executor.rs

  1use crate::{AppContext, PlatformDispatcher};
  2use futures::{channel::mpsc, pin_mut, FutureExt};
  3use smol::prelude::*;
  4use std::{
  5    fmt::Debug,
  6    marker::PhantomData,
  7    mem,
  8    pin::Pin,
  9    rc::Rc,
 10    sync::{
 11        atomic::{AtomicBool, Ordering::SeqCst},
 12        Arc,
 13    },
 14    task::{Context, Poll},
 15    time::Duration,
 16};
 17use util::TryFutureExt;
 18use waker_fn::waker_fn;
 19
 20#[derive(Clone)]
 21pub struct BackgroundExecutor {
 22    dispatcher: Arc<dyn PlatformDispatcher>,
 23}
 24
 25#[derive(Clone)]
 26pub struct ForegroundExecutor {
 27    dispatcher: Arc<dyn PlatformDispatcher>,
 28    not_send: PhantomData<Rc<()>>,
 29}
 30
 31#[must_use]
 32pub enum Task<T> {
 33    Ready(Option<T>),
 34    Spawned(async_task::Task<T>),
 35}
 36
 37impl<T> Task<T> {
 38    pub fn ready(val: T) -> Self {
 39        Task::Ready(Some(val))
 40    }
 41
 42    pub fn detach(self) {
 43        match self {
 44            Task::Ready(_) => {}
 45            Task::Spawned(task) => task.detach(),
 46        }
 47    }
 48}
 49
 50impl<E, T> Task<Result<T, E>>
 51where
 52    T: 'static + Send,
 53    E: 'static + Send + Debug,
 54{
 55    pub fn detach_and_log_err(self, cx: &mut AppContext) {
 56        cx.background_executor().spawn(self.log_err()).detach();
 57    }
 58}
 59
 60impl<T> Future for Task<T> {
 61    type Output = T;
 62
 63    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
 64        match unsafe { self.get_unchecked_mut() } {
 65            Task::Ready(val) => Poll::Ready(val.take().unwrap()),
 66            Task::Spawned(task) => task.poll(cx),
 67        }
 68    }
 69}
 70
 71impl BackgroundExecutor {
 72    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
 73        Self { dispatcher }
 74    }
 75
 76    /// Enqueues the given closure to be run on any thread. The closure returns
 77    /// a future which will be run to completion on any available thread.
 78    pub fn spawn<R>(&self, future: impl Future<Output = R> + Send + 'static) -> Task<R>
 79    where
 80        R: Send + 'static,
 81    {
 82        let dispatcher = self.dispatcher.clone();
 83        let (runnable, task) =
 84            async_task::spawn(future, move |runnable| dispatcher.dispatch(runnable));
 85        runnable.schedule();
 86        Task::Spawned(task)
 87    }
 88
 89    #[cfg(any(test, feature = "test-support"))]
 90    pub fn block_test<R>(&self, future: impl Future<Output = R>) -> R {
 91        let (runnable, task) = unsafe {
 92            async_task::spawn_unchecked(future, {
 93                let dispatcher = self.dispatcher.clone();
 94                move |runnable| dispatcher.dispatch_on_main_thread(runnable)
 95            })
 96        };
 97
 98        runnable.schedule();
 99
100        self.block_internal(false, task)
101    }
102
103    pub fn block<R>(&self, future: impl Future<Output = R>) -> R {
104        self.block_internal(true, future)
105    }
106
107    pub(crate) fn block_internal<R>(
108        &self,
109        background_only: bool,
110        future: impl Future<Output = R>,
111    ) -> R {
112        dbg!("block_internal");
113        pin_mut!(future);
114        let (parker, unparker) = parking::pair();
115        let awoken = Arc::new(AtomicBool::new(false));
116        let awoken2 = awoken.clone();
117
118        let waker = waker_fn(move || {
119            dbg!("WAKING UP.");
120            awoken2.store(true, SeqCst);
121            unparker.unpark();
122        });
123        let mut cx = std::task::Context::from_waker(&waker);
124
125        dbg!("BOOOP");
126        loop {
127            match future.as_mut().poll(&mut cx) {
128                Poll::Ready(result) => return result,
129                Poll::Pending => {
130                    if !self.dispatcher.poll(background_only) {
131                        if awoken.swap(false, SeqCst) {
132                            continue;
133                        }
134
135                        #[cfg(any(test, feature = "test-support"))]
136                        if let Some(test) = self.dispatcher.as_test() {
137                            if !test.parking_allowed() {
138                                let mut backtrace_message = String::new();
139                                if let Some(backtrace) = test.waiting_backtrace() {
140                                    backtrace_message =
141                                        format!("\nbacktrace of waiting future:\n{:?}", backtrace);
142                                }
143                                panic!("parked with nothing left to run\n{:?}", backtrace_message)
144                            }
145                        }
146                        dbg!("PARKING!");
147                        parker.park();
148                        dbg!("CONTINUING!");
149                    }
150                }
151            }
152        }
153    }
154
155    pub fn block_with_timeout<R>(
156        &self,
157        duration: Duration,
158        future: impl Future<Output = R>,
159    ) -> Result<R, impl Future<Output = R>> {
160        let mut future = Box::pin(future.fuse());
161        if duration.is_zero() {
162            return Err(future);
163        }
164
165        let mut timer = self.timer(duration).fuse();
166        let timeout = async {
167            futures::select_biased! {
168                value = future => Ok(value),
169                _ = timer => Err(()),
170            }
171        };
172        match self.block(timeout) {
173            Ok(value) => Ok(value),
174            Err(_) => Err(future),
175        }
176    }
177
178    pub async fn scoped<'scope, F>(&self, scheduler: F)
179    where
180        F: FnOnce(&mut Scope<'scope>),
181    {
182        let mut scope = Scope::new(self.clone());
183        (scheduler)(&mut scope);
184        let spawned = mem::take(&mut scope.futures)
185            .into_iter()
186            .map(|f| self.spawn(f))
187            .collect::<Vec<_>>();
188        for task in spawned {
189            task.await;
190        }
191    }
192
193    pub fn timer(&self, duration: Duration) -> Task<()> {
194        let (runnable, task) = async_task::spawn(async move {}, {
195            let dispatcher = self.dispatcher.clone();
196            move |runnable| dispatcher.dispatch_after(duration, runnable)
197        });
198        runnable.schedule();
199        Task::Spawned(task)
200    }
201
202    #[cfg(any(test, feature = "test-support"))]
203    pub fn start_waiting(&self) {
204        self.dispatcher.as_test().unwrap().start_waiting();
205    }
206
207    #[cfg(any(test, feature = "test-support"))]
208    pub fn finish_waiting(&self) {
209        self.dispatcher.as_test().unwrap().finish_waiting();
210    }
211
212    #[cfg(any(test, feature = "test-support"))]
213    pub fn simulate_random_delay(&self) -> impl Future<Output = ()> {
214        self.dispatcher.as_test().unwrap().simulate_random_delay()
215    }
216
217    #[cfg(any(test, feature = "test-support"))]
218    pub fn advance_clock(&self, duration: Duration) {
219        self.dispatcher.as_test().unwrap().advance_clock(duration)
220    }
221
222    #[cfg(any(test, feature = "test-support"))]
223    pub fn run_until_parked(&self) {
224        self.dispatcher.as_test().unwrap().run_until_parked()
225    }
226
227    #[cfg(any(test, feature = "test-support"))]
228    pub fn allow_parking(&self) {
229        self.dispatcher.as_test().unwrap().allow_parking();
230    }
231
232    pub fn num_cpus(&self) -> usize {
233        num_cpus::get()
234    }
235
236    pub fn is_main_thread(&self) -> bool {
237        self.dispatcher.is_main_thread()
238    }
239}
240
241impl ForegroundExecutor {
242    pub fn new(dispatcher: Arc<dyn PlatformDispatcher>) -> Self {
243        Self {
244            dispatcher,
245            not_send: PhantomData,
246        }
247    }
248
249    /// Enqueues the given closure to be run on any thread. The closure returns
250    /// a future which will be run to completion on any available thread.
251    pub fn spawn<R>(&self, future: impl Future<Output = R> + 'static) -> Task<R>
252    where
253        R: 'static,
254    {
255        let dispatcher = self.dispatcher.clone();
256        let (runnable, task) = async_task::spawn_local(future, move |runnable| {
257            dispatcher.dispatch_on_main_thread(runnable)
258        });
259        runnable.schedule();
260        Task::Spawned(task)
261    }
262}
263
264pub struct Scope<'a> {
265    executor: BackgroundExecutor,
266    futures: Vec<Pin<Box<dyn Future<Output = ()> + Send + 'static>>>,
267    tx: Option<mpsc::Sender<()>>,
268    rx: mpsc::Receiver<()>,
269    lifetime: PhantomData<&'a ()>,
270}
271
272impl<'a> Scope<'a> {
273    fn new(executor: BackgroundExecutor) -> Self {
274        let (tx, rx) = mpsc::channel(1);
275        Self {
276            executor,
277            tx: Some(tx),
278            rx,
279            futures: Default::default(),
280            lifetime: PhantomData,
281        }
282    }
283
284    pub fn spawn<F>(&mut self, f: F)
285    where
286        F: Future<Output = ()> + Send + 'a,
287    {
288        let tx = self.tx.clone().unwrap();
289
290        // Safety: The 'a lifetime is guaranteed to outlive any of these futures because
291        // dropping this `Scope` blocks until all of the futures have resolved.
292        let f = unsafe {
293            mem::transmute::<
294                Pin<Box<dyn Future<Output = ()> + Send + 'a>>,
295                Pin<Box<dyn Future<Output = ()> + Send + 'static>>,
296            >(Box::pin(async move {
297                f.await;
298                drop(tx);
299            }))
300        };
301        self.futures.push(f);
302    }
303}
304
305impl<'a> Drop for Scope<'a> {
306    fn drop(&mut self) {
307        self.tx.take().unwrap();
308
309        // Wait until the channel is closed, which means that all of the spawned
310        // futures have resolved.
311        self.executor.block(self.rx.next());
312    }
313}