1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Context,
6 Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener, DispatchNodeId,
7 DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FontId,
8 Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero, KeyBinding, KeyContext,
9 KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId, LineLayoutIndex, Modifiers,
10 ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent, MouseUpEvent,
11 Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformInputHandler,
12 PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams,
13 RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR,
14 SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style,
15 SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
16 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
17 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
18 point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use parking_lot::RwLock;
28use raw_window_handle::{HandleError, HasWindowHandle};
29use refineable::Refineable;
30use slotmap::SlotMap;
31use smallvec::SmallVec;
32use std::{
33 any::{Any, TypeId},
34 borrow::Cow,
35 cell::{Cell, RefCell},
36 cmp,
37 fmt::{Debug, Display},
38 hash::{Hash, Hasher},
39 marker::PhantomData,
40 mem,
41 ops::{DerefMut, Range},
42 rc::Rc,
43 sync::{
44 Arc, Weak,
45 atomic::{AtomicUsize, Ordering::SeqCst},
46 },
47 time::{Duration, Instant},
48};
49use util::post_inc;
50use util::{ResultExt, measure};
51use uuid::Uuid;
52
53mod prompts;
54
55pub use prompts::*;
56
57pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
58
59/// Represents the two different phases when dispatching events.
60#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
61pub enum DispatchPhase {
62 /// After the capture phase comes the bubble phase, in which mouse event listeners are
63 /// invoked front to back and keyboard event listeners are invoked from the focused element
64 /// to the root of the element tree. This is the phase you'll most commonly want to use when
65 /// registering event listeners.
66 #[default]
67 Bubble,
68 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
69 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
70 /// is used for special purposes such as clearing the "pressed" state for click events. If
71 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
72 /// outside of the immediate region may rely on detecting non-local events during this phase.
73 Capture,
74}
75
76impl DispatchPhase {
77 /// Returns true if this represents the "bubble" phase.
78 pub fn bubble(self) -> bool {
79 self == DispatchPhase::Bubble
80 }
81
82 /// Returns true if this represents the "capture" phase.
83 pub fn capture(self) -> bool {
84 self == DispatchPhase::Capture
85 }
86}
87
88struct WindowInvalidatorInner {
89 pub dirty: bool,
90 pub draw_phase: DrawPhase,
91 pub dirty_views: FxHashSet<EntityId>,
92}
93
94#[derive(Clone)]
95pub(crate) struct WindowInvalidator {
96 inner: Rc<RefCell<WindowInvalidatorInner>>,
97}
98
99impl WindowInvalidator {
100 pub fn new() -> Self {
101 WindowInvalidator {
102 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
103 dirty: true,
104 draw_phase: DrawPhase::None,
105 dirty_views: FxHashSet::default(),
106 })),
107 }
108 }
109
110 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
111 let mut inner = self.inner.borrow_mut();
112 inner.dirty_views.insert(entity);
113 if inner.draw_phase == DrawPhase::None {
114 inner.dirty = true;
115 cx.push_effect(Effect::Notify { emitter: entity });
116 true
117 } else {
118 false
119 }
120 }
121
122 pub fn is_dirty(&self) -> bool {
123 self.inner.borrow().dirty
124 }
125
126 pub fn set_dirty(&self, dirty: bool) {
127 self.inner.borrow_mut().dirty = dirty
128 }
129
130 pub fn set_phase(&self, phase: DrawPhase) {
131 self.inner.borrow_mut().draw_phase = phase
132 }
133
134 pub fn take_views(&self) -> FxHashSet<EntityId> {
135 mem::take(&mut self.inner.borrow_mut().dirty_views)
136 }
137
138 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
139 self.inner.borrow_mut().dirty_views = views;
140 }
141
142 pub fn not_drawing(&self) -> bool {
143 self.inner.borrow().draw_phase == DrawPhase::None
144 }
145
146 #[track_caller]
147 pub fn debug_assert_paint(&self) {
148 debug_assert!(
149 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
150 "this method can only be called during paint"
151 );
152 }
153
154 #[track_caller]
155 pub fn debug_assert_prepaint(&self) {
156 debug_assert!(
157 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
158 "this method can only be called during request_layout, or prepaint"
159 );
160 }
161
162 #[track_caller]
163 pub fn debug_assert_paint_or_prepaint(&self) {
164 debug_assert!(
165 matches!(
166 self.inner.borrow().draw_phase,
167 DrawPhase::Paint | DrawPhase::Prepaint
168 ),
169 "this method can only be called during request_layout, prepaint, or paint"
170 );
171 }
172}
173
174type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
175
176pub(crate) type AnyWindowFocusListener =
177 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) struct WindowFocusEvent {
180 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
181 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
182}
183
184impl WindowFocusEvent {
185 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
186 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
187 }
188
189 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
190 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
191 }
192}
193
194/// This is provided when subscribing for `Context::on_focus_out` events.
195pub struct FocusOutEvent {
196 /// A weak focus handle representing what was blurred.
197 pub blurred: WeakFocusHandle,
198}
199
200slotmap::new_key_type! {
201 /// A globally unique identifier for a focusable element.
202 pub struct FocusId;
203}
204
205thread_local! {
206 /// 8MB wasn't quite enough...
207 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
208}
209
210pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
211
212impl FocusId {
213 /// Obtains whether the element associated with this handle is currently focused.
214 pub fn is_focused(&self, window: &Window) -> bool {
215 window.focus == Some(*self)
216 }
217
218 /// Obtains whether the element associated with this handle contains the focused
219 /// element or is itself focused.
220 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
221 window
222 .focused(cx)
223 .map_or(false, |focused| self.contains(focused.id, window))
224 }
225
226 /// Obtains whether the element associated with this handle is contained within the
227 /// focused element or is itself focused.
228 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
229 let focused = window.focused(cx);
230 focused.map_or(false, |focused| focused.id.contains(*self, window))
231 }
232
233 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
234 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
235 window
236 .rendered_frame
237 .dispatch_tree
238 .focus_contains(*self, other)
239 }
240}
241
242/// A handle which can be used to track and manipulate the focused element in a window.
243pub struct FocusHandle {
244 pub(crate) id: FocusId,
245 handles: Arc<FocusMap>,
246}
247
248impl std::fmt::Debug for FocusHandle {
249 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
250 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
251 }
252}
253
254impl FocusHandle {
255 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
256 let id = handles.write().insert(AtomicUsize::new(1));
257 Self {
258 id,
259 handles: handles.clone(),
260 }
261 }
262
263 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
264 let lock = handles.read();
265 let ref_count = lock.get(id)?;
266 if ref_count.load(SeqCst) == 0 {
267 None
268 } else {
269 ref_count.fetch_add(1, SeqCst);
270 Some(Self {
271 id,
272 handles: handles.clone(),
273 })
274 }
275 }
276
277 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
278 pub fn downgrade(&self) -> WeakFocusHandle {
279 WeakFocusHandle {
280 id: self.id,
281 handles: Arc::downgrade(&self.handles),
282 }
283 }
284
285 /// Moves the focus to the element associated with this handle.
286 pub fn focus(&self, window: &mut Window) {
287 window.focus(self)
288 }
289
290 /// Obtains whether the element associated with this handle is currently focused.
291 pub fn is_focused(&self, window: &Window) -> bool {
292 self.id.is_focused(window)
293 }
294
295 /// Obtains whether the element associated with this handle contains the focused
296 /// element or is itself focused.
297 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
298 self.id.contains_focused(window, cx)
299 }
300
301 /// Obtains whether the element associated with this handle is contained within the
302 /// focused element or is itself focused.
303 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
304 self.id.within_focused(window, cx)
305 }
306
307 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
308 pub fn contains(&self, other: &Self, window: &Window) -> bool {
309 self.id.contains(other.id, window)
310 }
311
312 /// Dispatch an action on the element that rendered this focus handle
313 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
314 if let Some(node_id) = window
315 .rendered_frame
316 .dispatch_tree
317 .focusable_node_id(self.id)
318 {
319 window.dispatch_action_on_node(node_id, action, cx)
320 }
321 }
322}
323
324impl Clone for FocusHandle {
325 fn clone(&self) -> Self {
326 Self::for_id(self.id, &self.handles).unwrap()
327 }
328}
329
330impl PartialEq for FocusHandle {
331 fn eq(&self, other: &Self) -> bool {
332 self.id == other.id
333 }
334}
335
336impl Eq for FocusHandle {}
337
338impl Drop for FocusHandle {
339 fn drop(&mut self) {
340 self.handles
341 .read()
342 .get(self.id)
343 .unwrap()
344 .fetch_sub(1, SeqCst);
345 }
346}
347
348/// A weak reference to a focus handle.
349#[derive(Clone, Debug)]
350pub struct WeakFocusHandle {
351 pub(crate) id: FocusId,
352 pub(crate) handles: Weak<FocusMap>,
353}
354
355impl WeakFocusHandle {
356 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
357 pub fn upgrade(&self) -> Option<FocusHandle> {
358 let handles = self.handles.upgrade()?;
359 FocusHandle::for_id(self.id, &handles)
360 }
361}
362
363impl PartialEq for WeakFocusHandle {
364 fn eq(&self, other: &WeakFocusHandle) -> bool {
365 self.id == other.id
366 }
367}
368
369impl Eq for WeakFocusHandle {}
370
371impl PartialEq<FocusHandle> for WeakFocusHandle {
372 fn eq(&self, other: &FocusHandle) -> bool {
373 self.id == other.id
374 }
375}
376
377impl PartialEq<WeakFocusHandle> for FocusHandle {
378 fn eq(&self, other: &WeakFocusHandle) -> bool {
379 self.id == other.id
380 }
381}
382
383/// Focusable allows users of your view to easily
384/// focus it (using window.focus_view(cx, view))
385pub trait Focusable: 'static {
386 /// Returns the focus handle associated with this view.
387 fn focus_handle(&self, cx: &App) -> FocusHandle;
388}
389
390impl<V: Focusable> Focusable for Entity<V> {
391 fn focus_handle(&self, cx: &App) -> FocusHandle {
392 self.read(cx).focus_handle(cx)
393 }
394}
395
396/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
397/// where the lifecycle of the view is handled by another view.
398pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
399
400impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
401
402/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
403pub struct DismissEvent;
404
405type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
406
407pub(crate) type AnyMouseListener =
408 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
409
410#[derive(Clone)]
411pub(crate) struct CursorStyleRequest {
412 pub(crate) hitbox_id: Option<HitboxId>, // None represents whole window
413 pub(crate) style: CursorStyle,
414}
415
416#[derive(Default, Eq, PartialEq)]
417pub(crate) struct HitTest {
418 pub(crate) ids: SmallVec<[HitboxId; 8]>,
419 pub(crate) hover_hitbox_count: usize,
420}
421
422/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
423#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
424pub struct HitboxId(u64);
425
426impl HitboxId {
427 /// Checks if the hitbox with this ID is currently hovered. Except when handling
428 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
429 /// events or paint hover styles.
430 ///
431 /// See [`Hitbox::is_hovered`] for details.
432 pub fn is_hovered(self, window: &Window) -> bool {
433 let hit_test = &window.mouse_hit_test;
434 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
435 if self == *id {
436 return true;
437 }
438 }
439 return false;
440 }
441
442 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
443 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
444 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
445 /// this distinction.
446 pub fn should_handle_scroll(self, window: &Window) -> bool {
447 window.mouse_hit_test.ids.contains(&self)
448 }
449
450 fn next(mut self) -> HitboxId {
451 HitboxId(self.0.wrapping_add(1))
452 }
453}
454
455/// A rectangular region that potentially blocks hitboxes inserted prior.
456/// See [Window::insert_hitbox] for more details.
457#[derive(Clone, Debug, Deref)]
458pub struct Hitbox {
459 /// A unique identifier for the hitbox.
460 pub id: HitboxId,
461 /// The bounds of the hitbox.
462 #[deref]
463 pub bounds: Bounds<Pixels>,
464 /// The content mask when the hitbox was inserted.
465 pub content_mask: ContentMask<Pixels>,
466 /// Flags that specify hitbox behavior.
467 pub behavior: HitboxBehavior,
468}
469
470impl Hitbox {
471 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
472 /// typically what you want when determining whether to handle mouse events or paint hover
473 /// styles.
474 ///
475 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
476 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
477 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
478 ///
479 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
480 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
481 /// non-interactive while still allowing scrolling. More abstractly, this is because
482 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
483 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
484 /// container.
485 pub fn is_hovered(&self, window: &Window) -> bool {
486 self.id.is_hovered(window)
487 }
488
489 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
490 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
491 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
492 ///
493 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
494 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
495 pub fn should_handle_scroll(&self, window: &Window) -> bool {
496 self.id.should_handle_scroll(window)
497 }
498}
499
500/// How the hitbox affects mouse behavior.
501#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
502pub enum HitboxBehavior {
503 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
504 #[default]
505 Normal,
506
507 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
508 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
509 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
510 /// [`InteractiveElement::occlude`].
511 ///
512 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
513 /// bubble-phase handler for every mouse event type:
514 ///
515 /// ```
516 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
517 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
518 /// cx.stop_propagation();
519 /// }
520 /// }
521 /// ```
522 ///
523 /// This has effects beyond event handling - any use of hitbox checking, such as hover
524 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
525 /// alternative might be to not affect mouse event handling - but this would allow
526 /// inconsistent UI where clicks and moves interact with elements that are not considered to
527 /// be hovered.
528 BlockMouse,
529
530 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
531 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
532 /// interaction except scroll events to be ignored - see the documentation of
533 /// [`Hitbox::is_hovered`] for details. This flag is set by
534 /// [`InteractiveElement::block_mouse_except_scroll`].
535 ///
536 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
537 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
538 ///
539 /// ```
540 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
541 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
542 /// cx.stop_propagation();
543 /// }
544 /// }
545 /// ```
546 ///
547 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
548 /// handled differently than other mouse events. If also blocking these scroll events is
549 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
550 ///
551 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
552 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
553 /// An alternative might be to not affect mouse event handling - but this would allow
554 /// inconsistent UI where clicks and moves interact with elements that are not considered to
555 /// be hovered.
556 BlockMouseExceptScroll,
557}
558
559/// An identifier for a tooltip.
560#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
561pub struct TooltipId(usize);
562
563impl TooltipId {
564 /// Checks if the tooltip is currently hovered.
565 pub fn is_hovered(&self, window: &Window) -> bool {
566 window
567 .tooltip_bounds
568 .as_ref()
569 .map_or(false, |tooltip_bounds| {
570 tooltip_bounds.id == *self
571 && tooltip_bounds.bounds.contains(&window.mouse_position())
572 })
573 }
574}
575
576pub(crate) struct TooltipBounds {
577 id: TooltipId,
578 bounds: Bounds<Pixels>,
579}
580
581#[derive(Clone)]
582pub(crate) struct TooltipRequest {
583 id: TooltipId,
584 tooltip: AnyTooltip,
585}
586
587pub(crate) struct DeferredDraw {
588 current_view: EntityId,
589 priority: usize,
590 parent_node: DispatchNodeId,
591 element_id_stack: SmallVec<[ElementId; 32]>,
592 text_style_stack: Vec<TextStyleRefinement>,
593 element: Option<AnyElement>,
594 absolute_offset: Point<Pixels>,
595 prepaint_range: Range<PrepaintStateIndex>,
596 paint_range: Range<PaintIndex>,
597}
598
599pub(crate) struct Frame {
600 pub(crate) focus: Option<FocusId>,
601 pub(crate) window_active: bool,
602 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
603 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
604 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
605 pub(crate) dispatch_tree: DispatchTree,
606 pub(crate) scene: Scene,
607 pub(crate) hitboxes: Vec<Hitbox>,
608 pub(crate) deferred_draws: Vec<DeferredDraw>,
609 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
610 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
611 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
612 #[cfg(any(test, feature = "test-support"))]
613 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
614 #[cfg(any(feature = "inspector", debug_assertions))]
615 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
616 #[cfg(any(feature = "inspector", debug_assertions))]
617 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
618}
619
620#[derive(Clone, Default)]
621pub(crate) struct PrepaintStateIndex {
622 hitboxes_index: usize,
623 tooltips_index: usize,
624 deferred_draws_index: usize,
625 dispatch_tree_index: usize,
626 accessed_element_states_index: usize,
627 line_layout_index: LineLayoutIndex,
628}
629
630#[derive(Clone, Default)]
631pub(crate) struct PaintIndex {
632 scene_index: usize,
633 mouse_listeners_index: usize,
634 input_handlers_index: usize,
635 cursor_styles_index: usize,
636 accessed_element_states_index: usize,
637 line_layout_index: LineLayoutIndex,
638}
639
640impl Frame {
641 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
642 Frame {
643 focus: None,
644 window_active: false,
645 element_states: FxHashMap::default(),
646 accessed_element_states: Vec::new(),
647 mouse_listeners: Vec::new(),
648 dispatch_tree,
649 scene: Scene::default(),
650 hitboxes: Vec::new(),
651 deferred_draws: Vec::new(),
652 input_handlers: Vec::new(),
653 tooltip_requests: Vec::new(),
654 cursor_styles: Vec::new(),
655
656 #[cfg(any(test, feature = "test-support"))]
657 debug_bounds: FxHashMap::default(),
658
659 #[cfg(any(feature = "inspector", debug_assertions))]
660 next_inspector_instance_ids: FxHashMap::default(),
661
662 #[cfg(any(feature = "inspector", debug_assertions))]
663 inspector_hitboxes: FxHashMap::default(),
664 }
665 }
666
667 pub(crate) fn clear(&mut self) {
668 self.element_states.clear();
669 self.accessed_element_states.clear();
670 self.mouse_listeners.clear();
671 self.dispatch_tree.clear();
672 self.scene.clear();
673 self.input_handlers.clear();
674 self.tooltip_requests.clear();
675 self.cursor_styles.clear();
676 self.hitboxes.clear();
677 self.deferred_draws.clear();
678 self.focus = None;
679
680 #[cfg(any(feature = "inspector", debug_assertions))]
681 {
682 self.next_inspector_instance_ids.clear();
683 self.inspector_hitboxes.clear();
684 }
685 }
686
687 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
688 let mut set_hover_hitbox_count = false;
689 let mut hit_test = HitTest::default();
690 for hitbox in self.hitboxes.iter().rev() {
691 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
692 if bounds.contains(&position) {
693 hit_test.ids.push(hitbox.id);
694 if !set_hover_hitbox_count
695 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
696 {
697 hit_test.hover_hitbox_count = hit_test.ids.len();
698 set_hover_hitbox_count = true;
699 }
700 if hitbox.behavior == HitboxBehavior::BlockMouse {
701 break;
702 }
703 }
704 }
705 if !set_hover_hitbox_count {
706 hit_test.hover_hitbox_count = hit_test.ids.len();
707 }
708 hit_test
709 }
710
711 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
712 self.focus
713 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
714 .unwrap_or_default()
715 }
716
717 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
718 for element_state_key in &self.accessed_element_states {
719 if let Some((element_state_key, element_state)) =
720 prev_frame.element_states.remove_entry(element_state_key)
721 {
722 self.element_states.insert(element_state_key, element_state);
723 }
724 }
725
726 self.scene.finish();
727 }
728}
729
730/// Holds the state for a specific window.
731pub struct Window {
732 pub(crate) handle: AnyWindowHandle,
733 pub(crate) invalidator: WindowInvalidator,
734 pub(crate) removed: bool,
735 pub(crate) platform_window: Box<dyn PlatformWindow>,
736 display_id: Option<DisplayId>,
737 sprite_atlas: Arc<dyn PlatformAtlas>,
738 text_system: Arc<WindowTextSystem>,
739 rem_size: Pixels,
740 /// The stack of override values for the window's rem size.
741 ///
742 /// This is used by `with_rem_size` to allow rendering an element tree with
743 /// a given rem size.
744 rem_size_override_stack: SmallVec<[Pixels; 8]>,
745 pub(crate) viewport_size: Size<Pixels>,
746 layout_engine: Option<TaffyLayoutEngine>,
747 pub(crate) root: Option<AnyView>,
748 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
749 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
750 pub(crate) rendered_entity_stack: Vec<EntityId>,
751 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
752 pub(crate) element_opacity: Option<f32>,
753 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
754 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
755 pub(crate) image_cache_stack: Vec<AnyImageCache>,
756 pub(crate) rendered_frame: Frame,
757 pub(crate) next_frame: Frame,
758 next_hitbox_id: HitboxId,
759 pub(crate) next_tooltip_id: TooltipId,
760 pub(crate) tooltip_bounds: Option<TooltipBounds>,
761 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
762 pub(crate) dirty_views: FxHashSet<EntityId>,
763 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
764 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
765 default_prevented: bool,
766 mouse_position: Point<Pixels>,
767 mouse_hit_test: HitTest,
768 modifiers: Modifiers,
769 scale_factor: f32,
770 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
771 appearance: WindowAppearance,
772 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
773 active: Rc<Cell<bool>>,
774 hovered: Rc<Cell<bool>>,
775 pub(crate) needs_present: Rc<Cell<bool>>,
776 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
777 pub(crate) refreshing: bool,
778 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
779 pub(crate) focus: Option<FocusId>,
780 focus_enabled: bool,
781 pending_input: Option<PendingInput>,
782 pending_modifier: ModifierState,
783 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
784 prompt: Option<RenderablePromptHandle>,
785 pub(crate) client_inset: Option<Pixels>,
786 #[cfg(any(feature = "inspector", debug_assertions))]
787 inspector: Option<Entity<Inspector>>,
788}
789
790#[derive(Clone, Debug, Default)]
791struct ModifierState {
792 modifiers: Modifiers,
793 saw_keystroke: bool,
794}
795
796#[derive(Clone, Copy, Debug, Eq, PartialEq)]
797pub(crate) enum DrawPhase {
798 None,
799 Prepaint,
800 Paint,
801 Focus,
802}
803
804#[derive(Default, Debug)]
805struct PendingInput {
806 keystrokes: SmallVec<[Keystroke; 1]>,
807 focus: Option<FocusId>,
808 timer: Option<Task<()>>,
809}
810
811pub(crate) struct ElementStateBox {
812 pub(crate) inner: Box<dyn Any>,
813 #[cfg(debug_assertions)]
814 pub(crate) type_name: &'static str,
815}
816
817fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
818 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
819
820 // TODO, BUG: if you open a window with the currently active window
821 // on the stack, this will erroneously select the 'unwrap_or_else'
822 // code path
823 cx.active_window()
824 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
825 .map(|mut bounds| {
826 bounds.origin += DEFAULT_WINDOW_OFFSET;
827 bounds
828 })
829 .unwrap_or_else(|| {
830 let display = display_id
831 .map(|id| cx.find_display(id))
832 .unwrap_or_else(|| cx.primary_display());
833
834 display
835 .map(|display| display.default_bounds())
836 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
837 })
838}
839
840impl Window {
841 pub(crate) fn new(
842 handle: AnyWindowHandle,
843 options: WindowOptions,
844 cx: &mut App,
845 ) -> Result<Self> {
846 let WindowOptions {
847 window_bounds,
848 titlebar,
849 focus,
850 show,
851 kind,
852 is_movable,
853 display_id,
854 window_background,
855 app_id,
856 window_min_size,
857 window_decorations,
858 } = options;
859
860 let bounds = window_bounds
861 .map(|bounds| bounds.get_bounds())
862 .unwrap_or_else(|| default_bounds(display_id, cx));
863 let mut platform_window = cx.platform.open_window(
864 handle,
865 WindowParams {
866 bounds,
867 titlebar,
868 kind,
869 is_movable,
870 focus,
871 show,
872 display_id,
873 window_min_size,
874 },
875 )?;
876 let display_id = platform_window.display().map(|display| display.id());
877 let sprite_atlas = platform_window.sprite_atlas();
878 let mouse_position = platform_window.mouse_position();
879 let modifiers = platform_window.modifiers();
880 let content_size = platform_window.content_size();
881 let scale_factor = platform_window.scale_factor();
882 let appearance = platform_window.appearance();
883 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
884 let invalidator = WindowInvalidator::new();
885 let active = Rc::new(Cell::new(platform_window.is_active()));
886 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
887 let needs_present = Rc::new(Cell::new(false));
888 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
889 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
890
891 platform_window
892 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
893 platform_window.set_background_appearance(window_background);
894
895 if let Some(ref window_open_state) = window_bounds {
896 match window_open_state {
897 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
898 WindowBounds::Maximized(_) => platform_window.zoom(),
899 WindowBounds::Windowed(_) => {}
900 }
901 }
902
903 platform_window.on_close(Box::new({
904 let mut cx = cx.to_async();
905 move || {
906 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
907 }
908 }));
909 platform_window.on_request_frame(Box::new({
910 let mut cx = cx.to_async();
911 let invalidator = invalidator.clone();
912 let active = active.clone();
913 let needs_present = needs_present.clone();
914 let next_frame_callbacks = next_frame_callbacks.clone();
915 let last_input_timestamp = last_input_timestamp.clone();
916 move |request_frame_options| {
917 let next_frame_callbacks = next_frame_callbacks.take();
918 if !next_frame_callbacks.is_empty() {
919 handle
920 .update(&mut cx, |_, window, cx| {
921 for callback in next_frame_callbacks {
922 callback(window, cx);
923 }
924 })
925 .log_err();
926 }
927
928 // Keep presenting the current scene for 1 extra second since the
929 // last input to prevent the display from underclocking the refresh rate.
930 let needs_present = request_frame_options.require_presentation
931 || needs_present.get()
932 || (active.get()
933 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
934
935 if invalidator.is_dirty() {
936 measure("frame duration", || {
937 handle
938 .update(&mut cx, |_, window, cx| {
939 window.draw(cx);
940 window.present();
941 })
942 .log_err();
943 })
944 } else if needs_present {
945 handle
946 .update(&mut cx, |_, window, _| window.present())
947 .log_err();
948 }
949
950 handle
951 .update(&mut cx, |_, window, _| {
952 window.complete_frame();
953 })
954 .log_err();
955 }
956 }));
957 platform_window.on_resize(Box::new({
958 let mut cx = cx.to_async();
959 move |_, _| {
960 handle
961 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
962 .log_err();
963 }
964 }));
965 platform_window.on_moved(Box::new({
966 let mut cx = cx.to_async();
967 move || {
968 handle
969 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
970 .log_err();
971 }
972 }));
973 platform_window.on_appearance_changed(Box::new({
974 let mut cx = cx.to_async();
975 move || {
976 handle
977 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
978 .log_err();
979 }
980 }));
981 platform_window.on_active_status_change(Box::new({
982 let mut cx = cx.to_async();
983 move |active| {
984 handle
985 .update(&mut cx, |_, window, cx| {
986 window.active.set(active);
987 window.modifiers = window.platform_window.modifiers();
988 window
989 .activation_observers
990 .clone()
991 .retain(&(), |callback| callback(window, cx));
992 window.refresh();
993 })
994 .log_err();
995 }
996 }));
997 platform_window.on_hover_status_change(Box::new({
998 let mut cx = cx.to_async();
999 move |active| {
1000 handle
1001 .update(&mut cx, |_, window, _| {
1002 window.hovered.set(active);
1003 window.refresh();
1004 })
1005 .log_err();
1006 }
1007 }));
1008 platform_window.on_input({
1009 let mut cx = cx.to_async();
1010 Box::new(move |event| {
1011 handle
1012 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1013 .log_err()
1014 .unwrap_or(DispatchEventResult::default())
1015 })
1016 });
1017
1018 if let Some(app_id) = app_id {
1019 platform_window.set_app_id(&app_id);
1020 }
1021
1022 platform_window.map_window().unwrap();
1023
1024 Ok(Window {
1025 handle,
1026 invalidator,
1027 removed: false,
1028 platform_window,
1029 display_id,
1030 sprite_atlas,
1031 text_system,
1032 rem_size: px(16.),
1033 rem_size_override_stack: SmallVec::new(),
1034 viewport_size: content_size,
1035 layout_engine: Some(TaffyLayoutEngine::new()),
1036 root: None,
1037 element_id_stack: SmallVec::default(),
1038 text_style_stack: Vec::new(),
1039 rendered_entity_stack: Vec::new(),
1040 element_offset_stack: Vec::new(),
1041 content_mask_stack: Vec::new(),
1042 element_opacity: None,
1043 requested_autoscroll: None,
1044 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1045 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1046 next_frame_callbacks,
1047 next_hitbox_id: HitboxId(0),
1048 next_tooltip_id: TooltipId::default(),
1049 tooltip_bounds: None,
1050 dirty_views: FxHashSet::default(),
1051 focus_listeners: SubscriberSet::new(),
1052 focus_lost_listeners: SubscriberSet::new(),
1053 default_prevented: true,
1054 mouse_position,
1055 mouse_hit_test: HitTest::default(),
1056 modifiers,
1057 scale_factor,
1058 bounds_observers: SubscriberSet::new(),
1059 appearance,
1060 appearance_observers: SubscriberSet::new(),
1061 active,
1062 hovered,
1063 needs_present,
1064 last_input_timestamp,
1065 refreshing: false,
1066 activation_observers: SubscriberSet::new(),
1067 focus: None,
1068 focus_enabled: true,
1069 pending_input: None,
1070 pending_modifier: ModifierState::default(),
1071 pending_input_observers: SubscriberSet::new(),
1072 prompt: None,
1073 client_inset: None,
1074 image_cache_stack: Vec::new(),
1075 #[cfg(any(feature = "inspector", debug_assertions))]
1076 inspector: None,
1077 })
1078 }
1079
1080 pub(crate) fn new_focus_listener(
1081 &self,
1082 value: AnyWindowFocusListener,
1083 ) -> (Subscription, impl FnOnce() + use<>) {
1084 self.focus_listeners.insert((), value)
1085 }
1086}
1087
1088#[derive(Clone, Debug, Default, PartialEq, Eq)]
1089pub(crate) struct DispatchEventResult {
1090 pub propagate: bool,
1091 pub default_prevented: bool,
1092}
1093
1094/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1095/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1096/// to leave room to support more complex shapes in the future.
1097#[derive(Clone, Debug, Default, PartialEq, Eq)]
1098#[repr(C)]
1099pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1100 /// The bounds
1101 pub bounds: Bounds<P>,
1102}
1103
1104impl ContentMask<Pixels> {
1105 /// Scale the content mask's pixel units by the given scaling factor.
1106 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1107 ContentMask {
1108 bounds: self.bounds.scale(factor),
1109 }
1110 }
1111
1112 /// Intersect the content mask with the given content mask.
1113 pub fn intersect(&self, other: &Self) -> Self {
1114 let bounds = self.bounds.intersect(&other.bounds);
1115 ContentMask { bounds }
1116 }
1117}
1118
1119impl Window {
1120 fn mark_view_dirty(&mut self, view_id: EntityId) {
1121 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1122 // should already be dirty.
1123 for view_id in self
1124 .rendered_frame
1125 .dispatch_tree
1126 .view_path(view_id)
1127 .into_iter()
1128 .rev()
1129 {
1130 if !self.dirty_views.insert(view_id) {
1131 break;
1132 }
1133 }
1134 }
1135
1136 /// Registers a callback to be invoked when the window appearance changes.
1137 pub fn observe_window_appearance(
1138 &self,
1139 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1140 ) -> Subscription {
1141 let (subscription, activate) = self.appearance_observers.insert(
1142 (),
1143 Box::new(move |window, cx| {
1144 callback(window, cx);
1145 true
1146 }),
1147 );
1148 activate();
1149 subscription
1150 }
1151
1152 /// Replaces the root entity of the window with a new one.
1153 pub fn replace_root<E>(
1154 &mut self,
1155 cx: &mut App,
1156 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1157 ) -> Entity<E>
1158 where
1159 E: 'static + Render,
1160 {
1161 let view = cx.new(|cx| build_view(self, cx));
1162 self.root = Some(view.clone().into());
1163 self.refresh();
1164 view
1165 }
1166
1167 /// Returns the root entity of the window, if it has one.
1168 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1169 where
1170 E: 'static + Render,
1171 {
1172 self.root
1173 .as_ref()
1174 .map(|view| view.clone().downcast::<E>().ok())
1175 }
1176
1177 /// Obtain a handle to the window that belongs to this context.
1178 pub fn window_handle(&self) -> AnyWindowHandle {
1179 self.handle
1180 }
1181
1182 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1183 pub fn refresh(&mut self) {
1184 if self.invalidator.not_drawing() {
1185 self.refreshing = true;
1186 self.invalidator.set_dirty(true);
1187 }
1188 }
1189
1190 /// Close this window.
1191 pub fn remove_window(&mut self) {
1192 self.removed = true;
1193 }
1194
1195 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1196 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1197 self.focus
1198 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1199 }
1200
1201 /// Move focus to the element associated with the given [`FocusHandle`].
1202 pub fn focus(&mut self, handle: &FocusHandle) {
1203 if !self.focus_enabled || self.focus == Some(handle.id) {
1204 return;
1205 }
1206
1207 self.focus = Some(handle.id);
1208 self.clear_pending_keystrokes();
1209 self.refresh();
1210 }
1211
1212 /// Remove focus from all elements within this context's window.
1213 pub fn blur(&mut self) {
1214 if !self.focus_enabled {
1215 return;
1216 }
1217
1218 self.focus = None;
1219 self.refresh();
1220 }
1221
1222 /// Blur the window and don't allow anything in it to be focused again.
1223 pub fn disable_focus(&mut self) {
1224 self.blur();
1225 self.focus_enabled = false;
1226 }
1227
1228 /// Accessor for the text system.
1229 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1230 &self.text_system
1231 }
1232
1233 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1234 pub fn text_style(&self) -> TextStyle {
1235 let mut style = TextStyle::default();
1236 for refinement in &self.text_style_stack {
1237 style.refine(refinement);
1238 }
1239 style
1240 }
1241
1242 /// Check if the platform window is maximized
1243 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1244 pub fn is_maximized(&self) -> bool {
1245 self.platform_window.is_maximized()
1246 }
1247
1248 /// request a certain window decoration (Wayland)
1249 pub fn request_decorations(&self, decorations: WindowDecorations) {
1250 self.platform_window.request_decorations(decorations);
1251 }
1252
1253 /// Start a window resize operation (Wayland)
1254 pub fn start_window_resize(&self, edge: ResizeEdge) {
1255 self.platform_window.start_window_resize(edge);
1256 }
1257
1258 /// Return the `WindowBounds` to indicate that how a window should be opened
1259 /// after it has been closed
1260 pub fn window_bounds(&self) -> WindowBounds {
1261 self.platform_window.window_bounds()
1262 }
1263
1264 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1265 pub fn inner_window_bounds(&self) -> WindowBounds {
1266 self.platform_window.inner_window_bounds()
1267 }
1268
1269 /// Dispatch the given action on the currently focused element.
1270 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1271 let focus_handle = self.focused(cx);
1272
1273 let window = self.handle;
1274 cx.defer(move |cx| {
1275 window
1276 .update(cx, |_, window, cx| {
1277 let node_id = focus_handle
1278 .and_then(|handle| {
1279 window
1280 .rendered_frame
1281 .dispatch_tree
1282 .focusable_node_id(handle.id)
1283 })
1284 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1285
1286 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1287 })
1288 .log_err();
1289 })
1290 }
1291
1292 pub(crate) fn dispatch_keystroke_observers(
1293 &mut self,
1294 event: &dyn Any,
1295 action: Option<Box<dyn Action>>,
1296 context_stack: Vec<KeyContext>,
1297 cx: &mut App,
1298 ) {
1299 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1300 return;
1301 };
1302
1303 cx.keystroke_observers.clone().retain(&(), move |callback| {
1304 (callback)(
1305 &KeystrokeEvent {
1306 keystroke: key_down_event.keystroke.clone(),
1307 action: action.as_ref().map(|action| action.boxed_clone()),
1308 context_stack: context_stack.clone(),
1309 },
1310 self,
1311 cx,
1312 )
1313 });
1314 }
1315
1316 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1317 /// that are currently on the stack to be returned to the app.
1318 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1319 let handle = self.handle;
1320 cx.defer(move |cx| {
1321 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1322 });
1323 }
1324
1325 /// Subscribe to events emitted by a entity.
1326 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1327 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1328 pub fn observe<T: 'static>(
1329 &mut self,
1330 observed: &Entity<T>,
1331 cx: &mut App,
1332 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1333 ) -> Subscription {
1334 let entity_id = observed.entity_id();
1335 let observed = observed.downgrade();
1336 let window_handle = self.handle;
1337 cx.new_observer(
1338 entity_id,
1339 Box::new(move |cx| {
1340 window_handle
1341 .update(cx, |_, window, cx| {
1342 if let Some(handle) = observed.upgrade() {
1343 on_notify(handle, window, cx);
1344 true
1345 } else {
1346 false
1347 }
1348 })
1349 .unwrap_or(false)
1350 }),
1351 )
1352 }
1353
1354 /// Subscribe to events emitted by a entity.
1355 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1356 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1357 pub fn subscribe<Emitter, Evt>(
1358 &mut self,
1359 entity: &Entity<Emitter>,
1360 cx: &mut App,
1361 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1362 ) -> Subscription
1363 where
1364 Emitter: EventEmitter<Evt>,
1365 Evt: 'static,
1366 {
1367 let entity_id = entity.entity_id();
1368 let handle = entity.downgrade();
1369 let window_handle = self.handle;
1370 cx.new_subscription(
1371 entity_id,
1372 (
1373 TypeId::of::<Evt>(),
1374 Box::new(move |event, cx| {
1375 window_handle
1376 .update(cx, |_, window, cx| {
1377 if let Some(entity) = handle.upgrade() {
1378 let event = event.downcast_ref().expect("invalid event type");
1379 on_event(entity, event, window, cx);
1380 true
1381 } else {
1382 false
1383 }
1384 })
1385 .unwrap_or(false)
1386 }),
1387 ),
1388 )
1389 }
1390
1391 /// Register a callback to be invoked when the given `Entity` is released.
1392 pub fn observe_release<T>(
1393 &self,
1394 entity: &Entity<T>,
1395 cx: &mut App,
1396 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1397 ) -> Subscription
1398 where
1399 T: 'static,
1400 {
1401 let entity_id = entity.entity_id();
1402 let window_handle = self.handle;
1403 let (subscription, activate) = cx.release_listeners.insert(
1404 entity_id,
1405 Box::new(move |entity, cx| {
1406 let entity = entity.downcast_mut().expect("invalid entity type");
1407 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1408 }),
1409 );
1410 activate();
1411 subscription
1412 }
1413
1414 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1415 /// await points in async code.
1416 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1417 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1418 }
1419
1420 /// Schedule the given closure to be run directly after the current frame is rendered.
1421 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1422 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1423 }
1424
1425 /// Schedule a frame to be drawn on the next animation frame.
1426 ///
1427 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1428 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1429 ///
1430 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1431 pub fn request_animation_frame(&self) {
1432 let entity = self.current_view();
1433 self.on_next_frame(move |_, cx| cx.notify(entity));
1434 }
1435
1436 /// Spawn the future returned by the given closure on the application thread pool.
1437 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1438 /// use within your future.
1439 #[track_caller]
1440 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1441 where
1442 R: 'static,
1443 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1444 {
1445 let handle = self.handle;
1446 cx.spawn(async move |app| {
1447 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1448 f(&mut async_window_cx).await
1449 })
1450 }
1451
1452 fn bounds_changed(&mut self, cx: &mut App) {
1453 self.scale_factor = self.platform_window.scale_factor();
1454 self.viewport_size = self.platform_window.content_size();
1455 self.display_id = self.platform_window.display().map(|display| display.id());
1456
1457 self.refresh();
1458
1459 self.bounds_observers
1460 .clone()
1461 .retain(&(), |callback| callback(self, cx));
1462 }
1463
1464 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1465 pub fn bounds(&self) -> Bounds<Pixels> {
1466 self.platform_window.bounds()
1467 }
1468
1469 /// Set the content size of the window.
1470 pub fn resize(&mut self, size: Size<Pixels>) {
1471 self.platform_window.resize(size);
1472 }
1473
1474 /// Returns whether or not the window is currently fullscreen
1475 pub fn is_fullscreen(&self) -> bool {
1476 self.platform_window.is_fullscreen()
1477 }
1478
1479 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1480 self.appearance = self.platform_window.appearance();
1481
1482 self.appearance_observers
1483 .clone()
1484 .retain(&(), |callback| callback(self, cx));
1485 }
1486
1487 /// Returns the appearance of the current window.
1488 pub fn appearance(&self) -> WindowAppearance {
1489 self.appearance
1490 }
1491
1492 /// Returns the size of the drawable area within the window.
1493 pub fn viewport_size(&self) -> Size<Pixels> {
1494 self.viewport_size
1495 }
1496
1497 /// Returns whether this window is focused by the operating system (receiving key events).
1498 pub fn is_window_active(&self) -> bool {
1499 self.active.get()
1500 }
1501
1502 /// Returns whether this window is considered to be the window
1503 /// that currently owns the mouse cursor.
1504 /// On mac, this is equivalent to `is_window_active`.
1505 pub fn is_window_hovered(&self) -> bool {
1506 if cfg!(any(
1507 target_os = "windows",
1508 target_os = "linux",
1509 target_os = "freebsd"
1510 )) {
1511 self.hovered.get()
1512 } else {
1513 self.is_window_active()
1514 }
1515 }
1516
1517 /// Toggle zoom on the window.
1518 pub fn zoom_window(&self) {
1519 self.platform_window.zoom();
1520 }
1521
1522 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1523 pub fn show_window_menu(&self, position: Point<Pixels>) {
1524 self.platform_window.show_window_menu(position)
1525 }
1526
1527 /// Tells the compositor to take control of window movement (Wayland and X11)
1528 ///
1529 /// Events may not be received during a move operation.
1530 pub fn start_window_move(&self) {
1531 self.platform_window.start_window_move()
1532 }
1533
1534 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1535 pub fn set_client_inset(&mut self, inset: Pixels) {
1536 self.client_inset = Some(inset);
1537 self.platform_window.set_client_inset(inset);
1538 }
1539
1540 /// Returns the client_inset value by [`Self::set_client_inset`].
1541 pub fn client_inset(&self) -> Option<Pixels> {
1542 self.client_inset
1543 }
1544
1545 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1546 pub fn window_decorations(&self) -> Decorations {
1547 self.platform_window.window_decorations()
1548 }
1549
1550 /// Returns which window controls are currently visible (Wayland)
1551 pub fn window_controls(&self) -> WindowControls {
1552 self.platform_window.window_controls()
1553 }
1554
1555 /// Updates the window's title at the platform level.
1556 pub fn set_window_title(&mut self, title: &str) {
1557 self.platform_window.set_title(title);
1558 }
1559
1560 /// Sets the application identifier.
1561 pub fn set_app_id(&mut self, app_id: &str) {
1562 self.platform_window.set_app_id(app_id);
1563 }
1564
1565 /// Sets the window background appearance.
1566 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1567 self.platform_window
1568 .set_background_appearance(background_appearance);
1569 }
1570
1571 /// Mark the window as dirty at the platform level.
1572 pub fn set_window_edited(&mut self, edited: bool) {
1573 self.platform_window.set_edited(edited);
1574 }
1575
1576 /// Determine the display on which the window is visible.
1577 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1578 cx.platform
1579 .displays()
1580 .into_iter()
1581 .find(|display| Some(display.id()) == self.display_id)
1582 }
1583
1584 /// Show the platform character palette.
1585 pub fn show_character_palette(&self) {
1586 self.platform_window.show_character_palette();
1587 }
1588
1589 /// The scale factor of the display associated with the window. For example, it could
1590 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1591 /// be rendered as two pixels on screen.
1592 pub fn scale_factor(&self) -> f32 {
1593 self.scale_factor
1594 }
1595
1596 /// The size of an em for the base font of the application. Adjusting this value allows the
1597 /// UI to scale, just like zooming a web page.
1598 pub fn rem_size(&self) -> Pixels {
1599 self.rem_size_override_stack
1600 .last()
1601 .copied()
1602 .unwrap_or(self.rem_size)
1603 }
1604
1605 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1606 /// UI to scale, just like zooming a web page.
1607 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1608 self.rem_size = rem_size.into();
1609 }
1610
1611 /// Acquire a globally unique identifier for the given ElementId.
1612 /// Only valid for the duration of the provided closure.
1613 pub fn with_global_id<R>(
1614 &mut self,
1615 element_id: ElementId,
1616 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1617 ) -> R {
1618 self.element_id_stack.push(element_id);
1619 let global_id = GlobalElementId(self.element_id_stack.clone());
1620 let result = f(&global_id, self);
1621 self.element_id_stack.pop();
1622 result
1623 }
1624
1625 /// Executes the provided function with the specified rem size.
1626 ///
1627 /// This method must only be called as part of element drawing.
1628 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1629 where
1630 F: FnOnce(&mut Self) -> R,
1631 {
1632 self.invalidator.debug_assert_paint_or_prepaint();
1633
1634 if let Some(rem_size) = rem_size {
1635 self.rem_size_override_stack.push(rem_size.into());
1636 let result = f(self);
1637 self.rem_size_override_stack.pop();
1638 result
1639 } else {
1640 f(self)
1641 }
1642 }
1643
1644 /// The line height associated with the current text style.
1645 pub fn line_height(&self) -> Pixels {
1646 self.text_style().line_height_in_pixels(self.rem_size())
1647 }
1648
1649 /// Call to prevent the default action of an event. Currently only used to prevent
1650 /// parent elements from becoming focused on mouse down.
1651 pub fn prevent_default(&mut self) {
1652 self.default_prevented = true;
1653 }
1654
1655 /// Obtain whether default has been prevented for the event currently being dispatched.
1656 pub fn default_prevented(&self) -> bool {
1657 self.default_prevented
1658 }
1659
1660 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1661 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1662 let target = self
1663 .focused(cx)
1664 .and_then(|focused_handle| {
1665 self.rendered_frame
1666 .dispatch_tree
1667 .focusable_node_id(focused_handle.id)
1668 })
1669 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1670 self.rendered_frame
1671 .dispatch_tree
1672 .is_action_available(action, target)
1673 }
1674
1675 /// The position of the mouse relative to the window.
1676 pub fn mouse_position(&self) -> Point<Pixels> {
1677 self.mouse_position
1678 }
1679
1680 /// The current state of the keyboard's modifiers
1681 pub fn modifiers(&self) -> Modifiers {
1682 self.modifiers
1683 }
1684
1685 fn complete_frame(&self) {
1686 self.platform_window.completed_frame();
1687 }
1688
1689 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1690 /// the contents of the new [Scene], use [present].
1691 #[profiling::function]
1692 pub fn draw(&mut self, cx: &mut App) {
1693 self.invalidate_entities();
1694 cx.entities.clear_accessed();
1695 debug_assert!(self.rendered_entity_stack.is_empty());
1696 self.invalidator.set_dirty(false);
1697 self.requested_autoscroll = None;
1698
1699 // Restore the previously-used input handler.
1700 if let Some(input_handler) = self.platform_window.take_input_handler() {
1701 self.rendered_frame.input_handlers.push(Some(input_handler));
1702 }
1703 self.draw_roots(cx);
1704 self.dirty_views.clear();
1705 self.next_frame.window_active = self.active.get();
1706
1707 // Register requested input handler with the platform window.
1708 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1709 self.platform_window
1710 .set_input_handler(input_handler.unwrap());
1711 }
1712
1713 self.layout_engine.as_mut().unwrap().clear();
1714 self.text_system().finish_frame();
1715 self.next_frame.finish(&mut self.rendered_frame);
1716 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1717 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1718 if percentage >= 80. {
1719 log::warn!("elevated element arena occupation: {}.", percentage);
1720 }
1721 element_arena.clear();
1722 });
1723
1724 self.invalidator.set_phase(DrawPhase::Focus);
1725 let previous_focus_path = self.rendered_frame.focus_path();
1726 let previous_window_active = self.rendered_frame.window_active;
1727 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1728 self.next_frame.clear();
1729 let current_focus_path = self.rendered_frame.focus_path();
1730 let current_window_active = self.rendered_frame.window_active;
1731
1732 if previous_focus_path != current_focus_path
1733 || previous_window_active != current_window_active
1734 {
1735 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1736 self.focus_lost_listeners
1737 .clone()
1738 .retain(&(), |listener| listener(self, cx));
1739 }
1740
1741 let event = WindowFocusEvent {
1742 previous_focus_path: if previous_window_active {
1743 previous_focus_path
1744 } else {
1745 Default::default()
1746 },
1747 current_focus_path: if current_window_active {
1748 current_focus_path
1749 } else {
1750 Default::default()
1751 },
1752 };
1753 self.focus_listeners
1754 .clone()
1755 .retain(&(), |listener| listener(&event, self, cx));
1756 }
1757
1758 debug_assert!(self.rendered_entity_stack.is_empty());
1759 self.record_entities_accessed(cx);
1760 self.reset_cursor_style(cx);
1761 self.refreshing = false;
1762 self.invalidator.set_phase(DrawPhase::None);
1763 self.needs_present.set(true);
1764 }
1765
1766 fn record_entities_accessed(&mut self, cx: &mut App) {
1767 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1768 let mut entities = mem::take(entities_ref.deref_mut());
1769 drop(entities_ref);
1770 let handle = self.handle;
1771 cx.record_entities_accessed(
1772 handle,
1773 // Try moving window invalidator into the Window
1774 self.invalidator.clone(),
1775 &entities,
1776 );
1777 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1778 mem::swap(&mut entities, entities_ref.deref_mut());
1779 }
1780
1781 fn invalidate_entities(&mut self) {
1782 let mut views = self.invalidator.take_views();
1783 for entity in views.drain() {
1784 self.mark_view_dirty(entity);
1785 }
1786 self.invalidator.replace_views(views);
1787 }
1788
1789 #[profiling::function]
1790 fn present(&self) {
1791 self.platform_window.draw(&self.rendered_frame.scene);
1792 self.needs_present.set(false);
1793 profiling::finish_frame!();
1794 }
1795
1796 fn draw_roots(&mut self, cx: &mut App) {
1797 self.invalidator.set_phase(DrawPhase::Prepaint);
1798 self.tooltip_bounds.take();
1799
1800 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1801 let root_size = {
1802 #[cfg(any(feature = "inspector", debug_assertions))]
1803 {
1804 if self.inspector.is_some() {
1805 let mut size = self.viewport_size;
1806 size.width = (size.width - _inspector_width).max(px(0.0));
1807 size
1808 } else {
1809 self.viewport_size
1810 }
1811 }
1812 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1813 {
1814 self.viewport_size
1815 }
1816 };
1817
1818 // Layout all root elements.
1819 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1820 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1821
1822 #[cfg(any(feature = "inspector", debug_assertions))]
1823 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1824
1825 let mut sorted_deferred_draws =
1826 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1827 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1828 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1829
1830 let mut prompt_element = None;
1831 let mut active_drag_element = None;
1832 let mut tooltip_element = None;
1833 if let Some(prompt) = self.prompt.take() {
1834 let mut element = prompt.view.any_view().into_any();
1835 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1836 prompt_element = Some(element);
1837 self.prompt = Some(prompt);
1838 } else if let Some(active_drag) = cx.active_drag.take() {
1839 let mut element = active_drag.view.clone().into_any();
1840 let offset = self.mouse_position() - active_drag.cursor_offset;
1841 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1842 active_drag_element = Some(element);
1843 cx.active_drag = Some(active_drag);
1844 } else {
1845 tooltip_element = self.prepaint_tooltip(cx);
1846 }
1847
1848 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1849
1850 // Now actually paint the elements.
1851 self.invalidator.set_phase(DrawPhase::Paint);
1852 root_element.paint(self, cx);
1853
1854 #[cfg(any(feature = "inspector", debug_assertions))]
1855 self.paint_inspector(inspector_element, cx);
1856
1857 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1858
1859 if let Some(mut prompt_element) = prompt_element {
1860 prompt_element.paint(self, cx);
1861 } else if let Some(mut drag_element) = active_drag_element {
1862 drag_element.paint(self, cx);
1863 } else if let Some(mut tooltip_element) = tooltip_element {
1864 tooltip_element.paint(self, cx);
1865 }
1866
1867 #[cfg(any(feature = "inspector", debug_assertions))]
1868 self.paint_inspector_hitbox(cx);
1869 }
1870
1871 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1872 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1873 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1874 let Some(Some(tooltip_request)) = self
1875 .next_frame
1876 .tooltip_requests
1877 .get(tooltip_request_index)
1878 .cloned()
1879 else {
1880 log::error!("Unexpectedly absent TooltipRequest");
1881 continue;
1882 };
1883 let mut element = tooltip_request.tooltip.view.clone().into_any();
1884 let mouse_position = tooltip_request.tooltip.mouse_position;
1885 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1886
1887 let mut tooltip_bounds =
1888 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1889 let window_bounds = Bounds {
1890 origin: Point::default(),
1891 size: self.viewport_size(),
1892 };
1893
1894 if tooltip_bounds.right() > window_bounds.right() {
1895 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1896 if new_x >= Pixels::ZERO {
1897 tooltip_bounds.origin.x = new_x;
1898 } else {
1899 tooltip_bounds.origin.x = cmp::max(
1900 Pixels::ZERO,
1901 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1902 );
1903 }
1904 }
1905
1906 if tooltip_bounds.bottom() > window_bounds.bottom() {
1907 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1908 if new_y >= Pixels::ZERO {
1909 tooltip_bounds.origin.y = new_y;
1910 } else {
1911 tooltip_bounds.origin.y = cmp::max(
1912 Pixels::ZERO,
1913 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1914 );
1915 }
1916 }
1917
1918 // It's possible for an element to have an active tooltip while not being painted (e.g.
1919 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1920 // case, instead update the tooltip's visibility here.
1921 let is_visible =
1922 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1923 if !is_visible {
1924 continue;
1925 }
1926
1927 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1928 element.prepaint(window, cx)
1929 });
1930
1931 self.tooltip_bounds = Some(TooltipBounds {
1932 id: tooltip_request.id,
1933 bounds: tooltip_bounds,
1934 });
1935 return Some(element);
1936 }
1937 None
1938 }
1939
1940 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1941 assert_eq!(self.element_id_stack.len(), 0);
1942
1943 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1944 for deferred_draw_ix in deferred_draw_indices {
1945 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1946 self.element_id_stack
1947 .clone_from(&deferred_draw.element_id_stack);
1948 self.text_style_stack
1949 .clone_from(&deferred_draw.text_style_stack);
1950 self.next_frame
1951 .dispatch_tree
1952 .set_active_node(deferred_draw.parent_node);
1953
1954 let prepaint_start = self.prepaint_index();
1955 if let Some(element) = deferred_draw.element.as_mut() {
1956 self.with_rendered_view(deferred_draw.current_view, |window| {
1957 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1958 element.prepaint(window, cx)
1959 });
1960 })
1961 } else {
1962 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1963 }
1964 let prepaint_end = self.prepaint_index();
1965 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1966 }
1967 assert_eq!(
1968 self.next_frame.deferred_draws.len(),
1969 0,
1970 "cannot call defer_draw during deferred drawing"
1971 );
1972 self.next_frame.deferred_draws = deferred_draws;
1973 self.element_id_stack.clear();
1974 self.text_style_stack.clear();
1975 }
1976
1977 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1978 assert_eq!(self.element_id_stack.len(), 0);
1979
1980 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1981 for deferred_draw_ix in deferred_draw_indices {
1982 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1983 self.element_id_stack
1984 .clone_from(&deferred_draw.element_id_stack);
1985 self.next_frame
1986 .dispatch_tree
1987 .set_active_node(deferred_draw.parent_node);
1988
1989 let paint_start = self.paint_index();
1990 if let Some(element) = deferred_draw.element.as_mut() {
1991 self.with_rendered_view(deferred_draw.current_view, |window| {
1992 element.paint(window, cx);
1993 })
1994 } else {
1995 self.reuse_paint(deferred_draw.paint_range.clone());
1996 }
1997 let paint_end = self.paint_index();
1998 deferred_draw.paint_range = paint_start..paint_end;
1999 }
2000 self.next_frame.deferred_draws = deferred_draws;
2001 self.element_id_stack.clear();
2002 }
2003
2004 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2005 PrepaintStateIndex {
2006 hitboxes_index: self.next_frame.hitboxes.len(),
2007 tooltips_index: self.next_frame.tooltip_requests.len(),
2008 deferred_draws_index: self.next_frame.deferred_draws.len(),
2009 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2010 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2011 line_layout_index: self.text_system.layout_index(),
2012 }
2013 }
2014
2015 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2016 self.next_frame.hitboxes.extend(
2017 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2018 .iter()
2019 .cloned(),
2020 );
2021 self.next_frame.tooltip_requests.extend(
2022 self.rendered_frame.tooltip_requests
2023 [range.start.tooltips_index..range.end.tooltips_index]
2024 .iter_mut()
2025 .map(|request| request.take()),
2026 );
2027 self.next_frame.accessed_element_states.extend(
2028 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2029 ..range.end.accessed_element_states_index]
2030 .iter()
2031 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2032 );
2033 self.text_system
2034 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2035
2036 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2037 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2038 &mut self.rendered_frame.dispatch_tree,
2039 self.focus,
2040 );
2041
2042 if reused_subtree.contains_focus() {
2043 self.next_frame.focus = self.focus;
2044 }
2045
2046 self.next_frame.deferred_draws.extend(
2047 self.rendered_frame.deferred_draws
2048 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2049 .iter()
2050 .map(|deferred_draw| DeferredDraw {
2051 current_view: deferred_draw.current_view,
2052 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2053 element_id_stack: deferred_draw.element_id_stack.clone(),
2054 text_style_stack: deferred_draw.text_style_stack.clone(),
2055 priority: deferred_draw.priority,
2056 element: None,
2057 absolute_offset: deferred_draw.absolute_offset,
2058 prepaint_range: deferred_draw.prepaint_range.clone(),
2059 paint_range: deferred_draw.paint_range.clone(),
2060 }),
2061 );
2062 }
2063
2064 pub(crate) fn paint_index(&self) -> PaintIndex {
2065 PaintIndex {
2066 scene_index: self.next_frame.scene.len(),
2067 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2068 input_handlers_index: self.next_frame.input_handlers.len(),
2069 cursor_styles_index: self.next_frame.cursor_styles.len(),
2070 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2071 line_layout_index: self.text_system.layout_index(),
2072 }
2073 }
2074
2075 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2076 self.next_frame.cursor_styles.extend(
2077 self.rendered_frame.cursor_styles
2078 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2079 .iter()
2080 .cloned(),
2081 );
2082 self.next_frame.input_handlers.extend(
2083 self.rendered_frame.input_handlers
2084 [range.start.input_handlers_index..range.end.input_handlers_index]
2085 .iter_mut()
2086 .map(|handler| handler.take()),
2087 );
2088 self.next_frame.mouse_listeners.extend(
2089 self.rendered_frame.mouse_listeners
2090 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2091 .iter_mut()
2092 .map(|listener| listener.take()),
2093 );
2094 self.next_frame.accessed_element_states.extend(
2095 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2096 ..range.end.accessed_element_states_index]
2097 .iter()
2098 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2099 );
2100
2101 self.text_system
2102 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2103 self.next_frame.scene.replay(
2104 range.start.scene_index..range.end.scene_index,
2105 &self.rendered_frame.scene,
2106 );
2107 }
2108
2109 /// Push a text style onto the stack, and call a function with that style active.
2110 /// Use [`Window::text_style`] to get the current, combined text style. This method
2111 /// should only be called as part of element drawing.
2112 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2113 where
2114 F: FnOnce(&mut Self) -> R,
2115 {
2116 self.invalidator.debug_assert_paint_or_prepaint();
2117 if let Some(style) = style {
2118 self.text_style_stack.push(style);
2119 let result = f(self);
2120 self.text_style_stack.pop();
2121 result
2122 } else {
2123 f(self)
2124 }
2125 }
2126
2127 /// Updates the cursor style at the platform level. This method should only be called
2128 /// during the prepaint phase of element drawing.
2129 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: Option<&Hitbox>) {
2130 self.invalidator.debug_assert_paint();
2131 self.next_frame.cursor_styles.push(CursorStyleRequest {
2132 hitbox_id: hitbox.map(|hitbox| hitbox.id),
2133 style,
2134 });
2135 }
2136
2137 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2138 /// during the paint phase of element drawing.
2139 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2140 self.invalidator.debug_assert_prepaint();
2141 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2142 self.next_frame
2143 .tooltip_requests
2144 .push(Some(TooltipRequest { id, tooltip }));
2145 id
2146 }
2147
2148 /// Invoke the given function with the given content mask after intersecting it
2149 /// with the current mask. This method should only be called during element drawing.
2150 pub fn with_content_mask<R>(
2151 &mut self,
2152 mask: Option<ContentMask<Pixels>>,
2153 f: impl FnOnce(&mut Self) -> R,
2154 ) -> R {
2155 self.invalidator.debug_assert_paint_or_prepaint();
2156 if let Some(mask) = mask {
2157 let mask = mask.intersect(&self.content_mask());
2158 self.content_mask_stack.push(mask);
2159 let result = f(self);
2160 self.content_mask_stack.pop();
2161 result
2162 } else {
2163 f(self)
2164 }
2165 }
2166
2167 /// Updates the global element offset relative to the current offset. This is used to implement
2168 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2169 pub fn with_element_offset<R>(
2170 &mut self,
2171 offset: Point<Pixels>,
2172 f: impl FnOnce(&mut Self) -> R,
2173 ) -> R {
2174 self.invalidator.debug_assert_prepaint();
2175
2176 if offset.is_zero() {
2177 return f(self);
2178 };
2179
2180 let abs_offset = self.element_offset() + offset;
2181 self.with_absolute_element_offset(abs_offset, f)
2182 }
2183
2184 /// Updates the global element offset based on the given offset. This is used to implement
2185 /// drag handles and other manual painting of elements. This method should only be called during
2186 /// the prepaint phase of element drawing.
2187 pub fn with_absolute_element_offset<R>(
2188 &mut self,
2189 offset: Point<Pixels>,
2190 f: impl FnOnce(&mut Self) -> R,
2191 ) -> R {
2192 self.invalidator.debug_assert_prepaint();
2193 self.element_offset_stack.push(offset);
2194 let result = f(self);
2195 self.element_offset_stack.pop();
2196 result
2197 }
2198
2199 pub(crate) fn with_element_opacity<R>(
2200 &mut self,
2201 opacity: Option<f32>,
2202 f: impl FnOnce(&mut Self) -> R,
2203 ) -> R {
2204 if opacity.is_none() {
2205 return f(self);
2206 }
2207
2208 self.invalidator.debug_assert_paint_or_prepaint();
2209 self.element_opacity = opacity;
2210 let result = f(self);
2211 self.element_opacity = None;
2212 result
2213 }
2214
2215 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2216 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2217 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2218 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2219 /// called during the prepaint phase of element drawing.
2220 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2221 self.invalidator.debug_assert_prepaint();
2222 let index = self.prepaint_index();
2223 let result = f(self);
2224 if result.is_err() {
2225 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2226 self.next_frame
2227 .tooltip_requests
2228 .truncate(index.tooltips_index);
2229 self.next_frame
2230 .deferred_draws
2231 .truncate(index.deferred_draws_index);
2232 self.next_frame
2233 .dispatch_tree
2234 .truncate(index.dispatch_tree_index);
2235 self.next_frame
2236 .accessed_element_states
2237 .truncate(index.accessed_element_states_index);
2238 self.text_system.truncate_layouts(index.line_layout_index);
2239 }
2240 result
2241 }
2242
2243 /// When you call this method during [`prepaint`], containing elements will attempt to
2244 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2245 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2246 /// that supports this method being called on the elements it contains. This method should only be
2247 /// called during the prepaint phase of element drawing.
2248 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2249 self.invalidator.debug_assert_prepaint();
2250 self.requested_autoscroll = Some(bounds);
2251 }
2252
2253 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2254 /// described in [`request_autoscroll`].
2255 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2256 self.invalidator.debug_assert_prepaint();
2257 self.requested_autoscroll.take()
2258 }
2259
2260 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2261 /// Your view will be re-drawn once the asset has finished loading.
2262 ///
2263 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2264 /// time.
2265 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2266 let (task, is_first) = cx.fetch_asset::<A>(source);
2267 task.clone().now_or_never().or_else(|| {
2268 if is_first {
2269 let entity_id = self.current_view();
2270 self.spawn(cx, {
2271 let task = task.clone();
2272 async move |cx| {
2273 task.await;
2274
2275 cx.on_next_frame(move |_, cx| {
2276 cx.notify(entity_id);
2277 });
2278 }
2279 })
2280 .detach();
2281 }
2282
2283 None
2284 })
2285 }
2286
2287 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2288 /// Your view will not be re-drawn once the asset has finished loading.
2289 ///
2290 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2291 /// time.
2292 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2293 let (task, _) = cx.fetch_asset::<A>(source);
2294 task.clone().now_or_never()
2295 }
2296 /// Obtain the current element offset. This method should only be called during the
2297 /// prepaint phase of element drawing.
2298 pub fn element_offset(&self) -> Point<Pixels> {
2299 self.invalidator.debug_assert_prepaint();
2300 self.element_offset_stack
2301 .last()
2302 .copied()
2303 .unwrap_or_default()
2304 }
2305
2306 /// Obtain the current element opacity. This method should only be called during the
2307 /// prepaint phase of element drawing.
2308 pub(crate) fn element_opacity(&self) -> f32 {
2309 self.invalidator.debug_assert_paint_or_prepaint();
2310 self.element_opacity.unwrap_or(1.0)
2311 }
2312
2313 /// Obtain the current content mask. This method should only be called during element drawing.
2314 pub fn content_mask(&self) -> ContentMask<Pixels> {
2315 self.invalidator.debug_assert_paint_or_prepaint();
2316 self.content_mask_stack
2317 .last()
2318 .cloned()
2319 .unwrap_or_else(|| ContentMask {
2320 bounds: Bounds {
2321 origin: Point::default(),
2322 size: self.viewport_size,
2323 },
2324 })
2325 }
2326
2327 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2328 /// This can be used within a custom element to distinguish multiple sets of child elements.
2329 pub fn with_element_namespace<R>(
2330 &mut self,
2331 element_id: impl Into<ElementId>,
2332 f: impl FnOnce(&mut Self) -> R,
2333 ) -> R {
2334 self.element_id_stack.push(element_id.into());
2335 let result = f(self);
2336 self.element_id_stack.pop();
2337 result
2338 }
2339
2340 /// Updates or initializes state for an element with the given id that lives across multiple
2341 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2342 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2343 /// when drawing the next frame. This method should only be called as part of element drawing.
2344 pub fn with_element_state<S, R>(
2345 &mut self,
2346 global_id: &GlobalElementId,
2347 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2348 ) -> R
2349 where
2350 S: 'static,
2351 {
2352 self.invalidator.debug_assert_paint_or_prepaint();
2353
2354 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2355 self.next_frame
2356 .accessed_element_states
2357 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2358
2359 if let Some(any) = self
2360 .next_frame
2361 .element_states
2362 .remove(&key)
2363 .or_else(|| self.rendered_frame.element_states.remove(&key))
2364 {
2365 let ElementStateBox {
2366 inner,
2367 #[cfg(debug_assertions)]
2368 type_name,
2369 } = any;
2370 // Using the extra inner option to avoid needing to reallocate a new box.
2371 let mut state_box = inner
2372 .downcast::<Option<S>>()
2373 .map_err(|_| {
2374 #[cfg(debug_assertions)]
2375 {
2376 anyhow::anyhow!(
2377 "invalid element state type for id, requested {:?}, actual: {:?}",
2378 std::any::type_name::<S>(),
2379 type_name
2380 )
2381 }
2382
2383 #[cfg(not(debug_assertions))]
2384 {
2385 anyhow::anyhow!(
2386 "invalid element state type for id, requested {:?}",
2387 std::any::type_name::<S>(),
2388 )
2389 }
2390 })
2391 .unwrap();
2392
2393 let state = state_box.take().expect(
2394 "reentrant call to with_element_state for the same state type and element id",
2395 );
2396 let (result, state) = f(Some(state), self);
2397 state_box.replace(state);
2398 self.next_frame.element_states.insert(
2399 key,
2400 ElementStateBox {
2401 inner: state_box,
2402 #[cfg(debug_assertions)]
2403 type_name,
2404 },
2405 );
2406 result
2407 } else {
2408 let (result, state) = f(None, self);
2409 self.next_frame.element_states.insert(
2410 key,
2411 ElementStateBox {
2412 inner: Box::new(Some(state)),
2413 #[cfg(debug_assertions)]
2414 type_name: std::any::type_name::<S>(),
2415 },
2416 );
2417 result
2418 }
2419 }
2420
2421 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2422 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2423 /// when the element is guaranteed to have an id.
2424 ///
2425 /// The first option means 'no ID provided'
2426 /// The second option means 'not yet initialized'
2427 pub fn with_optional_element_state<S, R>(
2428 &mut self,
2429 global_id: Option<&GlobalElementId>,
2430 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2431 ) -> R
2432 where
2433 S: 'static,
2434 {
2435 self.invalidator.debug_assert_paint_or_prepaint();
2436
2437 if let Some(global_id) = global_id {
2438 self.with_element_state(global_id, |state, cx| {
2439 let (result, state) = f(Some(state), cx);
2440 let state =
2441 state.expect("you must return some state when you pass some element id");
2442 (result, state)
2443 })
2444 } else {
2445 let (result, state) = f(None, self);
2446 debug_assert!(
2447 state.is_none(),
2448 "you must not return an element state when passing None for the global id"
2449 );
2450 result
2451 }
2452 }
2453
2454 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2455 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2456 /// with higher values being drawn on top.
2457 ///
2458 /// This method should only be called as part of the prepaint phase of element drawing.
2459 pub fn defer_draw(
2460 &mut self,
2461 element: AnyElement,
2462 absolute_offset: Point<Pixels>,
2463 priority: usize,
2464 ) {
2465 self.invalidator.debug_assert_prepaint();
2466 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2467 self.next_frame.deferred_draws.push(DeferredDraw {
2468 current_view: self.current_view(),
2469 parent_node,
2470 element_id_stack: self.element_id_stack.clone(),
2471 text_style_stack: self.text_style_stack.clone(),
2472 priority,
2473 element: Some(element),
2474 absolute_offset,
2475 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2476 paint_range: PaintIndex::default()..PaintIndex::default(),
2477 });
2478 }
2479
2480 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2481 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2482 /// for performance reasons.
2483 ///
2484 /// This method should only be called as part of the paint phase of element drawing.
2485 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2486 self.invalidator.debug_assert_paint();
2487
2488 let scale_factor = self.scale_factor();
2489 let content_mask = self.content_mask();
2490 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2491 if !clipped_bounds.is_empty() {
2492 self.next_frame
2493 .scene
2494 .push_layer(clipped_bounds.scale(scale_factor));
2495 }
2496
2497 let result = f(self);
2498
2499 if !clipped_bounds.is_empty() {
2500 self.next_frame.scene.pop_layer();
2501 }
2502
2503 result
2504 }
2505
2506 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2507 ///
2508 /// This method should only be called as part of the paint phase of element drawing.
2509 pub fn paint_shadows(
2510 &mut self,
2511 bounds: Bounds<Pixels>,
2512 corner_radii: Corners<Pixels>,
2513 shadows: &[BoxShadow],
2514 ) {
2515 self.invalidator.debug_assert_paint();
2516
2517 let scale_factor = self.scale_factor();
2518 let content_mask = self.content_mask();
2519 let opacity = self.element_opacity();
2520 for shadow in shadows {
2521 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2522 self.next_frame.scene.insert_primitive(Shadow {
2523 order: 0,
2524 blur_radius: shadow.blur_radius.scale(scale_factor),
2525 bounds: shadow_bounds.scale(scale_factor),
2526 content_mask: content_mask.scale(scale_factor),
2527 corner_radii: corner_radii.scale(scale_factor),
2528 color: shadow.color.opacity(opacity),
2529 });
2530 }
2531 }
2532
2533 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2534 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2535 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2536 ///
2537 /// This method should only be called as part of the paint phase of element drawing.
2538 ///
2539 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2540 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2541 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2542 pub fn paint_quad(&mut self, quad: PaintQuad) {
2543 self.invalidator.debug_assert_paint();
2544
2545 let scale_factor = self.scale_factor();
2546 let content_mask = self.content_mask();
2547 let opacity = self.element_opacity();
2548 self.next_frame.scene.insert_primitive(Quad {
2549 order: 0,
2550 bounds: quad.bounds.scale(scale_factor),
2551 content_mask: content_mask.scale(scale_factor),
2552 background: quad.background.opacity(opacity),
2553 border_color: quad.border_color.opacity(opacity),
2554 corner_radii: quad.corner_radii.scale(scale_factor),
2555 border_widths: quad.border_widths.scale(scale_factor),
2556 border_style: quad.border_style,
2557 });
2558 }
2559
2560 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2561 ///
2562 /// This method should only be called as part of the paint phase of element drawing.
2563 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2564 self.invalidator.debug_assert_paint();
2565
2566 let scale_factor = self.scale_factor();
2567 let content_mask = self.content_mask();
2568 let opacity = self.element_opacity();
2569 path.content_mask = content_mask;
2570 let color: Background = color.into();
2571 path.color = color.opacity(opacity);
2572 self.next_frame
2573 .scene
2574 .insert_primitive(path.scale(scale_factor));
2575 }
2576
2577 /// Paint an underline into the scene for the next frame at the current z-index.
2578 ///
2579 /// This method should only be called as part of the paint phase of element drawing.
2580 pub fn paint_underline(
2581 &mut self,
2582 origin: Point<Pixels>,
2583 width: Pixels,
2584 style: &UnderlineStyle,
2585 ) {
2586 self.invalidator.debug_assert_paint();
2587
2588 let scale_factor = self.scale_factor();
2589 let height = if style.wavy {
2590 style.thickness * 3.
2591 } else {
2592 style.thickness
2593 };
2594 let bounds = Bounds {
2595 origin,
2596 size: size(width, height),
2597 };
2598 let content_mask = self.content_mask();
2599 let element_opacity = self.element_opacity();
2600
2601 self.next_frame.scene.insert_primitive(Underline {
2602 order: 0,
2603 pad: 0,
2604 bounds: bounds.scale(scale_factor),
2605 content_mask: content_mask.scale(scale_factor),
2606 color: style.color.unwrap_or_default().opacity(element_opacity),
2607 thickness: style.thickness.scale(scale_factor),
2608 wavy: style.wavy,
2609 });
2610 }
2611
2612 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2613 ///
2614 /// This method should only be called as part of the paint phase of element drawing.
2615 pub fn paint_strikethrough(
2616 &mut self,
2617 origin: Point<Pixels>,
2618 width: Pixels,
2619 style: &StrikethroughStyle,
2620 ) {
2621 self.invalidator.debug_assert_paint();
2622
2623 let scale_factor = self.scale_factor();
2624 let height = style.thickness;
2625 let bounds = Bounds {
2626 origin,
2627 size: size(width, height),
2628 };
2629 let content_mask = self.content_mask();
2630 let opacity = self.element_opacity();
2631
2632 self.next_frame.scene.insert_primitive(Underline {
2633 order: 0,
2634 pad: 0,
2635 bounds: bounds.scale(scale_factor),
2636 content_mask: content_mask.scale(scale_factor),
2637 thickness: style.thickness.scale(scale_factor),
2638 color: style.color.unwrap_or_default().opacity(opacity),
2639 wavy: false,
2640 });
2641 }
2642
2643 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2644 ///
2645 /// The y component of the origin is the baseline of the glyph.
2646 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2647 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2648 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2649 ///
2650 /// This method should only be called as part of the paint phase of element drawing.
2651 pub fn paint_glyph(
2652 &mut self,
2653 origin: Point<Pixels>,
2654 font_id: FontId,
2655 glyph_id: GlyphId,
2656 font_size: Pixels,
2657 color: Hsla,
2658 ) -> Result<()> {
2659 self.invalidator.debug_assert_paint();
2660
2661 let element_opacity = self.element_opacity();
2662 let scale_factor = self.scale_factor();
2663 let glyph_origin = origin.scale(scale_factor);
2664 let subpixel_variant = Point {
2665 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2666 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2667 };
2668 let params = RenderGlyphParams {
2669 font_id,
2670 glyph_id,
2671 font_size,
2672 subpixel_variant,
2673 scale_factor,
2674 is_emoji: false,
2675 };
2676
2677 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2678 if !raster_bounds.is_zero() {
2679 let tile = self
2680 .sprite_atlas
2681 .get_or_insert_with(¶ms.clone().into(), &mut || {
2682 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2683 Ok(Some((size, Cow::Owned(bytes))))
2684 })?
2685 .expect("Callback above only errors or returns Some");
2686 let bounds = Bounds {
2687 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2688 size: tile.bounds.size.map(Into::into),
2689 };
2690 let content_mask = self.content_mask().scale(scale_factor);
2691 self.next_frame.scene.insert_primitive(MonochromeSprite {
2692 order: 0,
2693 pad: 0,
2694 bounds,
2695 content_mask,
2696 color: color.opacity(element_opacity),
2697 tile,
2698 transformation: TransformationMatrix::unit(),
2699 });
2700 }
2701 Ok(())
2702 }
2703
2704 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2705 ///
2706 /// The y component of the origin is the baseline of the glyph.
2707 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2708 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2709 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2710 ///
2711 /// This method should only be called as part of the paint phase of element drawing.
2712 pub fn paint_emoji(
2713 &mut self,
2714 origin: Point<Pixels>,
2715 font_id: FontId,
2716 glyph_id: GlyphId,
2717 font_size: Pixels,
2718 ) -> Result<()> {
2719 self.invalidator.debug_assert_paint();
2720
2721 let scale_factor = self.scale_factor();
2722 let glyph_origin = origin.scale(scale_factor);
2723 let params = RenderGlyphParams {
2724 font_id,
2725 glyph_id,
2726 font_size,
2727 // We don't render emojis with subpixel variants.
2728 subpixel_variant: Default::default(),
2729 scale_factor,
2730 is_emoji: true,
2731 };
2732
2733 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2734 if !raster_bounds.is_zero() {
2735 let tile = self
2736 .sprite_atlas
2737 .get_or_insert_with(¶ms.clone().into(), &mut || {
2738 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2739 Ok(Some((size, Cow::Owned(bytes))))
2740 })?
2741 .expect("Callback above only errors or returns Some");
2742
2743 let bounds = Bounds {
2744 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2745 size: tile.bounds.size.map(Into::into),
2746 };
2747 let content_mask = self.content_mask().scale(scale_factor);
2748 let opacity = self.element_opacity();
2749
2750 self.next_frame.scene.insert_primitive(PolychromeSprite {
2751 order: 0,
2752 pad: 0,
2753 grayscale: false,
2754 bounds,
2755 corner_radii: Default::default(),
2756 content_mask,
2757 tile,
2758 opacity,
2759 });
2760 }
2761 Ok(())
2762 }
2763
2764 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2765 ///
2766 /// This method should only be called as part of the paint phase of element drawing.
2767 pub fn paint_svg(
2768 &mut self,
2769 bounds: Bounds<Pixels>,
2770 path: SharedString,
2771 transformation: TransformationMatrix,
2772 color: Hsla,
2773 cx: &App,
2774 ) -> Result<()> {
2775 self.invalidator.debug_assert_paint();
2776
2777 let element_opacity = self.element_opacity();
2778 let scale_factor = self.scale_factor();
2779 let bounds = bounds.scale(scale_factor);
2780 let params = RenderSvgParams {
2781 path,
2782 size: bounds.size.map(|pixels| {
2783 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2784 }),
2785 };
2786
2787 let Some(tile) =
2788 self.sprite_atlas
2789 .get_or_insert_with(¶ms.clone().into(), &mut || {
2790 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2791 return Ok(None);
2792 };
2793 Ok(Some((params.size, Cow::Owned(bytes))))
2794 })?
2795 else {
2796 return Ok(());
2797 };
2798 let content_mask = self.content_mask().scale(scale_factor);
2799
2800 self.next_frame.scene.insert_primitive(MonochromeSprite {
2801 order: 0,
2802 pad: 0,
2803 bounds: bounds
2804 .map_origin(|origin| origin.floor())
2805 .map_size(|size| size.ceil()),
2806 content_mask,
2807 color: color.opacity(element_opacity),
2808 tile,
2809 transformation,
2810 });
2811
2812 Ok(())
2813 }
2814
2815 /// Paint an image into the scene for the next frame at the current z-index.
2816 /// This method will panic if the frame_index is not valid
2817 ///
2818 /// This method should only be called as part of the paint phase of element drawing.
2819 pub fn paint_image(
2820 &mut self,
2821 bounds: Bounds<Pixels>,
2822 corner_radii: Corners<Pixels>,
2823 data: Arc<RenderImage>,
2824 frame_index: usize,
2825 grayscale: bool,
2826 ) -> Result<()> {
2827 self.invalidator.debug_assert_paint();
2828
2829 let scale_factor = self.scale_factor();
2830 let bounds = bounds.scale(scale_factor);
2831 let params = RenderImageParams {
2832 image_id: data.id,
2833 frame_index,
2834 };
2835
2836 let tile = self
2837 .sprite_atlas
2838 .get_or_insert_with(¶ms.clone().into(), &mut || {
2839 Ok(Some((
2840 data.size(frame_index),
2841 Cow::Borrowed(
2842 data.as_bytes(frame_index)
2843 .expect("It's the caller's job to pass a valid frame index"),
2844 ),
2845 )))
2846 })?
2847 .expect("Callback above only returns Some");
2848 let content_mask = self.content_mask().scale(scale_factor);
2849 let corner_radii = corner_radii.scale(scale_factor);
2850 let opacity = self.element_opacity();
2851
2852 self.next_frame.scene.insert_primitive(PolychromeSprite {
2853 order: 0,
2854 pad: 0,
2855 grayscale,
2856 bounds: bounds
2857 .map_origin(|origin| origin.floor())
2858 .map_size(|size| size.ceil()),
2859 content_mask,
2860 corner_radii,
2861 tile,
2862 opacity,
2863 });
2864 Ok(())
2865 }
2866
2867 /// Paint a surface into the scene for the next frame at the current z-index.
2868 ///
2869 /// This method should only be called as part of the paint phase of element drawing.
2870 #[cfg(target_os = "macos")]
2871 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2872 use crate::PaintSurface;
2873
2874 self.invalidator.debug_assert_paint();
2875
2876 let scale_factor = self.scale_factor();
2877 let bounds = bounds.scale(scale_factor);
2878 let content_mask = self.content_mask().scale(scale_factor);
2879 self.next_frame.scene.insert_primitive(PaintSurface {
2880 order: 0,
2881 bounds,
2882 content_mask,
2883 image_buffer,
2884 });
2885 }
2886
2887 /// Removes an image from the sprite atlas.
2888 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2889 for frame_index in 0..data.frame_count() {
2890 let params = RenderImageParams {
2891 image_id: data.id,
2892 frame_index,
2893 };
2894
2895 self.sprite_atlas.remove(¶ms.clone().into());
2896 }
2897
2898 Ok(())
2899 }
2900
2901 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2902 /// layout is being requested, along with the layout ids of any children. This method is called during
2903 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2904 ///
2905 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2906 #[must_use]
2907 pub fn request_layout(
2908 &mut self,
2909 style: Style,
2910 children: impl IntoIterator<Item = LayoutId>,
2911 cx: &mut App,
2912 ) -> LayoutId {
2913 self.invalidator.debug_assert_prepaint();
2914
2915 cx.layout_id_buffer.clear();
2916 cx.layout_id_buffer.extend(children);
2917 let rem_size = self.rem_size();
2918
2919 self.layout_engine
2920 .as_mut()
2921 .unwrap()
2922 .request_layout(style, rem_size, &cx.layout_id_buffer)
2923 }
2924
2925 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2926 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2927 /// determine the element's size. One place this is used internally is when measuring text.
2928 ///
2929 /// The given closure is invoked at layout time with the known dimensions and available space and
2930 /// returns a `Size`.
2931 ///
2932 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2933 pub fn request_measured_layout<
2934 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2935 + 'static,
2936 >(
2937 &mut self,
2938 style: Style,
2939 measure: F,
2940 ) -> LayoutId {
2941 self.invalidator.debug_assert_prepaint();
2942
2943 let rem_size = self.rem_size();
2944 self.layout_engine
2945 .as_mut()
2946 .unwrap()
2947 .request_measured_layout(style, rem_size, measure)
2948 }
2949
2950 /// Compute the layout for the given id within the given available space.
2951 /// This method is called for its side effect, typically by the framework prior to painting.
2952 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2953 ///
2954 /// This method should only be called as part of the prepaint phase of element drawing.
2955 pub fn compute_layout(
2956 &mut self,
2957 layout_id: LayoutId,
2958 available_space: Size<AvailableSpace>,
2959 cx: &mut App,
2960 ) {
2961 self.invalidator.debug_assert_prepaint();
2962
2963 let mut layout_engine = self.layout_engine.take().unwrap();
2964 layout_engine.compute_layout(layout_id, available_space, self, cx);
2965 self.layout_engine = Some(layout_engine);
2966 }
2967
2968 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2969 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2970 ///
2971 /// This method should only be called as part of element drawing.
2972 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2973 self.invalidator.debug_assert_prepaint();
2974
2975 let mut bounds = self
2976 .layout_engine
2977 .as_mut()
2978 .unwrap()
2979 .layout_bounds(layout_id)
2980 .map(Into::into);
2981 bounds.origin += self.element_offset();
2982 bounds
2983 }
2984
2985 /// This method should be called during `prepaint`. You can use
2986 /// the returned [Hitbox] during `paint` or in an event handler
2987 /// to determine whether the inserted hitbox was the topmost.
2988 ///
2989 /// This method should only be called as part of the prepaint phase of element drawing.
2990 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
2991 self.invalidator.debug_assert_prepaint();
2992
2993 let content_mask = self.content_mask();
2994 let mut id = self.next_hitbox_id;
2995 self.next_hitbox_id = self.next_hitbox_id.next();
2996 let hitbox = Hitbox {
2997 id,
2998 bounds,
2999 content_mask,
3000 behavior,
3001 };
3002 self.next_frame.hitboxes.push(hitbox.clone());
3003 hitbox
3004 }
3005
3006 /// Sets the key context for the current element. This context will be used to translate
3007 /// keybindings into actions.
3008 ///
3009 /// This method should only be called as part of the paint phase of element drawing.
3010 pub fn set_key_context(&mut self, context: KeyContext) {
3011 self.invalidator.debug_assert_paint();
3012 self.next_frame.dispatch_tree.set_key_context(context);
3013 }
3014
3015 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3016 /// and keyboard event dispatch for the element.
3017 ///
3018 /// This method should only be called as part of the prepaint phase of element drawing.
3019 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3020 self.invalidator.debug_assert_prepaint();
3021 if focus_handle.is_focused(self) {
3022 self.next_frame.focus = Some(focus_handle.id);
3023 }
3024 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3025 }
3026
3027 /// Sets the view id for the current element, which will be used to manage view caching.
3028 ///
3029 /// This method should only be called as part of element prepaint. We plan on removing this
3030 /// method eventually when we solve some issues that require us to construct editor elements
3031 /// directly instead of always using editors via views.
3032 pub fn set_view_id(&mut self, view_id: EntityId) {
3033 self.invalidator.debug_assert_prepaint();
3034 self.next_frame.dispatch_tree.set_view_id(view_id);
3035 }
3036
3037 /// Get the entity ID for the currently rendering view
3038 pub fn current_view(&self) -> EntityId {
3039 self.invalidator.debug_assert_paint_or_prepaint();
3040 self.rendered_entity_stack.last().copied().unwrap()
3041 }
3042
3043 pub(crate) fn with_rendered_view<R>(
3044 &mut self,
3045 id: EntityId,
3046 f: impl FnOnce(&mut Self) -> R,
3047 ) -> R {
3048 self.rendered_entity_stack.push(id);
3049 let result = f(self);
3050 self.rendered_entity_stack.pop();
3051 result
3052 }
3053
3054 /// Executes the provided function with the specified image cache.
3055 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3056 where
3057 F: FnOnce(&mut Self) -> R,
3058 {
3059 if let Some(image_cache) = image_cache {
3060 self.image_cache_stack.push(image_cache);
3061 let result = f(self);
3062 self.image_cache_stack.pop();
3063 result
3064 } else {
3065 f(self)
3066 }
3067 }
3068
3069 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3070 /// platform to receive textual input with proper integration with concerns such
3071 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3072 /// rendered.
3073 ///
3074 /// This method should only be called as part of the paint phase of element drawing.
3075 ///
3076 /// [element_input_handler]: crate::ElementInputHandler
3077 pub fn handle_input(
3078 &mut self,
3079 focus_handle: &FocusHandle,
3080 input_handler: impl InputHandler,
3081 cx: &App,
3082 ) {
3083 self.invalidator.debug_assert_paint();
3084
3085 if focus_handle.is_focused(self) {
3086 let cx = self.to_async(cx);
3087 self.next_frame
3088 .input_handlers
3089 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3090 }
3091 }
3092
3093 /// Register a mouse event listener on the window for the next frame. The type of event
3094 /// is determined by the first parameter of the given listener. When the next frame is rendered
3095 /// the listener will be cleared.
3096 ///
3097 /// This method should only be called as part of the paint phase of element drawing.
3098 pub fn on_mouse_event<Event: MouseEvent>(
3099 &mut self,
3100 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3101 ) {
3102 self.invalidator.debug_assert_paint();
3103
3104 self.next_frame.mouse_listeners.push(Some(Box::new(
3105 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3106 if let Some(event) = event.downcast_ref() {
3107 handler(event, phase, window, cx)
3108 }
3109 },
3110 )));
3111 }
3112
3113 /// Register a key event listener on the window for the next frame. The type of event
3114 /// is determined by the first parameter of the given listener. When the next frame is rendered
3115 /// the listener will be cleared.
3116 ///
3117 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3118 /// a specific need to register a global listener.
3119 ///
3120 /// This method should only be called as part of the paint phase of element drawing.
3121 pub fn on_key_event<Event: KeyEvent>(
3122 &mut self,
3123 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3124 ) {
3125 self.invalidator.debug_assert_paint();
3126
3127 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3128 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3129 if let Some(event) = event.downcast_ref::<Event>() {
3130 listener(event, phase, window, cx)
3131 }
3132 },
3133 ));
3134 }
3135
3136 /// Register a modifiers changed event listener on the window for the next frame.
3137 ///
3138 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3139 /// a specific need to register a global listener.
3140 ///
3141 /// This method should only be called as part of the paint phase of element drawing.
3142 pub fn on_modifiers_changed(
3143 &mut self,
3144 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3145 ) {
3146 self.invalidator.debug_assert_paint();
3147
3148 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3149 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3150 listener(event, window, cx)
3151 },
3152 ));
3153 }
3154
3155 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3156 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3157 /// Returns a subscription and persists until the subscription is dropped.
3158 pub fn on_focus_in(
3159 &mut self,
3160 handle: &FocusHandle,
3161 cx: &mut App,
3162 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3163 ) -> Subscription {
3164 let focus_id = handle.id;
3165 let (subscription, activate) =
3166 self.new_focus_listener(Box::new(move |event, window, cx| {
3167 if event.is_focus_in(focus_id) {
3168 listener(window, cx);
3169 }
3170 true
3171 }));
3172 cx.defer(move |_| activate());
3173 subscription
3174 }
3175
3176 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3177 /// Returns a subscription and persists until the subscription is dropped.
3178 pub fn on_focus_out(
3179 &mut self,
3180 handle: &FocusHandle,
3181 cx: &mut App,
3182 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3183 ) -> Subscription {
3184 let focus_id = handle.id;
3185 let (subscription, activate) =
3186 self.new_focus_listener(Box::new(move |event, window, cx| {
3187 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3188 if event.is_focus_out(focus_id) {
3189 let event = FocusOutEvent {
3190 blurred: WeakFocusHandle {
3191 id: blurred_id,
3192 handles: Arc::downgrade(&cx.focus_handles),
3193 },
3194 };
3195 listener(event, window, cx)
3196 }
3197 }
3198 true
3199 }));
3200 cx.defer(move |_| activate());
3201 subscription
3202 }
3203
3204 fn reset_cursor_style(&self, cx: &mut App) {
3205 // Set the cursor only if we're the active window.
3206 if self.is_window_hovered() {
3207 let style = self
3208 .rendered_frame
3209 .cursor_styles
3210 .iter()
3211 .rev()
3212 .find(|request| {
3213 request
3214 .hitbox_id
3215 .map_or(true, |hitbox_id| hitbox_id.is_hovered(self))
3216 })
3217 .map(|request| request.style)
3218 .unwrap_or(CursorStyle::Arrow);
3219 cx.platform.set_cursor_style(style);
3220 }
3221 }
3222
3223 /// Dispatch a given keystroke as though the user had typed it.
3224 /// You can create a keystroke with Keystroke::parse("").
3225 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3226 let keystroke = keystroke.with_simulated_ime();
3227 let result = self.dispatch_event(
3228 PlatformInput::KeyDown(KeyDownEvent {
3229 keystroke: keystroke.clone(),
3230 is_held: false,
3231 }),
3232 cx,
3233 );
3234 if !result.propagate {
3235 return true;
3236 }
3237
3238 if let Some(input) = keystroke.key_char {
3239 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3240 input_handler.dispatch_input(&input, self, cx);
3241 self.platform_window.set_input_handler(input_handler);
3242 return true;
3243 }
3244 }
3245
3246 false
3247 }
3248
3249 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3250 /// binding for the action (last binding added to the keymap).
3251 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3252 self.bindings_for_action(action)
3253 .last()
3254 .map(|binding| {
3255 binding
3256 .keystrokes()
3257 .iter()
3258 .map(ToString::to_string)
3259 .collect::<Vec<_>>()
3260 .join(" ")
3261 })
3262 .unwrap_or_else(|| action.name().to_string())
3263 }
3264
3265 /// Dispatch a mouse or keyboard event on the window.
3266 #[profiling::function]
3267 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3268 self.last_input_timestamp.set(Instant::now());
3269 // Handlers may set this to false by calling `stop_propagation`.
3270 cx.propagate_event = true;
3271 // Handlers may set this to true by calling `prevent_default`.
3272 self.default_prevented = false;
3273
3274 let event = match event {
3275 // Track the mouse position with our own state, since accessing the platform
3276 // API for the mouse position can only occur on the main thread.
3277 PlatformInput::MouseMove(mouse_move) => {
3278 self.mouse_position = mouse_move.position;
3279 self.modifiers = mouse_move.modifiers;
3280 PlatformInput::MouseMove(mouse_move)
3281 }
3282 PlatformInput::MouseDown(mouse_down) => {
3283 self.mouse_position = mouse_down.position;
3284 self.modifiers = mouse_down.modifiers;
3285 PlatformInput::MouseDown(mouse_down)
3286 }
3287 PlatformInput::MouseUp(mouse_up) => {
3288 self.mouse_position = mouse_up.position;
3289 self.modifiers = mouse_up.modifiers;
3290 PlatformInput::MouseUp(mouse_up)
3291 }
3292 PlatformInput::MouseExited(mouse_exited) => {
3293 self.modifiers = mouse_exited.modifiers;
3294 PlatformInput::MouseExited(mouse_exited)
3295 }
3296 PlatformInput::ModifiersChanged(modifiers_changed) => {
3297 self.modifiers = modifiers_changed.modifiers;
3298 PlatformInput::ModifiersChanged(modifiers_changed)
3299 }
3300 PlatformInput::ScrollWheel(scroll_wheel) => {
3301 self.mouse_position = scroll_wheel.position;
3302 self.modifiers = scroll_wheel.modifiers;
3303 PlatformInput::ScrollWheel(scroll_wheel)
3304 }
3305 // Translate dragging and dropping of external files from the operating system
3306 // to internal drag and drop events.
3307 PlatformInput::FileDrop(file_drop) => match file_drop {
3308 FileDropEvent::Entered { position, paths } => {
3309 self.mouse_position = position;
3310 if cx.active_drag.is_none() {
3311 cx.active_drag = Some(AnyDrag {
3312 value: Arc::new(paths.clone()),
3313 view: cx.new(|_| paths).into(),
3314 cursor_offset: position,
3315 cursor_style: None,
3316 });
3317 }
3318 PlatformInput::MouseMove(MouseMoveEvent {
3319 position,
3320 pressed_button: Some(MouseButton::Left),
3321 modifiers: Modifiers::default(),
3322 })
3323 }
3324 FileDropEvent::Pending { position } => {
3325 self.mouse_position = position;
3326 PlatformInput::MouseMove(MouseMoveEvent {
3327 position,
3328 pressed_button: Some(MouseButton::Left),
3329 modifiers: Modifiers::default(),
3330 })
3331 }
3332 FileDropEvent::Submit { position } => {
3333 cx.activate(true);
3334 self.mouse_position = position;
3335 PlatformInput::MouseUp(MouseUpEvent {
3336 button: MouseButton::Left,
3337 position,
3338 modifiers: Modifiers::default(),
3339 click_count: 1,
3340 })
3341 }
3342 FileDropEvent::Exited => {
3343 cx.active_drag.take();
3344 PlatformInput::FileDrop(FileDropEvent::Exited)
3345 }
3346 },
3347 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3348 };
3349
3350 if let Some(any_mouse_event) = event.mouse_event() {
3351 self.dispatch_mouse_event(any_mouse_event, cx);
3352 } else if let Some(any_key_event) = event.keyboard_event() {
3353 self.dispatch_key_event(any_key_event, cx);
3354 }
3355
3356 DispatchEventResult {
3357 propagate: cx.propagate_event,
3358 default_prevented: self.default_prevented,
3359 }
3360 }
3361
3362 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3363 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3364 if hit_test != self.mouse_hit_test {
3365 self.mouse_hit_test = hit_test;
3366 self.reset_cursor_style(cx);
3367 }
3368
3369 #[cfg(any(feature = "inspector", debug_assertions))]
3370 if self.is_inspector_picking(cx) {
3371 self.handle_inspector_mouse_event(event, cx);
3372 // When inspector is picking, all other mouse handling is skipped.
3373 return;
3374 }
3375
3376 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3377
3378 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3379 // special purposes, such as detecting events outside of a given Bounds.
3380 for listener in &mut mouse_listeners {
3381 let listener = listener.as_mut().unwrap();
3382 listener(event, DispatchPhase::Capture, self, cx);
3383 if !cx.propagate_event {
3384 break;
3385 }
3386 }
3387
3388 // Bubble phase, where most normal handlers do their work.
3389 if cx.propagate_event {
3390 for listener in mouse_listeners.iter_mut().rev() {
3391 let listener = listener.as_mut().unwrap();
3392 listener(event, DispatchPhase::Bubble, self, cx);
3393 if !cx.propagate_event {
3394 break;
3395 }
3396 }
3397 }
3398
3399 self.rendered_frame.mouse_listeners = mouse_listeners;
3400
3401 if cx.has_active_drag() {
3402 if event.is::<MouseMoveEvent>() {
3403 // If this was a mouse move event, redraw the window so that the
3404 // active drag can follow the mouse cursor.
3405 self.refresh();
3406 } else if event.is::<MouseUpEvent>() {
3407 // If this was a mouse up event, cancel the active drag and redraw
3408 // the window.
3409 cx.active_drag = None;
3410 self.refresh();
3411 }
3412 }
3413 }
3414
3415 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3416 if self.invalidator.is_dirty() {
3417 self.draw(cx);
3418 }
3419
3420 let node_id = self
3421 .focus
3422 .and_then(|focus_id| {
3423 self.rendered_frame
3424 .dispatch_tree
3425 .focusable_node_id(focus_id)
3426 })
3427 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3428
3429 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3430
3431 let mut keystroke: Option<Keystroke> = None;
3432
3433 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3434 if event.modifiers.number_of_modifiers() == 0
3435 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3436 && !self.pending_modifier.saw_keystroke
3437 {
3438 let key = match self.pending_modifier.modifiers {
3439 modifiers if modifiers.shift => Some("shift"),
3440 modifiers if modifiers.control => Some("control"),
3441 modifiers if modifiers.alt => Some("alt"),
3442 modifiers if modifiers.platform => Some("platform"),
3443 modifiers if modifiers.function => Some("function"),
3444 _ => None,
3445 };
3446 if let Some(key) = key {
3447 keystroke = Some(Keystroke {
3448 key: key.to_string(),
3449 key_char: None,
3450 modifiers: Modifiers::default(),
3451 });
3452 }
3453 }
3454
3455 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3456 && event.modifiers.number_of_modifiers() == 1
3457 {
3458 self.pending_modifier.saw_keystroke = false
3459 }
3460 self.pending_modifier.modifiers = event.modifiers
3461 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3462 self.pending_modifier.saw_keystroke = true;
3463 keystroke = Some(key_down_event.keystroke.clone());
3464 }
3465
3466 let Some(keystroke) = keystroke else {
3467 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3468 return;
3469 };
3470
3471 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3472 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3473 currently_pending = PendingInput::default();
3474 }
3475
3476 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3477 currently_pending.keystrokes,
3478 keystroke,
3479 &dispatch_path,
3480 );
3481
3482 if !match_result.to_replay.is_empty() {
3483 self.replay_pending_input(match_result.to_replay, cx)
3484 }
3485
3486 if !match_result.pending.is_empty() {
3487 currently_pending.keystrokes = match_result.pending;
3488 currently_pending.focus = self.focus;
3489 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3490 cx.background_executor.timer(Duration::from_secs(1)).await;
3491 cx.update(move |window, cx| {
3492 let Some(currently_pending) = window
3493 .pending_input
3494 .take()
3495 .filter(|pending| pending.focus == window.focus)
3496 else {
3497 return;
3498 };
3499
3500 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3501
3502 let to_replay = window
3503 .rendered_frame
3504 .dispatch_tree
3505 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3506
3507 window.replay_pending_input(to_replay, cx)
3508 })
3509 .log_err();
3510 }));
3511 self.pending_input = Some(currently_pending);
3512 self.pending_input_changed(cx);
3513 cx.propagate_event = false;
3514 return;
3515 }
3516
3517 cx.propagate_event = true;
3518 for binding in match_result.bindings {
3519 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3520 if !cx.propagate_event {
3521 self.dispatch_keystroke_observers(
3522 event,
3523 Some(binding.action),
3524 match_result.context_stack.clone(),
3525 cx,
3526 );
3527 self.pending_input_changed(cx);
3528 return;
3529 }
3530 }
3531
3532 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3533 self.pending_input_changed(cx);
3534 }
3535
3536 fn finish_dispatch_key_event(
3537 &mut self,
3538 event: &dyn Any,
3539 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3540 context_stack: Vec<KeyContext>,
3541 cx: &mut App,
3542 ) {
3543 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3544 if !cx.propagate_event {
3545 return;
3546 }
3547
3548 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3549 if !cx.propagate_event {
3550 return;
3551 }
3552
3553 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3554 }
3555
3556 fn pending_input_changed(&mut self, cx: &mut App) {
3557 self.pending_input_observers
3558 .clone()
3559 .retain(&(), |callback| callback(self, cx));
3560 }
3561
3562 fn dispatch_key_down_up_event(
3563 &mut self,
3564 event: &dyn Any,
3565 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3566 cx: &mut App,
3567 ) {
3568 // Capture phase
3569 for node_id in dispatch_path {
3570 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3571
3572 for key_listener in node.key_listeners.clone() {
3573 key_listener(event, DispatchPhase::Capture, self, cx);
3574 if !cx.propagate_event {
3575 return;
3576 }
3577 }
3578 }
3579
3580 // Bubble phase
3581 for node_id in dispatch_path.iter().rev() {
3582 // Handle low level key events
3583 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3584 for key_listener in node.key_listeners.clone() {
3585 key_listener(event, DispatchPhase::Bubble, self, cx);
3586 if !cx.propagate_event {
3587 return;
3588 }
3589 }
3590 }
3591 }
3592
3593 fn dispatch_modifiers_changed_event(
3594 &mut self,
3595 event: &dyn Any,
3596 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3597 cx: &mut App,
3598 ) {
3599 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3600 return;
3601 };
3602 for node_id in dispatch_path.iter().rev() {
3603 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3604 for listener in node.modifiers_changed_listeners.clone() {
3605 listener(event, self, cx);
3606 if !cx.propagate_event {
3607 return;
3608 }
3609 }
3610 }
3611 }
3612
3613 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3614 pub fn has_pending_keystrokes(&self) -> bool {
3615 self.pending_input.is_some()
3616 }
3617
3618 pub(crate) fn clear_pending_keystrokes(&mut self) {
3619 self.pending_input.take();
3620 }
3621
3622 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3623 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3624 self.pending_input
3625 .as_ref()
3626 .map(|pending_input| pending_input.keystrokes.as_slice())
3627 }
3628
3629 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3630 let node_id = self
3631 .focus
3632 .and_then(|focus_id| {
3633 self.rendered_frame
3634 .dispatch_tree
3635 .focusable_node_id(focus_id)
3636 })
3637 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3638
3639 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3640
3641 'replay: for replay in replays {
3642 let event = KeyDownEvent {
3643 keystroke: replay.keystroke.clone(),
3644 is_held: false,
3645 };
3646
3647 cx.propagate_event = true;
3648 for binding in replay.bindings {
3649 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3650 if !cx.propagate_event {
3651 self.dispatch_keystroke_observers(
3652 &event,
3653 Some(binding.action),
3654 Vec::default(),
3655 cx,
3656 );
3657 continue 'replay;
3658 }
3659 }
3660
3661 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3662 if !cx.propagate_event {
3663 continue 'replay;
3664 }
3665 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3666 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3667 input_handler.dispatch_input(&input, self, cx);
3668 self.platform_window.set_input_handler(input_handler)
3669 }
3670 }
3671 }
3672 }
3673
3674 fn dispatch_action_on_node(
3675 &mut self,
3676 node_id: DispatchNodeId,
3677 action: &dyn Action,
3678 cx: &mut App,
3679 ) {
3680 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3681
3682 // Capture phase for global actions.
3683 cx.propagate_event = true;
3684 if let Some(mut global_listeners) = cx
3685 .global_action_listeners
3686 .remove(&action.as_any().type_id())
3687 {
3688 for listener in &global_listeners {
3689 listener(action.as_any(), DispatchPhase::Capture, cx);
3690 if !cx.propagate_event {
3691 break;
3692 }
3693 }
3694
3695 global_listeners.extend(
3696 cx.global_action_listeners
3697 .remove(&action.as_any().type_id())
3698 .unwrap_or_default(),
3699 );
3700
3701 cx.global_action_listeners
3702 .insert(action.as_any().type_id(), global_listeners);
3703 }
3704
3705 if !cx.propagate_event {
3706 return;
3707 }
3708
3709 // Capture phase for window actions.
3710 for node_id in &dispatch_path {
3711 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3712 for DispatchActionListener {
3713 action_type,
3714 listener,
3715 } in node.action_listeners.clone()
3716 {
3717 let any_action = action.as_any();
3718 if action_type == any_action.type_id() {
3719 listener(any_action, DispatchPhase::Capture, self, cx);
3720
3721 if !cx.propagate_event {
3722 return;
3723 }
3724 }
3725 }
3726 }
3727
3728 // Bubble phase for window actions.
3729 for node_id in dispatch_path.iter().rev() {
3730 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3731 for DispatchActionListener {
3732 action_type,
3733 listener,
3734 } in node.action_listeners.clone()
3735 {
3736 let any_action = action.as_any();
3737 if action_type == any_action.type_id() {
3738 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3739 listener(any_action, DispatchPhase::Bubble, self, cx);
3740
3741 if !cx.propagate_event {
3742 return;
3743 }
3744 }
3745 }
3746 }
3747
3748 // Bubble phase for global actions.
3749 if let Some(mut global_listeners) = cx
3750 .global_action_listeners
3751 .remove(&action.as_any().type_id())
3752 {
3753 for listener in global_listeners.iter().rev() {
3754 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3755
3756 listener(action.as_any(), DispatchPhase::Bubble, cx);
3757 if !cx.propagate_event {
3758 break;
3759 }
3760 }
3761
3762 global_listeners.extend(
3763 cx.global_action_listeners
3764 .remove(&action.as_any().type_id())
3765 .unwrap_or_default(),
3766 );
3767
3768 cx.global_action_listeners
3769 .insert(action.as_any().type_id(), global_listeners);
3770 }
3771 }
3772
3773 /// Register the given handler to be invoked whenever the global of the given type
3774 /// is updated.
3775 pub fn observe_global<G: Global>(
3776 &mut self,
3777 cx: &mut App,
3778 f: impl Fn(&mut Window, &mut App) + 'static,
3779 ) -> Subscription {
3780 let window_handle = self.handle;
3781 let (subscription, activate) = cx.global_observers.insert(
3782 TypeId::of::<G>(),
3783 Box::new(move |cx| {
3784 window_handle
3785 .update(cx, |_, window, cx| f(window, cx))
3786 .is_ok()
3787 }),
3788 );
3789 cx.defer(move |_| activate());
3790 subscription
3791 }
3792
3793 /// Focus the current window and bring it to the foreground at the platform level.
3794 pub fn activate_window(&self) {
3795 self.platform_window.activate();
3796 }
3797
3798 /// Minimize the current window at the platform level.
3799 pub fn minimize_window(&self) {
3800 self.platform_window.minimize();
3801 }
3802
3803 /// Toggle full screen status on the current window at the platform level.
3804 pub fn toggle_fullscreen(&self) {
3805 self.platform_window.toggle_fullscreen();
3806 }
3807
3808 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3809 pub fn invalidate_character_coordinates(&self) {
3810 self.on_next_frame(|window, cx| {
3811 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3812 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3813 window
3814 .platform_window
3815 .update_ime_position(bounds.scale(window.scale_factor()));
3816 }
3817 window.platform_window.set_input_handler(input_handler);
3818 }
3819 });
3820 }
3821
3822 /// Present a platform dialog.
3823 /// The provided message will be presented, along with buttons for each answer.
3824 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3825 pub fn prompt(
3826 &mut self,
3827 level: PromptLevel,
3828 message: &str,
3829 detail: Option<&str>,
3830 answers: &[&str],
3831 cx: &mut App,
3832 ) -> oneshot::Receiver<usize> {
3833 let prompt_builder = cx.prompt_builder.take();
3834 let Some(prompt_builder) = prompt_builder else {
3835 unreachable!("Re-entrant window prompting is not supported by GPUI");
3836 };
3837
3838 let receiver = match &prompt_builder {
3839 PromptBuilder::Default => self
3840 .platform_window
3841 .prompt(level, message, detail, answers)
3842 .unwrap_or_else(|| {
3843 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3844 }),
3845 PromptBuilder::Custom(_) => {
3846 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3847 }
3848 };
3849
3850 cx.prompt_builder = Some(prompt_builder);
3851
3852 receiver
3853 }
3854
3855 fn build_custom_prompt(
3856 &mut self,
3857 prompt_builder: &PromptBuilder,
3858 level: PromptLevel,
3859 message: &str,
3860 detail: Option<&str>,
3861 answers: &[&str],
3862 cx: &mut App,
3863 ) -> oneshot::Receiver<usize> {
3864 let (sender, receiver) = oneshot::channel();
3865 let handle = PromptHandle::new(sender);
3866 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3867 self.prompt = Some(handle);
3868 receiver
3869 }
3870
3871 /// Returns the current context stack.
3872 pub fn context_stack(&self) -> Vec<KeyContext> {
3873 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3874 let node_id = self
3875 .focus
3876 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3877 .unwrap_or_else(|| dispatch_tree.root_node_id());
3878
3879 dispatch_tree
3880 .dispatch_path(node_id)
3881 .iter()
3882 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3883 .collect()
3884 }
3885
3886 /// Returns all available actions for the focused element.
3887 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3888 let node_id = self
3889 .focus
3890 .and_then(|focus_id| {
3891 self.rendered_frame
3892 .dispatch_tree
3893 .focusable_node_id(focus_id)
3894 })
3895 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3896
3897 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3898 for action_type in cx.global_action_listeners.keys() {
3899 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3900 let action = cx.actions.build_action_type(action_type).ok();
3901 if let Some(action) = action {
3902 actions.insert(ix, action);
3903 }
3904 }
3905 }
3906 actions
3907 }
3908
3909 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3910 /// returned in the order they were added. For display, the last binding should take precedence.
3911 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3912 self.rendered_frame
3913 .dispatch_tree
3914 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3915 }
3916
3917 /// Returns any bindings that would invoke an action on the given focus handle if it were
3918 /// focused. Bindings are returned in the order they were added. For display, the last binding
3919 /// should take precedence.
3920 pub fn bindings_for_action_in(
3921 &self,
3922 action: &dyn Action,
3923 focus_handle: &FocusHandle,
3924 ) -> Vec<KeyBinding> {
3925 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3926
3927 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3928 return vec![];
3929 };
3930 let context_stack: Vec<_> = dispatch_tree
3931 .dispatch_path(node_id)
3932 .into_iter()
3933 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3934 .collect();
3935 dispatch_tree.bindings_for_action(action, &context_stack)
3936 }
3937
3938 /// Returns the key bindings for the given action in the given context.
3939 pub fn bindings_for_action_in_context(
3940 &self,
3941 action: &dyn Action,
3942 context: KeyContext,
3943 ) -> Vec<KeyBinding> {
3944 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3945 dispatch_tree.bindings_for_action(action, &[context])
3946 }
3947
3948 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3949 pub fn listener_for<V: Render, E>(
3950 &self,
3951 view: &Entity<V>,
3952 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3953 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3954 let view = view.downgrade();
3955 move |e: &E, window: &mut Window, cx: &mut App| {
3956 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3957 }
3958 }
3959
3960 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3961 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
3962 &self,
3963 view: &Entity<V>,
3964 f: Callback,
3965 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
3966 let view = view.downgrade();
3967 move |window: &mut Window, cx: &mut App| {
3968 view.update(cx, |view, cx| f(view, window, cx)).ok();
3969 }
3970 }
3971
3972 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3973 /// If the callback returns false, the window won't be closed.
3974 pub fn on_window_should_close(
3975 &self,
3976 cx: &App,
3977 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3978 ) {
3979 let mut cx = self.to_async(cx);
3980 self.platform_window.on_should_close(Box::new(move || {
3981 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3982 }))
3983 }
3984
3985 /// Register an action listener on the window for the next frame. The type of action
3986 /// is determined by the first parameter of the given listener. When the next frame is rendered
3987 /// the listener will be cleared.
3988 ///
3989 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3990 /// a specific need to register a global listener.
3991 pub fn on_action(
3992 &mut self,
3993 action_type: TypeId,
3994 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3995 ) {
3996 self.next_frame
3997 .dispatch_tree
3998 .on_action(action_type, Rc::new(listener));
3999 }
4000
4001 /// Read information about the GPU backing this window.
4002 /// Currently returns None on Mac and Windows.
4003 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4004 self.platform_window.gpu_specs()
4005 }
4006
4007 /// Toggles the inspector mode on this window.
4008 #[cfg(any(feature = "inspector", debug_assertions))]
4009 pub fn toggle_inspector(&mut self, cx: &mut App) {
4010 self.inspector = match self.inspector {
4011 None => Some(cx.new(|_| Inspector::new())),
4012 Some(_) => None,
4013 };
4014 self.refresh();
4015 }
4016
4017 /// Returns true if the window is in inspector mode.
4018 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4019 #[cfg(any(feature = "inspector", debug_assertions))]
4020 {
4021 if let Some(inspector) = &self.inspector {
4022 return inspector.read(_cx).is_picking();
4023 }
4024 }
4025 false
4026 }
4027
4028 /// Executes the provided function with mutable access to an inspector state.
4029 #[cfg(any(feature = "inspector", debug_assertions))]
4030 pub fn with_inspector_state<T: 'static, R>(
4031 &mut self,
4032 _inspector_id: Option<&crate::InspectorElementId>,
4033 cx: &mut App,
4034 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4035 ) -> R {
4036 if let Some(inspector_id) = _inspector_id {
4037 if let Some(inspector) = &self.inspector {
4038 let inspector = inspector.clone();
4039 let active_element_id = inspector.read(cx).active_element_id();
4040 if Some(inspector_id) == active_element_id {
4041 return inspector.update(cx, |inspector, _cx| {
4042 inspector.with_active_element_state(self, f)
4043 });
4044 }
4045 }
4046 }
4047 f(&mut None, self)
4048 }
4049
4050 #[cfg(any(feature = "inspector", debug_assertions))]
4051 pub(crate) fn build_inspector_element_id(
4052 &mut self,
4053 path: crate::InspectorElementPath,
4054 ) -> crate::InspectorElementId {
4055 self.invalidator.debug_assert_paint_or_prepaint();
4056 let path = Rc::new(path);
4057 let next_instance_id = self
4058 .next_frame
4059 .next_inspector_instance_ids
4060 .entry(path.clone())
4061 .or_insert(0);
4062 let instance_id = *next_instance_id;
4063 *next_instance_id += 1;
4064 crate::InspectorElementId { path, instance_id }
4065 }
4066
4067 #[cfg(any(feature = "inspector", debug_assertions))]
4068 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4069 if let Some(inspector) = self.inspector.take() {
4070 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4071 inspector_element.prepaint_as_root(
4072 point(self.viewport_size.width - inspector_width, px(0.0)),
4073 size(inspector_width, self.viewport_size.height).into(),
4074 self,
4075 cx,
4076 );
4077 self.inspector = Some(inspector);
4078 Some(inspector_element)
4079 } else {
4080 None
4081 }
4082 }
4083
4084 #[cfg(any(feature = "inspector", debug_assertions))]
4085 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4086 if let Some(mut inspector_element) = inspector_element {
4087 inspector_element.paint(self, cx);
4088 };
4089 }
4090
4091 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4092 /// inspect UI elements by clicking on them.
4093 #[cfg(any(feature = "inspector", debug_assertions))]
4094 pub fn insert_inspector_hitbox(
4095 &mut self,
4096 hitbox_id: HitboxId,
4097 inspector_id: Option<&crate::InspectorElementId>,
4098 cx: &App,
4099 ) {
4100 self.invalidator.debug_assert_paint_or_prepaint();
4101 if !self.is_inspector_picking(cx) {
4102 return;
4103 }
4104 if let Some(inspector_id) = inspector_id {
4105 self.next_frame
4106 .inspector_hitboxes
4107 .insert(hitbox_id, inspector_id.clone());
4108 }
4109 }
4110
4111 #[cfg(any(feature = "inspector", debug_assertions))]
4112 fn paint_inspector_hitbox(&mut self, cx: &App) {
4113 if let Some(inspector) = self.inspector.as_ref() {
4114 let inspector = inspector.read(cx);
4115 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4116 {
4117 if let Some(hitbox) = self
4118 .next_frame
4119 .hitboxes
4120 .iter()
4121 .find(|hitbox| hitbox.id == hitbox_id)
4122 {
4123 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4124 }
4125 }
4126 }
4127 }
4128
4129 #[cfg(any(feature = "inspector", debug_assertions))]
4130 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4131 let Some(inspector) = self.inspector.clone() else {
4132 return;
4133 };
4134 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4135 inspector.update(cx, |inspector, _cx| {
4136 if let Some((_, inspector_id)) =
4137 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4138 {
4139 inspector.hover(inspector_id, self);
4140 }
4141 });
4142 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4143 inspector.update(cx, |inspector, _cx| {
4144 if let Some((_, inspector_id)) =
4145 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4146 {
4147 inspector.select(inspector_id, self);
4148 }
4149 });
4150 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4151 // This should be kept in sync with SCROLL_LINES in x11 platform.
4152 const SCROLL_LINES: f32 = 3.0;
4153 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4154 let delta_y = event
4155 .delta
4156 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4157 .y;
4158 if let Some(inspector) = self.inspector.clone() {
4159 inspector.update(cx, |inspector, _cx| {
4160 if let Some(depth) = inspector.pick_depth.as_mut() {
4161 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4162 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4163 if *depth < 0.0 {
4164 *depth = 0.0;
4165 } else if *depth > max_depth {
4166 *depth = max_depth;
4167 }
4168 if let Some((_, inspector_id)) =
4169 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4170 {
4171 inspector.set_active_element_id(inspector_id.clone(), self);
4172 }
4173 }
4174 });
4175 }
4176 }
4177 }
4178
4179 #[cfg(any(feature = "inspector", debug_assertions))]
4180 fn hovered_inspector_hitbox(
4181 &self,
4182 inspector: &Inspector,
4183 frame: &Frame,
4184 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4185 if let Some(pick_depth) = inspector.pick_depth {
4186 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4187 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4188 let skip_count = (depth as usize).min(max_skipped);
4189 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4190 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4191 return Some((*hitbox_id, inspector_id.clone()));
4192 }
4193 }
4194 }
4195 return None;
4196 }
4197}
4198
4199// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4200slotmap::new_key_type! {
4201 /// A unique identifier for a window.
4202 pub struct WindowId;
4203}
4204
4205impl WindowId {
4206 /// Converts this window ID to a `u64`.
4207 pub fn as_u64(&self) -> u64 {
4208 self.0.as_ffi()
4209 }
4210}
4211
4212impl From<u64> for WindowId {
4213 fn from(value: u64) -> Self {
4214 WindowId(slotmap::KeyData::from_ffi(value))
4215 }
4216}
4217
4218/// A handle to a window with a specific root view type.
4219/// Note that this does not keep the window alive on its own.
4220#[derive(Deref, DerefMut)]
4221pub struct WindowHandle<V> {
4222 #[deref]
4223 #[deref_mut]
4224 pub(crate) any_handle: AnyWindowHandle,
4225 state_type: PhantomData<V>,
4226}
4227
4228impl<V: 'static + Render> WindowHandle<V> {
4229 /// Creates a new handle from a window ID.
4230 /// This does not check if the root type of the window is `V`.
4231 pub fn new(id: WindowId) -> Self {
4232 WindowHandle {
4233 any_handle: AnyWindowHandle {
4234 id,
4235 state_type: TypeId::of::<V>(),
4236 },
4237 state_type: PhantomData,
4238 }
4239 }
4240
4241 /// Get the root view out of this window.
4242 ///
4243 /// This will fail if the window is closed or if the root view's type does not match `V`.
4244 #[cfg(any(test, feature = "test-support"))]
4245 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4246 where
4247 C: AppContext,
4248 {
4249 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4250 root_view
4251 .downcast::<V>()
4252 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4253 }))
4254 }
4255
4256 /// Updates the root view of this window.
4257 ///
4258 /// This will fail if the window has been closed or if the root view's type does not match
4259 pub fn update<C, R>(
4260 &self,
4261 cx: &mut C,
4262 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4263 ) -> Result<R>
4264 where
4265 C: AppContext,
4266 {
4267 cx.update_window(self.any_handle, |root_view, window, cx| {
4268 let view = root_view
4269 .downcast::<V>()
4270 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4271
4272 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4273 })?
4274 }
4275
4276 /// Read the root view out of this window.
4277 ///
4278 /// This will fail if the window is closed or if the root view's type does not match `V`.
4279 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4280 let x = cx
4281 .windows
4282 .get(self.id)
4283 .and_then(|window| {
4284 window
4285 .as_ref()
4286 .and_then(|window| window.root.clone())
4287 .map(|root_view| root_view.downcast::<V>())
4288 })
4289 .context("window not found")?
4290 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4291
4292 Ok(x.read(cx))
4293 }
4294
4295 /// Read the root view out of this window, with a callback
4296 ///
4297 /// This will fail if the window is closed or if the root view's type does not match `V`.
4298 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4299 where
4300 C: AppContext,
4301 {
4302 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4303 }
4304
4305 /// Read the root view pointer off of this window.
4306 ///
4307 /// This will fail if the window is closed or if the root view's type does not match `V`.
4308 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4309 where
4310 C: AppContext,
4311 {
4312 cx.read_window(self, |root_view, _cx| root_view.clone())
4313 }
4314
4315 /// Check if this window is 'active'.
4316 ///
4317 /// Will return `None` if the window is closed or currently
4318 /// borrowed.
4319 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4320 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4321 .ok()
4322 }
4323}
4324
4325impl<V> Copy for WindowHandle<V> {}
4326
4327impl<V> Clone for WindowHandle<V> {
4328 fn clone(&self) -> Self {
4329 *self
4330 }
4331}
4332
4333impl<V> PartialEq for WindowHandle<V> {
4334 fn eq(&self, other: &Self) -> bool {
4335 self.any_handle == other.any_handle
4336 }
4337}
4338
4339impl<V> Eq for WindowHandle<V> {}
4340
4341impl<V> Hash for WindowHandle<V> {
4342 fn hash<H: Hasher>(&self, state: &mut H) {
4343 self.any_handle.hash(state);
4344 }
4345}
4346
4347impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4348 fn from(val: WindowHandle<V>) -> Self {
4349 val.any_handle
4350 }
4351}
4352
4353unsafe impl<V> Send for WindowHandle<V> {}
4354unsafe impl<V> Sync for WindowHandle<V> {}
4355
4356/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4357#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4358pub struct AnyWindowHandle {
4359 pub(crate) id: WindowId,
4360 state_type: TypeId,
4361}
4362
4363impl AnyWindowHandle {
4364 /// Get the ID of this window.
4365 pub fn window_id(&self) -> WindowId {
4366 self.id
4367 }
4368
4369 /// Attempt to convert this handle to a window handle with a specific root view type.
4370 /// If the types do not match, this will return `None`.
4371 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4372 if TypeId::of::<T>() == self.state_type {
4373 Some(WindowHandle {
4374 any_handle: *self,
4375 state_type: PhantomData,
4376 })
4377 } else {
4378 None
4379 }
4380 }
4381
4382 /// Updates the state of the root view of this window.
4383 ///
4384 /// This will fail if the window has been closed.
4385 pub fn update<C, R>(
4386 self,
4387 cx: &mut C,
4388 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4389 ) -> Result<R>
4390 where
4391 C: AppContext,
4392 {
4393 cx.update_window(self, update)
4394 }
4395
4396 /// Read the state of the root view of this window.
4397 ///
4398 /// This will fail if the window has been closed.
4399 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4400 where
4401 C: AppContext,
4402 T: 'static,
4403 {
4404 let view = self
4405 .downcast::<T>()
4406 .context("the type of the window's root view has changed")?;
4407
4408 cx.read_window(&view, read)
4409 }
4410}
4411
4412impl HasWindowHandle for Window {
4413 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4414 self.platform_window.window_handle()
4415 }
4416}
4417
4418/// An identifier for an [`Element`](crate::Element).
4419///
4420/// Can be constructed with a string, a number, or both, as well
4421/// as other internal representations.
4422#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4423pub enum ElementId {
4424 /// The ID of a View element
4425 View(EntityId),
4426 /// An integer ID.
4427 Integer(u64),
4428 /// A string based ID.
4429 Name(SharedString),
4430 /// A UUID.
4431 Uuid(Uuid),
4432 /// An ID that's equated with a focus handle.
4433 FocusHandle(FocusId),
4434 /// A combination of a name and an integer.
4435 NamedInteger(SharedString, u64),
4436 /// A path.
4437 Path(Arc<std::path::Path>),
4438}
4439
4440impl ElementId {
4441 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4442 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4443 Self::NamedInteger(name.into(), integer as u64)
4444 }
4445}
4446
4447impl Display for ElementId {
4448 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4449 match self {
4450 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4451 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4452 ElementId::Name(name) => write!(f, "{}", name)?,
4453 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4454 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4455 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4456 ElementId::Path(path) => write!(f, "{}", path.display())?,
4457 }
4458
4459 Ok(())
4460 }
4461}
4462
4463impl TryInto<SharedString> for ElementId {
4464 type Error = anyhow::Error;
4465
4466 fn try_into(self) -> anyhow::Result<SharedString> {
4467 if let ElementId::Name(name) = self {
4468 Ok(name)
4469 } else {
4470 anyhow::bail!("element id is not string")
4471 }
4472 }
4473}
4474
4475impl From<usize> for ElementId {
4476 fn from(id: usize) -> Self {
4477 ElementId::Integer(id as u64)
4478 }
4479}
4480
4481impl From<i32> for ElementId {
4482 fn from(id: i32) -> Self {
4483 Self::Integer(id as u64)
4484 }
4485}
4486
4487impl From<SharedString> for ElementId {
4488 fn from(name: SharedString) -> Self {
4489 ElementId::Name(name)
4490 }
4491}
4492
4493impl From<Arc<std::path::Path>> for ElementId {
4494 fn from(path: Arc<std::path::Path>) -> Self {
4495 ElementId::Path(path)
4496 }
4497}
4498
4499impl From<&'static str> for ElementId {
4500 fn from(name: &'static str) -> Self {
4501 ElementId::Name(name.into())
4502 }
4503}
4504
4505impl<'a> From<&'a FocusHandle> for ElementId {
4506 fn from(handle: &'a FocusHandle) -> Self {
4507 ElementId::FocusHandle(handle.id)
4508 }
4509}
4510
4511impl From<(&'static str, EntityId)> for ElementId {
4512 fn from((name, id): (&'static str, EntityId)) -> Self {
4513 ElementId::NamedInteger(name.into(), id.as_u64())
4514 }
4515}
4516
4517impl From<(&'static str, usize)> for ElementId {
4518 fn from((name, id): (&'static str, usize)) -> Self {
4519 ElementId::NamedInteger(name.into(), id as u64)
4520 }
4521}
4522
4523impl From<(SharedString, usize)> for ElementId {
4524 fn from((name, id): (SharedString, usize)) -> Self {
4525 ElementId::NamedInteger(name, id as u64)
4526 }
4527}
4528
4529impl From<(&'static str, u64)> for ElementId {
4530 fn from((name, id): (&'static str, u64)) -> Self {
4531 ElementId::NamedInteger(name.into(), id)
4532 }
4533}
4534
4535impl From<Uuid> for ElementId {
4536 fn from(value: Uuid) -> Self {
4537 Self::Uuid(value)
4538 }
4539}
4540
4541impl From<(&'static str, u32)> for ElementId {
4542 fn from((name, id): (&'static str, u32)) -> Self {
4543 ElementId::NamedInteger(name.into(), id.into())
4544 }
4545}
4546
4547/// A rectangle to be rendered in the window at the given position and size.
4548/// Passed as an argument [`Window::paint_quad`].
4549#[derive(Clone)]
4550pub struct PaintQuad {
4551 /// The bounds of the quad within the window.
4552 pub bounds: Bounds<Pixels>,
4553 /// The radii of the quad's corners.
4554 pub corner_radii: Corners<Pixels>,
4555 /// The background color of the quad.
4556 pub background: Background,
4557 /// The widths of the quad's borders.
4558 pub border_widths: Edges<Pixels>,
4559 /// The color of the quad's borders.
4560 pub border_color: Hsla,
4561 /// The style of the quad's borders.
4562 pub border_style: BorderStyle,
4563}
4564
4565impl PaintQuad {
4566 /// Sets the corner radii of the quad.
4567 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4568 PaintQuad {
4569 corner_radii: corner_radii.into(),
4570 ..self
4571 }
4572 }
4573
4574 /// Sets the border widths of the quad.
4575 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4576 PaintQuad {
4577 border_widths: border_widths.into(),
4578 ..self
4579 }
4580 }
4581
4582 /// Sets the border color of the quad.
4583 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4584 PaintQuad {
4585 border_color: border_color.into(),
4586 ..self
4587 }
4588 }
4589
4590 /// Sets the background color of the quad.
4591 pub fn background(self, background: impl Into<Background>) -> Self {
4592 PaintQuad {
4593 background: background.into(),
4594 ..self
4595 }
4596 }
4597}
4598
4599/// Creates a quad with the given parameters.
4600pub fn quad(
4601 bounds: Bounds<Pixels>,
4602 corner_radii: impl Into<Corners<Pixels>>,
4603 background: impl Into<Background>,
4604 border_widths: impl Into<Edges<Pixels>>,
4605 border_color: impl Into<Hsla>,
4606 border_style: BorderStyle,
4607) -> PaintQuad {
4608 PaintQuad {
4609 bounds,
4610 corner_radii: corner_radii.into(),
4611 background: background.into(),
4612 border_widths: border_widths.into(),
4613 border_color: border_color.into(),
4614 border_style,
4615 }
4616}
4617
4618/// Creates a filled quad with the given bounds and background color.
4619pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4620 PaintQuad {
4621 bounds: bounds.into(),
4622 corner_radii: (0.).into(),
4623 background: background.into(),
4624 border_widths: (0.).into(),
4625 border_color: transparent_black(),
4626 border_style: BorderStyle::default(),
4627 }
4628}
4629
4630/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4631pub fn outline(
4632 bounds: impl Into<Bounds<Pixels>>,
4633 border_color: impl Into<Hsla>,
4634 border_style: BorderStyle,
4635) -> PaintQuad {
4636 PaintQuad {
4637 bounds: bounds.into(),
4638 corner_radii: (0.).into(),
4639 background: transparent_black().into(),
4640 border_widths: (1.).into(),
4641 border_color: border_color.into(),
4642 border_style,
4643 }
4644}