
 875    },
 876    Leaf {
 877        summary: T::Summary,
 878        items: ArrayVec<T, { 2 * TREE_BASE }>,
 879        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 880    },
 881}
 882
 883impl<T> fmt::Debug for Node<T>
 884where
 885    T: Item + fmt::Debug,
 886    T::Summary: fmt::Debug,
 887{
 888    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 889        match self {
 890            Node::Internal {
 891                height,
 892                summary,
 893                child_summaries,
 894                child_trees,
 895            } => f
 896                .debug_struct("Internal")
 897                .field("height", height)
 898                .field("summary", summary)
 899                .field("child_summaries", child_summaries)
 900                .field("child_trees", child_trees)
 901                .finish(),
 902            Node::Leaf {
 903                summary,
 904                items,
 905                item_summaries,
 906            } => f
 907                .debug_struct("Leaf")
 908                .field("summary", summary)
 909                .field("items", items)
 910                .field("item_summaries", item_summaries)
 911                .finish(),
 912        }
 913    }
 914}
 915
 916impl<T: Item> Node<T> {
 917    fn is_leaf(&self) -> bool {
 918        matches!(self, Node::Leaf { .. })
 919    }
 920
 921    fn height(&self) -> u8 {
 922        match self {
 923            Node::Internal { height, .. } => *height,
 924            Node::Leaf { .. } => 0,
 925        }
 926    }
 927
 928    fn summary(&self) -> &T::Summary {
 929        match self {
 930            Node::Internal { summary, .. } => summary,
 931            Node::Leaf { summary, .. } => summary,
 932        }
 933    }
 934
 935    fn child_summaries(&self) -> &[T::Summary] {
 936        match self {
 937            Node::Internal {
 938                child_summaries, ..
 939            } => child_summaries.as_slice(),
 940            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
 941        }
 942    }
 943
 944    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
 945        match self {
 946            Node::Internal { child_trees, .. } => child_trees,
 947            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
 948        }
 949    }
 950
 951    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
 952        match self {
 953            Node::Leaf { items, .. } => items,
 954            Node::Internal { .. } => panic!("Internal nodes have no items"),
 955        }
 956    }
 957
 958    fn is_underflowing(&self) -> bool {
 959        match self {
 960            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
 961            Node::Leaf { items, .. } => items.len() < TREE_BASE,
 962        }
 963    }
 964}
 965
 966#[derive(Debug)]
 967pub enum Edit<T: KeyedItem> {
 968    Insert(T),
 969    Remove(T::Key),
 970}
 971
 972impl<T: KeyedItem> Edit<T> {
 973    fn key(&self) -> T::Key {
 974        match self {
 975            Edit::Insert(item) => item.key(),
 976            Edit::Remove(key) => key.clone(),
 977        }
 978    }
 979}
 980
 981fn sum<'a, T, I>(iter: I, cx: &T::Context) -> T
 982where
 983    T: 'a + Summary,
 984    I: Iterator<Item = &'a T>,
 985{
 986    let mut sum = T::zero(cx);
 987    for value in iter {
 988        sum.add_summary(value, cx);
 989    }
 990    sum
 991}
 992
 993#[cfg(test)]
 994mod tests {
 995    use super::*;
 996    use rand::{distributions, prelude::*};
 997    use std::cmp;
 998
 999    #[ctor::ctor]
1000    fn init_logger() {
1001        zlog::init_test();
1002    }
1003
1004    #[test]
1005    fn test_extend_and_push_tree() {
1006        let mut tree1 = SumTree::default();
1007        tree1.extend(0..20, &());
1008
1009        let mut tree2 = SumTree::default();
1010        tree2.extend(50..100, &());
1011
1012        tree1.append(tree2, &());
1013        assert_eq!(
1014            tree1.items(&()),
1015            (0..20).chain(50..100).collect::<Vec<u8>>()
1016        );
1017    }
1018
1019    #[test]
1020    fn test_random() {
1021        let mut starting_seed = 0;
1022        if let Ok(value) = std::env::var("SEED") {
1023            starting_seed = value.parse().expect("invalid SEED variable");
1024        }
1025        let mut num_iterations = 100;
1026        if let Ok(value) = std::env::var("ITERATIONS") {
1027            num_iterations = value.parse().expect("invalid ITERATIONS variable");
1028        }
1029        let num_operations = std::env::var("OPERATIONS")
1030            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
1031
1032        for seed in starting_seed..(starting_seed + num_iterations) {
1033            eprintln!("seed = {}", seed);
1034            let mut rng = StdRng::seed_from_u64(seed);
1035
1036            let rng = &mut rng;
1037            let mut tree = SumTree::<u8>::default();
1038            let count = rng.gen_range(0..10);
1039            if rng.r#gen() {
1040                tree.extend(rng.sample_iter(distributions::Standard).take(count), &());
1041            } else {
1042                let items = rng
1043                    .sample_iter(distributions::Standard)
1044                    .take(count)
1045                    .collect::<Vec<_>>();
1046                tree.par_extend(items, &());
1047            }
1048
1049            for _ in 0..num_operations {
1050                let splice_end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
1051                let splice_start = rng.gen_range(0..splice_end + 1);
1052                let count = rng.gen_range(0..10);
1053                let tree_end = tree.extent::<Count>(&());
1054                let new_items = rng
1055                    .sample_iter(distributions::Standard)
1056                    .take(count)
1057                    .collect::<Vec<u8>>();
1058
1059                let mut reference_items = tree.items(&());
1060                reference_items.splice(splice_start..splice_end, new_items.clone());
1061
1062                tree = {
1063                    let mut cursor = tree.cursor::<Count>(&());
1064                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right, &());
1065                    if rng.r#gen() {
1066                        new_tree.extend(new_items, &());
1067                    } else {
1068                        new_tree.par_extend(new_items, &());
1069                    }
1070                    cursor.seek(&Count(splice_end), Bias::Right, &());
1071                    new_tree.append(cursor.slice(&tree_end, Bias::Right, &()), &());
1072                    new_tree
1073                };
1074
1075                assert_eq!(tree.items(&()), reference_items);
1076                assert_eq!(
1077                    tree.iter().collect::<Vec<_>>(),
1078                    tree.cursor::<()>(&()).collect::<Vec<_>>()
1079                );
1080
1081                log::info!("tree items: {:?}", tree.items(&()));
1082
1083                let mut filter_cursor =
1084                    tree.filter::<_, Count>(&(), |summary| summary.contains_even);
1085                let expected_filtered_items = tree
1086                    .items(&())
1087                    .into_iter()
1088                    .enumerate()
1089                    .filter(|(_, item)| (item & 1) == 0)
1090                    .collect::<Vec<_>>();
1091
1092                let mut item_ix = if rng.r#gen() {
1093                    filter_cursor.next(&());
1094                    0
1095                } else {
1096                    filter_cursor.prev(&());
1097                    expected_filtered_items.len().saturating_sub(1)
1098                };
1099                while item_ix < expected_filtered_items.len() {
1100                    log::info!("filter_cursor, item_ix: {}", item_ix);
1101                    let actual_item = filter_cursor.item().unwrap();
1102                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
1103                    assert_eq!(actual_item, &reference_item);
1104                    assert_eq!(filter_cursor.start().0, reference_index);
1105                    log::info!("next");
1106                    filter_cursor.next(&());
1107                    item_ix += 1;
1108
1109                    while item_ix > 0 && rng.gen_bool(0.2) {
1110                        log::info!("prev");
1111                        filter_cursor.prev(&());
1112                        item_ix -= 1;
1113
1114                        if item_ix == 0 && rng.gen_bool(0.2) {
1115                            filter_cursor.prev(&());
1116                            assert_eq!(filter_cursor.item(), None);
1117                            assert_eq!(filter_cursor.start().0, 0);
1118                            filter_cursor.next(&());
1119                        }
1120                    }
1121                }
1122                assert_eq!(filter_cursor.item(), None);
1123
1124                let mut before_start = false;
1125                let mut cursor = tree.cursor::<Count>(&());
1126                let start_pos = rng.gen_range(0..=reference_items.len());
1127                cursor.seek(&Count(start_pos), Bias::Right, &());
1128                let mut pos = rng.gen_range(start_pos..=reference_items.len());
1129                cursor.seek_forward(&Count(pos), Bias::Right, &());
1130
1131                for i in 0..10 {
1132                    assert_eq!(cursor.start().0, pos);
1133
1134                    if pos > 0 {
1135                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
1136                    } else {
1137                        assert_eq!(cursor.prev_item(), None);
1138                    }
1139
1140                    if pos < reference_items.len() && !before_start {
1141                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
1142                    } else {
1143                        assert_eq!(cursor.item(), None);
1144                    }
1145
1146                    if before_start {
1147                        assert_eq!(cursor.next_item(), reference_items.first());
1148                    } else if pos + 1 < reference_items.len() {
1149                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
1150                    } else {
1151                        assert_eq!(cursor.next_item(), None);
1152                    }
1153
1154                    if i < 5 {
1155                        cursor.next(&());
1156                        if pos < reference_items.len() {
1157                            pos += 1;
1158                            before_start = false;
1159                        }
1160                    } else {
1161                        cursor.prev(&());
1162                        if pos == 0 {
1163                            before_start = true;
1164                        }
1165                        pos = pos.saturating_sub(1);
1166                    }
1167                }
1168            }
1169
1170            for _ in 0..10 {
1171                let end = rng.gen_range(0..tree.extent::<Count>(&()).0 + 1);
1172                let start = rng.gen_range(0..end + 1);
1173                let start_bias = if rng.r#gen() { Bias::Left } else { Bias::Right };
1174                let end_bias = if rng.r#gen() { Bias::Left } else { Bias::Right };
1175
1176                let mut cursor = tree.cursor::<Count>(&());
1177                cursor.seek(&Count(start), start_bias, &());
1178                let slice = cursor.slice(&Count(end), end_bias, &());
1179
1180                cursor.seek(&Count(start), start_bias, &());
1181                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias, &());
1182
1183                assert_eq!(summary.0, slice.summary().sum);
1184            }
1185        }
1186    }
1187
1188    #[test]
1189    fn test_cursor() {
1190        // Empty tree
1191        let tree = SumTree::<u8>::default();
1192        let mut cursor = tree.cursor::<IntegersSummary>(&());
1193        assert_eq!(
1194            cursor.slice(&Count(0), Bias::Right, &()).items(&()),
1195            Vec::<u8>::new()
1196        );
1197        assert_eq!(cursor.item(), None);
1198        assert_eq!(cursor.prev_item(), None);
1199        assert_eq!(cursor.next_item(), None);
1200        assert_eq!(cursor.start().sum, 0);
1201        cursor.prev(&());
1202        assert_eq!(cursor.item(), None);
1203        assert_eq!(cursor.prev_item(), None);
1204        assert_eq!(cursor.next_item(), None);
1205        assert_eq!(cursor.start().sum, 0);
1206        cursor.next(&());
1207        assert_eq!(cursor.item(), None);
1208        assert_eq!(cursor.prev_item(), None);
1209        assert_eq!(cursor.next_item(), None);
1210        assert_eq!(cursor.start().sum, 0);
1211
1212        // Single-element tree
1213        let mut tree = SumTree::<u8>::default();
1214        tree.extend(vec![1], &());
1215        let mut cursor = tree.cursor::<IntegersSummary>(&());
1216        assert_eq!(
1217            cursor.slice(&Count(0), Bias::Right, &()).items(&()),
1218            Vec::<u8>::new()
1219        );
1220        assert_eq!(cursor.item(), Some(&1));
1221        assert_eq!(cursor.prev_item(), None);
1222        assert_eq!(cursor.next_item(), None);
1223        assert_eq!(cursor.start().sum, 0);
1224
1225        cursor.next(&());
1226        assert_eq!(cursor.item(), None);
1227        assert_eq!(cursor.prev_item(), Some(&1));
1228        assert_eq!(cursor.next_item(), None);
1229        assert_eq!(cursor.start().sum, 1);
1230
1231        cursor.prev(&());
1232        assert_eq!(cursor.item(), Some(&1));
1233        assert_eq!(cursor.prev_item(), None);
1234        assert_eq!(cursor.next_item(), None);
1235        assert_eq!(cursor.start().sum, 0);
1236
1237        let mut cursor = tree.cursor::<IntegersSummary>(&());
1238        assert_eq!(cursor.slice(&Count(1), Bias::Right, &()).items(&()), [1]);
1239        assert_eq!(cursor.item(), None);
1240        assert_eq!(cursor.prev_item(), Some(&1));
1241        assert_eq!(cursor.next_item(), None);
1242        assert_eq!(cursor.start().sum, 1);
1243
1244        cursor.seek(&Count(0), Bias::Right, &());
1245        assert_eq!(
1246            cursor
1247                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1248                .items(&()),
1249            [1]
1250        );
1251        assert_eq!(cursor.item(), None);
1252        assert_eq!(cursor.prev_item(), Some(&1));
1253        assert_eq!(cursor.next_item(), None);
1254        assert_eq!(cursor.start().sum, 1);
1255
1256        // Multiple-element tree
1257        let mut tree = SumTree::default();
1258        tree.extend(vec![1, 2, 3, 4, 5, 6], &());
1259        let mut cursor = tree.cursor::<IntegersSummary>(&());
1260
1261        assert_eq!(cursor.slice(&Count(2), Bias::Right, &()).items(&()), [1, 2]);
1262        assert_eq!(cursor.item(), Some(&3));
1263        assert_eq!(cursor.prev_item(), Some(&2));
1264        assert_eq!(cursor.next_item(), Some(&4));
1265        assert_eq!(cursor.start().sum, 3);
1266
1267        cursor.next(&());
1268        assert_eq!(cursor.item(), Some(&4));
1269        assert_eq!(cursor.prev_item(), Some(&3));
1270        assert_eq!(cursor.next_item(), Some(&5));
1271        assert_eq!(cursor.start().sum, 6);
1272
1273        cursor.next(&());
1274        assert_eq!(cursor.item(), Some(&5));
1275        assert_eq!(cursor.prev_item(), Some(&4));
1276        assert_eq!(cursor.next_item(), Some(&6));
1277        assert_eq!(cursor.start().sum, 10);
1278
1279        cursor.next(&());
1280        assert_eq!(cursor.item(), Some(&6));
1281        assert_eq!(cursor.prev_item(), Some(&5));
1282        assert_eq!(cursor.next_item(), None);
1283        assert_eq!(cursor.start().sum, 15);
1284
1285        cursor.next(&());
1286        cursor.next(&());
1287        assert_eq!(cursor.item(), None);
1288        assert_eq!(cursor.prev_item(), Some(&6));
1289        assert_eq!(cursor.next_item(), None);
1290        assert_eq!(cursor.start().sum, 21);
1291
1292        cursor.prev(&());
1293        assert_eq!(cursor.item(), Some(&6));
1294        assert_eq!(cursor.prev_item(), Some(&5));
1295        assert_eq!(cursor.next_item(), None);
1296        assert_eq!(cursor.start().sum, 15);
1297
1298        cursor.prev(&());
1299        assert_eq!(cursor.item(), Some(&5));
1300        assert_eq!(cursor.prev_item(), Some(&4));
1301        assert_eq!(cursor.next_item(), Some(&6));
1302        assert_eq!(cursor.start().sum, 10);
1303
1304        cursor.prev(&());
1305        assert_eq!(cursor.item(), Some(&4));
1306        assert_eq!(cursor.prev_item(), Some(&3));
1307        assert_eq!(cursor.next_item(), Some(&5));
1308        assert_eq!(cursor.start().sum, 6);
1309
1310        cursor.prev(&());
1311        assert_eq!(cursor.item(), Some(&3));
1312        assert_eq!(cursor.prev_item(), Some(&2));
1313        assert_eq!(cursor.next_item(), Some(&4));
1314        assert_eq!(cursor.start().sum, 3);
1315
1316        cursor.prev(&());
1317        assert_eq!(cursor.item(), Some(&2));
1318        assert_eq!(cursor.prev_item(), Some(&1));
1319        assert_eq!(cursor.next_item(), Some(&3));
1320        assert_eq!(cursor.start().sum, 1);
1321
1322        cursor.prev(&());
1323        assert_eq!(cursor.item(), Some(&1));
1324        assert_eq!(cursor.prev_item(), None);
1325        assert_eq!(cursor.next_item(), Some(&2));
1326        assert_eq!(cursor.start().sum, 0);
1327
1328        cursor.prev(&());
1329        assert_eq!(cursor.item(), None);
1330        assert_eq!(cursor.prev_item(), None);
1331        assert_eq!(cursor.next_item(), Some(&1));
1332        assert_eq!(cursor.start().sum, 0);
1333
1334        cursor.next(&());
1335        assert_eq!(cursor.item(), Some(&1));
1336        assert_eq!(cursor.prev_item(), None);
1337        assert_eq!(cursor.next_item(), Some(&2));
1338        assert_eq!(cursor.start().sum, 0);
1339
1340        let mut cursor = tree.cursor::<IntegersSummary>(&());
1341        assert_eq!(
1342            cursor
1343                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1344                .items(&()),
1345            tree.items(&())
1346        );
1347        assert_eq!(cursor.item(), None);
1348        assert_eq!(cursor.prev_item(), Some(&6));
1349        assert_eq!(cursor.next_item(), None);
1350        assert_eq!(cursor.start().sum, 21);
1351
1352        cursor.seek(&Count(3), Bias::Right, &());
1353        assert_eq!(
1354            cursor
1355                .slice(&tree.extent::<Count>(&()), Bias::Right, &())
1356                .items(&()),
1357            [4, 5, 6]
1358        );
1359        assert_eq!(cursor.item(), None);
1360        assert_eq!(cursor.prev_item(), Some(&6));
1361        assert_eq!(cursor.next_item(), None);
1362        assert_eq!(cursor.start().sum, 21);
1363
1364        // Seeking can bias left or right
1365        cursor.seek(&Count(1), Bias::Left, &());
1366        assert_eq!(cursor.item(), Some(&1));
1367        cursor.seek(&Count(1), Bias::Right, &());
1368        assert_eq!(cursor.item(), Some(&2));
1369
1370        // Slicing without resetting starts from where the cursor is parked at.
1371        cursor.seek(&Count(1), Bias::Right, &());
1372        assert_eq!(
1373            cursor.slice(&Count(3), Bias::Right, &()).items(&()),
1374            vec![2, 3]
1375        );
1376        assert_eq!(
1377            cursor.slice(&Count(6), Bias::Left, &()).items(&()),
1378            vec![4, 5]
1379        );
1380        assert_eq!(
1381            cursor.slice(&Count(6), Bias::Right, &()).items(&()),
1382            vec![6]
1383        );
1384    }
1385
1386    #[test]
1387    fn test_edit() {
1388        let mut tree = SumTree::<u8>::default();
1389
1390        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], &());
1391        assert_eq!(tree.items(&()), vec![0, 1, 2]);
1392        assert_eq!(removed, Vec::<u8>::new());
1393        assert_eq!(tree.get(&0, &()), Some(&0));
1394        assert_eq!(tree.get(&1, &()), Some(&1));
1395        assert_eq!(tree.get(&2, &()), Some(&2));
1396        assert_eq!(tree.get(&4, &()), None);
1397
1398        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], &());
1399        assert_eq!(tree.items(&()), vec![1, 2, 4]);
1400        assert_eq!(removed, vec![0, 2]);
1401        assert_eq!(tree.get(&0, &()), None);
1402        assert_eq!(tree.get(&1, &()), Some(&1));
1403        assert_eq!(tree.get(&2, &()), Some(&2));
1404        assert_eq!(tree.get(&4, &()), Some(&4));
1405    }
1406
1407    #[test]
1408    fn test_from_iter() {
1409        assert_eq!(
1410            SumTree::from_iter(0..100, &()).items(&()),
1411            (0..100).collect::<Vec<_>>()
1412        );
1413
1414        // Ensure `from_iter` works correctly when the given iterator restarts
1415        // after calling `next` if `None` was already returned.
1416        let mut ix = 0;
1417        let iterator = std::iter::from_fn(|| {
1418            ix = (ix + 1) % 2;
1419            if ix == 1 { Some(1) } else { None }
1420        });
1421        assert_eq!(SumTree::from_iter(iterator, &()).items(&()), vec![1]);
1422    }
1423
1424    #[derive(Clone, Default, Debug)]
1425    pub struct IntegersSummary {
1426        count: usize,
1427        sum: usize,
1428        contains_even: bool,
1429        max: u8,
1430    }
1431
1432    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1433    struct Count(usize);
1434
1435    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1436    struct Sum(usize);
1437
1438    impl Item for u8 {
1439        type Summary = IntegersSummary;
1440
1441        fn summary(&self, _cx: &()) -> Self::Summary {
1442            IntegersSummary {
1443                count: 1,
1444                sum: *self as usize,
1445                contains_even: (*self & 1) == 0,
1446                max: *self,
1447            }
1448        }
1449    }
1450
1451    impl KeyedItem for u8 {
1452        type Key = u8;
1453
1454        fn key(&self) -> Self::Key {
1455            *self
1456        }
1457    }
1458
1459    impl Summary for IntegersSummary {
1460        type Context = ();
1461
1462        fn zero(_cx: &()) -> Self {
1463            Default::default()
1464        }
1465
1466        fn add_summary(&mut self, other: &Self, _: &()) {
1467            self.count += other.count;
1468            self.sum += other.sum;
1469            self.contains_even |= other.contains_even;
1470            self.max = cmp::max(self.max, other.max);
1471        }
1472    }
1473
1474    impl Dimension<'_, IntegersSummary> for u8 {
1475        fn zero(_cx: &()) -> Self {
1476            Default::default()
1477        }
1478
1479        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1480            *self = summary.max;
1481        }
1482    }
1483
1484    impl Dimension<'_, IntegersSummary> for Count {
1485        fn zero(_cx: &()) -> Self {
1486            Default::default()
1487        }
1488
1489        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1490            self.0 += summary.count;
1491        }
1492    }
1493
1494    impl SeekTarget<'_, IntegersSummary, IntegersSummary> for Count {
1495        fn cmp(&self, cursor_location: &IntegersSummary, _: &()) -> Ordering {
1496            self.0.cmp(&cursor_location.count)
1497        }
1498    }
1499
1500    impl Dimension<'_, IntegersSummary> for Sum {
1501        fn zero(_cx: &()) -> Self {
1502            Default::default()
1503        }
1504
1505        fn add_summary(&mut self, summary: &IntegersSummary, _: &()) {
1506            self.0 += summary.sum;
1507        }
1508    }
1509}