cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CURRENT_PLAN_HEADER_NAME, CompletionBody,
   8    CompletionEvent, CompletionRequestStatus, CountTokensBody, CountTokensResponse,
   9    EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse, MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan,
  10    PlanV1, PlanV2, SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME,
  11    SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME, TOOL_USE_LIMIT_REACHED_HEADER_NAME,
  12    ZED_VERSION_HEADER_NAME,
  13};
  14use futures::{
  15    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  16};
  17use google_ai::GoogleModelMode;
  18use gpui::{
  19    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  20};
  21use http_client::http::{HeaderMap, HeaderValue};
  22use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  23use language_model::{
  24    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  25    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  26    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  27    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  28    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  29    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  30};
  31use release_channel::AppVersion;
  32use schemars::JsonSchema;
  33use serde::{Deserialize, Serialize, de::DeserializeOwned};
  34use settings::SettingsStore;
  35pub use settings::ZedDotDevAvailableModel as AvailableModel;
  36pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  37use smol::io::{AsyncReadExt, BufReader};
  38use std::pin::Pin;
  39use std::str::FromStr as _;
  40use std::sync::Arc;
  41use std::time::Duration;
  42use thiserror::Error;
  43use ui::{TintColor, prelude::*};
  44use util::{ResultExt as _, maybe};
  45
  46use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  47use crate::provider::google::{GoogleEventMapper, into_google};
  48use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  49use crate::provider::x_ai::count_xai_tokens;
  50
  51const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  52const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  53
  54#[derive(Default, Clone, Debug, PartialEq)]
  55pub struct ZedDotDevSettings {
  56    pub available_models: Vec<AvailableModel>,
  57}
  58#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  59#[serde(tag = "type", rename_all = "lowercase")]
  60pub enum ModelMode {
  61    #[default]
  62    Default,
  63    Thinking {
  64        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  65        budget_tokens: Option<u32>,
  66    },
  67}
  68
  69impl From<ModelMode> for AnthropicModelMode {
  70    fn from(value: ModelMode) -> Self {
  71        match value {
  72            ModelMode::Default => AnthropicModelMode::Default,
  73            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  74        }
  75    }
  76}
  77
  78pub struct CloudLanguageModelProvider {
  79    client: Arc<Client>,
  80    state: Entity<State>,
  81    _maintain_client_status: Task<()>,
  82}
  83
  84pub struct State {
  85    client: Arc<Client>,
  86    llm_api_token: LlmApiToken,
  87    user_store: Entity<UserStore>,
  88    status: client::Status,
  89    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  90    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  91    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  92    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  93    _fetch_models_task: Task<()>,
  94    _settings_subscription: Subscription,
  95    _llm_token_subscription: Subscription,
  96}
  97
  98impl State {
  99    fn new(
 100        client: Arc<Client>,
 101        user_store: Entity<UserStore>,
 102        status: client::Status,
 103        cx: &mut Context<Self>,
 104    ) -> Self {
 105        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 106        let mut current_user = user_store.read(cx).watch_current_user();
 107        Self {
 108            client: client.clone(),
 109            llm_api_token: LlmApiToken::default(),
 110            user_store,
 111            status,
 112            models: Vec::new(),
 113            default_model: None,
 114            default_fast_model: None,
 115            recommended_models: Vec::new(),
 116            _fetch_models_task: cx.spawn(async move |this, cx| {
 117                maybe!(async move {
 118                    let (client, llm_api_token) = this
 119                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 120
 121                    while current_user.borrow().is_none() {
 122                        current_user.next().await;
 123                    }
 124
 125                    let response =
 126                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 127                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 128                    anyhow::Ok(())
 129                })
 130                .await
 131                .context("failed to fetch Zed models")
 132                .log_err();
 133            }),
 134            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 135                cx.notify();
 136            }),
 137            _llm_token_subscription: cx.subscribe(
 138                &refresh_llm_token_listener,
 139                move |this, _listener, _event, cx| {
 140                    let client = this.client.clone();
 141                    let llm_api_token = this.llm_api_token.clone();
 142                    cx.spawn(async move |this, cx| {
 143                        llm_api_token.refresh(&client).await?;
 144                        let response = Self::fetch_models(client, llm_api_token).await?;
 145                        this.update(cx, |this, cx| {
 146                            this.update_models(response, cx);
 147                        })
 148                    })
 149                    .detach_and_log_err(cx);
 150                },
 151            ),
 152        }
 153    }
 154
 155    fn is_signed_out(&self, cx: &App) -> bool {
 156        self.user_store.read(cx).current_user().is_none()
 157    }
 158
 159    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 160        let client = self.client.clone();
 161        cx.spawn(async move |state, cx| {
 162            client.sign_in_with_optional_connect(true, cx).await?;
 163            state.update(cx, |_, cx| cx.notify())
 164        })
 165    }
 166    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 167        let mut models = Vec::new();
 168
 169        for model in response.models {
 170            models.push(Arc::new(model.clone()));
 171
 172            // Right now we represent thinking variants of models as separate models on the client,
 173            // so we need to insert variants for any model that supports thinking.
 174            if model.supports_thinking {
 175                models.push(Arc::new(cloud_llm_client::LanguageModel {
 176                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 177                    display_name: format!("{} Thinking", model.display_name),
 178                    ..model
 179                }));
 180            }
 181        }
 182
 183        self.default_model = models
 184            .iter()
 185            .find(|model| {
 186                response
 187                    .default_model
 188                    .as_ref()
 189                    .is_some_and(|default_model_id| &model.id == default_model_id)
 190            })
 191            .cloned();
 192        self.default_fast_model = models
 193            .iter()
 194            .find(|model| {
 195                response
 196                    .default_fast_model
 197                    .as_ref()
 198                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 199            })
 200            .cloned();
 201        self.recommended_models = response
 202            .recommended_models
 203            .iter()
 204            .filter_map(|id| models.iter().find(|model| &model.id == id))
 205            .cloned()
 206            .collect();
 207        self.models = models;
 208        cx.notify();
 209    }
 210
 211    async fn fetch_models(
 212        client: Arc<Client>,
 213        llm_api_token: LlmApiToken,
 214    ) -> Result<ListModelsResponse> {
 215        let http_client = &client.http_client();
 216        let token = llm_api_token.acquire(&client).await?;
 217
 218        let request = http_client::Request::builder()
 219            .method(Method::GET)
 220            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 221            .header("Authorization", format!("Bearer {token}"))
 222            .body(AsyncBody::empty())?;
 223        let mut response = http_client
 224            .send(request)
 225            .await
 226            .context("failed to send list models request")?;
 227
 228        if response.status().is_success() {
 229            let mut body = String::new();
 230            response.body_mut().read_to_string(&mut body).await?;
 231            Ok(serde_json::from_str(&body)?)
 232        } else {
 233            let mut body = String::new();
 234            response.body_mut().read_to_string(&mut body).await?;
 235            anyhow::bail!(
 236                "error listing models.\nStatus: {:?}\nBody: {body}",
 237                response.status(),
 238            );
 239        }
 240    }
 241}
 242
 243impl CloudLanguageModelProvider {
 244    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 245        let mut status_rx = client.status();
 246        let status = *status_rx.borrow();
 247
 248        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 249
 250        let state_ref = state.downgrade();
 251        let maintain_client_status = cx.spawn(async move |cx| {
 252            while let Some(status) = status_rx.next().await {
 253                if let Some(this) = state_ref.upgrade() {
 254                    _ = this.update(cx, |this, cx| {
 255                        if this.status != status {
 256                            this.status = status;
 257                            cx.notify();
 258                        }
 259                    });
 260                } else {
 261                    break;
 262                }
 263            }
 264        });
 265
 266        Self {
 267            client,
 268            state,
 269            _maintain_client_status: maintain_client_status,
 270        }
 271    }
 272
 273    fn create_language_model(
 274        &self,
 275        model: Arc<cloud_llm_client::LanguageModel>,
 276        llm_api_token: LlmApiToken,
 277    ) -> Arc<dyn LanguageModel> {
 278        Arc::new(CloudLanguageModel {
 279            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 280            model,
 281            llm_api_token,
 282            client: self.client.clone(),
 283            request_limiter: RateLimiter::new(4),
 284        })
 285    }
 286}
 287
 288impl LanguageModelProviderState for CloudLanguageModelProvider {
 289    type ObservableEntity = State;
 290
 291    fn observable_entity(&self) -> Option<Entity<Self::ObservableEntity>> {
 292        Some(self.state.clone())
 293    }
 294}
 295
 296impl LanguageModelProvider for CloudLanguageModelProvider {
 297    fn id(&self) -> LanguageModelProviderId {
 298        PROVIDER_ID
 299    }
 300
 301    fn name(&self) -> LanguageModelProviderName {
 302        PROVIDER_NAME
 303    }
 304
 305    fn icon(&self) -> IconName {
 306        IconName::AiZed
 307    }
 308
 309    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 310        let default_model = self.state.read(cx).default_model.clone()?;
 311        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 312        Some(self.create_language_model(default_model, llm_api_token))
 313    }
 314
 315    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 316        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 317        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 318        Some(self.create_language_model(default_fast_model, llm_api_token))
 319    }
 320
 321    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 322        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 323        self.state
 324            .read(cx)
 325            .recommended_models
 326            .iter()
 327            .cloned()
 328            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 329            .collect()
 330    }
 331
 332    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 333        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 334        self.state
 335            .read(cx)
 336            .models
 337            .iter()
 338            .cloned()
 339            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 340            .collect()
 341    }
 342
 343    fn is_authenticated(&self, cx: &App) -> bool {
 344        let state = self.state.read(cx);
 345        !state.is_signed_out(cx)
 346    }
 347
 348    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 349        Task::ready(Ok(()))
 350    }
 351
 352    fn configuration_view(
 353        &self,
 354        _target_agent: language_model::ConfigurationViewTargetAgent,
 355        _: &mut Window,
 356        cx: &mut App,
 357    ) -> AnyView {
 358        cx.new(|_| ConfigurationView::new(self.state.clone()))
 359            .into()
 360    }
 361
 362    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 363        Task::ready(Ok(()))
 364    }
 365}
 366
 367pub struct CloudLanguageModel {
 368    id: LanguageModelId,
 369    model: Arc<cloud_llm_client::LanguageModel>,
 370    llm_api_token: LlmApiToken,
 371    client: Arc<Client>,
 372    request_limiter: RateLimiter,
 373}
 374
 375struct PerformLlmCompletionResponse {
 376    response: Response<AsyncBody>,
 377    usage: Option<ModelRequestUsage>,
 378    tool_use_limit_reached: bool,
 379    includes_status_messages: bool,
 380}
 381
 382impl CloudLanguageModel {
 383    async fn perform_llm_completion(
 384        client: Arc<Client>,
 385        llm_api_token: LlmApiToken,
 386        app_version: Option<SemanticVersion>,
 387        body: CompletionBody,
 388    ) -> Result<PerformLlmCompletionResponse> {
 389        let http_client = &client.http_client();
 390
 391        let mut token = llm_api_token.acquire(&client).await?;
 392        let mut refreshed_token = false;
 393
 394        loop {
 395            let request = http_client::Request::builder()
 396                .method(Method::POST)
 397                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 398                .when_some(app_version, |builder, app_version| {
 399                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 400                })
 401                .header("Content-Type", "application/json")
 402                .header("Authorization", format!("Bearer {token}"))
 403                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 404                .body(serde_json::to_string(&body)?.into())?;
 405
 406            let mut response = http_client.send(request).await?;
 407            let status = response.status();
 408            if status.is_success() {
 409                let includes_status_messages = response
 410                    .headers()
 411                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 412                    .is_some();
 413
 414                let tool_use_limit_reached = response
 415                    .headers()
 416                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 417                    .is_some();
 418
 419                let usage = if includes_status_messages {
 420                    None
 421                } else {
 422                    ModelRequestUsage::from_headers(response.headers()).ok()
 423                };
 424
 425                return Ok(PerformLlmCompletionResponse {
 426                    response,
 427                    usage,
 428                    includes_status_messages,
 429                    tool_use_limit_reached,
 430                });
 431            }
 432
 433            if !refreshed_token
 434                && response
 435                    .headers()
 436                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 437                    .is_some()
 438            {
 439                token = llm_api_token.refresh(&client).await?;
 440                refreshed_token = true;
 441                continue;
 442            }
 443
 444            if status == StatusCode::FORBIDDEN
 445                && response
 446                    .headers()
 447                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 448                    .is_some()
 449            {
 450                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 451                    .headers()
 452                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 453                    .and_then(|resource| resource.to_str().ok())
 454                    && let Some(plan) = response
 455                        .headers()
 456                        .get(CURRENT_PLAN_HEADER_NAME)
 457                        .and_then(|plan| plan.to_str().ok())
 458                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 459                        .map(Plan::V1)
 460                {
 461                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 462                }
 463            } else if status == StatusCode::PAYMENT_REQUIRED {
 464                return Err(anyhow!(PaymentRequiredError));
 465            }
 466
 467            let mut body = String::new();
 468            let headers = response.headers().clone();
 469            response.body_mut().read_to_string(&mut body).await?;
 470            return Err(anyhow!(ApiError {
 471                status,
 472                body,
 473                headers
 474            }));
 475        }
 476    }
 477}
 478
 479#[derive(Debug, Error)]
 480#[error("cloud language model request failed with status {status}: {body}")]
 481struct ApiError {
 482    status: StatusCode,
 483    body: String,
 484    headers: HeaderMap<HeaderValue>,
 485}
 486
 487/// Represents error responses from Zed's cloud API.
 488///
 489/// Example JSON for an upstream HTTP error:
 490/// ```json
 491/// {
 492///   "code": "upstream_http_error",
 493///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 494///   "upstream_status": 503
 495/// }
 496/// ```
 497#[derive(Debug, serde::Deserialize)]
 498struct CloudApiError {
 499    code: String,
 500    message: String,
 501    #[serde(default)]
 502    #[serde(deserialize_with = "deserialize_optional_status_code")]
 503    upstream_status: Option<StatusCode>,
 504    #[serde(default)]
 505    retry_after: Option<f64>,
 506}
 507
 508fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 509where
 510    D: serde::Deserializer<'de>,
 511{
 512    let opt: Option<u16> = Option::deserialize(deserializer)?;
 513    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 514}
 515
 516impl From<ApiError> for LanguageModelCompletionError {
 517    fn from(error: ApiError) -> Self {
 518        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 519            if cloud_error.code.starts_with("upstream_http_") {
 520                let status = if let Some(status) = cloud_error.upstream_status {
 521                    status
 522                } else if cloud_error.code.ends_with("_error") {
 523                    error.status
 524                } else {
 525                    // If there's a status code in the code string (e.g. "upstream_http_429")
 526                    // then use that; otherwise, see if the JSON contains a status code.
 527                    cloud_error
 528                        .code
 529                        .strip_prefix("upstream_http_")
 530                        .and_then(|code_str| code_str.parse::<u16>().ok())
 531                        .and_then(|code| StatusCode::from_u16(code).ok())
 532                        .unwrap_or(error.status)
 533                };
 534
 535                return LanguageModelCompletionError::UpstreamProviderError {
 536                    message: cloud_error.message,
 537                    status,
 538                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 539                };
 540            }
 541
 542            return LanguageModelCompletionError::from_http_status(
 543                PROVIDER_NAME,
 544                error.status,
 545                cloud_error.message,
 546                None,
 547            );
 548        }
 549
 550        let retry_after = None;
 551        LanguageModelCompletionError::from_http_status(
 552            PROVIDER_NAME,
 553            error.status,
 554            error.body,
 555            retry_after,
 556        )
 557    }
 558}
 559
 560impl LanguageModel for CloudLanguageModel {
 561    fn id(&self) -> LanguageModelId {
 562        self.id.clone()
 563    }
 564
 565    fn name(&self) -> LanguageModelName {
 566        LanguageModelName::from(self.model.display_name.clone())
 567    }
 568
 569    fn provider_id(&self) -> LanguageModelProviderId {
 570        PROVIDER_ID
 571    }
 572
 573    fn provider_name(&self) -> LanguageModelProviderName {
 574        PROVIDER_NAME
 575    }
 576
 577    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 578        use cloud_llm_client::LanguageModelProvider::*;
 579        match self.model.provider {
 580            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 581            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 582            Google => language_model::GOOGLE_PROVIDER_ID,
 583            XAi => language_model::X_AI_PROVIDER_ID,
 584        }
 585    }
 586
 587    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 588        use cloud_llm_client::LanguageModelProvider::*;
 589        match self.model.provider {
 590            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 591            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 592            Google => language_model::GOOGLE_PROVIDER_NAME,
 593            XAi => language_model::X_AI_PROVIDER_NAME,
 594        }
 595    }
 596
 597    fn supports_tools(&self) -> bool {
 598        self.model.supports_tools
 599    }
 600
 601    fn supports_images(&self) -> bool {
 602        self.model.supports_images
 603    }
 604
 605    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 606        match choice {
 607            LanguageModelToolChoice::Auto
 608            | LanguageModelToolChoice::Any
 609            | LanguageModelToolChoice::None => true,
 610        }
 611    }
 612
 613    fn supports_burn_mode(&self) -> bool {
 614        self.model.supports_max_mode
 615    }
 616
 617    fn telemetry_id(&self) -> String {
 618        format!("zed.dev/{}", self.model.id)
 619    }
 620
 621    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 622        match self.model.provider {
 623            cloud_llm_client::LanguageModelProvider::Anthropic
 624            | cloud_llm_client::LanguageModelProvider::OpenAi
 625            | cloud_llm_client::LanguageModelProvider::XAi => {
 626                LanguageModelToolSchemaFormat::JsonSchema
 627            }
 628            cloud_llm_client::LanguageModelProvider::Google => {
 629                LanguageModelToolSchemaFormat::JsonSchemaSubset
 630            }
 631        }
 632    }
 633
 634    fn max_token_count(&self) -> u64 {
 635        self.model.max_token_count as u64
 636    }
 637
 638    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 639        self.model
 640            .max_token_count_in_max_mode
 641            .filter(|_| self.model.supports_max_mode)
 642            .map(|max_token_count| max_token_count as u64)
 643    }
 644
 645    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 646        match &self.model.provider {
 647            cloud_llm_client::LanguageModelProvider::Anthropic => {
 648                Some(LanguageModelCacheConfiguration {
 649                    min_total_token: 2_048,
 650                    should_speculate: true,
 651                    max_cache_anchors: 4,
 652                })
 653            }
 654            cloud_llm_client::LanguageModelProvider::OpenAi
 655            | cloud_llm_client::LanguageModelProvider::XAi
 656            | cloud_llm_client::LanguageModelProvider::Google => None,
 657        }
 658    }
 659
 660    fn count_tokens(
 661        &self,
 662        request: LanguageModelRequest,
 663        cx: &App,
 664    ) -> BoxFuture<'static, Result<u64>> {
 665        match self.model.provider {
 666            cloud_llm_client::LanguageModelProvider::Anthropic => {
 667                count_anthropic_tokens(request, cx)
 668            }
 669            cloud_llm_client::LanguageModelProvider::OpenAi => {
 670                let model = match open_ai::Model::from_id(&self.model.id.0) {
 671                    Ok(model) => model,
 672                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 673                };
 674                count_open_ai_tokens(request, model, cx)
 675            }
 676            cloud_llm_client::LanguageModelProvider::XAi => {
 677                let model = match x_ai::Model::from_id(&self.model.id.0) {
 678                    Ok(model) => model,
 679                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 680                };
 681                count_xai_tokens(request, model, cx)
 682            }
 683            cloud_llm_client::LanguageModelProvider::Google => {
 684                let client = self.client.clone();
 685                let llm_api_token = self.llm_api_token.clone();
 686                let model_id = self.model.id.to_string();
 687                let generate_content_request =
 688                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 689                async move {
 690                    let http_client = &client.http_client();
 691                    let token = llm_api_token.acquire(&client).await?;
 692
 693                    let request_body = CountTokensBody {
 694                        provider: cloud_llm_client::LanguageModelProvider::Google,
 695                        model: model_id,
 696                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 697                            generate_content_request,
 698                        })?,
 699                    };
 700                    let request = http_client::Request::builder()
 701                        .method(Method::POST)
 702                        .uri(
 703                            http_client
 704                                .build_zed_llm_url("/count_tokens", &[])?
 705                                .as_ref(),
 706                        )
 707                        .header("Content-Type", "application/json")
 708                        .header("Authorization", format!("Bearer {token}"))
 709                        .body(serde_json::to_string(&request_body)?.into())?;
 710                    let mut response = http_client.send(request).await?;
 711                    let status = response.status();
 712                    let headers = response.headers().clone();
 713                    let mut response_body = String::new();
 714                    response
 715                        .body_mut()
 716                        .read_to_string(&mut response_body)
 717                        .await?;
 718
 719                    if status.is_success() {
 720                        let response_body: CountTokensResponse =
 721                            serde_json::from_str(&response_body)?;
 722
 723                        Ok(response_body.tokens as u64)
 724                    } else {
 725                        Err(anyhow!(ApiError {
 726                            status,
 727                            body: response_body,
 728                            headers
 729                        }))
 730                    }
 731                }
 732                .boxed()
 733            }
 734        }
 735    }
 736
 737    fn stream_completion(
 738        &self,
 739        request: LanguageModelRequest,
 740        cx: &AsyncApp,
 741    ) -> BoxFuture<
 742        'static,
 743        Result<
 744            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 745            LanguageModelCompletionError,
 746        >,
 747    > {
 748        let thread_id = request.thread_id.clone();
 749        let prompt_id = request.prompt_id.clone();
 750        let intent = request.intent;
 751        let mode = request.mode;
 752        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 753        let thinking_allowed = request.thinking_allowed;
 754        match self.model.provider {
 755            cloud_llm_client::LanguageModelProvider::Anthropic => {
 756                let request = into_anthropic(
 757                    request,
 758                    self.model.id.to_string(),
 759                    1.0,
 760                    self.model.max_output_tokens as u64,
 761                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 762                        AnthropicModelMode::Thinking {
 763                            budget_tokens: Some(4_096),
 764                        }
 765                    } else {
 766                        AnthropicModelMode::Default
 767                    },
 768                );
 769                let client = self.client.clone();
 770                let llm_api_token = self.llm_api_token.clone();
 771                let future = self.request_limiter.stream(async move {
 772                    let PerformLlmCompletionResponse {
 773                        response,
 774                        usage,
 775                        includes_status_messages,
 776                        tool_use_limit_reached,
 777                    } = Self::perform_llm_completion(
 778                        client.clone(),
 779                        llm_api_token,
 780                        app_version,
 781                        CompletionBody {
 782                            thread_id,
 783                            prompt_id,
 784                            intent,
 785                            mode,
 786                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 787                            model: request.model.clone(),
 788                            provider_request: serde_json::to_value(&request)
 789                                .map_err(|e| anyhow!(e))?,
 790                        },
 791                    )
 792                    .await
 793                    .map_err(|err| match err.downcast::<ApiError>() {
 794                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 795                        Err(err) => anyhow!(err),
 796                    })?;
 797
 798                    let mut mapper = AnthropicEventMapper::new();
 799                    Ok(map_cloud_completion_events(
 800                        Box::pin(
 801                            response_lines(response, includes_status_messages)
 802                                .chain(usage_updated_event(usage))
 803                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 804                        ),
 805                        move |event| mapper.map_event(event),
 806                    ))
 807                });
 808                async move { Ok(future.await?.boxed()) }.boxed()
 809            }
 810            cloud_llm_client::LanguageModelProvider::OpenAi => {
 811                let client = self.client.clone();
 812                let model = match open_ai::Model::from_id(&self.model.id.0) {
 813                    Ok(model) => model,
 814                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 815                };
 816                let request = into_open_ai(
 817                    request,
 818                    model.id(),
 819                    model.supports_parallel_tool_calls(),
 820                    model.supports_prompt_cache_key(),
 821                    None,
 822                    None,
 823                );
 824                let llm_api_token = self.llm_api_token.clone();
 825                let future = self.request_limiter.stream(async move {
 826                    let PerformLlmCompletionResponse {
 827                        response,
 828                        usage,
 829                        includes_status_messages,
 830                        tool_use_limit_reached,
 831                    } = Self::perform_llm_completion(
 832                        client.clone(),
 833                        llm_api_token,
 834                        app_version,
 835                        CompletionBody {
 836                            thread_id,
 837                            prompt_id,
 838                            intent,
 839                            mode,
 840                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 841                            model: request.model.clone(),
 842                            provider_request: serde_json::to_value(&request)
 843                                .map_err(|e| anyhow!(e))?,
 844                        },
 845                    )
 846                    .await?;
 847
 848                    let mut mapper = OpenAiEventMapper::new();
 849                    Ok(map_cloud_completion_events(
 850                        Box::pin(
 851                            response_lines(response, includes_status_messages)
 852                                .chain(usage_updated_event(usage))
 853                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 854                        ),
 855                        move |event| mapper.map_event(event),
 856                    ))
 857                });
 858                async move { Ok(future.await?.boxed()) }.boxed()
 859            }
 860            cloud_llm_client::LanguageModelProvider::XAi => {
 861                let client = self.client.clone();
 862                let model = match x_ai::Model::from_id(&self.model.id.0) {
 863                    Ok(model) => model,
 864                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 865                };
 866                let request = into_open_ai(
 867                    request,
 868                    model.id(),
 869                    model.supports_parallel_tool_calls(),
 870                    model.supports_prompt_cache_key(),
 871                    None,
 872                    None,
 873                );
 874                let llm_api_token = self.llm_api_token.clone();
 875                let future = self.request_limiter.stream(async move {
 876                    let PerformLlmCompletionResponse {
 877                        response,
 878                        usage,
 879                        includes_status_messages,
 880                        tool_use_limit_reached,
 881                    } = Self::perform_llm_completion(
 882                        client.clone(),
 883                        llm_api_token,
 884                        app_version,
 885                        CompletionBody {
 886                            thread_id,
 887                            prompt_id,
 888                            intent,
 889                            mode,
 890                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 891                            model: request.model.clone(),
 892                            provider_request: serde_json::to_value(&request)
 893                                .map_err(|e| anyhow!(e))?,
 894                        },
 895                    )
 896                    .await?;
 897
 898                    let mut mapper = OpenAiEventMapper::new();
 899                    Ok(map_cloud_completion_events(
 900                        Box::pin(
 901                            response_lines(response, includes_status_messages)
 902                                .chain(usage_updated_event(usage))
 903                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 904                        ),
 905                        move |event| mapper.map_event(event),
 906                    ))
 907                });
 908                async move { Ok(future.await?.boxed()) }.boxed()
 909            }
 910            cloud_llm_client::LanguageModelProvider::Google => {
 911                let client = self.client.clone();
 912                let request =
 913                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 914                let llm_api_token = self.llm_api_token.clone();
 915                let future = self.request_limiter.stream(async move {
 916                    let PerformLlmCompletionResponse {
 917                        response,
 918                        usage,
 919                        includes_status_messages,
 920                        tool_use_limit_reached,
 921                    } = Self::perform_llm_completion(
 922                        client.clone(),
 923                        llm_api_token,
 924                        app_version,
 925                        CompletionBody {
 926                            thread_id,
 927                            prompt_id,
 928                            intent,
 929                            mode,
 930                            provider: cloud_llm_client::LanguageModelProvider::Google,
 931                            model: request.model.model_id.clone(),
 932                            provider_request: serde_json::to_value(&request)
 933                                .map_err(|e| anyhow!(e))?,
 934                        },
 935                    )
 936                    .await?;
 937
 938                    let mut mapper = GoogleEventMapper::new();
 939                    Ok(map_cloud_completion_events(
 940                        Box::pin(
 941                            response_lines(response, includes_status_messages)
 942                                .chain(usage_updated_event(usage))
 943                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 944                        ),
 945                        move |event| mapper.map_event(event),
 946                    ))
 947                });
 948                async move { Ok(future.await?.boxed()) }.boxed()
 949            }
 950        }
 951    }
 952}
 953
 954fn map_cloud_completion_events<T, F>(
 955    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 956    mut map_callback: F,
 957) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 958where
 959    T: DeserializeOwned + 'static,
 960    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 961        + Send
 962        + 'static,
 963{
 964    stream
 965        .flat_map(move |event| {
 966            futures::stream::iter(match event {
 967                Err(error) => {
 968                    vec![Err(LanguageModelCompletionError::from(error))]
 969                }
 970                Ok(CompletionEvent::Status(event)) => {
 971                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 972                }
 973                Ok(CompletionEvent::Event(event)) => map_callback(event),
 974            })
 975        })
 976        .boxed()
 977}
 978
 979fn usage_updated_event<T>(
 980    usage: Option<ModelRequestUsage>,
 981) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 982    futures::stream::iter(usage.map(|usage| {
 983        Ok(CompletionEvent::Status(
 984            CompletionRequestStatus::UsageUpdated {
 985                amount: usage.amount as usize,
 986                limit: usage.limit,
 987            },
 988        ))
 989    }))
 990}
 991
 992fn tool_use_limit_reached_event<T>(
 993    tool_use_limit_reached: bool,
 994) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 995    futures::stream::iter(tool_use_limit_reached.then(|| {
 996        Ok(CompletionEvent::Status(
 997            CompletionRequestStatus::ToolUseLimitReached,
 998        ))
 999    }))
1000}
1001
1002fn response_lines<T: DeserializeOwned>(
1003    response: Response<AsyncBody>,
1004    includes_status_messages: bool,
1005) -> impl Stream<Item = Result<CompletionEvent<T>>> {
1006    futures::stream::try_unfold(
1007        (String::new(), BufReader::new(response.into_body())),
1008        move |(mut line, mut body)| async move {
1009            match body.read_line(&mut line).await {
1010                Ok(0) => Ok(None),
1011                Ok(_) => {
1012                    let event = if includes_status_messages {
1013                        serde_json::from_str::<CompletionEvent<T>>(&line)?
1014                    } else {
1015                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
1016                    };
1017
1018                    line.clear();
1019                    Ok(Some((event, (line, body))))
1020                }
1021                Err(e) => Err(e.into()),
1022            }
1023        },
1024    )
1025}
1026
1027#[derive(IntoElement, RegisterComponent)]
1028struct ZedAiConfiguration {
1029    is_connected: bool,
1030    plan: Option<Plan>,
1031    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
1032    eligible_for_trial: bool,
1033    account_too_young: bool,
1034    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1035}
1036
1037impl RenderOnce for ZedAiConfiguration {
1038    fn render(self, _window: &mut Window, _cx: &mut App) -> impl IntoElement {
1039        let is_pro = self.plan.is_some_and(|plan| {
1040            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
1041        });
1042        let subscription_text = match (self.plan, self.subscription_period) {
1043            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1044                "You have access to Zed's hosted models through your Pro subscription."
1045            }
1046            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1047                "You have access to Zed's hosted models through your Pro trial."
1048            }
1049            (Some(Plan::V1(PlanV1::ZedFree)), Some(_)) => {
1050                "You have basic access to Zed's hosted models through the Free plan."
1051            }
1052            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1053                if self.eligible_for_trial {
1054                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1055                } else {
1056                    "Subscribe for access to Zed's hosted models."
1057                }
1058            }
1059            _ => {
1060                if self.eligible_for_trial {
1061                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1062                } else {
1063                    "Subscribe for access to Zed's hosted models."
1064                }
1065            }
1066        };
1067
1068        let manage_subscription_buttons = if is_pro {
1069            Button::new("manage_settings", "Manage Subscription")
1070                .full_width()
1071                .style(ButtonStyle::Tinted(TintColor::Accent))
1072                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1073                .into_any_element()
1074        } else if self.plan.is_none() || self.eligible_for_trial {
1075            Button::new("start_trial", "Start 14-day Free Pro Trial")
1076                .full_width()
1077                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1078                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1079                .into_any_element()
1080        } else {
1081            Button::new("upgrade", "Upgrade to Pro")
1082                .full_width()
1083                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1084                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1085                .into_any_element()
1086        };
1087
1088        if !self.is_connected {
1089            return v_flex()
1090                .gap_2()
1091                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1092                .child(
1093                    Button::new("sign_in", "Sign In to use Zed AI")
1094                        .icon_color(Color::Muted)
1095                        .icon(IconName::Github)
1096                        .icon_size(IconSize::Small)
1097                        .icon_position(IconPosition::Start)
1098                        .full_width()
1099                        .on_click({
1100                            let callback = self.sign_in_callback.clone();
1101                            move |_, window, cx| (callback)(window, cx)
1102                        }),
1103                );
1104        }
1105
1106        v_flex().gap_2().w_full().map(|this| {
1107            if self.account_too_young {
1108                this.child(YoungAccountBanner).child(
1109                    Button::new("upgrade", "Upgrade to Pro")
1110                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1111                        .full_width()
1112                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1113                )
1114            } else {
1115                this.text_sm()
1116                    .child(subscription_text)
1117                    .child(manage_subscription_buttons)
1118            }
1119        })
1120    }
1121}
1122
1123struct ConfigurationView {
1124    state: Entity<State>,
1125    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1126}
1127
1128impl ConfigurationView {
1129    fn new(state: Entity<State>) -> Self {
1130        let sign_in_callback = Arc::new({
1131            let state = state.clone();
1132            move |_window: &mut Window, cx: &mut App| {
1133                state.update(cx, |state, cx| {
1134                    state.authenticate(cx).detach_and_log_err(cx);
1135                });
1136            }
1137        });
1138
1139        Self {
1140            state,
1141            sign_in_callback,
1142        }
1143    }
1144}
1145
1146impl Render for ConfigurationView {
1147    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1148        let state = self.state.read(cx);
1149        let user_store = state.user_store.read(cx);
1150
1151        ZedAiConfiguration {
1152            is_connected: !state.is_signed_out(cx),
1153            plan: user_store.plan(),
1154            subscription_period: user_store.subscription_period(),
1155            eligible_for_trial: user_store.trial_started_at().is_none(),
1156            account_too_young: user_store.account_too_young(),
1157            sign_in_callback: self.sign_in_callback.clone(),
1158        }
1159    }
1160}
1161
1162impl Component for ZedAiConfiguration {
1163    fn name() -> &'static str {
1164        "AI Configuration Content"
1165    }
1166
1167    fn sort_name() -> &'static str {
1168        "AI Configuration Content"
1169    }
1170
1171    fn scope() -> ComponentScope {
1172        ComponentScope::Onboarding
1173    }
1174
1175    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1176        fn configuration(
1177            is_connected: bool,
1178            plan: Option<Plan>,
1179            eligible_for_trial: bool,
1180            account_too_young: bool,
1181        ) -> AnyElement {
1182            ZedAiConfiguration {
1183                is_connected,
1184                plan,
1185                subscription_period: plan
1186                    .is_some()
1187                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1188                eligible_for_trial,
1189                account_too_young,
1190                sign_in_callback: Arc::new(|_, _| {}),
1191            }
1192            .into_any_element()
1193        }
1194
1195        Some(
1196            v_flex()
1197                .p_4()
1198                .gap_4()
1199                .children(vec![
1200                    single_example("Not connected", configuration(false, None, false, false)),
1201                    single_example(
1202                        "Accept Terms of Service",
1203                        configuration(true, None, true, false),
1204                    ),
1205                    single_example(
1206                        "No Plan - Not eligible for trial",
1207                        configuration(true, None, false, false),
1208                    ),
1209                    single_example(
1210                        "No Plan - Eligible for trial",
1211                        configuration(true, None, true, false),
1212                    ),
1213                    single_example(
1214                        "Free Plan",
1215                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1216                    ),
1217                    single_example(
1218                        "Zed Pro Trial Plan",
1219                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1220                    ),
1221                    single_example(
1222                        "Zed Pro Plan",
1223                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1224                    ),
1225                ])
1226                .into_any_element(),
1227        )
1228    }
1229}
1230
1231#[cfg(test)]
1232mod tests {
1233    use super::*;
1234    use http_client::http::{HeaderMap, StatusCode};
1235    use language_model::LanguageModelCompletionError;
1236
1237    #[test]
1238    fn test_api_error_conversion_with_upstream_http_error() {
1239        // upstream_http_error with 503 status should become ServerOverloaded
1240        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1241
1242        let api_error = ApiError {
1243            status: StatusCode::INTERNAL_SERVER_ERROR,
1244            body: error_body.to_string(),
1245            headers: HeaderMap::new(),
1246        };
1247
1248        let completion_error: LanguageModelCompletionError = api_error.into();
1249
1250        match completion_error {
1251            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1252                assert_eq!(
1253                    message,
1254                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1255                );
1256            }
1257            _ => panic!(
1258                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1259                completion_error
1260            ),
1261        }
1262
1263        // upstream_http_error with 500 status should become ApiInternalServerError
1264        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1265
1266        let api_error = ApiError {
1267            status: StatusCode::INTERNAL_SERVER_ERROR,
1268            body: error_body.to_string(),
1269            headers: HeaderMap::new(),
1270        };
1271
1272        let completion_error: LanguageModelCompletionError = api_error.into();
1273
1274        match completion_error {
1275            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1276                assert_eq!(
1277                    message,
1278                    "Received an error from the OpenAI API: internal server error"
1279                );
1280            }
1281            _ => panic!(
1282                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1283                completion_error
1284            ),
1285        }
1286
1287        // upstream_http_error with 429 status should become RateLimitExceeded
1288        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1289
1290        let api_error = ApiError {
1291            status: StatusCode::INTERNAL_SERVER_ERROR,
1292            body: error_body.to_string(),
1293            headers: HeaderMap::new(),
1294        };
1295
1296        let completion_error: LanguageModelCompletionError = api_error.into();
1297
1298        match completion_error {
1299            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1300                assert_eq!(
1301                    message,
1302                    "Received an error from the Google API: rate limit exceeded"
1303                );
1304            }
1305            _ => panic!(
1306                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1307                completion_error
1308            ),
1309        }
1310
1311        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1312        let error_body = "Regular internal server error";
1313
1314        let api_error = ApiError {
1315            status: StatusCode::INTERNAL_SERVER_ERROR,
1316            body: error_body.to_string(),
1317            headers: HeaderMap::new(),
1318        };
1319
1320        let completion_error: LanguageModelCompletionError = api_error.into();
1321
1322        match completion_error {
1323            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1324                assert_eq!(provider, PROVIDER_NAME);
1325                assert_eq!(message, "Regular internal server error");
1326            }
1327            _ => panic!(
1328                "Expected ApiInternalServerError for regular 500, got: {:?}",
1329                completion_error
1330            ),
1331        }
1332
1333        // upstream_http_429 format should be converted to UpstreamProviderError
1334        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1335
1336        let api_error = ApiError {
1337            status: StatusCode::INTERNAL_SERVER_ERROR,
1338            body: error_body.to_string(),
1339            headers: HeaderMap::new(),
1340        };
1341
1342        let completion_error: LanguageModelCompletionError = api_error.into();
1343
1344        match completion_error {
1345            LanguageModelCompletionError::UpstreamProviderError {
1346                message,
1347                status,
1348                retry_after,
1349            } => {
1350                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1351                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1352                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1353            }
1354            _ => panic!(
1355                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1356                completion_error
1357            ),
1358        }
1359
1360        // Invalid JSON in error body should fall back to regular error handling
1361        let error_body = "Not JSON at all";
1362
1363        let api_error = ApiError {
1364            status: StatusCode::INTERNAL_SERVER_ERROR,
1365            body: error_body.to_string(),
1366            headers: HeaderMap::new(),
1367        };
1368
1369        let completion_error: LanguageModelCompletionError = api_error.into();
1370
1371        match completion_error {
1372            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1373                assert_eq!(provider, PROVIDER_NAME);
1374            }
1375            _ => panic!(
1376                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1377                completion_error
1378            ),
1379        }
1380    }
1381}