window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
  13    Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
  14    SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
  15    StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
  16    SystemWindowTabController, TabHandles, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
  17    TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
  18    WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
  19    point, prelude::*, px, rems, size, transparent_black,
  20};
  21use anyhow::{Context as _, Result, anyhow};
  22use collections::{FxHashMap, FxHashSet};
  23#[cfg(target_os = "macos")]
  24use core_video::pixel_buffer::CVPixelBuffer;
  25use derive_more::{Deref, DerefMut};
  26use futures::FutureExt;
  27use futures::channel::oneshot;
  28use itertools::FoldWhile::{Continue, Done};
  29use itertools::Itertools;
  30use parking_lot::RwLock;
  31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  32use refineable::Refineable;
  33use slotmap::SlotMap;
  34use smallvec::SmallVec;
  35use std::{
  36    any::{Any, TypeId},
  37    borrow::Cow,
  38    cell::{Cell, RefCell},
  39    cmp,
  40    fmt::{Debug, Display},
  41    hash::{Hash, Hasher},
  42    marker::PhantomData,
  43    mem,
  44    ops::{DerefMut, Range},
  45    rc::Rc,
  46    sync::{
  47        Arc, Weak,
  48        atomic::{AtomicUsize, Ordering::SeqCst},
  49    },
  50    time::{Duration, Instant},
  51};
  52use util::post_inc;
  53use util::{ResultExt, measure};
  54use uuid::Uuid;
  55
  56mod prompts;
  57
  58use crate::util::atomic_incr_if_not_zero;
  59pub use prompts::*;
  60
  61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
  62
  63/// Represents the two different phases when dispatching events.
  64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  65pub enum DispatchPhase {
  66    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  67    /// invoked front to back and keyboard event listeners are invoked from the focused element
  68    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  69    /// registering event listeners.
  70    #[default]
  71    Bubble,
  72    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  73    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  74    /// is used for special purposes such as clearing the "pressed" state for click events. If
  75    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  76    /// outside of the immediate region may rely on detecting non-local events during this phase.
  77    Capture,
  78}
  79
  80impl DispatchPhase {
  81    /// Returns true if this represents the "bubble" phase.
  82    #[inline]
  83    pub fn bubble(self) -> bool {
  84        self == DispatchPhase::Bubble
  85    }
  86
  87    /// Returns true if this represents the "capture" phase.
  88    #[inline]
  89    pub fn capture(self) -> bool {
  90        self == DispatchPhase::Capture
  91    }
  92}
  93
  94struct WindowInvalidatorInner {
  95    pub dirty: bool,
  96    pub draw_phase: DrawPhase,
  97    pub dirty_views: FxHashSet<EntityId>,
  98}
  99
 100#[derive(Clone)]
 101pub(crate) struct WindowInvalidator {
 102    inner: Rc<RefCell<WindowInvalidatorInner>>,
 103}
 104
 105impl WindowInvalidator {
 106    pub fn new() -> Self {
 107        WindowInvalidator {
 108            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 109                dirty: true,
 110                draw_phase: DrawPhase::None,
 111                dirty_views: FxHashSet::default(),
 112            })),
 113        }
 114    }
 115
 116    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 117        let mut inner = self.inner.borrow_mut();
 118        inner.dirty_views.insert(entity);
 119        if inner.draw_phase == DrawPhase::None {
 120            inner.dirty = true;
 121            cx.push_effect(Effect::Notify { emitter: entity });
 122            true
 123        } else {
 124            false
 125        }
 126    }
 127
 128    pub fn is_dirty(&self) -> bool {
 129        self.inner.borrow().dirty
 130    }
 131
 132    pub fn set_dirty(&self, dirty: bool) {
 133        self.inner.borrow_mut().dirty = dirty
 134    }
 135
 136    pub fn set_phase(&self, phase: DrawPhase) {
 137        self.inner.borrow_mut().draw_phase = phase
 138    }
 139
 140    pub fn take_views(&self) -> FxHashSet<EntityId> {
 141        mem::take(&mut self.inner.borrow_mut().dirty_views)
 142    }
 143
 144    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 145        self.inner.borrow_mut().dirty_views = views;
 146    }
 147
 148    pub fn not_drawing(&self) -> bool {
 149        self.inner.borrow().draw_phase == DrawPhase::None
 150    }
 151
 152    #[track_caller]
 153    pub fn debug_assert_paint(&self) {
 154        debug_assert!(
 155            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 156            "this method can only be called during paint"
 157        );
 158    }
 159
 160    #[track_caller]
 161    pub fn debug_assert_prepaint(&self) {
 162        debug_assert!(
 163            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 164            "this method can only be called during request_layout, or prepaint"
 165        );
 166    }
 167
 168    #[track_caller]
 169    pub fn debug_assert_paint_or_prepaint(&self) {
 170        debug_assert!(
 171            matches!(
 172                self.inner.borrow().draw_phase,
 173                DrawPhase::Paint | DrawPhase::Prepaint
 174            ),
 175            "this method can only be called during request_layout, prepaint, or paint"
 176        );
 177    }
 178}
 179
 180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 181
 182pub(crate) type AnyWindowFocusListener =
 183    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 184
 185pub(crate) struct WindowFocusEvent {
 186    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 187    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 188}
 189
 190impl WindowFocusEvent {
 191    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 192        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 193    }
 194
 195    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 196        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 197    }
 198}
 199
 200/// This is provided when subscribing for `Context::on_focus_out` events.
 201pub struct FocusOutEvent {
 202    /// A weak focus handle representing what was blurred.
 203    pub blurred: WeakFocusHandle,
 204}
 205
 206slotmap::new_key_type! {
 207    /// A globally unique identifier for a focusable element.
 208    pub struct FocusId;
 209}
 210
 211thread_local! {
 212    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 213}
 214
 215/// Returned when the element arena has been used and so must be cleared before the next draw.
 216#[must_use]
 217pub struct ArenaClearNeeded;
 218
 219impl ArenaClearNeeded {
 220    /// Clear the element arena.
 221    pub fn clear(self) {
 222        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 223            element_arena.clear();
 224        });
 225    }
 226}
 227
 228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
 229pub(crate) struct FocusRef {
 230    pub(crate) ref_count: AtomicUsize,
 231    pub(crate) tab_index: isize,
 232    pub(crate) tab_stop: bool,
 233}
 234
 235impl FocusId {
 236    /// Obtains whether the element associated with this handle is currently focused.
 237    pub fn is_focused(&self, window: &Window) -> bool {
 238        window.focus == Some(*self)
 239    }
 240
 241    /// Obtains whether the element associated with this handle contains the focused
 242    /// element or is itself focused.
 243    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 244        window
 245            .focused(cx)
 246            .is_some_and(|focused| self.contains(focused.id, window))
 247    }
 248
 249    /// Obtains whether the element associated with this handle is contained within the
 250    /// focused element or is itself focused.
 251    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 252        let focused = window.focused(cx);
 253        focused.is_some_and(|focused| focused.id.contains(*self, window))
 254    }
 255
 256    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 257    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 258        window
 259            .rendered_frame
 260            .dispatch_tree
 261            .focus_contains(*self, other)
 262    }
 263}
 264
 265/// A handle which can be used to track and manipulate the focused element in a window.
 266pub struct FocusHandle {
 267    pub(crate) id: FocusId,
 268    handles: Arc<FocusMap>,
 269    /// The index of this element in the tab order.
 270    pub tab_index: isize,
 271    /// Whether this element can be focused by tab navigation.
 272    pub tab_stop: bool,
 273}
 274
 275impl std::fmt::Debug for FocusHandle {
 276    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 277        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 278    }
 279}
 280
 281impl FocusHandle {
 282    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 283        let id = handles.write().insert(FocusRef {
 284            ref_count: AtomicUsize::new(1),
 285            tab_index: 0,
 286            tab_stop: false,
 287        });
 288
 289        Self {
 290            id,
 291            tab_index: 0,
 292            tab_stop: false,
 293            handles: handles.clone(),
 294        }
 295    }
 296
 297    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 298        let lock = handles.read();
 299        let focus = lock.get(id)?;
 300        if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
 301            return None;
 302        }
 303        Some(Self {
 304            id,
 305            tab_index: focus.tab_index,
 306            tab_stop: focus.tab_stop,
 307            handles: handles.clone(),
 308        })
 309    }
 310
 311    /// Sets the tab index of the element associated with this handle.
 312    pub fn tab_index(mut self, index: isize) -> Self {
 313        self.tab_index = index;
 314        if let Some(focus) = self.handles.write().get_mut(self.id) {
 315            focus.tab_index = index;
 316        }
 317        self
 318    }
 319
 320    /// Sets whether the element associated with this handle is a tab stop.
 321    ///
 322    /// When `false`, the element will not be included in the tab order.
 323    pub fn tab_stop(mut self, tab_stop: bool) -> Self {
 324        self.tab_stop = tab_stop;
 325        if let Some(focus) = self.handles.write().get_mut(self.id) {
 326            focus.tab_stop = tab_stop;
 327        }
 328        self
 329    }
 330
 331    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 332    pub fn downgrade(&self) -> WeakFocusHandle {
 333        WeakFocusHandle {
 334            id: self.id,
 335            handles: Arc::downgrade(&self.handles),
 336        }
 337    }
 338
 339    /// Moves the focus to the element associated with this handle.
 340    pub fn focus(&self, window: &mut Window) {
 341        window.focus(self)
 342    }
 343
 344    /// Obtains whether the element associated with this handle is currently focused.
 345    pub fn is_focused(&self, window: &Window) -> bool {
 346        self.id.is_focused(window)
 347    }
 348
 349    /// Obtains whether the element associated with this handle contains the focused
 350    /// element or is itself focused.
 351    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 352        self.id.contains_focused(window, cx)
 353    }
 354
 355    /// Obtains whether the element associated with this handle is contained within the
 356    /// focused element or is itself focused.
 357    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 358        self.id.within_focused(window, cx)
 359    }
 360
 361    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 362    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 363        self.id.contains(other.id, window)
 364    }
 365
 366    /// Dispatch an action on the element that rendered this focus handle
 367    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 368        if let Some(node_id) = window
 369            .rendered_frame
 370            .dispatch_tree
 371            .focusable_node_id(self.id)
 372        {
 373            window.dispatch_action_on_node(node_id, action, cx)
 374        }
 375    }
 376}
 377
 378impl Clone for FocusHandle {
 379    fn clone(&self) -> Self {
 380        Self::for_id(self.id, &self.handles).unwrap()
 381    }
 382}
 383
 384impl PartialEq for FocusHandle {
 385    fn eq(&self, other: &Self) -> bool {
 386        self.id == other.id
 387    }
 388}
 389
 390impl Eq for FocusHandle {}
 391
 392impl Drop for FocusHandle {
 393    fn drop(&mut self) {
 394        self.handles
 395            .read()
 396            .get(self.id)
 397            .unwrap()
 398            .ref_count
 399            .fetch_sub(1, SeqCst);
 400    }
 401}
 402
 403/// A weak reference to a focus handle.
 404#[derive(Clone, Debug)]
 405pub struct WeakFocusHandle {
 406    pub(crate) id: FocusId,
 407    pub(crate) handles: Weak<FocusMap>,
 408}
 409
 410impl WeakFocusHandle {
 411    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 412    pub fn upgrade(&self) -> Option<FocusHandle> {
 413        let handles = self.handles.upgrade()?;
 414        FocusHandle::for_id(self.id, &handles)
 415    }
 416}
 417
 418impl PartialEq for WeakFocusHandle {
 419    fn eq(&self, other: &WeakFocusHandle) -> bool {
 420        self.id == other.id
 421    }
 422}
 423
 424impl Eq for WeakFocusHandle {}
 425
 426impl PartialEq<FocusHandle> for WeakFocusHandle {
 427    fn eq(&self, other: &FocusHandle) -> bool {
 428        self.id == other.id
 429    }
 430}
 431
 432impl PartialEq<WeakFocusHandle> for FocusHandle {
 433    fn eq(&self, other: &WeakFocusHandle) -> bool {
 434        self.id == other.id
 435    }
 436}
 437
 438/// Focusable allows users of your view to easily
 439/// focus it (using window.focus_view(cx, view))
 440pub trait Focusable: 'static {
 441    /// Returns the focus handle associated with this view.
 442    fn focus_handle(&self, cx: &App) -> FocusHandle;
 443}
 444
 445impl<V: Focusable> Focusable for Entity<V> {
 446    fn focus_handle(&self, cx: &App) -> FocusHandle {
 447        self.read(cx).focus_handle(cx)
 448    }
 449}
 450
 451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 452/// where the lifecycle of the view is handled by another view.
 453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 454
 455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 456
 457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 458pub struct DismissEvent;
 459
 460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 461
 462pub(crate) type AnyMouseListener =
 463    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 464
 465#[derive(Clone)]
 466pub(crate) struct CursorStyleRequest {
 467    pub(crate) hitbox_id: Option<HitboxId>,
 468    pub(crate) style: CursorStyle,
 469}
 470
 471#[derive(Default, Eq, PartialEq)]
 472pub(crate) struct HitTest {
 473    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 474    pub(crate) hover_hitbox_count: usize,
 475}
 476
 477/// A type of window control area that corresponds to the platform window.
 478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 479pub enum WindowControlArea {
 480    /// An area that allows dragging of the platform window.
 481    Drag,
 482    /// An area that allows closing of the platform window.
 483    Close,
 484    /// An area that allows maximizing of the platform window.
 485    Max,
 486    /// An area that allows minimizing of the platform window.
 487    Min,
 488}
 489
 490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 492pub struct HitboxId(u64);
 493
 494impl HitboxId {
 495    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 496    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 497    /// events or paint hover styles.
 498    ///
 499    /// See [`Hitbox::is_hovered`] for details.
 500    pub fn is_hovered(self, window: &Window) -> bool {
 501        let hit_test = &window.mouse_hit_test;
 502        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 503            if self == *id {
 504                return true;
 505            }
 506        }
 507        false
 508    }
 509
 510    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 511    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 512    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 513    /// this distinction.
 514    pub fn should_handle_scroll(self, window: &Window) -> bool {
 515        window.mouse_hit_test.ids.contains(&self)
 516    }
 517
 518    fn next(mut self) -> HitboxId {
 519        HitboxId(self.0.wrapping_add(1))
 520    }
 521}
 522
 523/// A rectangular region that potentially blocks hitboxes inserted prior.
 524/// See [Window::insert_hitbox] for more details.
 525#[derive(Clone, Debug, Deref)]
 526pub struct Hitbox {
 527    /// A unique identifier for the hitbox.
 528    pub id: HitboxId,
 529    /// The bounds of the hitbox.
 530    #[deref]
 531    pub bounds: Bounds<Pixels>,
 532    /// The content mask when the hitbox was inserted.
 533    pub content_mask: ContentMask<Pixels>,
 534    /// Flags that specify hitbox behavior.
 535    pub behavior: HitboxBehavior,
 536}
 537
 538impl Hitbox {
 539    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 540    /// typically what you want when determining whether to handle mouse events or paint hover
 541    /// styles.
 542    ///
 543    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 544    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 545    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 546    ///
 547    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 548    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 549    /// non-interactive while still allowing scrolling. More abstractly, this is because
 550    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 551    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 552    /// container.
 553    pub fn is_hovered(&self, window: &Window) -> bool {
 554        self.id.is_hovered(window)
 555    }
 556
 557    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 558    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 559    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 560    ///
 561    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 562    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 563    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 564        self.id.should_handle_scroll(window)
 565    }
 566}
 567
 568/// How the hitbox affects mouse behavior.
 569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 570pub enum HitboxBehavior {
 571    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 572    #[default]
 573    Normal,
 574
 575    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 576    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 577    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 578    /// [`InteractiveElement::occlude`].
 579    ///
 580    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 581    /// bubble-phase handler for every mouse event type:
 582    ///
 583    /// ```
 584    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 585    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 586    ///         cx.stop_propagation();
 587    ///     }
 588    /// })
 589    /// ```
 590    ///
 591    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 592    /// styles and tooltops. These other behaviors are the main point of this mechanism. An
 593    /// alternative might be to not affect mouse event handling - but this would allow
 594    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 595    /// be hovered.
 596    BlockMouse,
 597
 598    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 599    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 600    /// interaction except scroll events to be ignored - see the documentation of
 601    /// [`Hitbox::is_hovered`] for details. This flag is set by
 602    /// [`InteractiveElement::block_mouse_except_scroll`].
 603    ///
 604    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 605    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 606    ///
 607    /// ```
 608    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
 609    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 610    ///         cx.stop_propagation();
 611    ///     }
 612    /// })
 613    /// ```
 614    ///
 615    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 616    /// handled differently than other mouse events. If also blocking these scroll events is
 617    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 618    ///
 619    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 620    /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
 621    /// An alternative might be to not affect mouse event handling - but this would allow
 622    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 623    /// be hovered.
 624    BlockMouseExceptScroll,
 625}
 626
 627/// An identifier for a tooltip.
 628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 629pub struct TooltipId(usize);
 630
 631impl TooltipId {
 632    /// Checks if the tooltip is currently hovered.
 633    pub fn is_hovered(&self, window: &Window) -> bool {
 634        window
 635            .tooltip_bounds
 636            .as_ref()
 637            .is_some_and(|tooltip_bounds| {
 638                tooltip_bounds.id == *self
 639                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 640            })
 641    }
 642}
 643
 644pub(crate) struct TooltipBounds {
 645    id: TooltipId,
 646    bounds: Bounds<Pixels>,
 647}
 648
 649#[derive(Clone)]
 650pub(crate) struct TooltipRequest {
 651    id: TooltipId,
 652    tooltip: AnyTooltip,
 653}
 654
 655pub(crate) struct DeferredDraw {
 656    current_view: EntityId,
 657    priority: usize,
 658    parent_node: DispatchNodeId,
 659    element_id_stack: SmallVec<[ElementId; 32]>,
 660    text_style_stack: Vec<TextStyleRefinement>,
 661    element: Option<AnyElement>,
 662    absolute_offset: Point<Pixels>,
 663    prepaint_range: Range<PrepaintStateIndex>,
 664    paint_range: Range<PaintIndex>,
 665}
 666
 667pub(crate) struct Frame {
 668    pub(crate) focus: Option<FocusId>,
 669    pub(crate) window_active: bool,
 670    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 671    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 672    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 673    pub(crate) dispatch_tree: DispatchTree,
 674    pub(crate) scene: Scene,
 675    pub(crate) hitboxes: Vec<Hitbox>,
 676    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 677    pub(crate) deferred_draws: Vec<DeferredDraw>,
 678    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 679    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 680    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 681    #[cfg(any(test, feature = "test-support"))]
 682    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 683    #[cfg(any(feature = "inspector", debug_assertions))]
 684    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 685    #[cfg(any(feature = "inspector", debug_assertions))]
 686    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 687    pub(crate) tab_handles: TabHandles,
 688}
 689
 690#[derive(Clone, Default)]
 691pub(crate) struct PrepaintStateIndex {
 692    hitboxes_index: usize,
 693    tooltips_index: usize,
 694    deferred_draws_index: usize,
 695    dispatch_tree_index: usize,
 696    accessed_element_states_index: usize,
 697    line_layout_index: LineLayoutIndex,
 698}
 699
 700#[derive(Clone, Default)]
 701pub(crate) struct PaintIndex {
 702    scene_index: usize,
 703    mouse_listeners_index: usize,
 704    input_handlers_index: usize,
 705    cursor_styles_index: usize,
 706    accessed_element_states_index: usize,
 707    tab_handle_index: usize,
 708    line_layout_index: LineLayoutIndex,
 709}
 710
 711impl Frame {
 712    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 713        Frame {
 714            focus: None,
 715            window_active: false,
 716            element_states: FxHashMap::default(),
 717            accessed_element_states: Vec::new(),
 718            mouse_listeners: Vec::new(),
 719            dispatch_tree,
 720            scene: Scene::default(),
 721            hitboxes: Vec::new(),
 722            window_control_hitboxes: Vec::new(),
 723            deferred_draws: Vec::new(),
 724            input_handlers: Vec::new(),
 725            tooltip_requests: Vec::new(),
 726            cursor_styles: Vec::new(),
 727
 728            #[cfg(any(test, feature = "test-support"))]
 729            debug_bounds: FxHashMap::default(),
 730
 731            #[cfg(any(feature = "inspector", debug_assertions))]
 732            next_inspector_instance_ids: FxHashMap::default(),
 733
 734            #[cfg(any(feature = "inspector", debug_assertions))]
 735            inspector_hitboxes: FxHashMap::default(),
 736            tab_handles: TabHandles::default(),
 737        }
 738    }
 739
 740    pub(crate) fn clear(&mut self) {
 741        self.element_states.clear();
 742        self.accessed_element_states.clear();
 743        self.mouse_listeners.clear();
 744        self.dispatch_tree.clear();
 745        self.scene.clear();
 746        self.input_handlers.clear();
 747        self.tooltip_requests.clear();
 748        self.cursor_styles.clear();
 749        self.hitboxes.clear();
 750        self.window_control_hitboxes.clear();
 751        self.deferred_draws.clear();
 752        self.tab_handles.clear();
 753        self.focus = None;
 754
 755        #[cfg(any(feature = "inspector", debug_assertions))]
 756        {
 757            self.next_inspector_instance_ids.clear();
 758            self.inspector_hitboxes.clear();
 759        }
 760    }
 761
 762    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 763        self.cursor_styles
 764            .iter()
 765            .rev()
 766            .fold_while(None, |style, request| match request.hitbox_id {
 767                None => Done(Some(request.style)),
 768                Some(hitbox_id) => Continue(
 769                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 770                ),
 771            })
 772            .into_inner()
 773    }
 774
 775    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 776        let mut set_hover_hitbox_count = false;
 777        let mut hit_test = HitTest::default();
 778        for hitbox in self.hitboxes.iter().rev() {
 779            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 780            if bounds.contains(&position) {
 781                hit_test.ids.push(hitbox.id);
 782                if !set_hover_hitbox_count
 783                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 784                {
 785                    hit_test.hover_hitbox_count = hit_test.ids.len();
 786                    set_hover_hitbox_count = true;
 787                }
 788                if hitbox.behavior == HitboxBehavior::BlockMouse {
 789                    break;
 790                }
 791            }
 792        }
 793        if !set_hover_hitbox_count {
 794            hit_test.hover_hitbox_count = hit_test.ids.len();
 795        }
 796        hit_test
 797    }
 798
 799    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 800        self.focus
 801            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 802            .unwrap_or_default()
 803    }
 804
 805    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 806        for element_state_key in &self.accessed_element_states {
 807            if let Some((element_state_key, element_state)) =
 808                prev_frame.element_states.remove_entry(element_state_key)
 809            {
 810                self.element_states.insert(element_state_key, element_state);
 811            }
 812        }
 813
 814        self.scene.finish();
 815    }
 816}
 817
 818/// Holds the state for a specific window.
 819pub struct Window {
 820    pub(crate) handle: AnyWindowHandle,
 821    pub(crate) invalidator: WindowInvalidator,
 822    pub(crate) removed: bool,
 823    pub(crate) platform_window: Box<dyn PlatformWindow>,
 824    display_id: Option<DisplayId>,
 825    sprite_atlas: Arc<dyn PlatformAtlas>,
 826    text_system: Arc<WindowTextSystem>,
 827    rem_size: Pixels,
 828    /// The stack of override values for the window's rem size.
 829    ///
 830    /// This is used by `with_rem_size` to allow rendering an element tree with
 831    /// a given rem size.
 832    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 833    pub(crate) viewport_size: Size<Pixels>,
 834    layout_engine: Option<TaffyLayoutEngine>,
 835    pub(crate) root: Option<AnyView>,
 836    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 837    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 838    pub(crate) rendered_entity_stack: Vec<EntityId>,
 839    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 840    pub(crate) element_opacity: Option<f32>,
 841    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 842    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 843    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 844    pub(crate) rendered_frame: Frame,
 845    pub(crate) next_frame: Frame,
 846    next_hitbox_id: HitboxId,
 847    pub(crate) next_tooltip_id: TooltipId,
 848    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 849    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 850    pub(crate) dirty_views: FxHashSet<EntityId>,
 851    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 852    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 853    default_prevented: bool,
 854    mouse_position: Point<Pixels>,
 855    mouse_hit_test: HitTest,
 856    modifiers: Modifiers,
 857    capslock: Capslock,
 858    scale_factor: f32,
 859    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 860    appearance: WindowAppearance,
 861    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 862    active: Rc<Cell<bool>>,
 863    hovered: Rc<Cell<bool>>,
 864    pub(crate) needs_present: Rc<Cell<bool>>,
 865    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 866    pub(crate) refreshing: bool,
 867    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 868    pub(crate) focus: Option<FocusId>,
 869    focus_enabled: bool,
 870    pending_input: Option<PendingInput>,
 871    pending_modifier: ModifierState,
 872    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 873    prompt: Option<RenderablePromptHandle>,
 874    pub(crate) client_inset: Option<Pixels>,
 875    #[cfg(any(feature = "inspector", debug_assertions))]
 876    inspector: Option<Entity<Inspector>>,
 877}
 878
 879#[derive(Clone, Debug, Default)]
 880struct ModifierState {
 881    modifiers: Modifiers,
 882    saw_keystroke: bool,
 883}
 884
 885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 886pub(crate) enum DrawPhase {
 887    None,
 888    Prepaint,
 889    Paint,
 890    Focus,
 891}
 892
 893#[derive(Default, Debug)]
 894struct PendingInput {
 895    keystrokes: SmallVec<[Keystroke; 1]>,
 896    focus: Option<FocusId>,
 897    timer: Option<Task<()>>,
 898}
 899
 900pub(crate) struct ElementStateBox {
 901    pub(crate) inner: Box<dyn Any>,
 902    #[cfg(debug_assertions)]
 903    pub(crate) type_name: &'static str,
 904}
 905
 906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
 907    const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
 908
 909    // TODO, BUG: if you open a window with the currently active window
 910    // on the stack, this will erroneously select the 'unwrap_or_else'
 911    // code path
 912    cx.active_window()
 913        .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
 914        .map(|mut bounds| {
 915            bounds.origin += DEFAULT_WINDOW_OFFSET;
 916            bounds
 917        })
 918        .unwrap_or_else(|| {
 919            let display = display_id
 920                .map(|id| cx.find_display(id))
 921                .unwrap_or_else(|| cx.primary_display());
 922
 923            display
 924                .map(|display| display.default_bounds())
 925                .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
 926        })
 927}
 928
 929impl Window {
 930    pub(crate) fn new(
 931        handle: AnyWindowHandle,
 932        options: WindowOptions,
 933        cx: &mut App,
 934    ) -> Result<Self> {
 935        let WindowOptions {
 936            window_bounds,
 937            titlebar,
 938            focus,
 939            show,
 940            kind,
 941            is_movable,
 942            is_resizable,
 943            is_minimizable,
 944            display_id,
 945            window_background,
 946            app_id,
 947            window_min_size,
 948            window_decorations,
 949            #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
 950            tabbing_identifier,
 951        } = options;
 952
 953        let bounds = window_bounds
 954            .map(|bounds| bounds.get_bounds())
 955            .unwrap_or_else(|| default_bounds(display_id, cx));
 956        let mut platform_window = cx.platform.open_window(
 957            handle,
 958            WindowParams {
 959                bounds,
 960                titlebar,
 961                kind,
 962                is_movable,
 963                is_resizable,
 964                is_minimizable,
 965                focus,
 966                show,
 967                display_id,
 968                window_min_size,
 969                #[cfg(target_os = "macos")]
 970                tabbing_identifier,
 971            },
 972        )?;
 973
 974        let tab_bar_visible = platform_window.tab_bar_visible();
 975        SystemWindowTabController::init_visible(cx, tab_bar_visible);
 976        if let Some(tabs) = platform_window.tabbed_windows() {
 977            SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
 978        }
 979
 980        let display_id = platform_window.display().map(|display| display.id());
 981        let sprite_atlas = platform_window.sprite_atlas();
 982        let mouse_position = platform_window.mouse_position();
 983        let modifiers = platform_window.modifiers();
 984        let capslock = platform_window.capslock();
 985        let content_size = platform_window.content_size();
 986        let scale_factor = platform_window.scale_factor();
 987        let appearance = platform_window.appearance();
 988        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
 989        let invalidator = WindowInvalidator::new();
 990        let active = Rc::new(Cell::new(platform_window.is_active()));
 991        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
 992        let needs_present = Rc::new(Cell::new(false));
 993        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
 994        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
 995
 996        platform_window
 997            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
 998        platform_window.set_background_appearance(window_background);
 999
1000        if let Some(ref window_open_state) = window_bounds {
1001            match window_open_state {
1002                WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1003                WindowBounds::Maximized(_) => platform_window.zoom(),
1004                WindowBounds::Windowed(_) => {}
1005            }
1006        }
1007
1008        platform_window.on_close(Box::new({
1009            let window_id = handle.window_id();
1010            let mut cx = cx.to_async();
1011            move || {
1012                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1013                let _ = cx.update(|cx| {
1014                    SystemWindowTabController::remove_tab(cx, window_id);
1015                });
1016            }
1017        }));
1018        platform_window.on_request_frame(Box::new({
1019            let mut cx = cx.to_async();
1020            let invalidator = invalidator.clone();
1021            let active = active.clone();
1022            let needs_present = needs_present.clone();
1023            let next_frame_callbacks = next_frame_callbacks.clone();
1024            let last_input_timestamp = last_input_timestamp.clone();
1025            move |request_frame_options| {
1026                let next_frame_callbacks = next_frame_callbacks.take();
1027                if !next_frame_callbacks.is_empty() {
1028                    handle
1029                        .update(&mut cx, |_, window, cx| {
1030                            for callback in next_frame_callbacks {
1031                                callback(window, cx);
1032                            }
1033                        })
1034                        .log_err();
1035                }
1036
1037                // Keep presenting the current scene for 1 extra second since the
1038                // last input to prevent the display from underclocking the refresh rate.
1039                let needs_present = request_frame_options.require_presentation
1040                    || needs_present.get()
1041                    || (active.get()
1042                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1043
1044                if invalidator.is_dirty() || request_frame_options.force_render {
1045                    measure("frame duration", || {
1046                        handle
1047                            .update(&mut cx, |_, window, cx| {
1048                                let arena_clear_needed = window.draw(cx);
1049                                window.present();
1050                                // drop the arena elements after present to reduce latency
1051                                arena_clear_needed.clear();
1052                            })
1053                            .log_err();
1054                    })
1055                } else if needs_present {
1056                    handle
1057                        .update(&mut cx, |_, window, _| window.present())
1058                        .log_err();
1059                }
1060
1061                handle
1062                    .update(&mut cx, |_, window, _| {
1063                        window.complete_frame();
1064                    })
1065                    .log_err();
1066            }
1067        }));
1068        platform_window.on_resize(Box::new({
1069            let mut cx = cx.to_async();
1070            move |_, _| {
1071                handle
1072                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1073                    .log_err();
1074            }
1075        }));
1076        platform_window.on_moved(Box::new({
1077            let mut cx = cx.to_async();
1078            move || {
1079                handle
1080                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081                    .log_err();
1082            }
1083        }));
1084        platform_window.on_appearance_changed(Box::new({
1085            let mut cx = cx.to_async();
1086            move || {
1087                handle
1088                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1089                    .log_err();
1090            }
1091        }));
1092        platform_window.on_active_status_change(Box::new({
1093            let mut cx = cx.to_async();
1094            move |active| {
1095                handle
1096                    .update(&mut cx, |_, window, cx| {
1097                        window.active.set(active);
1098                        window.modifiers = window.platform_window.modifiers();
1099                        window.capslock = window.platform_window.capslock();
1100                        window
1101                            .activation_observers
1102                            .clone()
1103                            .retain(&(), |callback| callback(window, cx));
1104
1105                        window.bounds_changed(cx);
1106                        window.refresh();
1107
1108                        SystemWindowTabController::update_last_active(cx, window.handle.id);
1109                    })
1110                    .log_err();
1111            }
1112        }));
1113        platform_window.on_hover_status_change(Box::new({
1114            let mut cx = cx.to_async();
1115            move |active| {
1116                handle
1117                    .update(&mut cx, |_, window, _| {
1118                        window.hovered.set(active);
1119                        window.refresh();
1120                    })
1121                    .log_err();
1122            }
1123        }));
1124        platform_window.on_input({
1125            let mut cx = cx.to_async();
1126            Box::new(move |event| {
1127                handle
1128                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1129                    .log_err()
1130                    .unwrap_or(DispatchEventResult::default())
1131            })
1132        });
1133        platform_window.on_hit_test_window_control({
1134            let mut cx = cx.to_async();
1135            Box::new(move || {
1136                handle
1137                    .update(&mut cx, |_, window, _cx| {
1138                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1139                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1140                                return Some(*area);
1141                            }
1142                        }
1143                        None
1144                    })
1145                    .log_err()
1146                    .unwrap_or(None)
1147            })
1148        });
1149        platform_window.on_move_tab_to_new_window({
1150            let mut cx = cx.to_async();
1151            Box::new(move || {
1152                handle
1153                    .update(&mut cx, |_, _window, cx| {
1154                        SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1155                    })
1156                    .log_err();
1157            })
1158        });
1159        platform_window.on_merge_all_windows({
1160            let mut cx = cx.to_async();
1161            Box::new(move || {
1162                handle
1163                    .update(&mut cx, |_, _window, cx| {
1164                        SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1165                    })
1166                    .log_err();
1167            })
1168        });
1169        platform_window.on_select_next_tab({
1170            let mut cx = cx.to_async();
1171            Box::new(move || {
1172                handle
1173                    .update(&mut cx, |_, _window, cx| {
1174                        SystemWindowTabController::select_next_tab(cx, handle.window_id());
1175                    })
1176                    .log_err();
1177            })
1178        });
1179        platform_window.on_select_previous_tab({
1180            let mut cx = cx.to_async();
1181            Box::new(move || {
1182                handle
1183                    .update(&mut cx, |_, _window, cx| {
1184                        SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1185                    })
1186                    .log_err();
1187            })
1188        });
1189        platform_window.on_toggle_tab_bar({
1190            let mut cx = cx.to_async();
1191            Box::new(move || {
1192                handle
1193                    .update(&mut cx, |_, window, cx| {
1194                        let tab_bar_visible = window.platform_window.tab_bar_visible();
1195                        SystemWindowTabController::set_visible(cx, tab_bar_visible);
1196                    })
1197                    .log_err();
1198            })
1199        });
1200
1201        if let Some(app_id) = app_id {
1202            platform_window.set_app_id(&app_id);
1203        }
1204
1205        platform_window.map_window().unwrap();
1206
1207        Ok(Window {
1208            handle,
1209            invalidator,
1210            removed: false,
1211            platform_window,
1212            display_id,
1213            sprite_atlas,
1214            text_system,
1215            rem_size: px(16.),
1216            rem_size_override_stack: SmallVec::new(),
1217            viewport_size: content_size,
1218            layout_engine: Some(TaffyLayoutEngine::new()),
1219            root: None,
1220            element_id_stack: SmallVec::default(),
1221            text_style_stack: Vec::new(),
1222            rendered_entity_stack: Vec::new(),
1223            element_offset_stack: Vec::new(),
1224            content_mask_stack: Vec::new(),
1225            element_opacity: None,
1226            requested_autoscroll: None,
1227            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1228            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1229            next_frame_callbacks,
1230            next_hitbox_id: HitboxId(0),
1231            next_tooltip_id: TooltipId::default(),
1232            tooltip_bounds: None,
1233            dirty_views: FxHashSet::default(),
1234            focus_listeners: SubscriberSet::new(),
1235            focus_lost_listeners: SubscriberSet::new(),
1236            default_prevented: true,
1237            mouse_position,
1238            mouse_hit_test: HitTest::default(),
1239            modifiers,
1240            capslock,
1241            scale_factor,
1242            bounds_observers: SubscriberSet::new(),
1243            appearance,
1244            appearance_observers: SubscriberSet::new(),
1245            active,
1246            hovered,
1247            needs_present,
1248            last_input_timestamp,
1249            refreshing: false,
1250            activation_observers: SubscriberSet::new(),
1251            focus: None,
1252            focus_enabled: true,
1253            pending_input: None,
1254            pending_modifier: ModifierState::default(),
1255            pending_input_observers: SubscriberSet::new(),
1256            prompt: None,
1257            client_inset: None,
1258            image_cache_stack: Vec::new(),
1259            #[cfg(any(feature = "inspector", debug_assertions))]
1260            inspector: None,
1261        })
1262    }
1263
1264    pub(crate) fn new_focus_listener(
1265        &self,
1266        value: AnyWindowFocusListener,
1267    ) -> (Subscription, impl FnOnce() + use<>) {
1268        self.focus_listeners.insert((), value)
1269    }
1270}
1271
1272#[derive(Clone, Debug, Default, PartialEq, Eq)]
1273pub(crate) struct DispatchEventResult {
1274    pub propagate: bool,
1275    pub default_prevented: bool,
1276}
1277
1278/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1279/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1280/// to leave room to support more complex shapes in the future.
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282#[repr(C)]
1283pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1284    /// The bounds
1285    pub bounds: Bounds<P>,
1286    /// The corner radii of the content mask.
1287    pub corner_radii: Corners<P>,
1288}
1289
1290impl ContentMask<Pixels> {
1291    /// Scale the content mask's pixel units by the given scaling factor.
1292    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1293        ContentMask {
1294            bounds: self.bounds.scale(factor),
1295            corner_radii: self.corner_radii.scale(factor),
1296        }
1297    }
1298
1299    /// Intersect the content mask with the given content mask.
1300    pub fn intersect(&self, other: &Self) -> Self {
1301        let bounds = self.bounds.intersect(&other.bounds);
1302        ContentMask {
1303            bounds,
1304            corner_radii: Corners {
1305                top_left: self.corner_radii.top_left.max(other.corner_radii.top_left),
1306                top_right: self
1307                    .corner_radii
1308                    .top_right
1309                    .max(other.corner_radii.top_right),
1310                bottom_right: self
1311                    .corner_radii
1312                    .bottom_right
1313                    .max(other.corner_radii.bottom_right),
1314                bottom_left: self
1315                    .corner_radii
1316                    .bottom_left
1317                    .max(other.corner_radii.bottom_left),
1318            },
1319        }
1320    }
1321}
1322
1323impl Window {
1324    fn mark_view_dirty(&mut self, view_id: EntityId) {
1325        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1326        // should already be dirty.
1327        for view_id in self
1328            .rendered_frame
1329            .dispatch_tree
1330            .view_path(view_id)
1331            .into_iter()
1332            .rev()
1333        {
1334            if !self.dirty_views.insert(view_id) {
1335                break;
1336            }
1337        }
1338    }
1339
1340    /// Registers a callback to be invoked when the window appearance changes.
1341    pub fn observe_window_appearance(
1342        &self,
1343        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1344    ) -> Subscription {
1345        let (subscription, activate) = self.appearance_observers.insert(
1346            (),
1347            Box::new(move |window, cx| {
1348                callback(window, cx);
1349                true
1350            }),
1351        );
1352        activate();
1353        subscription
1354    }
1355
1356    /// Replaces the root entity of the window with a new one.
1357    pub fn replace_root<E>(
1358        &mut self,
1359        cx: &mut App,
1360        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1361    ) -> Entity<E>
1362    where
1363        E: 'static + Render,
1364    {
1365        let view = cx.new(|cx| build_view(self, cx));
1366        self.root = Some(view.clone().into());
1367        self.refresh();
1368        view
1369    }
1370
1371    /// Returns the root entity of the window, if it has one.
1372    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1373    where
1374        E: 'static + Render,
1375    {
1376        self.root
1377            .as_ref()
1378            .map(|view| view.clone().downcast::<E>().ok())
1379    }
1380
1381    /// Obtain a handle to the window that belongs to this context.
1382    pub fn window_handle(&self) -> AnyWindowHandle {
1383        self.handle
1384    }
1385
1386    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1387    pub fn refresh(&mut self) {
1388        if self.invalidator.not_drawing() {
1389            self.refreshing = true;
1390            self.invalidator.set_dirty(true);
1391        }
1392    }
1393
1394    /// Close this window.
1395    pub fn remove_window(&mut self) {
1396        self.removed = true;
1397    }
1398
1399    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1400    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1401        self.focus
1402            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1403    }
1404
1405    /// Move focus to the element associated with the given [`FocusHandle`].
1406    pub fn focus(&mut self, handle: &FocusHandle) {
1407        if !self.focus_enabled || self.focus == Some(handle.id) {
1408            return;
1409        }
1410
1411        self.focus = Some(handle.id);
1412        self.clear_pending_keystrokes();
1413        self.refresh();
1414    }
1415
1416    /// Remove focus from all elements within this context's window.
1417    pub fn blur(&mut self) {
1418        if !self.focus_enabled {
1419            return;
1420        }
1421
1422        self.focus = None;
1423        self.refresh();
1424    }
1425
1426    /// Blur the window and don't allow anything in it to be focused again.
1427    pub fn disable_focus(&mut self) {
1428        self.blur();
1429        self.focus_enabled = false;
1430    }
1431
1432    /// Move focus to next tab stop.
1433    pub fn focus_next(&mut self) {
1434        if !self.focus_enabled {
1435            return;
1436        }
1437
1438        if let Some(handle) = self.rendered_frame.tab_handles.next(self.focus.as_ref()) {
1439            self.focus(&handle)
1440        }
1441    }
1442
1443    /// Move focus to previous tab stop.
1444    pub fn focus_prev(&mut self) {
1445        if !self.focus_enabled {
1446            return;
1447        }
1448
1449        if let Some(handle) = self.rendered_frame.tab_handles.prev(self.focus.as_ref()) {
1450            self.focus(&handle)
1451        }
1452    }
1453
1454    /// Accessor for the text system.
1455    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1456        &self.text_system
1457    }
1458
1459    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1460    pub fn text_style(&self) -> TextStyle {
1461        let mut style = TextStyle::default();
1462        for refinement in &self.text_style_stack {
1463            style.refine(refinement);
1464        }
1465        style
1466    }
1467
1468    /// Check if the platform window is maximized
1469    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1470    pub fn is_maximized(&self) -> bool {
1471        self.platform_window.is_maximized()
1472    }
1473
1474    /// request a certain window decoration (Wayland)
1475    pub fn request_decorations(&self, decorations: WindowDecorations) {
1476        self.platform_window.request_decorations(decorations);
1477    }
1478
1479    /// Start a window resize operation (Wayland)
1480    pub fn start_window_resize(&self, edge: ResizeEdge) {
1481        self.platform_window.start_window_resize(edge);
1482    }
1483
1484    /// Return the `WindowBounds` to indicate that how a window should be opened
1485    /// after it has been closed
1486    pub fn window_bounds(&self) -> WindowBounds {
1487        self.platform_window.window_bounds()
1488    }
1489
1490    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1491    pub fn inner_window_bounds(&self) -> WindowBounds {
1492        self.platform_window.inner_window_bounds()
1493    }
1494
1495    /// Dispatch the given action on the currently focused element.
1496    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1497        let focus_id = self.focused(cx).map(|handle| handle.id);
1498
1499        let window = self.handle;
1500        cx.defer(move |cx| {
1501            window
1502                .update(cx, |_, window, cx| {
1503                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1504                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1505                })
1506                .log_err();
1507        })
1508    }
1509
1510    pub(crate) fn dispatch_keystroke_observers(
1511        &mut self,
1512        event: &dyn Any,
1513        action: Option<Box<dyn Action>>,
1514        context_stack: Vec<KeyContext>,
1515        cx: &mut App,
1516    ) {
1517        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1518            return;
1519        };
1520
1521        cx.keystroke_observers.clone().retain(&(), move |callback| {
1522            (callback)(
1523                &KeystrokeEvent {
1524                    keystroke: key_down_event.keystroke.clone(),
1525                    action: action.as_ref().map(|action| action.boxed_clone()),
1526                    context_stack: context_stack.clone(),
1527                },
1528                self,
1529                cx,
1530            )
1531        });
1532    }
1533
1534    pub(crate) fn dispatch_keystroke_interceptors(
1535        &mut self,
1536        event: &dyn Any,
1537        context_stack: Vec<KeyContext>,
1538        cx: &mut App,
1539    ) {
1540        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1541            return;
1542        };
1543
1544        cx.keystroke_interceptors
1545            .clone()
1546            .retain(&(), move |callback| {
1547                (callback)(
1548                    &KeystrokeEvent {
1549                        keystroke: key_down_event.keystroke.clone(),
1550                        action: None,
1551                        context_stack: context_stack.clone(),
1552                    },
1553                    self,
1554                    cx,
1555                )
1556            });
1557    }
1558
1559    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1560    /// that are currently on the stack to be returned to the app.
1561    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1562        let handle = self.handle;
1563        cx.defer(move |cx| {
1564            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1565        });
1566    }
1567
1568    /// Subscribe to events emitted by a entity.
1569    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1570    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1571    pub fn observe<T: 'static>(
1572        &mut self,
1573        observed: &Entity<T>,
1574        cx: &mut App,
1575        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1576    ) -> Subscription {
1577        let entity_id = observed.entity_id();
1578        let observed = observed.downgrade();
1579        let window_handle = self.handle;
1580        cx.new_observer(
1581            entity_id,
1582            Box::new(move |cx| {
1583                window_handle
1584                    .update(cx, |_, window, cx| {
1585                        if let Some(handle) = observed.upgrade() {
1586                            on_notify(handle, window, cx);
1587                            true
1588                        } else {
1589                            false
1590                        }
1591                    })
1592                    .unwrap_or(false)
1593            }),
1594        )
1595    }
1596
1597    /// Subscribe to events emitted by a entity.
1598    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1599    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1600    pub fn subscribe<Emitter, Evt>(
1601        &mut self,
1602        entity: &Entity<Emitter>,
1603        cx: &mut App,
1604        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1605    ) -> Subscription
1606    where
1607        Emitter: EventEmitter<Evt>,
1608        Evt: 'static,
1609    {
1610        let entity_id = entity.entity_id();
1611        let handle = entity.downgrade();
1612        let window_handle = self.handle;
1613        cx.new_subscription(
1614            entity_id,
1615            (
1616                TypeId::of::<Evt>(),
1617                Box::new(move |event, cx| {
1618                    window_handle
1619                        .update(cx, |_, window, cx| {
1620                            if let Some(entity) = handle.upgrade() {
1621                                let event = event.downcast_ref().expect("invalid event type");
1622                                on_event(entity, event, window, cx);
1623                                true
1624                            } else {
1625                                false
1626                            }
1627                        })
1628                        .unwrap_or(false)
1629                }),
1630            ),
1631        )
1632    }
1633
1634    /// Register a callback to be invoked when the given `Entity` is released.
1635    pub fn observe_release<T>(
1636        &self,
1637        entity: &Entity<T>,
1638        cx: &mut App,
1639        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1640    ) -> Subscription
1641    where
1642        T: 'static,
1643    {
1644        let entity_id = entity.entity_id();
1645        let window_handle = self.handle;
1646        let (subscription, activate) = cx.release_listeners.insert(
1647            entity_id,
1648            Box::new(move |entity, cx| {
1649                let entity = entity.downcast_mut().expect("invalid entity type");
1650                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1651            }),
1652        );
1653        activate();
1654        subscription
1655    }
1656
1657    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1658    /// await points in async code.
1659    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1660        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1661    }
1662
1663    /// Schedule the given closure to be run directly after the current frame is rendered.
1664    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1665        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1666    }
1667
1668    /// Schedule a frame to be drawn on the next animation frame.
1669    ///
1670    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1671    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1672    ///
1673    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1674    pub fn request_animation_frame(&self) {
1675        let entity = self.current_view();
1676        self.on_next_frame(move |_, cx| cx.notify(entity));
1677    }
1678
1679    /// Spawn the future returned by the given closure on the application thread pool.
1680    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1681    /// use within your future.
1682    #[track_caller]
1683    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1684    where
1685        R: 'static,
1686        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1687    {
1688        let handle = self.handle;
1689        cx.spawn(async move |app| {
1690            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1691            f(&mut async_window_cx).await
1692        })
1693    }
1694
1695    fn bounds_changed(&mut self, cx: &mut App) {
1696        self.scale_factor = self.platform_window.scale_factor();
1697        self.viewport_size = self.platform_window.content_size();
1698        self.display_id = self.platform_window.display().map(|display| display.id());
1699
1700        self.refresh();
1701
1702        self.bounds_observers
1703            .clone()
1704            .retain(&(), |callback| callback(self, cx));
1705    }
1706
1707    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1708    pub fn bounds(&self) -> Bounds<Pixels> {
1709        self.platform_window.bounds()
1710    }
1711
1712    /// Set the content size of the window.
1713    pub fn resize(&mut self, size: Size<Pixels>) {
1714        self.platform_window.resize(size);
1715    }
1716
1717    /// Returns whether or not the window is currently fullscreen
1718    pub fn is_fullscreen(&self) -> bool {
1719        self.platform_window.is_fullscreen()
1720    }
1721
1722    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1723        self.appearance = self.platform_window.appearance();
1724
1725        self.appearance_observers
1726            .clone()
1727            .retain(&(), |callback| callback(self, cx));
1728    }
1729
1730    /// Returns the appearance of the current window.
1731    pub fn appearance(&self) -> WindowAppearance {
1732        self.appearance
1733    }
1734
1735    /// Returns the size of the drawable area within the window.
1736    pub fn viewport_size(&self) -> Size<Pixels> {
1737        self.viewport_size
1738    }
1739
1740    /// Returns whether this window is focused by the operating system (receiving key events).
1741    pub fn is_window_active(&self) -> bool {
1742        self.active.get()
1743    }
1744
1745    /// Returns whether this window is considered to be the window
1746    /// that currently owns the mouse cursor.
1747    /// On mac, this is equivalent to `is_window_active`.
1748    pub fn is_window_hovered(&self) -> bool {
1749        if cfg!(any(
1750            target_os = "windows",
1751            target_os = "linux",
1752            target_os = "freebsd"
1753        )) {
1754            self.hovered.get()
1755        } else {
1756            self.is_window_active()
1757        }
1758    }
1759
1760    /// Toggle zoom on the window.
1761    pub fn zoom_window(&self) {
1762        self.platform_window.zoom();
1763    }
1764
1765    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1766    pub fn show_window_menu(&self, position: Point<Pixels>) {
1767        self.platform_window.show_window_menu(position)
1768    }
1769
1770    /// Tells the compositor to take control of window movement (Wayland and X11)
1771    ///
1772    /// Events may not be received during a move operation.
1773    pub fn start_window_move(&self) {
1774        self.platform_window.start_window_move()
1775    }
1776
1777    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1778    pub fn set_client_inset(&mut self, inset: Pixels) {
1779        self.client_inset = Some(inset);
1780        self.platform_window.set_client_inset(inset);
1781    }
1782
1783    /// Returns the client_inset value by [`Self::set_client_inset`].
1784    pub fn client_inset(&self) -> Option<Pixels> {
1785        self.client_inset
1786    }
1787
1788    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1789    pub fn window_decorations(&self) -> Decorations {
1790        self.platform_window.window_decorations()
1791    }
1792
1793    /// Returns which window controls are currently visible (Wayland)
1794    pub fn window_controls(&self) -> WindowControls {
1795        self.platform_window.window_controls()
1796    }
1797
1798    /// Updates the window's title at the platform level.
1799    pub fn set_window_title(&mut self, title: &str) {
1800        self.platform_window.set_title(title);
1801    }
1802
1803    /// Sets the application identifier.
1804    pub fn set_app_id(&mut self, app_id: &str) {
1805        self.platform_window.set_app_id(app_id);
1806    }
1807
1808    /// Sets the window background appearance.
1809    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1810        self.platform_window
1811            .set_background_appearance(background_appearance);
1812    }
1813
1814    /// Mark the window as dirty at the platform level.
1815    pub fn set_window_edited(&mut self, edited: bool) {
1816        self.platform_window.set_edited(edited);
1817    }
1818
1819    /// Determine the display on which the window is visible.
1820    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1821        cx.platform
1822            .displays()
1823            .into_iter()
1824            .find(|display| Some(display.id()) == self.display_id)
1825    }
1826
1827    /// Show the platform character palette.
1828    pub fn show_character_palette(&self) {
1829        self.platform_window.show_character_palette();
1830    }
1831
1832    /// The scale factor of the display associated with the window. For example, it could
1833    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1834    /// be rendered as two pixels on screen.
1835    pub fn scale_factor(&self) -> f32 {
1836        self.scale_factor
1837    }
1838
1839    /// The size of an em for the base font of the application. Adjusting this value allows the
1840    /// UI to scale, just like zooming a web page.
1841    pub fn rem_size(&self) -> Pixels {
1842        self.rem_size_override_stack
1843            .last()
1844            .copied()
1845            .unwrap_or(self.rem_size)
1846    }
1847
1848    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1849    /// UI to scale, just like zooming a web page.
1850    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1851        self.rem_size = rem_size.into();
1852    }
1853
1854    /// Acquire a globally unique identifier for the given ElementId.
1855    /// Only valid for the duration of the provided closure.
1856    pub fn with_global_id<R>(
1857        &mut self,
1858        element_id: ElementId,
1859        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1860    ) -> R {
1861        self.element_id_stack.push(element_id);
1862        let global_id = GlobalElementId(self.element_id_stack.clone());
1863        let result = f(&global_id, self);
1864        self.element_id_stack.pop();
1865        result
1866    }
1867
1868    /// Executes the provided function with the specified rem size.
1869    ///
1870    /// This method must only be called as part of element drawing.
1871    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1872    where
1873        F: FnOnce(&mut Self) -> R,
1874    {
1875        self.invalidator.debug_assert_paint_or_prepaint();
1876
1877        if let Some(rem_size) = rem_size {
1878            self.rem_size_override_stack.push(rem_size.into());
1879            let result = f(self);
1880            self.rem_size_override_stack.pop();
1881            result
1882        } else {
1883            f(self)
1884        }
1885    }
1886
1887    /// The line height associated with the current text style.
1888    pub fn line_height(&self) -> Pixels {
1889        self.text_style().line_height_in_pixels(self.rem_size())
1890    }
1891
1892    /// Call to prevent the default action of an event. Currently only used to prevent
1893    /// parent elements from becoming focused on mouse down.
1894    pub fn prevent_default(&mut self) {
1895        self.default_prevented = true;
1896    }
1897
1898    /// Obtain whether default has been prevented for the event currently being dispatched.
1899    pub fn default_prevented(&self) -> bool {
1900        self.default_prevented
1901    }
1902
1903    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1904    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1905        let node_id =
1906            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1907        self.rendered_frame
1908            .dispatch_tree
1909            .is_action_available(action, node_id)
1910    }
1911
1912    /// The position of the mouse relative to the window.
1913    pub fn mouse_position(&self) -> Point<Pixels> {
1914        self.mouse_position
1915    }
1916
1917    /// The current state of the keyboard's modifiers
1918    pub fn modifiers(&self) -> Modifiers {
1919        self.modifiers
1920    }
1921
1922    /// The current state of the keyboard's capslock
1923    pub fn capslock(&self) -> Capslock {
1924        self.capslock
1925    }
1926
1927    fn complete_frame(&self) {
1928        self.platform_window.completed_frame();
1929    }
1930
1931    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1932    /// the contents of the new [`Scene`], use [`Self::present`].
1933    #[profiling::function]
1934    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1935        self.invalidate_entities();
1936        cx.entities.clear_accessed();
1937        debug_assert!(self.rendered_entity_stack.is_empty());
1938        self.invalidator.set_dirty(false);
1939        self.requested_autoscroll = None;
1940
1941        // Restore the previously-used input handler.
1942        if let Some(input_handler) = self.platform_window.take_input_handler() {
1943            self.rendered_frame.input_handlers.push(Some(input_handler));
1944        }
1945        self.draw_roots(cx);
1946        self.dirty_views.clear();
1947        self.next_frame.window_active = self.active.get();
1948
1949        // Register requested input handler with the platform window.
1950        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1951            self.platform_window
1952                .set_input_handler(input_handler.unwrap());
1953        }
1954
1955        self.layout_engine.as_mut().unwrap().clear();
1956        self.text_system().finish_frame();
1957        self.next_frame.finish(&mut self.rendered_frame);
1958
1959        self.invalidator.set_phase(DrawPhase::Focus);
1960        let previous_focus_path = self.rendered_frame.focus_path();
1961        let previous_window_active = self.rendered_frame.window_active;
1962        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1963        self.next_frame.clear();
1964        let current_focus_path = self.rendered_frame.focus_path();
1965        let current_window_active = self.rendered_frame.window_active;
1966
1967        if previous_focus_path != current_focus_path
1968            || previous_window_active != current_window_active
1969        {
1970            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1971                self.focus_lost_listeners
1972                    .clone()
1973                    .retain(&(), |listener| listener(self, cx));
1974            }
1975
1976            let event = WindowFocusEvent {
1977                previous_focus_path: if previous_window_active {
1978                    previous_focus_path
1979                } else {
1980                    Default::default()
1981                },
1982                current_focus_path: if current_window_active {
1983                    current_focus_path
1984                } else {
1985                    Default::default()
1986                },
1987            };
1988            self.focus_listeners
1989                .clone()
1990                .retain(&(), |listener| listener(&event, self, cx));
1991        }
1992
1993        debug_assert!(self.rendered_entity_stack.is_empty());
1994        self.record_entities_accessed(cx);
1995        self.reset_cursor_style(cx);
1996        self.refreshing = false;
1997        self.invalidator.set_phase(DrawPhase::None);
1998        self.needs_present.set(true);
1999
2000        ArenaClearNeeded
2001    }
2002
2003    fn record_entities_accessed(&mut self, cx: &mut App) {
2004        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2005        let mut entities = mem::take(entities_ref.deref_mut());
2006        drop(entities_ref);
2007        let handle = self.handle;
2008        cx.record_entities_accessed(
2009            handle,
2010            // Try moving window invalidator into the Window
2011            self.invalidator.clone(),
2012            &entities,
2013        );
2014        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2015        mem::swap(&mut entities, entities_ref.deref_mut());
2016    }
2017
2018    fn invalidate_entities(&mut self) {
2019        let mut views = self.invalidator.take_views();
2020        for entity in views.drain() {
2021            self.mark_view_dirty(entity);
2022        }
2023        self.invalidator.replace_views(views);
2024    }
2025
2026    #[profiling::function]
2027    fn present(&self) {
2028        self.platform_window.draw(&self.rendered_frame.scene);
2029        self.needs_present.set(false);
2030        profiling::finish_frame!();
2031    }
2032
2033    fn draw_roots(&mut self, cx: &mut App) {
2034        self.invalidator.set_phase(DrawPhase::Prepaint);
2035        self.tooltip_bounds.take();
2036
2037        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2038        let root_size = {
2039            #[cfg(any(feature = "inspector", debug_assertions))]
2040            {
2041                if self.inspector.is_some() {
2042                    let mut size = self.viewport_size;
2043                    size.width = (size.width - _inspector_width).max(px(0.0));
2044                    size
2045                } else {
2046                    self.viewport_size
2047                }
2048            }
2049            #[cfg(not(any(feature = "inspector", debug_assertions)))]
2050            {
2051                self.viewport_size
2052            }
2053        };
2054
2055        // Layout all root elements.
2056        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2057        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2058
2059        #[cfg(any(feature = "inspector", debug_assertions))]
2060        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2061
2062        let mut sorted_deferred_draws =
2063            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2064        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2065        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2066
2067        let mut prompt_element = None;
2068        let mut active_drag_element = None;
2069        let mut tooltip_element = None;
2070        if let Some(prompt) = self.prompt.take() {
2071            let mut element = prompt.view.any_view().into_any();
2072            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2073            prompt_element = Some(element);
2074            self.prompt = Some(prompt);
2075        } else if let Some(active_drag) = cx.active_drag.take() {
2076            let mut element = active_drag.view.clone().into_any();
2077            let offset = self.mouse_position() - active_drag.cursor_offset;
2078            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2079            active_drag_element = Some(element);
2080            cx.active_drag = Some(active_drag);
2081        } else {
2082            tooltip_element = self.prepaint_tooltip(cx);
2083        }
2084
2085        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2086
2087        // Now actually paint the elements.
2088        self.invalidator.set_phase(DrawPhase::Paint);
2089        root_element.paint(self, cx);
2090
2091        #[cfg(any(feature = "inspector", debug_assertions))]
2092        self.paint_inspector(inspector_element, cx);
2093
2094        self.paint_deferred_draws(&sorted_deferred_draws, cx);
2095
2096        if let Some(mut prompt_element) = prompt_element {
2097            prompt_element.paint(self, cx);
2098        } else if let Some(mut drag_element) = active_drag_element {
2099            drag_element.paint(self, cx);
2100        } else if let Some(mut tooltip_element) = tooltip_element {
2101            tooltip_element.paint(self, cx);
2102        }
2103
2104        #[cfg(any(feature = "inspector", debug_assertions))]
2105        self.paint_inspector_hitbox(cx);
2106    }
2107
2108    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2109        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2110        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2111            let Some(Some(tooltip_request)) = self
2112                .next_frame
2113                .tooltip_requests
2114                .get(tooltip_request_index)
2115                .cloned()
2116            else {
2117                log::error!("Unexpectedly absent TooltipRequest");
2118                continue;
2119            };
2120            let mut element = tooltip_request.tooltip.view.clone().into_any();
2121            let mouse_position = tooltip_request.tooltip.mouse_position;
2122            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2123
2124            let mut tooltip_bounds =
2125                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2126            let window_bounds = Bounds {
2127                origin: Point::default(),
2128                size: self.viewport_size(),
2129            };
2130
2131            if tooltip_bounds.right() > window_bounds.right() {
2132                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2133                if new_x >= Pixels::ZERO {
2134                    tooltip_bounds.origin.x = new_x;
2135                } else {
2136                    tooltip_bounds.origin.x = cmp::max(
2137                        Pixels::ZERO,
2138                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2139                    );
2140                }
2141            }
2142
2143            if tooltip_bounds.bottom() > window_bounds.bottom() {
2144                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2145                if new_y >= Pixels::ZERO {
2146                    tooltip_bounds.origin.y = new_y;
2147                } else {
2148                    tooltip_bounds.origin.y = cmp::max(
2149                        Pixels::ZERO,
2150                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2151                    );
2152                }
2153            }
2154
2155            // It's possible for an element to have an active tooltip while not being painted (e.g.
2156            // via the `visible_on_hover` method). Since mouse listeners are not active in this
2157            // case, instead update the tooltip's visibility here.
2158            let is_visible =
2159                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2160            if !is_visible {
2161                continue;
2162            }
2163
2164            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2165                element.prepaint(window, cx)
2166            });
2167
2168            self.tooltip_bounds = Some(TooltipBounds {
2169                id: tooltip_request.id,
2170                bounds: tooltip_bounds,
2171            });
2172            return Some(element);
2173        }
2174        None
2175    }
2176
2177    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2178        assert_eq!(self.element_id_stack.len(), 0);
2179
2180        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2181        for deferred_draw_ix in deferred_draw_indices {
2182            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2183            self.element_id_stack
2184                .clone_from(&deferred_draw.element_id_stack);
2185            self.text_style_stack
2186                .clone_from(&deferred_draw.text_style_stack);
2187            self.next_frame
2188                .dispatch_tree
2189                .set_active_node(deferred_draw.parent_node);
2190
2191            let prepaint_start = self.prepaint_index();
2192            if let Some(element) = deferred_draw.element.as_mut() {
2193                self.with_rendered_view(deferred_draw.current_view, |window| {
2194                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2195                        element.prepaint(window, cx)
2196                    });
2197                })
2198            } else {
2199                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2200            }
2201            let prepaint_end = self.prepaint_index();
2202            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2203        }
2204        assert_eq!(
2205            self.next_frame.deferred_draws.len(),
2206            0,
2207            "cannot call defer_draw during deferred drawing"
2208        );
2209        self.next_frame.deferred_draws = deferred_draws;
2210        self.element_id_stack.clear();
2211        self.text_style_stack.clear();
2212    }
2213
2214    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2215        assert_eq!(self.element_id_stack.len(), 0);
2216
2217        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2218        for deferred_draw_ix in deferred_draw_indices {
2219            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2220            self.element_id_stack
2221                .clone_from(&deferred_draw.element_id_stack);
2222            self.next_frame
2223                .dispatch_tree
2224                .set_active_node(deferred_draw.parent_node);
2225
2226            let paint_start = self.paint_index();
2227            if let Some(element) = deferred_draw.element.as_mut() {
2228                self.with_rendered_view(deferred_draw.current_view, |window| {
2229                    element.paint(window, cx);
2230                })
2231            } else {
2232                self.reuse_paint(deferred_draw.paint_range.clone());
2233            }
2234            let paint_end = self.paint_index();
2235            deferred_draw.paint_range = paint_start..paint_end;
2236        }
2237        self.next_frame.deferred_draws = deferred_draws;
2238        self.element_id_stack.clear();
2239    }
2240
2241    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2242        PrepaintStateIndex {
2243            hitboxes_index: self.next_frame.hitboxes.len(),
2244            tooltips_index: self.next_frame.tooltip_requests.len(),
2245            deferred_draws_index: self.next_frame.deferred_draws.len(),
2246            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2247            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2248            line_layout_index: self.text_system.layout_index(),
2249        }
2250    }
2251
2252    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2253        self.next_frame.hitboxes.extend(
2254            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2255                .iter()
2256                .cloned(),
2257        );
2258        self.next_frame.tooltip_requests.extend(
2259            self.rendered_frame.tooltip_requests
2260                [range.start.tooltips_index..range.end.tooltips_index]
2261                .iter_mut()
2262                .map(|request| request.take()),
2263        );
2264        self.next_frame.accessed_element_states.extend(
2265            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2266                ..range.end.accessed_element_states_index]
2267                .iter()
2268                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2269        );
2270        self.text_system
2271            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2272
2273        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2274            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2275            &mut self.rendered_frame.dispatch_tree,
2276            self.focus,
2277        );
2278
2279        if reused_subtree.contains_focus() {
2280            self.next_frame.focus = self.focus;
2281        }
2282
2283        self.next_frame.deferred_draws.extend(
2284            self.rendered_frame.deferred_draws
2285                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2286                .iter()
2287                .map(|deferred_draw| DeferredDraw {
2288                    current_view: deferred_draw.current_view,
2289                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2290                    element_id_stack: deferred_draw.element_id_stack.clone(),
2291                    text_style_stack: deferred_draw.text_style_stack.clone(),
2292                    priority: deferred_draw.priority,
2293                    element: None,
2294                    absolute_offset: deferred_draw.absolute_offset,
2295                    prepaint_range: deferred_draw.prepaint_range.clone(),
2296                    paint_range: deferred_draw.paint_range.clone(),
2297                }),
2298        );
2299    }
2300
2301    pub(crate) fn paint_index(&self) -> PaintIndex {
2302        PaintIndex {
2303            scene_index: self.next_frame.scene.len(),
2304            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2305            input_handlers_index: self.next_frame.input_handlers.len(),
2306            cursor_styles_index: self.next_frame.cursor_styles.len(),
2307            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2308            tab_handle_index: self.next_frame.tab_handles.handles.len(),
2309            line_layout_index: self.text_system.layout_index(),
2310        }
2311    }
2312
2313    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2314        self.next_frame.cursor_styles.extend(
2315            self.rendered_frame.cursor_styles
2316                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2317                .iter()
2318                .cloned(),
2319        );
2320        self.next_frame.input_handlers.extend(
2321            self.rendered_frame.input_handlers
2322                [range.start.input_handlers_index..range.end.input_handlers_index]
2323                .iter_mut()
2324                .map(|handler| handler.take()),
2325        );
2326        self.next_frame.mouse_listeners.extend(
2327            self.rendered_frame.mouse_listeners
2328                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2329                .iter_mut()
2330                .map(|listener| listener.take()),
2331        );
2332        self.next_frame.accessed_element_states.extend(
2333            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2334                ..range.end.accessed_element_states_index]
2335                .iter()
2336                .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2337        );
2338        self.next_frame.tab_handles.handles.extend(
2339            self.rendered_frame.tab_handles.handles
2340                [range.start.tab_handle_index..range.end.tab_handle_index]
2341                .iter()
2342                .cloned(),
2343        );
2344
2345        self.text_system
2346            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2347        self.next_frame.scene.replay(
2348            range.start.scene_index..range.end.scene_index,
2349            &self.rendered_frame.scene,
2350        );
2351    }
2352
2353    /// Push a text style onto the stack, and call a function with that style active.
2354    /// Use [`Window::text_style`] to get the current, combined text style. This method
2355    /// should only be called as part of element drawing.
2356    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2357    where
2358        F: FnOnce(&mut Self) -> R,
2359    {
2360        self.invalidator.debug_assert_paint_or_prepaint();
2361        if let Some(style) = style {
2362            self.text_style_stack.push(style);
2363            let result = f(self);
2364            self.text_style_stack.pop();
2365            result
2366        } else {
2367            f(self)
2368        }
2369    }
2370
2371    /// Updates the cursor style at the platform level. This method should only be called
2372    /// during the prepaint phase of element drawing.
2373    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2374        self.invalidator.debug_assert_paint();
2375        self.next_frame.cursor_styles.push(CursorStyleRequest {
2376            hitbox_id: Some(hitbox.id),
2377            style,
2378        });
2379    }
2380
2381    /// Updates the cursor style for the entire window at the platform level. A cursor
2382    /// style using this method will have precedence over any cursor style set using
2383    /// `set_cursor_style`. This method should only be called during the prepaint
2384    /// phase of element drawing.
2385    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2386        self.invalidator.debug_assert_paint();
2387        self.next_frame.cursor_styles.push(CursorStyleRequest {
2388            hitbox_id: None,
2389            style,
2390        })
2391    }
2392
2393    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2394    /// during the paint phase of element drawing.
2395    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2396        self.invalidator.debug_assert_prepaint();
2397        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2398        self.next_frame
2399            .tooltip_requests
2400            .push(Some(TooltipRequest { id, tooltip }));
2401        id
2402    }
2403
2404    /// Invoke the given function with the given content mask after intersecting it
2405    /// with the current mask. This method should only be called during element drawing.
2406    pub fn with_content_mask<R>(
2407        &mut self,
2408        mask: Option<ContentMask<Pixels>>,
2409        f: impl FnOnce(&mut Self) -> R,
2410    ) -> R {
2411        self.invalidator.debug_assert_paint_or_prepaint();
2412        if let Some(mask) = mask {
2413            let mask = mask.intersect(&self.content_mask());
2414            self.content_mask_stack.push(mask);
2415            let result = f(self);
2416            self.content_mask_stack.pop();
2417            result
2418        } else {
2419            f(self)
2420        }
2421    }
2422
2423    /// Updates the global element offset relative to the current offset. This is used to implement
2424    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2425    pub fn with_element_offset<R>(
2426        &mut self,
2427        offset: Point<Pixels>,
2428        f: impl FnOnce(&mut Self) -> R,
2429    ) -> R {
2430        self.invalidator.debug_assert_prepaint();
2431
2432        if offset.is_zero() {
2433            return f(self);
2434        };
2435
2436        let abs_offset = self.element_offset() + offset;
2437        self.with_absolute_element_offset(abs_offset, f)
2438    }
2439
2440    /// Updates the global element offset based on the given offset. This is used to implement
2441    /// drag handles and other manual painting of elements. This method should only be called during
2442    /// the prepaint phase of element drawing.
2443    pub fn with_absolute_element_offset<R>(
2444        &mut self,
2445        offset: Point<Pixels>,
2446        f: impl FnOnce(&mut Self) -> R,
2447    ) -> R {
2448        self.invalidator.debug_assert_prepaint();
2449        self.element_offset_stack.push(offset);
2450        let result = f(self);
2451        self.element_offset_stack.pop();
2452        result
2453    }
2454
2455    pub(crate) fn with_element_opacity<R>(
2456        &mut self,
2457        opacity: Option<f32>,
2458        f: impl FnOnce(&mut Self) -> R,
2459    ) -> R {
2460        if opacity.is_none() {
2461            return f(self);
2462        }
2463
2464        self.invalidator.debug_assert_paint_or_prepaint();
2465        self.element_opacity = opacity;
2466        let result = f(self);
2467        self.element_opacity = None;
2468        result
2469    }
2470
2471    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2472    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2473    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2474    /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2475    /// called during the prepaint phase of element drawing.
2476    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2477        self.invalidator.debug_assert_prepaint();
2478        let index = self.prepaint_index();
2479        let result = f(self);
2480        if result.is_err() {
2481            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2482            self.next_frame
2483                .tooltip_requests
2484                .truncate(index.tooltips_index);
2485            self.next_frame
2486                .deferred_draws
2487                .truncate(index.deferred_draws_index);
2488            self.next_frame
2489                .dispatch_tree
2490                .truncate(index.dispatch_tree_index);
2491            self.next_frame
2492                .accessed_element_states
2493                .truncate(index.accessed_element_states_index);
2494            self.text_system.truncate_layouts(index.line_layout_index);
2495        }
2496        result
2497    }
2498
2499    /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2500    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2501    /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2502    /// that supports this method being called on the elements it contains. This method should only be
2503    /// called during the prepaint phase of element drawing.
2504    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2505        self.invalidator.debug_assert_prepaint();
2506        self.requested_autoscroll = Some(bounds);
2507    }
2508
2509    /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2510    /// described in [`Self::request_autoscroll`].
2511    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2512        self.invalidator.debug_assert_prepaint();
2513        self.requested_autoscroll.take()
2514    }
2515
2516    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2517    /// Your view will be re-drawn once the asset has finished loading.
2518    ///
2519    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2520    /// time.
2521    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2522        let (task, is_first) = cx.fetch_asset::<A>(source);
2523        task.clone().now_or_never().or_else(|| {
2524            if is_first {
2525                let entity_id = self.current_view();
2526                self.spawn(cx, {
2527                    let task = task.clone();
2528                    async move |cx| {
2529                        task.await;
2530
2531                        cx.on_next_frame(move |_, cx| {
2532                            cx.notify(entity_id);
2533                        });
2534                    }
2535                })
2536                .detach();
2537            }
2538
2539            None
2540        })
2541    }
2542
2543    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2544    /// Your view will not be re-drawn once the asset has finished loading.
2545    ///
2546    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2547    /// time.
2548    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2549        let (task, _) = cx.fetch_asset::<A>(source);
2550        task.now_or_never()
2551    }
2552    /// Obtain the current element offset. This method should only be called during the
2553    /// prepaint phase of element drawing.
2554    pub fn element_offset(&self) -> Point<Pixels> {
2555        self.invalidator.debug_assert_prepaint();
2556        self.element_offset_stack
2557            .last()
2558            .copied()
2559            .unwrap_or_default()
2560    }
2561
2562    /// Obtain the current element opacity. This method should only be called during the
2563    /// prepaint phase of element drawing.
2564    pub(crate) fn element_opacity(&self) -> f32 {
2565        self.invalidator.debug_assert_paint_or_prepaint();
2566        self.element_opacity.unwrap_or(1.0)
2567    }
2568
2569    /// Obtain the current content mask. This method should only be called during element drawing.
2570    pub fn content_mask(&self) -> ContentMask<Pixels> {
2571        self.invalidator.debug_assert_paint_or_prepaint();
2572        self.content_mask_stack
2573            .last()
2574            .cloned()
2575            .unwrap_or_else(|| ContentMask {
2576                bounds: Bounds {
2577                    origin: Point::default(),
2578                    size: self.viewport_size,
2579                },
2580                ..Default::default()
2581            })
2582    }
2583
2584    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2585    /// This can be used within a custom element to distinguish multiple sets of child elements.
2586    pub fn with_element_namespace<R>(
2587        &mut self,
2588        element_id: impl Into<ElementId>,
2589        f: impl FnOnce(&mut Self) -> R,
2590    ) -> R {
2591        self.element_id_stack.push(element_id.into());
2592        let result = f(self);
2593        self.element_id_stack.pop();
2594        result
2595    }
2596
2597    /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2598    pub fn use_keyed_state<S: 'static>(
2599        &mut self,
2600        key: impl Into<ElementId>,
2601        cx: &mut App,
2602        init: impl FnOnce(&mut Self, &mut App) -> S,
2603    ) -> Entity<S> {
2604        let current_view = self.current_view();
2605        self.with_global_id(key.into(), |global_id, window| {
2606            window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2607                if let Some(state) = state {
2608                    (state.clone(), state)
2609                } else {
2610                    let new_state = cx.new(|cx| init(window, cx));
2611                    cx.observe(&new_state, move |_, cx| {
2612                        cx.notify(current_view);
2613                    })
2614                    .detach();
2615                    (new_state.clone(), new_state)
2616                }
2617            })
2618        })
2619    }
2620
2621    /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2622    pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2623        self.with_global_id(id.into(), |_, window| f(window))
2624    }
2625
2626    /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2627    ///
2628    /// NOTE: This method uses the location of the caller to generate an ID for this state.
2629    ///       If this is not sufficient to identify your state (e.g. you're rendering a list item),
2630    ///       you can provide a custom ElementID using the `use_keyed_state` method.
2631    #[track_caller]
2632    pub fn use_state<S: 'static>(
2633        &mut self,
2634        cx: &mut App,
2635        init: impl FnOnce(&mut Self, &mut App) -> S,
2636    ) -> Entity<S> {
2637        self.use_keyed_state(
2638            ElementId::CodeLocation(*core::panic::Location::caller()),
2639            cx,
2640            init,
2641        )
2642    }
2643
2644    /// Updates or initializes state for an element with the given id that lives across multiple
2645    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2646    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2647    /// when drawing the next frame. This method should only be called as part of element drawing.
2648    pub fn with_element_state<S, R>(
2649        &mut self,
2650        global_id: &GlobalElementId,
2651        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2652    ) -> R
2653    where
2654        S: 'static,
2655    {
2656        self.invalidator.debug_assert_paint_or_prepaint();
2657
2658        let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2659        self.next_frame
2660            .accessed_element_states
2661            .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2662
2663        if let Some(any) = self
2664            .next_frame
2665            .element_states
2666            .remove(&key)
2667            .or_else(|| self.rendered_frame.element_states.remove(&key))
2668        {
2669            let ElementStateBox {
2670                inner,
2671                #[cfg(debug_assertions)]
2672                type_name,
2673            } = any;
2674            // Using the extra inner option to avoid needing to reallocate a new box.
2675            let mut state_box = inner
2676                .downcast::<Option<S>>()
2677                .map_err(|_| {
2678                    #[cfg(debug_assertions)]
2679                    {
2680                        anyhow::anyhow!(
2681                            "invalid element state type for id, requested {:?}, actual: {:?}",
2682                            std::any::type_name::<S>(),
2683                            type_name
2684                        )
2685                    }
2686
2687                    #[cfg(not(debug_assertions))]
2688                    {
2689                        anyhow::anyhow!(
2690                            "invalid element state type for id, requested {:?}",
2691                            std::any::type_name::<S>(),
2692                        )
2693                    }
2694                })
2695                .unwrap();
2696
2697            let state = state_box.take().expect(
2698                "reentrant call to with_element_state for the same state type and element id",
2699            );
2700            let (result, state) = f(Some(state), self);
2701            state_box.replace(state);
2702            self.next_frame.element_states.insert(
2703                key,
2704                ElementStateBox {
2705                    inner: state_box,
2706                    #[cfg(debug_assertions)]
2707                    type_name,
2708                },
2709            );
2710            result
2711        } else {
2712            let (result, state) = f(None, self);
2713            self.next_frame.element_states.insert(
2714                key,
2715                ElementStateBox {
2716                    inner: Box::new(Some(state)),
2717                    #[cfg(debug_assertions)]
2718                    type_name: std::any::type_name::<S>(),
2719                },
2720            );
2721            result
2722        }
2723    }
2724
2725    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2726    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2727    /// when the element is guaranteed to have an id.
2728    ///
2729    /// The first option means 'no ID provided'
2730    /// The second option means 'not yet initialized'
2731    pub fn with_optional_element_state<S, R>(
2732        &mut self,
2733        global_id: Option<&GlobalElementId>,
2734        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2735    ) -> R
2736    where
2737        S: 'static,
2738    {
2739        self.invalidator.debug_assert_paint_or_prepaint();
2740
2741        if let Some(global_id) = global_id {
2742            self.with_element_state(global_id, |state, cx| {
2743                let (result, state) = f(Some(state), cx);
2744                let state =
2745                    state.expect("you must return some state when you pass some element id");
2746                (result, state)
2747            })
2748        } else {
2749            let (result, state) = f(None, self);
2750            debug_assert!(
2751                state.is_none(),
2752                "you must not return an element state when passing None for the global id"
2753            );
2754            result
2755        }
2756    }
2757
2758    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2759    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2760    /// with higher values being drawn on top.
2761    ///
2762    /// This method should only be called as part of the prepaint phase of element drawing.
2763    pub fn defer_draw(
2764        &mut self,
2765        element: AnyElement,
2766        absolute_offset: Point<Pixels>,
2767        priority: usize,
2768    ) {
2769        self.invalidator.debug_assert_prepaint();
2770        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2771        self.next_frame.deferred_draws.push(DeferredDraw {
2772            current_view: self.current_view(),
2773            parent_node,
2774            element_id_stack: self.element_id_stack.clone(),
2775            text_style_stack: self.text_style_stack.clone(),
2776            priority,
2777            element: Some(element),
2778            absolute_offset,
2779            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2780            paint_range: PaintIndex::default()..PaintIndex::default(),
2781        });
2782    }
2783
2784    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2785    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2786    /// for performance reasons.
2787    ///
2788    /// This method should only be called as part of the paint phase of element drawing.
2789    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2790        self.invalidator.debug_assert_paint();
2791
2792        let scale_factor = self.scale_factor();
2793        let content_mask = self.content_mask();
2794        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2795        if !clipped_bounds.is_empty() {
2796            self.next_frame
2797                .scene
2798                .push_layer(clipped_bounds.scale(scale_factor));
2799        }
2800
2801        let result = f(self);
2802
2803        if !clipped_bounds.is_empty() {
2804            self.next_frame.scene.pop_layer();
2805        }
2806
2807        result
2808    }
2809
2810    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2811    ///
2812    /// This method should only be called as part of the paint phase of element drawing.
2813    pub fn paint_shadows(
2814        &mut self,
2815        bounds: Bounds<Pixels>,
2816        corner_radii: Corners<Pixels>,
2817        shadows: &[BoxShadow],
2818    ) {
2819        self.invalidator.debug_assert_paint();
2820
2821        let scale_factor = self.scale_factor();
2822        let content_mask = self.content_mask();
2823        let opacity = self.element_opacity();
2824        for shadow in shadows {
2825            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2826            self.next_frame.scene.insert_primitive(Shadow {
2827                order: 0,
2828                blur_radius: shadow.blur_radius.scale(scale_factor),
2829                bounds: shadow_bounds.scale(scale_factor),
2830                content_mask: content_mask.scale(scale_factor),
2831                corner_radii: corner_radii.scale(scale_factor),
2832                color: shadow.color.opacity(opacity),
2833            });
2834        }
2835    }
2836
2837    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2838    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2839    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2840    ///
2841    /// This method should only be called as part of the paint phase of element drawing.
2842    ///
2843    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2844    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2845    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2846    pub fn paint_quad(&mut self, quad: PaintQuad) {
2847        self.invalidator.debug_assert_paint();
2848
2849        let scale_factor = self.scale_factor();
2850        let content_mask = self.content_mask();
2851        let opacity = self.element_opacity();
2852        self.next_frame.scene.insert_primitive(Quad {
2853            order: 0,
2854            bounds: quad.bounds.scale(scale_factor),
2855            content_mask: content_mask.scale(scale_factor),
2856            background: quad.background.opacity(opacity),
2857            border_color: quad.border_color.opacity(opacity),
2858            corner_radii: quad.corner_radii.scale(scale_factor),
2859            border_widths: quad.border_widths.scale(scale_factor),
2860            border_style: quad.border_style,
2861        });
2862    }
2863
2864    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2865    ///
2866    /// This method should only be called as part of the paint phase of element drawing.
2867    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2868        self.invalidator.debug_assert_paint();
2869
2870        let scale_factor = self.scale_factor();
2871        let content_mask = self.content_mask();
2872        let opacity = self.element_opacity();
2873        path.content_mask = content_mask;
2874        let color: Background = color.into();
2875        path.color = color.opacity(opacity);
2876        self.next_frame
2877            .scene
2878            .insert_primitive(path.scale(scale_factor));
2879    }
2880
2881    /// Paint an underline into the scene for the next frame at the current z-index.
2882    ///
2883    /// This method should only be called as part of the paint phase of element drawing.
2884    pub fn paint_underline(
2885        &mut self,
2886        origin: Point<Pixels>,
2887        width: Pixels,
2888        style: &UnderlineStyle,
2889    ) {
2890        self.invalidator.debug_assert_paint();
2891
2892        let scale_factor = self.scale_factor();
2893        let height = if style.wavy {
2894            style.thickness * 3.
2895        } else {
2896            style.thickness
2897        };
2898        let bounds = Bounds {
2899            origin,
2900            size: size(width, height),
2901        };
2902        let content_mask = self.content_mask();
2903        let element_opacity = self.element_opacity();
2904
2905        self.next_frame.scene.insert_primitive(Underline {
2906            order: 0,
2907            pad: 0,
2908            bounds: bounds.scale(scale_factor),
2909            content_mask: content_mask.scale(scale_factor),
2910            color: style.color.unwrap_or_default().opacity(element_opacity),
2911            thickness: style.thickness.scale(scale_factor),
2912            wavy: if style.wavy { 1 } else { 0 },
2913        });
2914    }
2915
2916    /// Paint a strikethrough into the scene for the next frame at the current z-index.
2917    ///
2918    /// This method should only be called as part of the paint phase of element drawing.
2919    pub fn paint_strikethrough(
2920        &mut self,
2921        origin: Point<Pixels>,
2922        width: Pixels,
2923        style: &StrikethroughStyle,
2924    ) {
2925        self.invalidator.debug_assert_paint();
2926
2927        let scale_factor = self.scale_factor();
2928        let height = style.thickness;
2929        let bounds = Bounds {
2930            origin,
2931            size: size(width, height),
2932        };
2933        let content_mask = self.content_mask();
2934        let opacity = self.element_opacity();
2935
2936        self.next_frame.scene.insert_primitive(Underline {
2937            order: 0,
2938            pad: 0,
2939            bounds: bounds.scale(scale_factor),
2940            content_mask: content_mask.scale(scale_factor),
2941            thickness: style.thickness.scale(scale_factor),
2942            color: style.color.unwrap_or_default().opacity(opacity),
2943            wavy: 0,
2944        });
2945    }
2946
2947    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2948    ///
2949    /// The y component of the origin is the baseline of the glyph.
2950    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2951    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2952    /// This method is only useful if you need to paint a single glyph that has already been shaped.
2953    ///
2954    /// This method should only be called as part of the paint phase of element drawing.
2955    pub fn paint_glyph(
2956        &mut self,
2957        origin: Point<Pixels>,
2958        font_id: FontId,
2959        glyph_id: GlyphId,
2960        font_size: Pixels,
2961        color: Hsla,
2962    ) -> Result<()> {
2963        self.invalidator.debug_assert_paint();
2964
2965        let element_opacity = self.element_opacity();
2966        let scale_factor = self.scale_factor();
2967        let glyph_origin = origin.scale(scale_factor);
2968        let subpixel_variant = Point {
2969            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2970            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2971        };
2972        let params = RenderGlyphParams {
2973            font_id,
2974            glyph_id,
2975            font_size,
2976            subpixel_variant,
2977            scale_factor,
2978            is_emoji: false,
2979        };
2980
2981        let raster_bounds = self.text_system().raster_bounds(&params)?;
2982        if !raster_bounds.is_zero() {
2983            let tile = self
2984                .sprite_atlas
2985                .get_or_insert_with(&params.clone().into(), &mut || {
2986                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
2987                    Ok(Some((size, Cow::Owned(bytes))))
2988                })?
2989                .expect("Callback above only errors or returns Some");
2990            let bounds = Bounds {
2991                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2992                size: tile.bounds.size.map(Into::into),
2993            };
2994            let content_mask = self.content_mask().scale(scale_factor);
2995            self.next_frame.scene.insert_primitive(MonochromeSprite {
2996                order: 0,
2997                pad: 0,
2998                bounds,
2999                content_mask,
3000                color: color.opacity(element_opacity),
3001                tile,
3002                transformation: TransformationMatrix::unit(),
3003            });
3004        }
3005        Ok(())
3006    }
3007
3008    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3009    ///
3010    /// The y component of the origin is the baseline of the glyph.
3011    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3012    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3013    /// This method is only useful if you need to paint a single emoji that has already been shaped.
3014    ///
3015    /// This method should only be called as part of the paint phase of element drawing.
3016    pub fn paint_emoji(
3017        &mut self,
3018        origin: Point<Pixels>,
3019        font_id: FontId,
3020        glyph_id: GlyphId,
3021        font_size: Pixels,
3022    ) -> Result<()> {
3023        self.invalidator.debug_assert_paint();
3024
3025        let scale_factor = self.scale_factor();
3026        let glyph_origin = origin.scale(scale_factor);
3027        let params = RenderGlyphParams {
3028            font_id,
3029            glyph_id,
3030            font_size,
3031            // We don't render emojis with subpixel variants.
3032            subpixel_variant: Default::default(),
3033            scale_factor,
3034            is_emoji: true,
3035        };
3036
3037        let raster_bounds = self.text_system().raster_bounds(&params)?;
3038        if !raster_bounds.is_zero() {
3039            let tile = self
3040                .sprite_atlas
3041                .get_or_insert_with(&params.clone().into(), &mut || {
3042                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3043                    Ok(Some((size, Cow::Owned(bytes))))
3044                })?
3045                .expect("Callback above only errors or returns Some");
3046
3047            let bounds = Bounds {
3048                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3049                size: tile.bounds.size.map(Into::into),
3050            };
3051            let content_mask = self.content_mask().scale(scale_factor);
3052            let opacity = self.element_opacity();
3053
3054            self.next_frame.scene.insert_primitive(PolychromeSprite {
3055                order: 0,
3056                pad: 0,
3057                grayscale: false,
3058                bounds,
3059                corner_radii: Default::default(),
3060                content_mask,
3061                tile,
3062                opacity,
3063            });
3064        }
3065        Ok(())
3066    }
3067
3068    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3069    ///
3070    /// This method should only be called as part of the paint phase of element drawing.
3071    pub fn paint_svg(
3072        &mut self,
3073        bounds: Bounds<Pixels>,
3074        path: SharedString,
3075        transformation: TransformationMatrix,
3076        color: Hsla,
3077        cx: &App,
3078    ) -> Result<()> {
3079        self.invalidator.debug_assert_paint();
3080
3081        let element_opacity = self.element_opacity();
3082        let scale_factor = self.scale_factor();
3083        let bounds = bounds.scale(scale_factor);
3084        let params = RenderSvgParams {
3085            path,
3086            size: bounds.size.map(|pixels| {
3087                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3088            }),
3089        };
3090
3091        let Some(tile) =
3092            self.sprite_atlas
3093                .get_or_insert_with(&params.clone().into(), &mut || {
3094                    let Some(bytes) = cx.svg_renderer.render(&params)? else {
3095                        return Ok(None);
3096                    };
3097                    Ok(Some((params.size, Cow::Owned(bytes))))
3098                })?
3099        else {
3100            return Ok(());
3101        };
3102        let content_mask = self.content_mask().scale(scale_factor);
3103
3104        self.next_frame.scene.insert_primitive(MonochromeSprite {
3105            order: 0,
3106            pad: 0,
3107            bounds: bounds
3108                .map_origin(|origin| origin.floor())
3109                .map_size(|size| size.ceil()),
3110            content_mask,
3111            color: color.opacity(element_opacity),
3112            tile,
3113            transformation,
3114        });
3115
3116        Ok(())
3117    }
3118
3119    /// Paint an image into the scene for the next frame at the current z-index.
3120    /// This method will panic if the frame_index is not valid
3121    ///
3122    /// This method should only be called as part of the paint phase of element drawing.
3123    pub fn paint_image(
3124        &mut self,
3125        bounds: Bounds<Pixels>,
3126        corner_radii: Corners<Pixels>,
3127        data: Arc<RenderImage>,
3128        frame_index: usize,
3129        grayscale: bool,
3130    ) -> Result<()> {
3131        self.invalidator.debug_assert_paint();
3132
3133        let scale_factor = self.scale_factor();
3134        let bounds = bounds.scale(scale_factor);
3135        let params = RenderImageParams {
3136            image_id: data.id,
3137            frame_index,
3138        };
3139
3140        let tile = self
3141            .sprite_atlas
3142            .get_or_insert_with(&params.into(), &mut || {
3143                Ok(Some((
3144                    data.size(frame_index),
3145                    Cow::Borrowed(
3146                        data.as_bytes(frame_index)
3147                            .expect("It's the caller's job to pass a valid frame index"),
3148                    ),
3149                )))
3150            })?
3151            .expect("Callback above only returns Some");
3152        let content_mask = self.content_mask().scale(scale_factor);
3153        let corner_radii = corner_radii.scale(scale_factor);
3154        let opacity = self.element_opacity();
3155
3156        self.next_frame.scene.insert_primitive(PolychromeSprite {
3157            order: 0,
3158            pad: 0,
3159            grayscale,
3160            bounds: bounds
3161                .map_origin(|origin| origin.floor())
3162                .map_size(|size| size.ceil()),
3163            content_mask,
3164            corner_radii,
3165            tile,
3166            opacity,
3167        });
3168        Ok(())
3169    }
3170
3171    /// Paint a surface into the scene for the next frame at the current z-index.
3172    ///
3173    /// This method should only be called as part of the paint phase of element drawing.
3174    #[cfg(target_os = "macos")]
3175    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3176        use crate::PaintSurface;
3177
3178        self.invalidator.debug_assert_paint();
3179
3180        let scale_factor = self.scale_factor();
3181        let bounds = bounds.scale(scale_factor);
3182        let content_mask = self.content_mask().scale(scale_factor);
3183        self.next_frame.scene.insert_primitive(PaintSurface {
3184            order: 0,
3185            bounds,
3186            content_mask,
3187            image_buffer,
3188        });
3189    }
3190
3191    /// Removes an image from the sprite atlas.
3192    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3193        for frame_index in 0..data.frame_count() {
3194            let params = RenderImageParams {
3195                image_id: data.id,
3196                frame_index,
3197            };
3198
3199            self.sprite_atlas.remove(&params.clone().into());
3200        }
3201
3202        Ok(())
3203    }
3204
3205    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3206    /// layout is being requested, along with the layout ids of any children. This method is called during
3207    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3208    ///
3209    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3210    #[must_use]
3211    pub fn request_layout(
3212        &mut self,
3213        style: Style,
3214        children: impl IntoIterator<Item = LayoutId>,
3215        cx: &mut App,
3216    ) -> LayoutId {
3217        self.invalidator.debug_assert_prepaint();
3218
3219        cx.layout_id_buffer.clear();
3220        cx.layout_id_buffer.extend(children);
3221        let rem_size = self.rem_size();
3222
3223        self.layout_engine
3224            .as_mut()
3225            .unwrap()
3226            .request_layout(style, rem_size, &cx.layout_id_buffer)
3227    }
3228
3229    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3230    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3231    /// determine the element's size. One place this is used internally is when measuring text.
3232    ///
3233    /// The given closure is invoked at layout time with the known dimensions and available space and
3234    /// returns a `Size`.
3235    ///
3236    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3237    pub fn request_measured_layout<
3238        F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3239            + 'static,
3240    >(
3241        &mut self,
3242        style: Style,
3243        measure: F,
3244    ) -> LayoutId {
3245        self.invalidator.debug_assert_prepaint();
3246
3247        let rem_size = self.rem_size();
3248        self.layout_engine
3249            .as_mut()
3250            .unwrap()
3251            .request_measured_layout(style, rem_size, measure)
3252    }
3253
3254    /// Compute the layout for the given id within the given available space.
3255    /// This method is called for its side effect, typically by the framework prior to painting.
3256    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3257    ///
3258    /// This method should only be called as part of the prepaint phase of element drawing.
3259    pub fn compute_layout(
3260        &mut self,
3261        layout_id: LayoutId,
3262        available_space: Size<AvailableSpace>,
3263        cx: &mut App,
3264    ) {
3265        self.invalidator.debug_assert_prepaint();
3266
3267        let mut layout_engine = self.layout_engine.take().unwrap();
3268        layout_engine.compute_layout(layout_id, available_space, self, cx);
3269        self.layout_engine = Some(layout_engine);
3270    }
3271
3272    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3273    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3274    ///
3275    /// This method should only be called as part of element drawing.
3276    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3277        self.invalidator.debug_assert_prepaint();
3278
3279        let mut bounds = self
3280            .layout_engine
3281            .as_mut()
3282            .unwrap()
3283            .layout_bounds(layout_id)
3284            .map(Into::into);
3285        bounds.origin += self.element_offset();
3286        bounds
3287    }
3288
3289    /// This method should be called during `prepaint`. You can use
3290    /// the returned [Hitbox] during `paint` or in an event handler
3291    /// to determine whether the inserted hitbox was the topmost.
3292    ///
3293    /// This method should only be called as part of the prepaint phase of element drawing.
3294    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3295        self.invalidator.debug_assert_prepaint();
3296
3297        let content_mask = self.content_mask();
3298        let mut id = self.next_hitbox_id;
3299        self.next_hitbox_id = self.next_hitbox_id.next();
3300        let hitbox = Hitbox {
3301            id,
3302            bounds,
3303            content_mask,
3304            behavior,
3305        };
3306        self.next_frame.hitboxes.push(hitbox.clone());
3307        hitbox
3308    }
3309
3310    /// Set a hitbox which will act as a control area of the platform window.
3311    ///
3312    /// This method should only be called as part of the paint phase of element drawing.
3313    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3314        self.invalidator.debug_assert_paint();
3315        self.next_frame.window_control_hitboxes.push((area, hitbox));
3316    }
3317
3318    /// Sets the key context for the current element. This context will be used to translate
3319    /// keybindings into actions.
3320    ///
3321    /// This method should only be called as part of the paint phase of element drawing.
3322    pub fn set_key_context(&mut self, context: KeyContext) {
3323        self.invalidator.debug_assert_paint();
3324        self.next_frame.dispatch_tree.set_key_context(context);
3325    }
3326
3327    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3328    /// and keyboard event dispatch for the element.
3329    ///
3330    /// This method should only be called as part of the prepaint phase of element drawing.
3331    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3332        self.invalidator.debug_assert_prepaint();
3333        if focus_handle.is_focused(self) {
3334            self.next_frame.focus = Some(focus_handle.id);
3335        }
3336        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3337    }
3338
3339    /// Sets the view id for the current element, which will be used to manage view caching.
3340    ///
3341    /// This method should only be called as part of element prepaint. We plan on removing this
3342    /// method eventually when we solve some issues that require us to construct editor elements
3343    /// directly instead of always using editors via views.
3344    pub fn set_view_id(&mut self, view_id: EntityId) {
3345        self.invalidator.debug_assert_prepaint();
3346        self.next_frame.dispatch_tree.set_view_id(view_id);
3347    }
3348
3349    /// Get the entity ID for the currently rendering view
3350    pub fn current_view(&self) -> EntityId {
3351        self.invalidator.debug_assert_paint_or_prepaint();
3352        self.rendered_entity_stack.last().copied().unwrap()
3353    }
3354
3355    pub(crate) fn with_rendered_view<R>(
3356        &mut self,
3357        id: EntityId,
3358        f: impl FnOnce(&mut Self) -> R,
3359    ) -> R {
3360        self.rendered_entity_stack.push(id);
3361        let result = f(self);
3362        self.rendered_entity_stack.pop();
3363        result
3364    }
3365
3366    /// Executes the provided function with the specified image cache.
3367    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3368    where
3369        F: FnOnce(&mut Self) -> R,
3370    {
3371        if let Some(image_cache) = image_cache {
3372            self.image_cache_stack.push(image_cache);
3373            let result = f(self);
3374            self.image_cache_stack.pop();
3375            result
3376        } else {
3377            f(self)
3378        }
3379    }
3380
3381    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3382    /// platform to receive textual input with proper integration with concerns such
3383    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3384    /// rendered.
3385    ///
3386    /// This method should only be called as part of the paint phase of element drawing.
3387    ///
3388    /// [element_input_handler]: crate::ElementInputHandler
3389    pub fn handle_input(
3390        &mut self,
3391        focus_handle: &FocusHandle,
3392        input_handler: impl InputHandler,
3393        cx: &App,
3394    ) {
3395        self.invalidator.debug_assert_paint();
3396
3397        if focus_handle.is_focused(self) {
3398            let cx = self.to_async(cx);
3399            self.next_frame
3400                .input_handlers
3401                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3402        }
3403    }
3404
3405    /// Register a mouse event listener on the window for the next frame. The type of event
3406    /// is determined by the first parameter of the given listener. When the next frame is rendered
3407    /// the listener will be cleared.
3408    ///
3409    /// This method should only be called as part of the paint phase of element drawing.
3410    pub fn on_mouse_event<Event: MouseEvent>(
3411        &mut self,
3412        mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3413    ) {
3414        self.invalidator.debug_assert_paint();
3415
3416        self.next_frame.mouse_listeners.push(Some(Box::new(
3417            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3418                if let Some(event) = event.downcast_ref() {
3419                    handler(event, phase, window, cx)
3420                }
3421            },
3422        )));
3423    }
3424
3425    /// Register a key event listener on the window for the next frame. The type of event
3426    /// is determined by the first parameter of the given listener. When the next frame is rendered
3427    /// the listener will be cleared.
3428    ///
3429    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3430    /// a specific need to register a global listener.
3431    ///
3432    /// This method should only be called as part of the paint phase of element drawing.
3433    pub fn on_key_event<Event: KeyEvent>(
3434        &mut self,
3435        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3436    ) {
3437        self.invalidator.debug_assert_paint();
3438
3439        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3440            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3441                if let Some(event) = event.downcast_ref::<Event>() {
3442                    listener(event, phase, window, cx)
3443                }
3444            },
3445        ));
3446    }
3447
3448    /// Register a modifiers changed event listener on the window for the next frame.
3449    ///
3450    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3451    /// a specific need to register a global listener.
3452    ///
3453    /// This method should only be called as part of the paint phase of element drawing.
3454    pub fn on_modifiers_changed(
3455        &mut self,
3456        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3457    ) {
3458        self.invalidator.debug_assert_paint();
3459
3460        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3461            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3462                listener(event, window, cx)
3463            },
3464        ));
3465    }
3466
3467    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3468    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3469    /// Returns a subscription and persists until the subscription is dropped.
3470    pub fn on_focus_in(
3471        &mut self,
3472        handle: &FocusHandle,
3473        cx: &mut App,
3474        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3475    ) -> Subscription {
3476        let focus_id = handle.id;
3477        let (subscription, activate) =
3478            self.new_focus_listener(Box::new(move |event, window, cx| {
3479                if event.is_focus_in(focus_id) {
3480                    listener(window, cx);
3481                }
3482                true
3483            }));
3484        cx.defer(move |_| activate());
3485        subscription
3486    }
3487
3488    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3489    /// Returns a subscription and persists until the subscription is dropped.
3490    pub fn on_focus_out(
3491        &mut self,
3492        handle: &FocusHandle,
3493        cx: &mut App,
3494        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3495    ) -> Subscription {
3496        let focus_id = handle.id;
3497        let (subscription, activate) =
3498            self.new_focus_listener(Box::new(move |event, window, cx| {
3499                if let Some(blurred_id) = event.previous_focus_path.last().copied()
3500                    && event.is_focus_out(focus_id)
3501                {
3502                    let event = FocusOutEvent {
3503                        blurred: WeakFocusHandle {
3504                            id: blurred_id,
3505                            handles: Arc::downgrade(&cx.focus_handles),
3506                        },
3507                    };
3508                    listener(event, window, cx)
3509                }
3510                true
3511            }));
3512        cx.defer(move |_| activate());
3513        subscription
3514    }
3515
3516    fn reset_cursor_style(&self, cx: &mut App) {
3517        // Set the cursor only if we're the active window.
3518        if self.is_window_hovered() {
3519            let style = self
3520                .rendered_frame
3521                .cursor_style(self)
3522                .unwrap_or(CursorStyle::Arrow);
3523            cx.platform.set_cursor_style(style);
3524        }
3525    }
3526
3527    /// Dispatch a given keystroke as though the user had typed it.
3528    /// You can create a keystroke with Keystroke::parse("").
3529    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3530        let keystroke = keystroke.with_simulated_ime();
3531        let result = self.dispatch_event(
3532            PlatformInput::KeyDown(KeyDownEvent {
3533                keystroke: keystroke.clone(),
3534                is_held: false,
3535            }),
3536            cx,
3537        );
3538        if !result.propagate {
3539            return true;
3540        }
3541
3542        if let Some(input) = keystroke.key_char
3543            && let Some(mut input_handler) = self.platform_window.take_input_handler()
3544        {
3545            input_handler.dispatch_input(&input, self, cx);
3546            self.platform_window.set_input_handler(input_handler);
3547            return true;
3548        }
3549
3550        false
3551    }
3552
3553    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3554    /// binding for the action (last binding added to the keymap).
3555    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3556        self.highest_precedence_binding_for_action(action)
3557            .map(|binding| {
3558                binding
3559                    .keystrokes()
3560                    .iter()
3561                    .map(ToString::to_string)
3562                    .collect::<Vec<_>>()
3563                    .join(" ")
3564            })
3565            .unwrap_or_else(|| action.name().to_string())
3566    }
3567
3568    /// Dispatch a mouse or keyboard event on the window.
3569    #[profiling::function]
3570    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3571        self.last_input_timestamp.set(Instant::now());
3572        // Handlers may set this to false by calling `stop_propagation`.
3573        cx.propagate_event = true;
3574        // Handlers may set this to true by calling `prevent_default`.
3575        self.default_prevented = false;
3576
3577        let event = match event {
3578            // Track the mouse position with our own state, since accessing the platform
3579            // API for the mouse position can only occur on the main thread.
3580            PlatformInput::MouseMove(mouse_move) => {
3581                self.mouse_position = mouse_move.position;
3582                self.modifiers = mouse_move.modifiers;
3583                PlatformInput::MouseMove(mouse_move)
3584            }
3585            PlatformInput::MouseDown(mouse_down) => {
3586                self.mouse_position = mouse_down.position;
3587                self.modifiers = mouse_down.modifiers;
3588                PlatformInput::MouseDown(mouse_down)
3589            }
3590            PlatformInput::MouseUp(mouse_up) => {
3591                self.mouse_position = mouse_up.position;
3592                self.modifiers = mouse_up.modifiers;
3593                PlatformInput::MouseUp(mouse_up)
3594            }
3595            PlatformInput::MouseExited(mouse_exited) => {
3596                self.modifiers = mouse_exited.modifiers;
3597                PlatformInput::MouseExited(mouse_exited)
3598            }
3599            PlatformInput::ModifiersChanged(modifiers_changed) => {
3600                self.modifiers = modifiers_changed.modifiers;
3601                self.capslock = modifiers_changed.capslock;
3602                PlatformInput::ModifiersChanged(modifiers_changed)
3603            }
3604            PlatformInput::ScrollWheel(scroll_wheel) => {
3605                self.mouse_position = scroll_wheel.position;
3606                self.modifiers = scroll_wheel.modifiers;
3607                PlatformInput::ScrollWheel(scroll_wheel)
3608            }
3609            // Translate dragging and dropping of external files from the operating system
3610            // to internal drag and drop events.
3611            PlatformInput::FileDrop(file_drop) => match file_drop {
3612                FileDropEvent::Entered { position, paths } => {
3613                    self.mouse_position = position;
3614                    if cx.active_drag.is_none() {
3615                        cx.active_drag = Some(AnyDrag {
3616                            value: Arc::new(paths.clone()),
3617                            view: cx.new(|_| paths).into(),
3618                            cursor_offset: position,
3619                            cursor_style: None,
3620                        });
3621                    }
3622                    PlatformInput::MouseMove(MouseMoveEvent {
3623                        position,
3624                        pressed_button: Some(MouseButton::Left),
3625                        modifiers: Modifiers::default(),
3626                    })
3627                }
3628                FileDropEvent::Pending { position } => {
3629                    self.mouse_position = position;
3630                    PlatformInput::MouseMove(MouseMoveEvent {
3631                        position,
3632                        pressed_button: Some(MouseButton::Left),
3633                        modifiers: Modifiers::default(),
3634                    })
3635                }
3636                FileDropEvent::Submit { position } => {
3637                    cx.activate(true);
3638                    self.mouse_position = position;
3639                    PlatformInput::MouseUp(MouseUpEvent {
3640                        button: MouseButton::Left,
3641                        position,
3642                        modifiers: Modifiers::default(),
3643                        click_count: 1,
3644                    })
3645                }
3646                FileDropEvent::Exited => {
3647                    cx.active_drag.take();
3648                    PlatformInput::FileDrop(FileDropEvent::Exited)
3649                }
3650            },
3651            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3652        };
3653
3654        if let Some(any_mouse_event) = event.mouse_event() {
3655            self.dispatch_mouse_event(any_mouse_event, cx);
3656        } else if let Some(any_key_event) = event.keyboard_event() {
3657            self.dispatch_key_event(any_key_event, cx);
3658        }
3659
3660        DispatchEventResult {
3661            propagate: cx.propagate_event,
3662            default_prevented: self.default_prevented,
3663        }
3664    }
3665
3666    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3667        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3668        if hit_test != self.mouse_hit_test {
3669            self.mouse_hit_test = hit_test;
3670            self.reset_cursor_style(cx);
3671        }
3672
3673        #[cfg(any(feature = "inspector", debug_assertions))]
3674        if self.is_inspector_picking(cx) {
3675            self.handle_inspector_mouse_event(event, cx);
3676            // When inspector is picking, all other mouse handling is skipped.
3677            return;
3678        }
3679
3680        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3681
3682        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3683        // special purposes, such as detecting events outside of a given Bounds.
3684        for listener in &mut mouse_listeners {
3685            let listener = listener.as_mut().unwrap();
3686            listener(event, DispatchPhase::Capture, self, cx);
3687            if !cx.propagate_event {
3688                break;
3689            }
3690        }
3691
3692        // Bubble phase, where most normal handlers do their work.
3693        if cx.propagate_event {
3694            for listener in mouse_listeners.iter_mut().rev() {
3695                let listener = listener.as_mut().unwrap();
3696                listener(event, DispatchPhase::Bubble, self, cx);
3697                if !cx.propagate_event {
3698                    break;
3699                }
3700            }
3701        }
3702
3703        self.rendered_frame.mouse_listeners = mouse_listeners;
3704
3705        if cx.has_active_drag() {
3706            if event.is::<MouseMoveEvent>() {
3707                // If this was a mouse move event, redraw the window so that the
3708                // active drag can follow the mouse cursor.
3709                self.refresh();
3710            } else if event.is::<MouseUpEvent>() {
3711                // If this was a mouse up event, cancel the active drag and redraw
3712                // the window.
3713                cx.active_drag = None;
3714                self.refresh();
3715            }
3716        }
3717    }
3718
3719    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3720        if self.invalidator.is_dirty() {
3721            self.draw(cx).clear();
3722        }
3723
3724        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3725        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3726
3727        let mut keystroke: Option<Keystroke> = None;
3728
3729        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3730            if event.modifiers.number_of_modifiers() == 0
3731                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3732                && !self.pending_modifier.saw_keystroke
3733            {
3734                let key = match self.pending_modifier.modifiers {
3735                    modifiers if modifiers.shift => Some("shift"),
3736                    modifiers if modifiers.control => Some("control"),
3737                    modifiers if modifiers.alt => Some("alt"),
3738                    modifiers if modifiers.platform => Some("platform"),
3739                    modifiers if modifiers.function => Some("function"),
3740                    _ => None,
3741                };
3742                if let Some(key) = key {
3743                    keystroke = Some(Keystroke {
3744                        key: key.to_string(),
3745                        key_char: None,
3746                        modifiers: Modifiers::default(),
3747                    });
3748                }
3749            }
3750
3751            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3752                && event.modifiers.number_of_modifiers() == 1
3753            {
3754                self.pending_modifier.saw_keystroke = false
3755            }
3756            self.pending_modifier.modifiers = event.modifiers
3757        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3758            self.pending_modifier.saw_keystroke = true;
3759            keystroke = Some(key_down_event.keystroke.clone());
3760        }
3761
3762        let Some(keystroke) = keystroke else {
3763            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3764            return;
3765        };
3766
3767        cx.propagate_event = true;
3768        self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3769        if !cx.propagate_event {
3770            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3771            return;
3772        }
3773
3774        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3775        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3776            currently_pending = PendingInput::default();
3777        }
3778
3779        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3780            currently_pending.keystrokes,
3781            keystroke,
3782            &dispatch_path,
3783        );
3784
3785        if !match_result.to_replay.is_empty() {
3786            self.replay_pending_input(match_result.to_replay, cx);
3787            cx.propagate_event = true;
3788        }
3789
3790        if !match_result.pending.is_empty() {
3791            currently_pending.keystrokes = match_result.pending;
3792            currently_pending.focus = self.focus;
3793            currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3794                cx.background_executor.timer(Duration::from_secs(1)).await;
3795                cx.update(move |window, cx| {
3796                    let Some(currently_pending) = window
3797                        .pending_input
3798                        .take()
3799                        .filter(|pending| pending.focus == window.focus)
3800                    else {
3801                        return;
3802                    };
3803
3804                    let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3805                    let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3806
3807                    let to_replay = window
3808                        .rendered_frame
3809                        .dispatch_tree
3810                        .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3811
3812                    window.pending_input_changed(cx);
3813                    window.replay_pending_input(to_replay, cx)
3814                })
3815                .log_err();
3816            }));
3817            self.pending_input = Some(currently_pending);
3818            self.pending_input_changed(cx);
3819            cx.propagate_event = false;
3820            return;
3821        }
3822
3823        for binding in match_result.bindings {
3824            self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3825            if !cx.propagate_event {
3826                self.dispatch_keystroke_observers(
3827                    event,
3828                    Some(binding.action),
3829                    match_result.context_stack,
3830                    cx,
3831                );
3832                self.pending_input_changed(cx);
3833                return;
3834            }
3835        }
3836
3837        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3838        self.pending_input_changed(cx);
3839    }
3840
3841    fn finish_dispatch_key_event(
3842        &mut self,
3843        event: &dyn Any,
3844        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3845        context_stack: Vec<KeyContext>,
3846        cx: &mut App,
3847    ) {
3848        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3849        if !cx.propagate_event {
3850            return;
3851        }
3852
3853        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3854        if !cx.propagate_event {
3855            return;
3856        }
3857
3858        self.dispatch_keystroke_observers(event, None, context_stack, cx);
3859    }
3860
3861    fn pending_input_changed(&mut self, cx: &mut App) {
3862        self.pending_input_observers
3863            .clone()
3864            .retain(&(), |callback| callback(self, cx));
3865    }
3866
3867    fn dispatch_key_down_up_event(
3868        &mut self,
3869        event: &dyn Any,
3870        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3871        cx: &mut App,
3872    ) {
3873        // Capture phase
3874        for node_id in dispatch_path {
3875            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3876
3877            for key_listener in node.key_listeners.clone() {
3878                key_listener(event, DispatchPhase::Capture, self, cx);
3879                if !cx.propagate_event {
3880                    return;
3881                }
3882            }
3883        }
3884
3885        // Bubble phase
3886        for node_id in dispatch_path.iter().rev() {
3887            // Handle low level key events
3888            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3889            for key_listener in node.key_listeners.clone() {
3890                key_listener(event, DispatchPhase::Bubble, self, cx);
3891                if !cx.propagate_event {
3892                    return;
3893                }
3894            }
3895        }
3896    }
3897
3898    fn dispatch_modifiers_changed_event(
3899        &mut self,
3900        event: &dyn Any,
3901        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3902        cx: &mut App,
3903    ) {
3904        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3905            return;
3906        };
3907        for node_id in dispatch_path.iter().rev() {
3908            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3909            for listener in node.modifiers_changed_listeners.clone() {
3910                listener(event, self, cx);
3911                if !cx.propagate_event {
3912                    return;
3913                }
3914            }
3915        }
3916    }
3917
3918    /// Determine whether a potential multi-stroke key binding is in progress on this window.
3919    pub fn has_pending_keystrokes(&self) -> bool {
3920        self.pending_input.is_some()
3921    }
3922
3923    pub(crate) fn clear_pending_keystrokes(&mut self) {
3924        self.pending_input.take();
3925    }
3926
3927    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3928    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3929        self.pending_input
3930            .as_ref()
3931            .map(|pending_input| pending_input.keystrokes.as_slice())
3932    }
3933
3934    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3935        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3936        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3937
3938        'replay: for replay in replays {
3939            let event = KeyDownEvent {
3940                keystroke: replay.keystroke.clone(),
3941                is_held: false,
3942            };
3943
3944            cx.propagate_event = true;
3945            for binding in replay.bindings {
3946                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3947                if !cx.propagate_event {
3948                    self.dispatch_keystroke_observers(
3949                        &event,
3950                        Some(binding.action),
3951                        Vec::default(),
3952                        cx,
3953                    );
3954                    continue 'replay;
3955                }
3956            }
3957
3958            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3959            if !cx.propagate_event {
3960                continue 'replay;
3961            }
3962            if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3963                && let Some(mut input_handler) = self.platform_window.take_input_handler()
3964            {
3965                input_handler.dispatch_input(&input, self, cx);
3966                self.platform_window.set_input_handler(input_handler)
3967            }
3968        }
3969    }
3970
3971    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3972        focus_id
3973            .and_then(|focus_id| {
3974                self.rendered_frame
3975                    .dispatch_tree
3976                    .focusable_node_id(focus_id)
3977            })
3978            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3979    }
3980
3981    fn dispatch_action_on_node(
3982        &mut self,
3983        node_id: DispatchNodeId,
3984        action: &dyn Action,
3985        cx: &mut App,
3986    ) {
3987        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3988
3989        // Capture phase for global actions.
3990        cx.propagate_event = true;
3991        if let Some(mut global_listeners) = cx
3992            .global_action_listeners
3993            .remove(&action.as_any().type_id())
3994        {
3995            for listener in &global_listeners {
3996                listener(action.as_any(), DispatchPhase::Capture, cx);
3997                if !cx.propagate_event {
3998                    break;
3999                }
4000            }
4001
4002            global_listeners.extend(
4003                cx.global_action_listeners
4004                    .remove(&action.as_any().type_id())
4005                    .unwrap_or_default(),
4006            );
4007
4008            cx.global_action_listeners
4009                .insert(action.as_any().type_id(), global_listeners);
4010        }
4011
4012        if !cx.propagate_event {
4013            return;
4014        }
4015
4016        // Capture phase for window actions.
4017        for node_id in &dispatch_path {
4018            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4019            for DispatchActionListener {
4020                action_type,
4021                listener,
4022            } in node.action_listeners.clone()
4023            {
4024                let any_action = action.as_any();
4025                if action_type == any_action.type_id() {
4026                    listener(any_action, DispatchPhase::Capture, self, cx);
4027
4028                    if !cx.propagate_event {
4029                        return;
4030                    }
4031                }
4032            }
4033        }
4034
4035        // Bubble phase for window actions.
4036        for node_id in dispatch_path.iter().rev() {
4037            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4038            for DispatchActionListener {
4039                action_type,
4040                listener,
4041            } in node.action_listeners.clone()
4042            {
4043                let any_action = action.as_any();
4044                if action_type == any_action.type_id() {
4045                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4046                    listener(any_action, DispatchPhase::Bubble, self, cx);
4047
4048                    if !cx.propagate_event {
4049                        return;
4050                    }
4051                }
4052            }
4053        }
4054
4055        // Bubble phase for global actions.
4056        if let Some(mut global_listeners) = cx
4057            .global_action_listeners
4058            .remove(&action.as_any().type_id())
4059        {
4060            for listener in global_listeners.iter().rev() {
4061                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4062
4063                listener(action.as_any(), DispatchPhase::Bubble, cx);
4064                if !cx.propagate_event {
4065                    break;
4066                }
4067            }
4068
4069            global_listeners.extend(
4070                cx.global_action_listeners
4071                    .remove(&action.as_any().type_id())
4072                    .unwrap_or_default(),
4073            );
4074
4075            cx.global_action_listeners
4076                .insert(action.as_any().type_id(), global_listeners);
4077        }
4078    }
4079
4080    /// Register the given handler to be invoked whenever the global of the given type
4081    /// is updated.
4082    pub fn observe_global<G: Global>(
4083        &mut self,
4084        cx: &mut App,
4085        f: impl Fn(&mut Window, &mut App) + 'static,
4086    ) -> Subscription {
4087        let window_handle = self.handle;
4088        let (subscription, activate) = cx.global_observers.insert(
4089            TypeId::of::<G>(),
4090            Box::new(move |cx| {
4091                window_handle
4092                    .update(cx, |_, window, cx| f(window, cx))
4093                    .is_ok()
4094            }),
4095        );
4096        cx.defer(move |_| activate());
4097        subscription
4098    }
4099
4100    /// Focus the current window and bring it to the foreground at the platform level.
4101    pub fn activate_window(&self) {
4102        self.platform_window.activate();
4103    }
4104
4105    /// Minimize the current window at the platform level.
4106    pub fn minimize_window(&self) {
4107        self.platform_window.minimize();
4108    }
4109
4110    /// Toggle full screen status on the current window at the platform level.
4111    pub fn toggle_fullscreen(&self) {
4112        self.platform_window.toggle_fullscreen();
4113    }
4114
4115    /// Updates the IME panel position suggestions for languages like japanese, chinese.
4116    pub fn invalidate_character_coordinates(&self) {
4117        self.on_next_frame(|window, cx| {
4118            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4119                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4120                    window
4121                        .platform_window
4122                        .update_ime_position(bounds.scale(window.scale_factor()));
4123                }
4124                window.platform_window.set_input_handler(input_handler);
4125            }
4126        });
4127    }
4128
4129    /// Present a platform dialog.
4130    /// The provided message will be presented, along with buttons for each answer.
4131    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4132    pub fn prompt<T>(
4133        &mut self,
4134        level: PromptLevel,
4135        message: &str,
4136        detail: Option<&str>,
4137        answers: &[T],
4138        cx: &mut App,
4139    ) -> oneshot::Receiver<usize>
4140    where
4141        T: Clone + Into<PromptButton>,
4142    {
4143        let prompt_builder = cx.prompt_builder.take();
4144        let Some(prompt_builder) = prompt_builder else {
4145            unreachable!("Re-entrant window prompting is not supported by GPUI");
4146        };
4147
4148        let answers = answers
4149            .iter()
4150            .map(|answer| answer.clone().into())
4151            .collect::<Vec<_>>();
4152
4153        let receiver = match &prompt_builder {
4154            PromptBuilder::Default => self
4155                .platform_window
4156                .prompt(level, message, detail, &answers)
4157                .unwrap_or_else(|| {
4158                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4159                }),
4160            PromptBuilder::Custom(_) => {
4161                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4162            }
4163        };
4164
4165        cx.prompt_builder = Some(prompt_builder);
4166
4167        receiver
4168    }
4169
4170    fn build_custom_prompt(
4171        &mut self,
4172        prompt_builder: &PromptBuilder,
4173        level: PromptLevel,
4174        message: &str,
4175        detail: Option<&str>,
4176        answers: &[PromptButton],
4177        cx: &mut App,
4178    ) -> oneshot::Receiver<usize> {
4179        let (sender, receiver) = oneshot::channel();
4180        let handle = PromptHandle::new(sender);
4181        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4182        self.prompt = Some(handle);
4183        receiver
4184    }
4185
4186    /// Returns the current context stack.
4187    pub fn context_stack(&self) -> Vec<KeyContext> {
4188        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4189        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4190        dispatch_tree
4191            .dispatch_path(node_id)
4192            .iter()
4193            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4194            .collect()
4195    }
4196
4197    /// Returns all available actions for the focused element.
4198    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4199        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4200        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4201        for action_type in cx.global_action_listeners.keys() {
4202            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4203                let action = cx.actions.build_action_type(action_type).ok();
4204                if let Some(action) = action {
4205                    actions.insert(ix, action);
4206                }
4207            }
4208        }
4209        actions
4210    }
4211
4212    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4213    /// returned in the order they were added. For display, the last binding should take precedence.
4214    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4215        self.rendered_frame
4216            .dispatch_tree
4217            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4218    }
4219
4220    /// Returns the highest precedence key binding that invokes an action on the currently focused
4221    /// element. This is more efficient than getting the last result of `bindings_for_action`.
4222    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4223        self.rendered_frame
4224            .dispatch_tree
4225            .highest_precedence_binding_for_action(
4226                action,
4227                &self.rendered_frame.dispatch_tree.context_stack,
4228            )
4229    }
4230
4231    /// Returns the key bindings for an action in a context.
4232    pub fn bindings_for_action_in_context(
4233        &self,
4234        action: &dyn Action,
4235        context: KeyContext,
4236    ) -> Vec<KeyBinding> {
4237        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4238        dispatch_tree.bindings_for_action(action, &[context])
4239    }
4240
4241    /// Returns the highest precedence key binding for an action in a context. This is more
4242    /// efficient than getting the last result of `bindings_for_action_in_context`.
4243    pub fn highest_precedence_binding_for_action_in_context(
4244        &self,
4245        action: &dyn Action,
4246        context: KeyContext,
4247    ) -> Option<KeyBinding> {
4248        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4249        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4250    }
4251
4252    /// Returns any bindings that would invoke an action on the given focus handle if it were
4253    /// focused. Bindings are returned in the order they were added. For display, the last binding
4254    /// should take precedence.
4255    pub fn bindings_for_action_in(
4256        &self,
4257        action: &dyn Action,
4258        focus_handle: &FocusHandle,
4259    ) -> Vec<KeyBinding> {
4260        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4261        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4262            return vec![];
4263        };
4264        dispatch_tree.bindings_for_action(action, &context_stack)
4265    }
4266
4267    /// Returns the highest precedence key binding that would invoke an action on the given focus
4268    /// handle if it were focused. This is more efficient than getting the last result of
4269    /// `bindings_for_action_in`.
4270    pub fn highest_precedence_binding_for_action_in(
4271        &self,
4272        action: &dyn Action,
4273        focus_handle: &FocusHandle,
4274    ) -> Option<KeyBinding> {
4275        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4276        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4277        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4278    }
4279
4280    fn context_stack_for_focus_handle(
4281        &self,
4282        focus_handle: &FocusHandle,
4283    ) -> Option<Vec<KeyContext>> {
4284        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4285        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4286        let context_stack: Vec<_> = dispatch_tree
4287            .dispatch_path(node_id)
4288            .into_iter()
4289            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4290            .collect();
4291        Some(context_stack)
4292    }
4293
4294    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4295    pub fn listener_for<V: Render, E>(
4296        &self,
4297        view: &Entity<V>,
4298        f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4299    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4300        let view = view.downgrade();
4301        move |e: &E, window: &mut Window, cx: &mut App| {
4302            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4303        }
4304    }
4305
4306    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4307    pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4308        &self,
4309        view: &Entity<V>,
4310        f: Callback,
4311    ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4312        let view = view.downgrade();
4313        move |window: &mut Window, cx: &mut App| {
4314            view.update(cx, |view, cx| f(view, window, cx)).ok();
4315        }
4316    }
4317
4318    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4319    /// If the callback returns false, the window won't be closed.
4320    pub fn on_window_should_close(
4321        &self,
4322        cx: &App,
4323        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4324    ) {
4325        let mut cx = self.to_async(cx);
4326        self.platform_window.on_should_close(Box::new(move || {
4327            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4328        }))
4329    }
4330
4331    /// Register an action listener on the window for the next frame. The type of action
4332    /// is determined by the first parameter of the given listener. When the next frame is rendered
4333    /// the listener will be cleared.
4334    ///
4335    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4336    /// a specific need to register a global listener.
4337    pub fn on_action(
4338        &mut self,
4339        action_type: TypeId,
4340        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4341    ) {
4342        self.next_frame
4343            .dispatch_tree
4344            .on_action(action_type, Rc::new(listener));
4345    }
4346
4347    /// Register an action listener on the window for the next frame if the condition is true.
4348    /// The type of action is determined by the first parameter of the given listener.
4349    /// When the next frame is rendered the listener will be cleared.
4350    ///
4351    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4352    /// a specific need to register a global listener.
4353    pub fn on_action_when(
4354        &mut self,
4355        condition: bool,
4356        action_type: TypeId,
4357        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4358    ) {
4359        if condition {
4360            self.next_frame
4361                .dispatch_tree
4362                .on_action(action_type, Rc::new(listener));
4363        }
4364    }
4365
4366    /// Read information about the GPU backing this window.
4367    /// Currently returns None on Mac and Windows.
4368    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4369        self.platform_window.gpu_specs()
4370    }
4371
4372    /// Perform titlebar double-click action.
4373    /// This is macOS specific.
4374    pub fn titlebar_double_click(&self) {
4375        self.platform_window.titlebar_double_click();
4376    }
4377
4378    /// Gets the window's title at the platform level.
4379    /// This is macOS specific.
4380    pub fn window_title(&self) -> String {
4381        self.platform_window.get_title()
4382    }
4383
4384    /// Returns a list of all tabbed windows and their titles.
4385    /// This is macOS specific.
4386    pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4387        self.platform_window.tabbed_windows()
4388    }
4389
4390    /// Returns the tab bar visibility.
4391    /// This is macOS specific.
4392    pub fn tab_bar_visible(&self) -> bool {
4393        self.platform_window.tab_bar_visible()
4394    }
4395
4396    /// Merges all open windows into a single tabbed window.
4397    /// This is macOS specific.
4398    pub fn merge_all_windows(&self) {
4399        self.platform_window.merge_all_windows()
4400    }
4401
4402    /// Moves the tab to a new containing window.
4403    /// This is macOS specific.
4404    pub fn move_tab_to_new_window(&self) {
4405        self.platform_window.move_tab_to_new_window()
4406    }
4407
4408    /// Shows or hides the window tab overview.
4409    /// This is macOS specific.
4410    pub fn toggle_window_tab_overview(&self) {
4411        self.platform_window.toggle_window_tab_overview()
4412    }
4413
4414    /// Sets the tabbing identifier for the window.
4415    /// This is macOS specific.
4416    pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4417        self.platform_window
4418            .set_tabbing_identifier(tabbing_identifier)
4419    }
4420
4421    /// Toggles the inspector mode on this window.
4422    #[cfg(any(feature = "inspector", debug_assertions))]
4423    pub fn toggle_inspector(&mut self, cx: &mut App) {
4424        self.inspector = match self.inspector {
4425            None => Some(cx.new(|_| Inspector::new())),
4426            Some(_) => None,
4427        };
4428        self.refresh();
4429    }
4430
4431    /// Returns true if the window is in inspector mode.
4432    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4433        #[cfg(any(feature = "inspector", debug_assertions))]
4434        {
4435            if let Some(inspector) = &self.inspector {
4436                return inspector.read(_cx).is_picking();
4437            }
4438        }
4439        false
4440    }
4441
4442    /// Executes the provided function with mutable access to an inspector state.
4443    #[cfg(any(feature = "inspector", debug_assertions))]
4444    pub fn with_inspector_state<T: 'static, R>(
4445        &mut self,
4446        _inspector_id: Option<&crate::InspectorElementId>,
4447        cx: &mut App,
4448        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4449    ) -> R {
4450        if let Some(inspector_id) = _inspector_id
4451            && let Some(inspector) = &self.inspector
4452        {
4453            let inspector = inspector.clone();
4454            let active_element_id = inspector.read(cx).active_element_id();
4455            if Some(inspector_id) == active_element_id {
4456                return inspector.update(cx, |inspector, _cx| {
4457                    inspector.with_active_element_state(self, f)
4458                });
4459            }
4460        }
4461        f(&mut None, self)
4462    }
4463
4464    #[cfg(any(feature = "inspector", debug_assertions))]
4465    pub(crate) fn build_inspector_element_id(
4466        &mut self,
4467        path: crate::InspectorElementPath,
4468    ) -> crate::InspectorElementId {
4469        self.invalidator.debug_assert_paint_or_prepaint();
4470        let path = Rc::new(path);
4471        let next_instance_id = self
4472            .next_frame
4473            .next_inspector_instance_ids
4474            .entry(path.clone())
4475            .or_insert(0);
4476        let instance_id = *next_instance_id;
4477        *next_instance_id += 1;
4478        crate::InspectorElementId { path, instance_id }
4479    }
4480
4481    #[cfg(any(feature = "inspector", debug_assertions))]
4482    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4483        if let Some(inspector) = self.inspector.take() {
4484            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4485            inspector_element.prepaint_as_root(
4486                point(self.viewport_size.width - inspector_width, px(0.0)),
4487                size(inspector_width, self.viewport_size.height).into(),
4488                self,
4489                cx,
4490            );
4491            self.inspector = Some(inspector);
4492            Some(inspector_element)
4493        } else {
4494            None
4495        }
4496    }
4497
4498    #[cfg(any(feature = "inspector", debug_assertions))]
4499    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4500        if let Some(mut inspector_element) = inspector_element {
4501            inspector_element.paint(self, cx);
4502        };
4503    }
4504
4505    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4506    /// inspect UI elements by clicking on them.
4507    #[cfg(any(feature = "inspector", debug_assertions))]
4508    pub fn insert_inspector_hitbox(
4509        &mut self,
4510        hitbox_id: HitboxId,
4511        inspector_id: Option<&crate::InspectorElementId>,
4512        cx: &App,
4513    ) {
4514        self.invalidator.debug_assert_paint_or_prepaint();
4515        if !self.is_inspector_picking(cx) {
4516            return;
4517        }
4518        if let Some(inspector_id) = inspector_id {
4519            self.next_frame
4520                .inspector_hitboxes
4521                .insert(hitbox_id, inspector_id.clone());
4522        }
4523    }
4524
4525    #[cfg(any(feature = "inspector", debug_assertions))]
4526    fn paint_inspector_hitbox(&mut self, cx: &App) {
4527        if let Some(inspector) = self.inspector.as_ref() {
4528            let inspector = inspector.read(cx);
4529            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4530                && let Some(hitbox) = self
4531                    .next_frame
4532                    .hitboxes
4533                    .iter()
4534                    .find(|hitbox| hitbox.id == hitbox_id)
4535            {
4536                self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4537            }
4538        }
4539    }
4540
4541    #[cfg(any(feature = "inspector", debug_assertions))]
4542    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4543        let Some(inspector) = self.inspector.clone() else {
4544            return;
4545        };
4546        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4547            inspector.update(cx, |inspector, _cx| {
4548                if let Some((_, inspector_id)) =
4549                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4550                {
4551                    inspector.hover(inspector_id, self);
4552                }
4553            });
4554        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4555            inspector.update(cx, |inspector, _cx| {
4556                if let Some((_, inspector_id)) =
4557                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4558                {
4559                    inspector.select(inspector_id, self);
4560                }
4561            });
4562        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4563            // This should be kept in sync with SCROLL_LINES in x11 platform.
4564            const SCROLL_LINES: f32 = 3.0;
4565            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4566            let delta_y = event
4567                .delta
4568                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4569                .y;
4570            if let Some(inspector) = self.inspector.clone() {
4571                inspector.update(cx, |inspector, _cx| {
4572                    if let Some(depth) = inspector.pick_depth.as_mut() {
4573                        *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4574                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4575                        if *depth < 0.0 {
4576                            *depth = 0.0;
4577                        } else if *depth > max_depth {
4578                            *depth = max_depth;
4579                        }
4580                        if let Some((_, inspector_id)) =
4581                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4582                        {
4583                            inspector.set_active_element_id(inspector_id, self);
4584                        }
4585                    }
4586                });
4587            }
4588        }
4589    }
4590
4591    #[cfg(any(feature = "inspector", debug_assertions))]
4592    fn hovered_inspector_hitbox(
4593        &self,
4594        inspector: &Inspector,
4595        frame: &Frame,
4596    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4597        if let Some(pick_depth) = inspector.pick_depth {
4598            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4599            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4600            let skip_count = (depth as usize).min(max_skipped);
4601            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4602                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4603                    return Some((*hitbox_id, inspector_id.clone()));
4604                }
4605            }
4606        }
4607        None
4608    }
4609
4610    /// For testing: set the current modifier keys state.
4611    /// This does not generate any events.
4612    #[cfg(any(test, feature = "test-support"))]
4613    pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4614        self.modifiers = modifiers;
4615    }
4616}
4617
4618// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4619slotmap::new_key_type! {
4620    /// A unique identifier for a window.
4621    pub struct WindowId;
4622}
4623
4624impl WindowId {
4625    /// Converts this window ID to a `u64`.
4626    pub fn as_u64(&self) -> u64 {
4627        self.0.as_ffi()
4628    }
4629}
4630
4631impl From<u64> for WindowId {
4632    fn from(value: u64) -> Self {
4633        WindowId(slotmap::KeyData::from_ffi(value))
4634    }
4635}
4636
4637/// A handle to a window with a specific root view type.
4638/// Note that this does not keep the window alive on its own.
4639#[derive(Deref, DerefMut)]
4640pub struct WindowHandle<V> {
4641    #[deref]
4642    #[deref_mut]
4643    pub(crate) any_handle: AnyWindowHandle,
4644    state_type: PhantomData<V>,
4645}
4646
4647impl<V: 'static + Render> WindowHandle<V> {
4648    /// Creates a new handle from a window ID.
4649    /// This does not check if the root type of the window is `V`.
4650    pub fn new(id: WindowId) -> Self {
4651        WindowHandle {
4652            any_handle: AnyWindowHandle {
4653                id,
4654                state_type: TypeId::of::<V>(),
4655            },
4656            state_type: PhantomData,
4657        }
4658    }
4659
4660    /// Get the root view out of this window.
4661    ///
4662    /// This will fail if the window is closed or if the root view's type does not match `V`.
4663    #[cfg(any(test, feature = "test-support"))]
4664    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4665    where
4666        C: AppContext,
4667    {
4668        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4669            root_view
4670                .downcast::<V>()
4671                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4672        }))
4673    }
4674
4675    /// Updates the root view of this window.
4676    ///
4677    /// This will fail if the window has been closed or if the root view's type does not match
4678    pub fn update<C, R>(
4679        &self,
4680        cx: &mut C,
4681        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4682    ) -> Result<R>
4683    where
4684        C: AppContext,
4685    {
4686        cx.update_window(self.any_handle, |root_view, window, cx| {
4687            let view = root_view
4688                .downcast::<V>()
4689                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4690
4691            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4692        })?
4693    }
4694
4695    /// Read the root view out of this window.
4696    ///
4697    /// This will fail if the window is closed or if the root view's type does not match `V`.
4698    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4699        let x = cx
4700            .windows
4701            .get(self.id)
4702            .and_then(|window| {
4703                window
4704                    .as_ref()
4705                    .and_then(|window| window.root.clone())
4706                    .map(|root_view| root_view.downcast::<V>())
4707            })
4708            .context("window not found")?
4709            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4710
4711        Ok(x.read(cx))
4712    }
4713
4714    /// Read the root view out of this window, with a callback
4715    ///
4716    /// This will fail if the window is closed or if the root view's type does not match `V`.
4717    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4718    where
4719        C: AppContext,
4720    {
4721        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4722    }
4723
4724    /// Read the root view pointer off of this window.
4725    ///
4726    /// This will fail if the window is closed or if the root view's type does not match `V`.
4727    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4728    where
4729        C: AppContext,
4730    {
4731        cx.read_window(self, |root_view, _cx| root_view)
4732    }
4733
4734    /// Check if this window is 'active'.
4735    ///
4736    /// Will return `None` if the window is closed or currently
4737    /// borrowed.
4738    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4739        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4740            .ok()
4741    }
4742}
4743
4744impl<V> Copy for WindowHandle<V> {}
4745
4746impl<V> Clone for WindowHandle<V> {
4747    fn clone(&self) -> Self {
4748        *self
4749    }
4750}
4751
4752impl<V> PartialEq for WindowHandle<V> {
4753    fn eq(&self, other: &Self) -> bool {
4754        self.any_handle == other.any_handle
4755    }
4756}
4757
4758impl<V> Eq for WindowHandle<V> {}
4759
4760impl<V> Hash for WindowHandle<V> {
4761    fn hash<H: Hasher>(&self, state: &mut H) {
4762        self.any_handle.hash(state);
4763    }
4764}
4765
4766impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4767    fn from(val: WindowHandle<V>) -> Self {
4768        val.any_handle
4769    }
4770}
4771
4772unsafe impl<V> Send for WindowHandle<V> {}
4773unsafe impl<V> Sync for WindowHandle<V> {}
4774
4775/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4776#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4777pub struct AnyWindowHandle {
4778    pub(crate) id: WindowId,
4779    state_type: TypeId,
4780}
4781
4782impl AnyWindowHandle {
4783    /// Get the ID of this window.
4784    pub fn window_id(&self) -> WindowId {
4785        self.id
4786    }
4787
4788    /// Attempt to convert this handle to a window handle with a specific root view type.
4789    /// If the types do not match, this will return `None`.
4790    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4791        if TypeId::of::<T>() == self.state_type {
4792            Some(WindowHandle {
4793                any_handle: *self,
4794                state_type: PhantomData,
4795            })
4796        } else {
4797            None
4798        }
4799    }
4800
4801    /// Updates the state of the root view of this window.
4802    ///
4803    /// This will fail if the window has been closed.
4804    pub fn update<C, R>(
4805        self,
4806        cx: &mut C,
4807        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4808    ) -> Result<R>
4809    where
4810        C: AppContext,
4811    {
4812        cx.update_window(self, update)
4813    }
4814
4815    /// Read the state of the root view of this window.
4816    ///
4817    /// This will fail if the window has been closed.
4818    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4819    where
4820        C: AppContext,
4821        T: 'static,
4822    {
4823        let view = self
4824            .downcast::<T>()
4825            .context("the type of the window's root view has changed")?;
4826
4827        cx.read_window(&view, read)
4828    }
4829}
4830
4831impl HasWindowHandle for Window {
4832    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4833        self.platform_window.window_handle()
4834    }
4835}
4836
4837impl HasDisplayHandle for Window {
4838    fn display_handle(
4839        &self,
4840    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4841        self.platform_window.display_handle()
4842    }
4843}
4844
4845/// An identifier for an [`Element`].
4846///
4847/// Can be constructed with a string, a number, or both, as well
4848/// as other internal representations.
4849#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4850pub enum ElementId {
4851    /// The ID of a View element
4852    View(EntityId),
4853    /// An integer ID.
4854    Integer(u64),
4855    /// A string based ID.
4856    Name(SharedString),
4857    /// A UUID.
4858    Uuid(Uuid),
4859    /// An ID that's equated with a focus handle.
4860    FocusHandle(FocusId),
4861    /// A combination of a name and an integer.
4862    NamedInteger(SharedString, u64),
4863    /// A path.
4864    Path(Arc<std::path::Path>),
4865    /// A code location.
4866    CodeLocation(core::panic::Location<'static>),
4867    /// A labeled child of an element.
4868    NamedChild(Box<ElementId>, SharedString),
4869}
4870
4871impl ElementId {
4872    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4873    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4874        Self::NamedInteger(name.into(), integer as u64)
4875    }
4876}
4877
4878impl Display for ElementId {
4879    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4880        match self {
4881            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4882            ElementId::Integer(ix) => write!(f, "{}", ix)?,
4883            ElementId::Name(name) => write!(f, "{}", name)?,
4884            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4885            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4886            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4887            ElementId::Path(path) => write!(f, "{}", path.display())?,
4888            ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4889            ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4890        }
4891
4892        Ok(())
4893    }
4894}
4895
4896impl TryInto<SharedString> for ElementId {
4897    type Error = anyhow::Error;
4898
4899    fn try_into(self) -> anyhow::Result<SharedString> {
4900        if let ElementId::Name(name) = self {
4901            Ok(name)
4902        } else {
4903            anyhow::bail!("element id is not string")
4904        }
4905    }
4906}
4907
4908impl From<usize> for ElementId {
4909    fn from(id: usize) -> Self {
4910        ElementId::Integer(id as u64)
4911    }
4912}
4913
4914impl From<i32> for ElementId {
4915    fn from(id: i32) -> Self {
4916        Self::Integer(id as u64)
4917    }
4918}
4919
4920impl From<SharedString> for ElementId {
4921    fn from(name: SharedString) -> Self {
4922        ElementId::Name(name)
4923    }
4924}
4925
4926impl From<Arc<std::path::Path>> for ElementId {
4927    fn from(path: Arc<std::path::Path>) -> Self {
4928        ElementId::Path(path)
4929    }
4930}
4931
4932impl From<&'static str> for ElementId {
4933    fn from(name: &'static str) -> Self {
4934        ElementId::Name(name.into())
4935    }
4936}
4937
4938impl<'a> From<&'a FocusHandle> for ElementId {
4939    fn from(handle: &'a FocusHandle) -> Self {
4940        ElementId::FocusHandle(handle.id)
4941    }
4942}
4943
4944impl From<(&'static str, EntityId)> for ElementId {
4945    fn from((name, id): (&'static str, EntityId)) -> Self {
4946        ElementId::NamedInteger(name.into(), id.as_u64())
4947    }
4948}
4949
4950impl From<(&'static str, usize)> for ElementId {
4951    fn from((name, id): (&'static str, usize)) -> Self {
4952        ElementId::NamedInteger(name.into(), id as u64)
4953    }
4954}
4955
4956impl From<(SharedString, usize)> for ElementId {
4957    fn from((name, id): (SharedString, usize)) -> Self {
4958        ElementId::NamedInteger(name, id as u64)
4959    }
4960}
4961
4962impl From<(&'static str, u64)> for ElementId {
4963    fn from((name, id): (&'static str, u64)) -> Self {
4964        ElementId::NamedInteger(name.into(), id)
4965    }
4966}
4967
4968impl From<Uuid> for ElementId {
4969    fn from(value: Uuid) -> Self {
4970        Self::Uuid(value)
4971    }
4972}
4973
4974impl From<(&'static str, u32)> for ElementId {
4975    fn from((name, id): (&'static str, u32)) -> Self {
4976        ElementId::NamedInteger(name.into(), id.into())
4977    }
4978}
4979
4980impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4981    fn from((id, name): (ElementId, T)) -> Self {
4982        ElementId::NamedChild(Box::new(id), name.into())
4983    }
4984}
4985
4986/// A rectangle to be rendered in the window at the given position and size.
4987/// Passed as an argument [`Window::paint_quad`].
4988#[derive(Clone)]
4989pub struct PaintQuad {
4990    /// The bounds of the quad within the window.
4991    pub bounds: Bounds<Pixels>,
4992    /// The radii of the quad's corners.
4993    pub corner_radii: Corners<Pixels>,
4994    /// The background color of the quad.
4995    pub background: Background,
4996    /// The widths of the quad's borders.
4997    pub border_widths: Edges<Pixels>,
4998    /// The color of the quad's borders.
4999    pub border_color: Hsla,
5000    /// The style of the quad's borders.
5001    pub border_style: BorderStyle,
5002}
5003
5004impl PaintQuad {
5005    /// Sets the corner radii of the quad.
5006    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5007        PaintQuad {
5008            corner_radii: corner_radii.into(),
5009            ..self
5010        }
5011    }
5012
5013    /// Sets the border widths of the quad.
5014    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5015        PaintQuad {
5016            border_widths: border_widths.into(),
5017            ..self
5018        }
5019    }
5020
5021    /// Sets the border color of the quad.
5022    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5023        PaintQuad {
5024            border_color: border_color.into(),
5025            ..self
5026        }
5027    }
5028
5029    /// Sets the background color of the quad.
5030    pub fn background(self, background: impl Into<Background>) -> Self {
5031        PaintQuad {
5032            background: background.into(),
5033            ..self
5034        }
5035    }
5036}
5037
5038/// Creates a quad with the given parameters.
5039pub fn quad(
5040    bounds: Bounds<Pixels>,
5041    corner_radii: impl Into<Corners<Pixels>>,
5042    background: impl Into<Background>,
5043    border_widths: impl Into<Edges<Pixels>>,
5044    border_color: impl Into<Hsla>,
5045    border_style: BorderStyle,
5046) -> PaintQuad {
5047    PaintQuad {
5048        bounds,
5049        corner_radii: corner_radii.into(),
5050        background: background.into(),
5051        border_widths: border_widths.into(),
5052        border_color: border_color.into(),
5053        border_style,
5054    }
5055}
5056
5057/// Creates a filled quad with the given bounds and background color.
5058pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5059    PaintQuad {
5060        bounds: bounds.into(),
5061        corner_radii: (0.).into(),
5062        background: background.into(),
5063        border_widths: (0.).into(),
5064        border_color: transparent_black(),
5065        border_style: BorderStyle::default(),
5066    }
5067}
5068
5069/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5070pub fn outline(
5071    bounds: impl Into<Bounds<Pixels>>,
5072    border_color: impl Into<Hsla>,
5073    border_style: BorderStyle,
5074) -> PaintQuad {
5075    PaintQuad {
5076        bounds: bounds.into(),
5077        corner_radii: (0.).into(),
5078        background: transparent_black().into(),
5079        border_widths: (1.).into(),
5080        border_color: border_color.into(),
5081        border_style,
5082    }
5083}