1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
15 SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
16 SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
17 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
18 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
19 point, prelude::*, px, rems, size, transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 /// Returns true if this represents the "bubble" phase.
82 #[inline]
83 pub fn bubble(self) -> bool {
84 self == DispatchPhase::Bubble
85 }
86
87 /// Returns true if this represents the "capture" phase.
88 #[inline]
89 pub fn capture(self) -> bool {
90 self == DispatchPhase::Capture
91 }
92}
93
94struct WindowInvalidatorInner {
95 pub dirty: bool,
96 pub draw_phase: DrawPhase,
97 pub dirty_views: FxHashSet<EntityId>,
98}
99
100#[derive(Clone)]
101pub(crate) struct WindowInvalidator {
102 inner: Rc<RefCell<WindowInvalidatorInner>>,
103}
104
105impl WindowInvalidator {
106 pub fn new() -> Self {
107 WindowInvalidator {
108 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
109 dirty: true,
110 draw_phase: DrawPhase::None,
111 dirty_views: FxHashSet::default(),
112 })),
113 }
114 }
115
116 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
117 let mut inner = self.inner.borrow_mut();
118 inner.dirty_views.insert(entity);
119 if inner.draw_phase == DrawPhase::None {
120 inner.dirty = true;
121 cx.push_effect(Effect::Notify { emitter: entity });
122 true
123 } else {
124 false
125 }
126 }
127
128 pub fn is_dirty(&self) -> bool {
129 self.inner.borrow().dirty
130 }
131
132 pub fn set_dirty(&self, dirty: bool) {
133 self.inner.borrow_mut().dirty = dirty
134 }
135
136 pub fn set_phase(&self, phase: DrawPhase) {
137 self.inner.borrow_mut().draw_phase = phase
138 }
139
140 pub fn take_views(&self) -> FxHashSet<EntityId> {
141 mem::take(&mut self.inner.borrow_mut().dirty_views)
142 }
143
144 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
145 self.inner.borrow_mut().dirty_views = views;
146 }
147
148 pub fn not_drawing(&self) -> bool {
149 self.inner.borrow().draw_phase == DrawPhase::None
150 }
151
152 #[track_caller]
153 pub fn debug_assert_paint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
156 "this method can only be called during paint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_prepaint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
164 "this method can only be called during request_layout, or prepaint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_paint_or_prepaint(&self) {
170 debug_assert!(
171 matches!(
172 self.inner.borrow().draw_phase,
173 DrawPhase::Paint | DrawPhase::Prepaint
174 ),
175 "this method can only be called during request_layout, prepaint, or paint"
176 );
177 }
178}
179
180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) type AnyWindowFocusListener =
183 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
184
185pub(crate) struct WindowFocusEvent {
186 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
187 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
188}
189
190impl WindowFocusEvent {
191 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
192 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
193 }
194
195 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
196 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
197 }
198}
199
200/// This is provided when subscribing for `Context::on_focus_out` events.
201pub struct FocusOutEvent {
202 /// A weak focus handle representing what was blurred.
203 pub blurred: WeakFocusHandle,
204}
205
206slotmap::new_key_type! {
207 /// A globally unique identifier for a focusable element.
208 pub struct FocusId;
209}
210
211thread_local! {
212 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
213}
214
215/// Returned when the element arena has been used and so must be cleared before the next draw.
216#[must_use]
217pub struct ArenaClearNeeded;
218
219impl ArenaClearNeeded {
220 /// Clear the element arena.
221 pub fn clear(self) {
222 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
223 element_arena.clear();
224 });
225 }
226}
227
228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
229pub(crate) struct FocusRef {
230 pub(crate) ref_count: AtomicUsize,
231 pub(crate) tab_index: isize,
232 pub(crate) tab_stop: bool,
233}
234
235impl FocusId {
236 /// Obtains whether the element associated with this handle is currently focused.
237 pub fn is_focused(&self, window: &Window) -> bool {
238 window.focus == Some(*self)
239 }
240
241 /// Obtains whether the element associated with this handle contains the focused
242 /// element or is itself focused.
243 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
244 window
245 .focused(cx)
246 .is_some_and(|focused| self.contains(focused.id, window))
247 }
248
249 /// Obtains whether the element associated with this handle is contained within the
250 /// focused element or is itself focused.
251 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
252 let focused = window.focused(cx);
253 focused.is_some_and(|focused| focused.id.contains(*self, window))
254 }
255
256 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
257 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
258 window
259 .rendered_frame
260 .dispatch_tree
261 .focus_contains(*self, other)
262 }
263}
264
265/// A handle which can be used to track and manipulate the focused element in a window.
266pub struct FocusHandle {
267 pub(crate) id: FocusId,
268 handles: Arc<FocusMap>,
269 /// The index of this element in the tab order.
270 pub tab_index: isize,
271 /// Whether this element can be focused by tab navigation.
272 pub tab_stop: bool,
273}
274
275impl std::fmt::Debug for FocusHandle {
276 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
278 }
279}
280
281impl FocusHandle {
282 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
283 let id = handles.write().insert(FocusRef {
284 ref_count: AtomicUsize::new(1),
285 tab_index: 0,
286 tab_stop: false,
287 });
288
289 Self {
290 id,
291 tab_index: 0,
292 tab_stop: false,
293 handles: handles.clone(),
294 }
295 }
296
297 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
298 let lock = handles.read();
299 let focus = lock.get(id)?;
300 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
301 return None;
302 }
303 Some(Self {
304 id,
305 tab_index: focus.tab_index,
306 tab_stop: focus.tab_stop,
307 handles: handles.clone(),
308 })
309 }
310
311 /// Sets the tab index of the element associated with this handle.
312 pub fn tab_index(mut self, index: isize) -> Self {
313 self.tab_index = index;
314 if let Some(focus) = self.handles.write().get_mut(self.id) {
315 focus.tab_index = index;
316 }
317 self
318 }
319
320 /// Sets whether the element associated with this handle is a tab stop.
321 ///
322 /// When `false`, the element will not be included in the tab order.
323 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
324 self.tab_stop = tab_stop;
325 if let Some(focus) = self.handles.write().get_mut(self.id) {
326 focus.tab_stop = tab_stop;
327 }
328 self
329 }
330
331 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
332 pub fn downgrade(&self) -> WeakFocusHandle {
333 WeakFocusHandle {
334 id: self.id,
335 handles: Arc::downgrade(&self.handles),
336 }
337 }
338
339 /// Moves the focus to the element associated with this handle.
340 pub fn focus(&self, window: &mut Window) {
341 window.focus(self)
342 }
343
344 /// Obtains whether the element associated with this handle is currently focused.
345 pub fn is_focused(&self, window: &Window) -> bool {
346 self.id.is_focused(window)
347 }
348
349 /// Obtains whether the element associated with this handle contains the focused
350 /// element or is itself focused.
351 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
352 self.id.contains_focused(window, cx)
353 }
354
355 /// Obtains whether the element associated with this handle is contained within the
356 /// focused element or is itself focused.
357 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
358 self.id.within_focused(window, cx)
359 }
360
361 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
362 pub fn contains(&self, other: &Self, window: &Window) -> bool {
363 self.id.contains(other.id, window)
364 }
365
366 /// Dispatch an action on the element that rendered this focus handle
367 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
368 if let Some(node_id) = window
369 .rendered_frame
370 .dispatch_tree
371 .focusable_node_id(self.id)
372 {
373 window.dispatch_action_on_node(node_id, action, cx)
374 }
375 }
376}
377
378impl Clone for FocusHandle {
379 fn clone(&self) -> Self {
380 Self::for_id(self.id, &self.handles).unwrap()
381 }
382}
383
384impl PartialEq for FocusHandle {
385 fn eq(&self, other: &Self) -> bool {
386 self.id == other.id
387 }
388}
389
390impl Eq for FocusHandle {}
391
392impl Drop for FocusHandle {
393 fn drop(&mut self) {
394 self.handles
395 .read()
396 .get(self.id)
397 .unwrap()
398 .ref_count
399 .fetch_sub(1, SeqCst);
400 }
401}
402
403/// A weak reference to a focus handle.
404#[derive(Clone, Debug)]
405pub struct WeakFocusHandle {
406 pub(crate) id: FocusId,
407 pub(crate) handles: Weak<FocusMap>,
408}
409
410impl WeakFocusHandle {
411 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
412 pub fn upgrade(&self) -> Option<FocusHandle> {
413 let handles = self.handles.upgrade()?;
414 FocusHandle::for_id(self.id, &handles)
415 }
416}
417
418impl PartialEq for WeakFocusHandle {
419 fn eq(&self, other: &WeakFocusHandle) -> bool {
420 self.id == other.id
421 }
422}
423
424impl Eq for WeakFocusHandle {}
425
426impl PartialEq<FocusHandle> for WeakFocusHandle {
427 fn eq(&self, other: &FocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl PartialEq<WeakFocusHandle> for FocusHandle {
433 fn eq(&self, other: &WeakFocusHandle) -> bool {
434 self.id == other.id
435 }
436}
437
438/// Focusable allows users of your view to easily
439/// focus it (using window.focus_view(cx, view))
440pub trait Focusable: 'static {
441 /// Returns the focus handle associated with this view.
442 fn focus_handle(&self, cx: &App) -> FocusHandle;
443}
444
445impl<V: Focusable> Focusable for Entity<V> {
446 fn focus_handle(&self, cx: &App) -> FocusHandle {
447 self.read(cx).focus_handle(cx)
448 }
449}
450
451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
452/// where the lifecycle of the view is handled by another view.
453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
454
455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
456
457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
458pub struct DismissEvent;
459
460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
461
462pub(crate) type AnyMouseListener =
463 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
464
465#[derive(Clone)]
466pub(crate) struct CursorStyleRequest {
467 pub(crate) hitbox_id: Option<HitboxId>,
468 pub(crate) style: CursorStyle,
469}
470
471#[derive(Default, Eq, PartialEq)]
472pub(crate) struct HitTest {
473 pub(crate) ids: SmallVec<[HitboxId; 8]>,
474 pub(crate) hover_hitbox_count: usize,
475}
476
477/// A type of window control area that corresponds to the platform window.
478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
479pub enum WindowControlArea {
480 /// An area that allows dragging of the platform window.
481 Drag,
482 /// An area that allows closing of the platform window.
483 Close,
484 /// An area that allows maximizing of the platform window.
485 Max,
486 /// An area that allows minimizing of the platform window.
487 Min,
488}
489
490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
492pub struct HitboxId(u64);
493
494impl HitboxId {
495 /// Checks if the hitbox with this ID is currently hovered. Except when handling
496 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
497 /// events or paint hover styles.
498 ///
499 /// See [`Hitbox::is_hovered`] for details.
500 pub fn is_hovered(self, window: &Window) -> bool {
501 let hit_test = &window.mouse_hit_test;
502 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
503 if self == *id {
504 return true;
505 }
506 }
507 false
508 }
509
510 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
511 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
512 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
513 /// this distinction.
514 pub fn should_handle_scroll(self, window: &Window) -> bool {
515 window.mouse_hit_test.ids.contains(&self)
516 }
517
518 fn next(mut self) -> HitboxId {
519 HitboxId(self.0.wrapping_add(1))
520 }
521}
522
523/// A rectangular region that potentially blocks hitboxes inserted prior.
524/// See [Window::insert_hitbox] for more details.
525#[derive(Clone, Debug, Deref)]
526pub struct Hitbox {
527 /// A unique identifier for the hitbox.
528 pub id: HitboxId,
529 /// The bounds of the hitbox.
530 #[deref]
531 pub bounds: Bounds<Pixels>,
532 /// The content mask when the hitbox was inserted.
533 pub content_mask: ContentMask<Pixels>,
534 /// Flags that specify hitbox behavior.
535 pub behavior: HitboxBehavior,
536}
537
538impl Hitbox {
539 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
540 /// typically what you want when determining whether to handle mouse events or paint hover
541 /// styles.
542 ///
543 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
544 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
545 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
546 ///
547 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
548 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
549 /// non-interactive while still allowing scrolling. More abstractly, this is because
550 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
551 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
552 /// container.
553 pub fn is_hovered(&self, window: &Window) -> bool {
554 self.id.is_hovered(window)
555 }
556
557 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
558 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
559 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
560 ///
561 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
562 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
563 pub fn should_handle_scroll(&self, window: &Window) -> bool {
564 self.id.should_handle_scroll(window)
565 }
566}
567
568/// How the hitbox affects mouse behavior.
569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
570pub enum HitboxBehavior {
571 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
572 #[default]
573 Normal,
574
575 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
576 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
577 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
578 /// [`InteractiveElement::occlude`].
579 ///
580 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
581 /// bubble-phase handler for every mouse event type:
582 ///
583 /// ```ignore
584 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
585 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
586 /// cx.stop_propagation();
587 /// }
588 /// })
589 /// ```
590 ///
591 /// This has effects beyond event handling - any use of hitbox checking, such as hover
592 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
593 /// alternative might be to not affect mouse event handling - but this would allow
594 /// inconsistent UI where clicks and moves interact with elements that are not considered to
595 /// be hovered.
596 BlockMouse,
597
598 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
599 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
600 /// interaction except scroll events to be ignored - see the documentation of
601 /// [`Hitbox::is_hovered`] for details. This flag is set by
602 /// [`InteractiveElement::block_mouse_except_scroll`].
603 ///
604 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
605 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
606 ///
607 /// ```ignore
608 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
609 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
610 /// cx.stop_propagation();
611 /// }
612 /// })
613 /// ```
614 ///
615 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
616 /// handled differently than other mouse events. If also blocking these scroll events is
617 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
618 ///
619 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
620 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
621 /// An alternative might be to not affect mouse event handling - but this would allow
622 /// inconsistent UI where clicks and moves interact with elements that are not considered to
623 /// be hovered.
624 BlockMouseExceptScroll,
625}
626
627/// An identifier for a tooltip.
628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
629pub struct TooltipId(usize);
630
631impl TooltipId {
632 /// Checks if the tooltip is currently hovered.
633 pub fn is_hovered(&self, window: &Window) -> bool {
634 window
635 .tooltip_bounds
636 .as_ref()
637 .is_some_and(|tooltip_bounds| {
638 tooltip_bounds.id == *self
639 && tooltip_bounds.bounds.contains(&window.mouse_position())
640 })
641 }
642}
643
644pub(crate) struct TooltipBounds {
645 id: TooltipId,
646 bounds: Bounds<Pixels>,
647}
648
649#[derive(Clone)]
650pub(crate) struct TooltipRequest {
651 id: TooltipId,
652 tooltip: AnyTooltip,
653}
654
655pub(crate) struct DeferredDraw {
656 current_view: EntityId,
657 priority: usize,
658 parent_node: DispatchNodeId,
659 element_id_stack: SmallVec<[ElementId; 32]>,
660 text_style_stack: Vec<TextStyleRefinement>,
661 element: Option<AnyElement>,
662 absolute_offset: Point<Pixels>,
663 prepaint_range: Range<PrepaintStateIndex>,
664 paint_range: Range<PaintIndex>,
665}
666
667pub(crate) struct Frame {
668 pub(crate) focus: Option<FocusId>,
669 pub(crate) window_active: bool,
670 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
671 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
672 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
673 pub(crate) dispatch_tree: DispatchTree,
674 pub(crate) scene: Scene,
675 pub(crate) hitboxes: Vec<Hitbox>,
676 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
677 pub(crate) deferred_draws: Vec<DeferredDraw>,
678 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
679 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
680 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
681 #[cfg(any(test, feature = "test-support"))]
682 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
683 #[cfg(any(feature = "inspector", debug_assertions))]
684 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
685 #[cfg(any(feature = "inspector", debug_assertions))]
686 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
687 pub(crate) tab_stops: TabStopMap,
688}
689
690#[derive(Clone, Default)]
691pub(crate) struct PrepaintStateIndex {
692 hitboxes_index: usize,
693 tooltips_index: usize,
694 deferred_draws_index: usize,
695 dispatch_tree_index: usize,
696 accessed_element_states_index: usize,
697 line_layout_index: LineLayoutIndex,
698}
699
700#[derive(Clone, Default)]
701pub(crate) struct PaintIndex {
702 scene_index: usize,
703 mouse_listeners_index: usize,
704 input_handlers_index: usize,
705 cursor_styles_index: usize,
706 accessed_element_states_index: usize,
707 tab_handle_index: usize,
708 line_layout_index: LineLayoutIndex,
709}
710
711impl Frame {
712 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
713 Frame {
714 focus: None,
715 window_active: false,
716 element_states: FxHashMap::default(),
717 accessed_element_states: Vec::new(),
718 mouse_listeners: Vec::new(),
719 dispatch_tree,
720 scene: Scene::default(),
721 hitboxes: Vec::new(),
722 window_control_hitboxes: Vec::new(),
723 deferred_draws: Vec::new(),
724 input_handlers: Vec::new(),
725 tooltip_requests: Vec::new(),
726 cursor_styles: Vec::new(),
727
728 #[cfg(any(test, feature = "test-support"))]
729 debug_bounds: FxHashMap::default(),
730
731 #[cfg(any(feature = "inspector", debug_assertions))]
732 next_inspector_instance_ids: FxHashMap::default(),
733
734 #[cfg(any(feature = "inspector", debug_assertions))]
735 inspector_hitboxes: FxHashMap::default(),
736 tab_stops: TabStopMap::default(),
737 }
738 }
739
740 pub(crate) fn clear(&mut self) {
741 self.element_states.clear();
742 self.accessed_element_states.clear();
743 self.mouse_listeners.clear();
744 self.dispatch_tree.clear();
745 self.scene.clear();
746 self.input_handlers.clear();
747 self.tooltip_requests.clear();
748 self.cursor_styles.clear();
749 self.hitboxes.clear();
750 self.window_control_hitboxes.clear();
751 self.deferred_draws.clear();
752 self.tab_stops.clear();
753 self.focus = None;
754
755 #[cfg(any(feature = "inspector", debug_assertions))]
756 {
757 self.next_inspector_instance_ids.clear();
758 self.inspector_hitboxes.clear();
759 }
760 }
761
762 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
763 self.cursor_styles
764 .iter()
765 .rev()
766 .fold_while(None, |style, request| match request.hitbox_id {
767 None => Done(Some(request.style)),
768 Some(hitbox_id) => Continue(
769 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
770 ),
771 })
772 .into_inner()
773 }
774
775 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
776 let mut set_hover_hitbox_count = false;
777 let mut hit_test = HitTest::default();
778 for hitbox in self.hitboxes.iter().rev() {
779 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
780 if bounds.contains(&position) {
781 hit_test.ids.push(hitbox.id);
782 if !set_hover_hitbox_count
783 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
784 {
785 hit_test.hover_hitbox_count = hit_test.ids.len();
786 set_hover_hitbox_count = true;
787 }
788 if hitbox.behavior == HitboxBehavior::BlockMouse {
789 break;
790 }
791 }
792 }
793 if !set_hover_hitbox_count {
794 hit_test.hover_hitbox_count = hit_test.ids.len();
795 }
796 hit_test
797 }
798
799 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
800 self.focus
801 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
802 .unwrap_or_default()
803 }
804
805 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
806 for element_state_key in &self.accessed_element_states {
807 if let Some((element_state_key, element_state)) =
808 prev_frame.element_states.remove_entry(element_state_key)
809 {
810 self.element_states.insert(element_state_key, element_state);
811 }
812 }
813
814 self.scene.finish();
815 }
816}
817
818/// Holds the state for a specific window.
819pub struct Window {
820 pub(crate) handle: AnyWindowHandle,
821 pub(crate) invalidator: WindowInvalidator,
822 pub(crate) removed: bool,
823 pub(crate) platform_window: Box<dyn PlatformWindow>,
824 display_id: Option<DisplayId>,
825 sprite_atlas: Arc<dyn PlatformAtlas>,
826 text_system: Arc<WindowTextSystem>,
827 rem_size: Pixels,
828 /// The stack of override values for the window's rem size.
829 ///
830 /// This is used by `with_rem_size` to allow rendering an element tree with
831 /// a given rem size.
832 rem_size_override_stack: SmallVec<[Pixels; 8]>,
833 pub(crate) viewport_size: Size<Pixels>,
834 layout_engine: Option<TaffyLayoutEngine>,
835 pub(crate) root: Option<AnyView>,
836 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
837 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
838 pub(crate) rendered_entity_stack: Vec<EntityId>,
839 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
840 pub(crate) element_opacity: Option<f32>,
841 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
842 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
843 pub(crate) image_cache_stack: Vec<AnyImageCache>,
844 pub(crate) rendered_frame: Frame,
845 pub(crate) next_frame: Frame,
846 next_hitbox_id: HitboxId,
847 pub(crate) next_tooltip_id: TooltipId,
848 pub(crate) tooltip_bounds: Option<TooltipBounds>,
849 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
850 pub(crate) dirty_views: FxHashSet<EntityId>,
851 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
852 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
853 default_prevented: bool,
854 mouse_position: Point<Pixels>,
855 mouse_hit_test: HitTest,
856 modifiers: Modifiers,
857 capslock: Capslock,
858 scale_factor: f32,
859 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
860 appearance: WindowAppearance,
861 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
862 active: Rc<Cell<bool>>,
863 hovered: Rc<Cell<bool>>,
864 pub(crate) needs_present: Rc<Cell<bool>>,
865 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
866 pub(crate) refreshing: bool,
867 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
868 pub(crate) focus: Option<FocusId>,
869 focus_enabled: bool,
870 pending_input: Option<PendingInput>,
871 pending_modifier: ModifierState,
872 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
873 prompt: Option<RenderablePromptHandle>,
874 pub(crate) client_inset: Option<Pixels>,
875 #[cfg(any(feature = "inspector", debug_assertions))]
876 inspector: Option<Entity<Inspector>>,
877}
878
879#[derive(Clone, Debug, Default)]
880struct ModifierState {
881 modifiers: Modifiers,
882 saw_keystroke: bool,
883}
884
885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
886pub(crate) enum DrawPhase {
887 None,
888 Prepaint,
889 Paint,
890 Focus,
891}
892
893#[derive(Default, Debug)]
894struct PendingInput {
895 keystrokes: SmallVec<[Keystroke; 1]>,
896 focus: Option<FocusId>,
897 timer: Option<Task<()>>,
898}
899
900pub(crate) struct ElementStateBox {
901 pub(crate) inner: Box<dyn Any>,
902 #[cfg(debug_assertions)]
903 pub(crate) type_name: &'static str,
904}
905
906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
907 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
908
909 // TODO, BUG: if you open a window with the currently active window
910 // on the stack, this will erroneously select the 'unwrap_or_else'
911 // code path
912 cx.active_window()
913 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
914 .map(|mut bounds| {
915 bounds.origin += DEFAULT_WINDOW_OFFSET;
916 bounds
917 })
918 .unwrap_or_else(|| {
919 let display = display_id
920 .map(|id| cx.find_display(id))
921 .unwrap_or_else(|| cx.primary_display());
922
923 display
924 .map(|display| display.default_bounds())
925 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
926 })
927}
928
929impl Window {
930 pub(crate) fn new(
931 handle: AnyWindowHandle,
932 options: WindowOptions,
933 cx: &mut App,
934 ) -> Result<Self> {
935 let WindowOptions {
936 window_bounds,
937 titlebar,
938 focus,
939 show,
940 kind,
941 is_movable,
942 is_resizable,
943 is_minimizable,
944 display_id,
945 window_background,
946 app_id,
947 window_min_size,
948 window_decorations,
949 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
950 tabbing_identifier,
951 } = options;
952
953 let bounds = window_bounds
954 .map(|bounds| bounds.get_bounds())
955 .unwrap_or_else(|| default_bounds(display_id, cx));
956 let mut platform_window = cx.platform.open_window(
957 handle,
958 WindowParams {
959 bounds,
960 titlebar,
961 kind,
962 is_movable,
963 is_resizable,
964 is_minimizable,
965 focus,
966 show,
967 display_id,
968 window_min_size,
969 #[cfg(target_os = "macos")]
970 tabbing_identifier,
971 },
972 )?;
973
974 let tab_bar_visible = platform_window.tab_bar_visible();
975 SystemWindowTabController::init_visible(cx, tab_bar_visible);
976 if let Some(tabs) = platform_window.tabbed_windows() {
977 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
978 }
979
980 let display_id = platform_window.display().map(|display| display.id());
981 let sprite_atlas = platform_window.sprite_atlas();
982 let mouse_position = platform_window.mouse_position();
983 let modifiers = platform_window.modifiers();
984 let capslock = platform_window.capslock();
985 let content_size = platform_window.content_size();
986 let scale_factor = platform_window.scale_factor();
987 let appearance = platform_window.appearance();
988 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
989 let invalidator = WindowInvalidator::new();
990 let active = Rc::new(Cell::new(platform_window.is_active()));
991 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
992 let needs_present = Rc::new(Cell::new(false));
993 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
994 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
995
996 platform_window
997 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
998 platform_window.set_background_appearance(window_background);
999
1000 if let Some(ref window_open_state) = window_bounds {
1001 match window_open_state {
1002 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1003 WindowBounds::Maximized(_) => platform_window.zoom(),
1004 WindowBounds::Windowed(_) => {}
1005 }
1006 }
1007
1008 platform_window.on_close(Box::new({
1009 let window_id = handle.window_id();
1010 let mut cx = cx.to_async();
1011 move || {
1012 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1013 let _ = cx.update(|cx| {
1014 SystemWindowTabController::remove_tab(cx, window_id);
1015 });
1016 }
1017 }));
1018 platform_window.on_request_frame(Box::new({
1019 let mut cx = cx.to_async();
1020 let invalidator = invalidator.clone();
1021 let active = active.clone();
1022 let needs_present = needs_present.clone();
1023 let next_frame_callbacks = next_frame_callbacks.clone();
1024 let last_input_timestamp = last_input_timestamp.clone();
1025 move |request_frame_options| {
1026 let next_frame_callbacks = next_frame_callbacks.take();
1027 if !next_frame_callbacks.is_empty() {
1028 handle
1029 .update(&mut cx, |_, window, cx| {
1030 for callback in next_frame_callbacks {
1031 callback(window, cx);
1032 }
1033 })
1034 .log_err();
1035 }
1036
1037 // Keep presenting the current scene for 1 extra second since the
1038 // last input to prevent the display from underclocking the refresh rate.
1039 let needs_present = request_frame_options.require_presentation
1040 || needs_present.get()
1041 || (active.get()
1042 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1043
1044 if invalidator.is_dirty() || request_frame_options.force_render {
1045 measure("frame duration", || {
1046 handle
1047 .update(&mut cx, |_, window, cx| {
1048 let arena_clear_needed = window.draw(cx);
1049 window.present();
1050 // drop the arena elements after present to reduce latency
1051 arena_clear_needed.clear();
1052 })
1053 .log_err();
1054 })
1055 } else if needs_present {
1056 handle
1057 .update(&mut cx, |_, window, _| window.present())
1058 .log_err();
1059 }
1060
1061 handle
1062 .update(&mut cx, |_, window, _| {
1063 window.complete_frame();
1064 })
1065 .log_err();
1066 }
1067 }));
1068 platform_window.on_resize(Box::new({
1069 let mut cx = cx.to_async();
1070 move |_, _| {
1071 handle
1072 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1073 .log_err();
1074 }
1075 }));
1076 platform_window.on_moved(Box::new({
1077 let mut cx = cx.to_async();
1078 move || {
1079 handle
1080 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1081 .log_err();
1082 }
1083 }));
1084 platform_window.on_appearance_changed(Box::new({
1085 let mut cx = cx.to_async();
1086 move || {
1087 handle
1088 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1089 .log_err();
1090 }
1091 }));
1092 platform_window.on_active_status_change(Box::new({
1093 let mut cx = cx.to_async();
1094 move |active| {
1095 handle
1096 .update(&mut cx, |_, window, cx| {
1097 window.active.set(active);
1098 window.modifiers = window.platform_window.modifiers();
1099 window.capslock = window.platform_window.capslock();
1100 window
1101 .activation_observers
1102 .clone()
1103 .retain(&(), |callback| callback(window, cx));
1104
1105 window.bounds_changed(cx);
1106 window.refresh();
1107
1108 SystemWindowTabController::update_last_active(cx, window.handle.id);
1109 })
1110 .log_err();
1111 }
1112 }));
1113 platform_window.on_hover_status_change(Box::new({
1114 let mut cx = cx.to_async();
1115 move |active| {
1116 handle
1117 .update(&mut cx, |_, window, _| {
1118 window.hovered.set(active);
1119 window.refresh();
1120 })
1121 .log_err();
1122 }
1123 }));
1124 platform_window.on_input({
1125 let mut cx = cx.to_async();
1126 Box::new(move |event| {
1127 handle
1128 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1129 .log_err()
1130 .unwrap_or(DispatchEventResult::default())
1131 })
1132 });
1133 platform_window.on_hit_test_window_control({
1134 let mut cx = cx.to_async();
1135 Box::new(move || {
1136 handle
1137 .update(&mut cx, |_, window, _cx| {
1138 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1139 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1140 return Some(*area);
1141 }
1142 }
1143 None
1144 })
1145 .log_err()
1146 .unwrap_or(None)
1147 })
1148 });
1149 platform_window.on_move_tab_to_new_window({
1150 let mut cx = cx.to_async();
1151 Box::new(move || {
1152 handle
1153 .update(&mut cx, |_, _window, cx| {
1154 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1155 })
1156 .log_err();
1157 })
1158 });
1159 platform_window.on_merge_all_windows({
1160 let mut cx = cx.to_async();
1161 Box::new(move || {
1162 handle
1163 .update(&mut cx, |_, _window, cx| {
1164 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1165 })
1166 .log_err();
1167 })
1168 });
1169 platform_window.on_select_next_tab({
1170 let mut cx = cx.to_async();
1171 Box::new(move || {
1172 handle
1173 .update(&mut cx, |_, _window, cx| {
1174 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1175 })
1176 .log_err();
1177 })
1178 });
1179 platform_window.on_select_previous_tab({
1180 let mut cx = cx.to_async();
1181 Box::new(move || {
1182 handle
1183 .update(&mut cx, |_, _window, cx| {
1184 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1185 })
1186 .log_err();
1187 })
1188 });
1189 platform_window.on_toggle_tab_bar({
1190 let mut cx = cx.to_async();
1191 Box::new(move || {
1192 handle
1193 .update(&mut cx, |_, window, cx| {
1194 let tab_bar_visible = window.platform_window.tab_bar_visible();
1195 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1196 })
1197 .log_err();
1198 })
1199 });
1200
1201 if let Some(app_id) = app_id {
1202 platform_window.set_app_id(&app_id);
1203 }
1204
1205 platform_window.map_window().unwrap();
1206
1207 Ok(Window {
1208 handle,
1209 invalidator,
1210 removed: false,
1211 platform_window,
1212 display_id,
1213 sprite_atlas,
1214 text_system,
1215 rem_size: px(16.),
1216 rem_size_override_stack: SmallVec::new(),
1217 viewport_size: content_size,
1218 layout_engine: Some(TaffyLayoutEngine::new()),
1219 root: None,
1220 element_id_stack: SmallVec::default(),
1221 text_style_stack: Vec::new(),
1222 rendered_entity_stack: Vec::new(),
1223 element_offset_stack: Vec::new(),
1224 content_mask_stack: Vec::new(),
1225 element_opacity: None,
1226 requested_autoscroll: None,
1227 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1228 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1229 next_frame_callbacks,
1230 next_hitbox_id: HitboxId(0),
1231 next_tooltip_id: TooltipId::default(),
1232 tooltip_bounds: None,
1233 dirty_views: FxHashSet::default(),
1234 focus_listeners: SubscriberSet::new(),
1235 focus_lost_listeners: SubscriberSet::new(),
1236 default_prevented: true,
1237 mouse_position,
1238 mouse_hit_test: HitTest::default(),
1239 modifiers,
1240 capslock,
1241 scale_factor,
1242 bounds_observers: SubscriberSet::new(),
1243 appearance,
1244 appearance_observers: SubscriberSet::new(),
1245 active,
1246 hovered,
1247 needs_present,
1248 last_input_timestamp,
1249 refreshing: false,
1250 activation_observers: SubscriberSet::new(),
1251 focus: None,
1252 focus_enabled: true,
1253 pending_input: None,
1254 pending_modifier: ModifierState::default(),
1255 pending_input_observers: SubscriberSet::new(),
1256 prompt: None,
1257 client_inset: None,
1258 image_cache_stack: Vec::new(),
1259 #[cfg(any(feature = "inspector", debug_assertions))]
1260 inspector: None,
1261 })
1262 }
1263
1264 pub(crate) fn new_focus_listener(
1265 &self,
1266 value: AnyWindowFocusListener,
1267 ) -> (Subscription, impl FnOnce() + use<>) {
1268 self.focus_listeners.insert((), value)
1269 }
1270}
1271
1272#[derive(Clone, Debug, Default, PartialEq, Eq)]
1273pub(crate) struct DispatchEventResult {
1274 pub propagate: bool,
1275 pub default_prevented: bool,
1276}
1277
1278/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1279/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1280/// to leave room to support more complex shapes in the future.
1281#[derive(Clone, Debug, Default, PartialEq, Eq)]
1282#[repr(C)]
1283pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1284 /// The bounds
1285 pub bounds: Bounds<P>,
1286}
1287
1288impl ContentMask<Pixels> {
1289 /// Scale the content mask's pixel units by the given scaling factor.
1290 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1291 ContentMask {
1292 bounds: self.bounds.scale(factor),
1293 }
1294 }
1295
1296 /// Intersect the content mask with the given content mask.
1297 pub fn intersect(&self, other: &Self) -> Self {
1298 let bounds = self.bounds.intersect(&other.bounds);
1299 ContentMask { bounds }
1300 }
1301}
1302
1303impl Window {
1304 fn mark_view_dirty(&mut self, view_id: EntityId) {
1305 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1306 // should already be dirty.
1307 for view_id in self
1308 .rendered_frame
1309 .dispatch_tree
1310 .view_path(view_id)
1311 .into_iter()
1312 .rev()
1313 {
1314 if !self.dirty_views.insert(view_id) {
1315 break;
1316 }
1317 }
1318 }
1319
1320 /// Registers a callback to be invoked when the window appearance changes.
1321 pub fn observe_window_appearance(
1322 &self,
1323 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1324 ) -> Subscription {
1325 let (subscription, activate) = self.appearance_observers.insert(
1326 (),
1327 Box::new(move |window, cx| {
1328 callback(window, cx);
1329 true
1330 }),
1331 );
1332 activate();
1333 subscription
1334 }
1335
1336 /// Replaces the root entity of the window with a new one.
1337 pub fn replace_root<E>(
1338 &mut self,
1339 cx: &mut App,
1340 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1341 ) -> Entity<E>
1342 where
1343 E: 'static + Render,
1344 {
1345 let view = cx.new(|cx| build_view(self, cx));
1346 self.root = Some(view.clone().into());
1347 self.refresh();
1348 view
1349 }
1350
1351 /// Returns the root entity of the window, if it has one.
1352 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1353 where
1354 E: 'static + Render,
1355 {
1356 self.root
1357 .as_ref()
1358 .map(|view| view.clone().downcast::<E>().ok())
1359 }
1360
1361 /// Obtain a handle to the window that belongs to this context.
1362 pub fn window_handle(&self) -> AnyWindowHandle {
1363 self.handle
1364 }
1365
1366 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1367 pub fn refresh(&mut self) {
1368 if self.invalidator.not_drawing() {
1369 self.refreshing = true;
1370 self.invalidator.set_dirty(true);
1371 }
1372 }
1373
1374 /// Close this window.
1375 pub fn remove_window(&mut self) {
1376 self.removed = true;
1377 }
1378
1379 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1380 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1381 self.focus
1382 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1383 }
1384
1385 /// Move focus to the element associated with the given [`FocusHandle`].
1386 pub fn focus(&mut self, handle: &FocusHandle) {
1387 if !self.focus_enabled || self.focus == Some(handle.id) {
1388 return;
1389 }
1390
1391 self.focus = Some(handle.id);
1392 self.clear_pending_keystrokes();
1393 self.refresh();
1394 }
1395
1396 /// Remove focus from all elements within this context's window.
1397 pub fn blur(&mut self) {
1398 if !self.focus_enabled {
1399 return;
1400 }
1401
1402 self.focus = None;
1403 self.refresh();
1404 }
1405
1406 /// Blur the window and don't allow anything in it to be focused again.
1407 pub fn disable_focus(&mut self) {
1408 self.blur();
1409 self.focus_enabled = false;
1410 }
1411
1412 /// Move focus to next tab stop.
1413 pub fn focus_next(&mut self) {
1414 if !self.focus_enabled {
1415 return;
1416 }
1417
1418 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1419 self.focus(&handle)
1420 }
1421 }
1422
1423 /// Move focus to previous tab stop.
1424 pub fn focus_prev(&mut self) {
1425 if !self.focus_enabled {
1426 return;
1427 }
1428
1429 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1430 self.focus(&handle)
1431 }
1432 }
1433
1434 /// Accessor for the text system.
1435 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1436 &self.text_system
1437 }
1438
1439 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1440 pub fn text_style(&self) -> TextStyle {
1441 let mut style = TextStyle::default();
1442 for refinement in &self.text_style_stack {
1443 style.refine(refinement);
1444 }
1445 style
1446 }
1447
1448 /// Check if the platform window is maximized
1449 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1450 pub fn is_maximized(&self) -> bool {
1451 self.platform_window.is_maximized()
1452 }
1453
1454 /// request a certain window decoration (Wayland)
1455 pub fn request_decorations(&self, decorations: WindowDecorations) {
1456 self.platform_window.request_decorations(decorations);
1457 }
1458
1459 /// Start a window resize operation (Wayland)
1460 pub fn start_window_resize(&self, edge: ResizeEdge) {
1461 self.platform_window.start_window_resize(edge);
1462 }
1463
1464 /// Return the `WindowBounds` to indicate that how a window should be opened
1465 /// after it has been closed
1466 pub fn window_bounds(&self) -> WindowBounds {
1467 self.platform_window.window_bounds()
1468 }
1469
1470 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1471 pub fn inner_window_bounds(&self) -> WindowBounds {
1472 self.platform_window.inner_window_bounds()
1473 }
1474
1475 /// Dispatch the given action on the currently focused element.
1476 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1477 let focus_id = self.focused(cx).map(|handle| handle.id);
1478
1479 let window = self.handle;
1480 cx.defer(move |cx| {
1481 window
1482 .update(cx, |_, window, cx| {
1483 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1484 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1485 })
1486 .log_err();
1487 })
1488 }
1489
1490 pub(crate) fn dispatch_keystroke_observers(
1491 &mut self,
1492 event: &dyn Any,
1493 action: Option<Box<dyn Action>>,
1494 context_stack: Vec<KeyContext>,
1495 cx: &mut App,
1496 ) {
1497 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1498 return;
1499 };
1500
1501 cx.keystroke_observers.clone().retain(&(), move |callback| {
1502 (callback)(
1503 &KeystrokeEvent {
1504 keystroke: key_down_event.keystroke.clone(),
1505 action: action.as_ref().map(|action| action.boxed_clone()),
1506 context_stack: context_stack.clone(),
1507 },
1508 self,
1509 cx,
1510 )
1511 });
1512 }
1513
1514 pub(crate) fn dispatch_keystroke_interceptors(
1515 &mut self,
1516 event: &dyn Any,
1517 context_stack: Vec<KeyContext>,
1518 cx: &mut App,
1519 ) {
1520 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1521 return;
1522 };
1523
1524 cx.keystroke_interceptors
1525 .clone()
1526 .retain(&(), move |callback| {
1527 (callback)(
1528 &KeystrokeEvent {
1529 keystroke: key_down_event.keystroke.clone(),
1530 action: None,
1531 context_stack: context_stack.clone(),
1532 },
1533 self,
1534 cx,
1535 )
1536 });
1537 }
1538
1539 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1540 /// that are currently on the stack to be returned to the app.
1541 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1542 let handle = self.handle;
1543 cx.defer(move |cx| {
1544 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1545 });
1546 }
1547
1548 /// Subscribe to events emitted by a entity.
1549 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1550 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1551 pub fn observe<T: 'static>(
1552 &mut self,
1553 observed: &Entity<T>,
1554 cx: &mut App,
1555 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1556 ) -> Subscription {
1557 let entity_id = observed.entity_id();
1558 let observed = observed.downgrade();
1559 let window_handle = self.handle;
1560 cx.new_observer(
1561 entity_id,
1562 Box::new(move |cx| {
1563 window_handle
1564 .update(cx, |_, window, cx| {
1565 if let Some(handle) = observed.upgrade() {
1566 on_notify(handle, window, cx);
1567 true
1568 } else {
1569 false
1570 }
1571 })
1572 .unwrap_or(false)
1573 }),
1574 )
1575 }
1576
1577 /// Subscribe to events emitted by a entity.
1578 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1579 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1580 pub fn subscribe<Emitter, Evt>(
1581 &mut self,
1582 entity: &Entity<Emitter>,
1583 cx: &mut App,
1584 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1585 ) -> Subscription
1586 where
1587 Emitter: EventEmitter<Evt>,
1588 Evt: 'static,
1589 {
1590 let entity_id = entity.entity_id();
1591 let handle = entity.downgrade();
1592 let window_handle = self.handle;
1593 cx.new_subscription(
1594 entity_id,
1595 (
1596 TypeId::of::<Evt>(),
1597 Box::new(move |event, cx| {
1598 window_handle
1599 .update(cx, |_, window, cx| {
1600 if let Some(entity) = handle.upgrade() {
1601 let event = event.downcast_ref().expect("invalid event type");
1602 on_event(entity, event, window, cx);
1603 true
1604 } else {
1605 false
1606 }
1607 })
1608 .unwrap_or(false)
1609 }),
1610 ),
1611 )
1612 }
1613
1614 /// Register a callback to be invoked when the given `Entity` is released.
1615 pub fn observe_release<T>(
1616 &self,
1617 entity: &Entity<T>,
1618 cx: &mut App,
1619 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1620 ) -> Subscription
1621 where
1622 T: 'static,
1623 {
1624 let entity_id = entity.entity_id();
1625 let window_handle = self.handle;
1626 let (subscription, activate) = cx.release_listeners.insert(
1627 entity_id,
1628 Box::new(move |entity, cx| {
1629 let entity = entity.downcast_mut().expect("invalid entity type");
1630 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1631 }),
1632 );
1633 activate();
1634 subscription
1635 }
1636
1637 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1638 /// await points in async code.
1639 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1640 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1641 }
1642
1643 /// Schedule the given closure to be run directly after the current frame is rendered.
1644 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1645 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1646 }
1647
1648 /// Schedule a frame to be drawn on the next animation frame.
1649 ///
1650 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1651 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1652 ///
1653 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1654 pub fn request_animation_frame(&self) {
1655 let entity = self.current_view();
1656 self.on_next_frame(move |_, cx| cx.notify(entity));
1657 }
1658
1659 /// Spawn the future returned by the given closure on the application thread pool.
1660 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1661 /// use within your future.
1662 #[track_caller]
1663 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1664 where
1665 R: 'static,
1666 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1667 {
1668 let handle = self.handle;
1669 cx.spawn(async move |app| {
1670 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1671 f(&mut async_window_cx).await
1672 })
1673 }
1674
1675 fn bounds_changed(&mut self, cx: &mut App) {
1676 self.scale_factor = self.platform_window.scale_factor();
1677 self.viewport_size = self.platform_window.content_size();
1678 self.display_id = self.platform_window.display().map(|display| display.id());
1679
1680 self.refresh();
1681
1682 self.bounds_observers
1683 .clone()
1684 .retain(&(), |callback| callback(self, cx));
1685 }
1686
1687 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1688 pub fn bounds(&self) -> Bounds<Pixels> {
1689 self.platform_window.bounds()
1690 }
1691
1692 /// Set the content size of the window.
1693 pub fn resize(&mut self, size: Size<Pixels>) {
1694 self.platform_window.resize(size);
1695 }
1696
1697 /// Returns whether or not the window is currently fullscreen
1698 pub fn is_fullscreen(&self) -> bool {
1699 self.platform_window.is_fullscreen()
1700 }
1701
1702 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1703 self.appearance = self.platform_window.appearance();
1704
1705 self.appearance_observers
1706 .clone()
1707 .retain(&(), |callback| callback(self, cx));
1708 }
1709
1710 /// Returns the appearance of the current window.
1711 pub fn appearance(&self) -> WindowAppearance {
1712 self.appearance
1713 }
1714
1715 /// Returns the size of the drawable area within the window.
1716 pub fn viewport_size(&self) -> Size<Pixels> {
1717 self.viewport_size
1718 }
1719
1720 /// Returns whether this window is focused by the operating system (receiving key events).
1721 pub fn is_window_active(&self) -> bool {
1722 self.active.get()
1723 }
1724
1725 /// Returns whether this window is considered to be the window
1726 /// that currently owns the mouse cursor.
1727 /// On mac, this is equivalent to `is_window_active`.
1728 pub fn is_window_hovered(&self) -> bool {
1729 if cfg!(any(
1730 target_os = "windows",
1731 target_os = "linux",
1732 target_os = "freebsd"
1733 )) {
1734 self.hovered.get()
1735 } else {
1736 self.is_window_active()
1737 }
1738 }
1739
1740 /// Toggle zoom on the window.
1741 pub fn zoom_window(&self) {
1742 self.platform_window.zoom();
1743 }
1744
1745 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1746 pub fn show_window_menu(&self, position: Point<Pixels>) {
1747 self.platform_window.show_window_menu(position)
1748 }
1749
1750 /// Tells the compositor to take control of window movement (Wayland and X11)
1751 ///
1752 /// Events may not be received during a move operation.
1753 pub fn start_window_move(&self) {
1754 self.platform_window.start_window_move()
1755 }
1756
1757 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1758 pub fn set_client_inset(&mut self, inset: Pixels) {
1759 self.client_inset = Some(inset);
1760 self.platform_window.set_client_inset(inset);
1761 }
1762
1763 /// Returns the client_inset value by [`Self::set_client_inset`].
1764 pub fn client_inset(&self) -> Option<Pixels> {
1765 self.client_inset
1766 }
1767
1768 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1769 pub fn window_decorations(&self) -> Decorations {
1770 self.platform_window.window_decorations()
1771 }
1772
1773 /// Returns which window controls are currently visible (Wayland)
1774 pub fn window_controls(&self) -> WindowControls {
1775 self.platform_window.window_controls()
1776 }
1777
1778 /// Updates the window's title at the platform level.
1779 pub fn set_window_title(&mut self, title: &str) {
1780 self.platform_window.set_title(title);
1781 }
1782
1783 /// Sets the application identifier.
1784 pub fn set_app_id(&mut self, app_id: &str) {
1785 self.platform_window.set_app_id(app_id);
1786 }
1787
1788 /// Sets the window background appearance.
1789 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1790 self.platform_window
1791 .set_background_appearance(background_appearance);
1792 }
1793
1794 /// Mark the window as dirty at the platform level.
1795 pub fn set_window_edited(&mut self, edited: bool) {
1796 self.platform_window.set_edited(edited);
1797 }
1798
1799 /// Determine the display on which the window is visible.
1800 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1801 cx.platform
1802 .displays()
1803 .into_iter()
1804 .find(|display| Some(display.id()) == self.display_id)
1805 }
1806
1807 /// Show the platform character palette.
1808 pub fn show_character_palette(&self) {
1809 self.platform_window.show_character_palette();
1810 }
1811
1812 /// The scale factor of the display associated with the window. For example, it could
1813 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1814 /// be rendered as two pixels on screen.
1815 pub fn scale_factor(&self) -> f32 {
1816 self.scale_factor
1817 }
1818
1819 /// The size of an em for the base font of the application. Adjusting this value allows the
1820 /// UI to scale, just like zooming a web page.
1821 pub fn rem_size(&self) -> Pixels {
1822 self.rem_size_override_stack
1823 .last()
1824 .copied()
1825 .unwrap_or(self.rem_size)
1826 }
1827
1828 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1829 /// UI to scale, just like zooming a web page.
1830 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1831 self.rem_size = rem_size.into();
1832 }
1833
1834 /// Acquire a globally unique identifier for the given ElementId.
1835 /// Only valid for the duration of the provided closure.
1836 pub fn with_global_id<R>(
1837 &mut self,
1838 element_id: ElementId,
1839 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1840 ) -> R {
1841 self.element_id_stack.push(element_id);
1842 let global_id = GlobalElementId(self.element_id_stack.clone());
1843 let result = f(&global_id, self);
1844 self.element_id_stack.pop();
1845 result
1846 }
1847
1848 /// Executes the provided function with the specified rem size.
1849 ///
1850 /// This method must only be called as part of element drawing.
1851 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1852 where
1853 F: FnOnce(&mut Self) -> R,
1854 {
1855 self.invalidator.debug_assert_paint_or_prepaint();
1856
1857 if let Some(rem_size) = rem_size {
1858 self.rem_size_override_stack.push(rem_size.into());
1859 let result = f(self);
1860 self.rem_size_override_stack.pop();
1861 result
1862 } else {
1863 f(self)
1864 }
1865 }
1866
1867 /// The line height associated with the current text style.
1868 pub fn line_height(&self) -> Pixels {
1869 self.text_style().line_height_in_pixels(self.rem_size())
1870 }
1871
1872 /// Call to prevent the default action of an event. Currently only used to prevent
1873 /// parent elements from becoming focused on mouse down.
1874 pub fn prevent_default(&mut self) {
1875 self.default_prevented = true;
1876 }
1877
1878 /// Obtain whether default has been prevented for the event currently being dispatched.
1879 pub fn default_prevented(&self) -> bool {
1880 self.default_prevented
1881 }
1882
1883 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1884 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1885 let node_id =
1886 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1887 self.rendered_frame
1888 .dispatch_tree
1889 .is_action_available(action, node_id)
1890 }
1891
1892 /// The position of the mouse relative to the window.
1893 pub fn mouse_position(&self) -> Point<Pixels> {
1894 self.mouse_position
1895 }
1896
1897 /// The current state of the keyboard's modifiers
1898 pub fn modifiers(&self) -> Modifiers {
1899 self.modifiers
1900 }
1901
1902 /// The current state of the keyboard's capslock
1903 pub fn capslock(&self) -> Capslock {
1904 self.capslock
1905 }
1906
1907 fn complete_frame(&self) {
1908 self.platform_window.completed_frame();
1909 }
1910
1911 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1912 /// the contents of the new [`Scene`], use [`Self::present`].
1913 #[profiling::function]
1914 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1915 self.invalidate_entities();
1916 cx.entities.clear_accessed();
1917 debug_assert!(self.rendered_entity_stack.is_empty());
1918 self.invalidator.set_dirty(false);
1919 self.requested_autoscroll = None;
1920
1921 // Restore the previously-used input handler.
1922 if let Some(input_handler) = self.platform_window.take_input_handler() {
1923 self.rendered_frame.input_handlers.push(Some(input_handler));
1924 }
1925 self.draw_roots(cx);
1926 self.dirty_views.clear();
1927 self.next_frame.window_active = self.active.get();
1928
1929 // Register requested input handler with the platform window.
1930 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1931 self.platform_window
1932 .set_input_handler(input_handler.unwrap());
1933 }
1934
1935 self.layout_engine.as_mut().unwrap().clear();
1936 self.text_system().finish_frame();
1937 self.next_frame.finish(&mut self.rendered_frame);
1938
1939 self.invalidator.set_phase(DrawPhase::Focus);
1940 let previous_focus_path = self.rendered_frame.focus_path();
1941 let previous_window_active = self.rendered_frame.window_active;
1942 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1943 self.next_frame.clear();
1944 let current_focus_path = self.rendered_frame.focus_path();
1945 let current_window_active = self.rendered_frame.window_active;
1946
1947 if previous_focus_path != current_focus_path
1948 || previous_window_active != current_window_active
1949 {
1950 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1951 self.focus_lost_listeners
1952 .clone()
1953 .retain(&(), |listener| listener(self, cx));
1954 }
1955
1956 let event = WindowFocusEvent {
1957 previous_focus_path: if previous_window_active {
1958 previous_focus_path
1959 } else {
1960 Default::default()
1961 },
1962 current_focus_path: if current_window_active {
1963 current_focus_path
1964 } else {
1965 Default::default()
1966 },
1967 };
1968 self.focus_listeners
1969 .clone()
1970 .retain(&(), |listener| listener(&event, self, cx));
1971 }
1972
1973 debug_assert!(self.rendered_entity_stack.is_empty());
1974 self.record_entities_accessed(cx);
1975 self.reset_cursor_style(cx);
1976 self.refreshing = false;
1977 self.invalidator.set_phase(DrawPhase::None);
1978 self.needs_present.set(true);
1979
1980 ArenaClearNeeded
1981 }
1982
1983 fn record_entities_accessed(&mut self, cx: &mut App) {
1984 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1985 let mut entities = mem::take(entities_ref.deref_mut());
1986 drop(entities_ref);
1987 let handle = self.handle;
1988 cx.record_entities_accessed(
1989 handle,
1990 // Try moving window invalidator into the Window
1991 self.invalidator.clone(),
1992 &entities,
1993 );
1994 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1995 mem::swap(&mut entities, entities_ref.deref_mut());
1996 }
1997
1998 fn invalidate_entities(&mut self) {
1999 let mut views = self.invalidator.take_views();
2000 for entity in views.drain() {
2001 self.mark_view_dirty(entity);
2002 }
2003 self.invalidator.replace_views(views);
2004 }
2005
2006 #[profiling::function]
2007 fn present(&self) {
2008 self.platform_window.draw(&self.rendered_frame.scene);
2009 self.needs_present.set(false);
2010 profiling::finish_frame!();
2011 }
2012
2013 fn draw_roots(&mut self, cx: &mut App) {
2014 self.invalidator.set_phase(DrawPhase::Prepaint);
2015 self.tooltip_bounds.take();
2016
2017 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2018 let root_size = {
2019 #[cfg(any(feature = "inspector", debug_assertions))]
2020 {
2021 if self.inspector.is_some() {
2022 let mut size = self.viewport_size;
2023 size.width = (size.width - _inspector_width).max(px(0.0));
2024 size
2025 } else {
2026 self.viewport_size
2027 }
2028 }
2029 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2030 {
2031 self.viewport_size
2032 }
2033 };
2034
2035 // Layout all root elements.
2036 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2037 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2038
2039 #[cfg(any(feature = "inspector", debug_assertions))]
2040 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2041
2042 let mut sorted_deferred_draws =
2043 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2044 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2045 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2046
2047 let mut prompt_element = None;
2048 let mut active_drag_element = None;
2049 let mut tooltip_element = None;
2050 if let Some(prompt) = self.prompt.take() {
2051 let mut element = prompt.view.any_view().into_any();
2052 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2053 prompt_element = Some(element);
2054 self.prompt = Some(prompt);
2055 } else if let Some(active_drag) = cx.active_drag.take() {
2056 let mut element = active_drag.view.clone().into_any();
2057 let offset = self.mouse_position() - active_drag.cursor_offset;
2058 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2059 active_drag_element = Some(element);
2060 cx.active_drag = Some(active_drag);
2061 } else {
2062 tooltip_element = self.prepaint_tooltip(cx);
2063 }
2064
2065 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2066
2067 // Now actually paint the elements.
2068 self.invalidator.set_phase(DrawPhase::Paint);
2069 root_element.paint(self, cx);
2070
2071 #[cfg(any(feature = "inspector", debug_assertions))]
2072 self.paint_inspector(inspector_element, cx);
2073
2074 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2075
2076 if let Some(mut prompt_element) = prompt_element {
2077 prompt_element.paint(self, cx);
2078 } else if let Some(mut drag_element) = active_drag_element {
2079 drag_element.paint(self, cx);
2080 } else if let Some(mut tooltip_element) = tooltip_element {
2081 tooltip_element.paint(self, cx);
2082 }
2083
2084 #[cfg(any(feature = "inspector", debug_assertions))]
2085 self.paint_inspector_hitbox(cx);
2086 }
2087
2088 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2089 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2090 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2091 let Some(Some(tooltip_request)) = self
2092 .next_frame
2093 .tooltip_requests
2094 .get(tooltip_request_index)
2095 .cloned()
2096 else {
2097 log::error!("Unexpectedly absent TooltipRequest");
2098 continue;
2099 };
2100 let mut element = tooltip_request.tooltip.view.clone().into_any();
2101 let mouse_position = tooltip_request.tooltip.mouse_position;
2102 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2103
2104 let mut tooltip_bounds =
2105 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2106 let window_bounds = Bounds {
2107 origin: Point::default(),
2108 size: self.viewport_size(),
2109 };
2110
2111 if tooltip_bounds.right() > window_bounds.right() {
2112 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2113 if new_x >= Pixels::ZERO {
2114 tooltip_bounds.origin.x = new_x;
2115 } else {
2116 tooltip_bounds.origin.x = cmp::max(
2117 Pixels::ZERO,
2118 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2119 );
2120 }
2121 }
2122
2123 if tooltip_bounds.bottom() > window_bounds.bottom() {
2124 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2125 if new_y >= Pixels::ZERO {
2126 tooltip_bounds.origin.y = new_y;
2127 } else {
2128 tooltip_bounds.origin.y = cmp::max(
2129 Pixels::ZERO,
2130 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2131 );
2132 }
2133 }
2134
2135 // It's possible for an element to have an active tooltip while not being painted (e.g.
2136 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2137 // case, instead update the tooltip's visibility here.
2138 let is_visible =
2139 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2140 if !is_visible {
2141 continue;
2142 }
2143
2144 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2145 element.prepaint(window, cx)
2146 });
2147
2148 self.tooltip_bounds = Some(TooltipBounds {
2149 id: tooltip_request.id,
2150 bounds: tooltip_bounds,
2151 });
2152 return Some(element);
2153 }
2154 None
2155 }
2156
2157 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2158 assert_eq!(self.element_id_stack.len(), 0);
2159
2160 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2161 for deferred_draw_ix in deferred_draw_indices {
2162 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2163 self.element_id_stack
2164 .clone_from(&deferred_draw.element_id_stack);
2165 self.text_style_stack
2166 .clone_from(&deferred_draw.text_style_stack);
2167 self.next_frame
2168 .dispatch_tree
2169 .set_active_node(deferred_draw.parent_node);
2170
2171 let prepaint_start = self.prepaint_index();
2172 if let Some(element) = deferred_draw.element.as_mut() {
2173 self.with_rendered_view(deferred_draw.current_view, |window| {
2174 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2175 element.prepaint(window, cx)
2176 });
2177 })
2178 } else {
2179 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2180 }
2181 let prepaint_end = self.prepaint_index();
2182 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2183 }
2184 assert_eq!(
2185 self.next_frame.deferred_draws.len(),
2186 0,
2187 "cannot call defer_draw during deferred drawing"
2188 );
2189 self.next_frame.deferred_draws = deferred_draws;
2190 self.element_id_stack.clear();
2191 self.text_style_stack.clear();
2192 }
2193
2194 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2195 assert_eq!(self.element_id_stack.len(), 0);
2196
2197 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2198 for deferred_draw_ix in deferred_draw_indices {
2199 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2200 self.element_id_stack
2201 .clone_from(&deferred_draw.element_id_stack);
2202 self.next_frame
2203 .dispatch_tree
2204 .set_active_node(deferred_draw.parent_node);
2205
2206 let paint_start = self.paint_index();
2207 if let Some(element) = deferred_draw.element.as_mut() {
2208 self.with_rendered_view(deferred_draw.current_view, |window| {
2209 element.paint(window, cx);
2210 })
2211 } else {
2212 self.reuse_paint(deferred_draw.paint_range.clone());
2213 }
2214 let paint_end = self.paint_index();
2215 deferred_draw.paint_range = paint_start..paint_end;
2216 }
2217 self.next_frame.deferred_draws = deferred_draws;
2218 self.element_id_stack.clear();
2219 }
2220
2221 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2222 PrepaintStateIndex {
2223 hitboxes_index: self.next_frame.hitboxes.len(),
2224 tooltips_index: self.next_frame.tooltip_requests.len(),
2225 deferred_draws_index: self.next_frame.deferred_draws.len(),
2226 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2227 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2228 line_layout_index: self.text_system.layout_index(),
2229 }
2230 }
2231
2232 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2233 self.next_frame.hitboxes.extend(
2234 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2235 .iter()
2236 .cloned(),
2237 );
2238 self.next_frame.tooltip_requests.extend(
2239 self.rendered_frame.tooltip_requests
2240 [range.start.tooltips_index..range.end.tooltips_index]
2241 .iter_mut()
2242 .map(|request| request.take()),
2243 );
2244 self.next_frame.accessed_element_states.extend(
2245 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2246 ..range.end.accessed_element_states_index]
2247 .iter()
2248 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2249 );
2250 self.text_system
2251 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2252
2253 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2254 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2255 &mut self.rendered_frame.dispatch_tree,
2256 self.focus,
2257 );
2258
2259 if reused_subtree.contains_focus() {
2260 self.next_frame.focus = self.focus;
2261 }
2262
2263 self.next_frame.deferred_draws.extend(
2264 self.rendered_frame.deferred_draws
2265 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2266 .iter()
2267 .map(|deferred_draw| DeferredDraw {
2268 current_view: deferred_draw.current_view,
2269 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2270 element_id_stack: deferred_draw.element_id_stack.clone(),
2271 text_style_stack: deferred_draw.text_style_stack.clone(),
2272 priority: deferred_draw.priority,
2273 element: None,
2274 absolute_offset: deferred_draw.absolute_offset,
2275 prepaint_range: deferred_draw.prepaint_range.clone(),
2276 paint_range: deferred_draw.paint_range.clone(),
2277 }),
2278 );
2279 }
2280
2281 pub(crate) fn paint_index(&self) -> PaintIndex {
2282 PaintIndex {
2283 scene_index: self.next_frame.scene.len(),
2284 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2285 input_handlers_index: self.next_frame.input_handlers.len(),
2286 cursor_styles_index: self.next_frame.cursor_styles.len(),
2287 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2288 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2289 line_layout_index: self.text_system.layout_index(),
2290 }
2291 }
2292
2293 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2294 self.next_frame.cursor_styles.extend(
2295 self.rendered_frame.cursor_styles
2296 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2297 .iter()
2298 .cloned(),
2299 );
2300 self.next_frame.input_handlers.extend(
2301 self.rendered_frame.input_handlers
2302 [range.start.input_handlers_index..range.end.input_handlers_index]
2303 .iter_mut()
2304 .map(|handler| handler.take()),
2305 );
2306 self.next_frame.mouse_listeners.extend(
2307 self.rendered_frame.mouse_listeners
2308 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2309 .iter_mut()
2310 .map(|listener| listener.take()),
2311 );
2312 self.next_frame.accessed_element_states.extend(
2313 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2314 ..range.end.accessed_element_states_index]
2315 .iter()
2316 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2317 );
2318 self.next_frame.tab_stops.replay(
2319 &self.rendered_frame.tab_stops.insertion_history
2320 [range.start.tab_handle_index..range.end.tab_handle_index],
2321 );
2322
2323 self.text_system
2324 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2325 self.next_frame.scene.replay(
2326 range.start.scene_index..range.end.scene_index,
2327 &self.rendered_frame.scene,
2328 );
2329 }
2330
2331 /// Push a text style onto the stack, and call a function with that style active.
2332 /// Use [`Window::text_style`] to get the current, combined text style. This method
2333 /// should only be called as part of element drawing.
2334 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2335 where
2336 F: FnOnce(&mut Self) -> R,
2337 {
2338 self.invalidator.debug_assert_paint_or_prepaint();
2339 if let Some(style) = style {
2340 self.text_style_stack.push(style);
2341 let result = f(self);
2342 self.text_style_stack.pop();
2343 result
2344 } else {
2345 f(self)
2346 }
2347 }
2348
2349 /// Updates the cursor style at the platform level. This method should only be called
2350 /// during the prepaint phase of element drawing.
2351 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2352 self.invalidator.debug_assert_paint();
2353 self.next_frame.cursor_styles.push(CursorStyleRequest {
2354 hitbox_id: Some(hitbox.id),
2355 style,
2356 });
2357 }
2358
2359 /// Updates the cursor style for the entire window at the platform level. A cursor
2360 /// style using this method will have precedence over any cursor style set using
2361 /// `set_cursor_style`. This method should only be called during the prepaint
2362 /// phase of element drawing.
2363 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2364 self.invalidator.debug_assert_paint();
2365 self.next_frame.cursor_styles.push(CursorStyleRequest {
2366 hitbox_id: None,
2367 style,
2368 })
2369 }
2370
2371 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2372 /// during the paint phase of element drawing.
2373 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2374 self.invalidator.debug_assert_prepaint();
2375 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2376 self.next_frame
2377 .tooltip_requests
2378 .push(Some(TooltipRequest { id, tooltip }));
2379 id
2380 }
2381
2382 /// Invoke the given function with the given content mask after intersecting it
2383 /// with the current mask. This method should only be called during element drawing.
2384 pub fn with_content_mask<R>(
2385 &mut self,
2386 mask: Option<ContentMask<Pixels>>,
2387 f: impl FnOnce(&mut Self) -> R,
2388 ) -> R {
2389 self.invalidator.debug_assert_paint_or_prepaint();
2390 if let Some(mask) = mask {
2391 let mask = mask.intersect(&self.content_mask());
2392 self.content_mask_stack.push(mask);
2393 let result = f(self);
2394 self.content_mask_stack.pop();
2395 result
2396 } else {
2397 f(self)
2398 }
2399 }
2400
2401 /// Updates the global element offset relative to the current offset. This is used to implement
2402 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2403 pub fn with_element_offset<R>(
2404 &mut self,
2405 offset: Point<Pixels>,
2406 f: impl FnOnce(&mut Self) -> R,
2407 ) -> R {
2408 self.invalidator.debug_assert_prepaint();
2409
2410 if offset.is_zero() {
2411 return f(self);
2412 };
2413
2414 let abs_offset = self.element_offset() + offset;
2415 self.with_absolute_element_offset(abs_offset, f)
2416 }
2417
2418 /// Updates the global element offset based on the given offset. This is used to implement
2419 /// drag handles and other manual painting of elements. This method should only be called during
2420 /// the prepaint phase of element drawing.
2421 pub fn with_absolute_element_offset<R>(
2422 &mut self,
2423 offset: Point<Pixels>,
2424 f: impl FnOnce(&mut Self) -> R,
2425 ) -> R {
2426 self.invalidator.debug_assert_prepaint();
2427 self.element_offset_stack.push(offset);
2428 let result = f(self);
2429 self.element_offset_stack.pop();
2430 result
2431 }
2432
2433 pub(crate) fn with_element_opacity<R>(
2434 &mut self,
2435 opacity: Option<f32>,
2436 f: impl FnOnce(&mut Self) -> R,
2437 ) -> R {
2438 if opacity.is_none() {
2439 return f(self);
2440 }
2441
2442 self.invalidator.debug_assert_paint_or_prepaint();
2443 self.element_opacity = opacity;
2444 let result = f(self);
2445 self.element_opacity = None;
2446 result
2447 }
2448
2449 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2450 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2451 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2452 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2453 /// called during the prepaint phase of element drawing.
2454 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2455 self.invalidator.debug_assert_prepaint();
2456 let index = self.prepaint_index();
2457 let result = f(self);
2458 if result.is_err() {
2459 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2460 self.next_frame
2461 .tooltip_requests
2462 .truncate(index.tooltips_index);
2463 self.next_frame
2464 .deferred_draws
2465 .truncate(index.deferred_draws_index);
2466 self.next_frame
2467 .dispatch_tree
2468 .truncate(index.dispatch_tree_index);
2469 self.next_frame
2470 .accessed_element_states
2471 .truncate(index.accessed_element_states_index);
2472 self.text_system.truncate_layouts(index.line_layout_index);
2473 }
2474 result
2475 }
2476
2477 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2478 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2479 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2480 /// that supports this method being called on the elements it contains. This method should only be
2481 /// called during the prepaint phase of element drawing.
2482 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2483 self.invalidator.debug_assert_prepaint();
2484 self.requested_autoscroll = Some(bounds);
2485 }
2486
2487 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2488 /// described in [`Self::request_autoscroll`].
2489 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2490 self.invalidator.debug_assert_prepaint();
2491 self.requested_autoscroll.take()
2492 }
2493
2494 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2495 /// Your view will be re-drawn once the asset has finished loading.
2496 ///
2497 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2498 /// time.
2499 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2500 let (task, is_first) = cx.fetch_asset::<A>(source);
2501 task.clone().now_or_never().or_else(|| {
2502 if is_first {
2503 let entity_id = self.current_view();
2504 self.spawn(cx, {
2505 let task = task.clone();
2506 async move |cx| {
2507 task.await;
2508
2509 cx.on_next_frame(move |_, cx| {
2510 cx.notify(entity_id);
2511 });
2512 }
2513 })
2514 .detach();
2515 }
2516
2517 None
2518 })
2519 }
2520
2521 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2522 /// Your view will not be re-drawn once the asset has finished loading.
2523 ///
2524 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2525 /// time.
2526 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2527 let (task, _) = cx.fetch_asset::<A>(source);
2528 task.now_or_never()
2529 }
2530 /// Obtain the current element offset. This method should only be called during the
2531 /// prepaint phase of element drawing.
2532 pub fn element_offset(&self) -> Point<Pixels> {
2533 self.invalidator.debug_assert_prepaint();
2534 self.element_offset_stack
2535 .last()
2536 .copied()
2537 .unwrap_or_default()
2538 }
2539
2540 /// Obtain the current element opacity. This method should only be called during the
2541 /// prepaint phase of element drawing.
2542 pub(crate) fn element_opacity(&self) -> f32 {
2543 self.invalidator.debug_assert_paint_or_prepaint();
2544 self.element_opacity.unwrap_or(1.0)
2545 }
2546
2547 /// Obtain the current content mask. This method should only be called during element drawing.
2548 pub fn content_mask(&self) -> ContentMask<Pixels> {
2549 self.invalidator.debug_assert_paint_or_prepaint();
2550 self.content_mask_stack
2551 .last()
2552 .cloned()
2553 .unwrap_or_else(|| ContentMask {
2554 bounds: Bounds {
2555 origin: Point::default(),
2556 size: self.viewport_size,
2557 },
2558 })
2559 }
2560
2561 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2562 /// This can be used within a custom element to distinguish multiple sets of child elements.
2563 pub fn with_element_namespace<R>(
2564 &mut self,
2565 element_id: impl Into<ElementId>,
2566 f: impl FnOnce(&mut Self) -> R,
2567 ) -> R {
2568 self.element_id_stack.push(element_id.into());
2569 let result = f(self);
2570 self.element_id_stack.pop();
2571 result
2572 }
2573
2574 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2575 pub fn use_keyed_state<S: 'static>(
2576 &mut self,
2577 key: impl Into<ElementId>,
2578 cx: &mut App,
2579 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2580 ) -> Entity<S> {
2581 let current_view = self.current_view();
2582 self.with_global_id(key.into(), |global_id, window| {
2583 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2584 if let Some(state) = state {
2585 (state.clone(), state)
2586 } else {
2587 let new_state = cx.new(|cx| init(window, cx));
2588 cx.observe(&new_state, move |_, cx| {
2589 cx.notify(current_view);
2590 })
2591 .detach();
2592 (new_state.clone(), new_state)
2593 }
2594 })
2595 })
2596 }
2597
2598 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2599 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2600 self.with_global_id(id.into(), |_, window| f(window))
2601 }
2602
2603 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2604 ///
2605 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2606 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2607 /// you can provide a custom ElementID using the `use_keyed_state` method.
2608 #[track_caller]
2609 pub fn use_state<S: 'static>(
2610 &mut self,
2611 cx: &mut App,
2612 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2613 ) -> Entity<S> {
2614 self.use_keyed_state(
2615 ElementId::CodeLocation(*core::panic::Location::caller()),
2616 cx,
2617 init,
2618 )
2619 }
2620
2621 /// Updates or initializes state for an element with the given id that lives across multiple
2622 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2623 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2624 /// when drawing the next frame. This method should only be called as part of element drawing.
2625 pub fn with_element_state<S, R>(
2626 &mut self,
2627 global_id: &GlobalElementId,
2628 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2629 ) -> R
2630 where
2631 S: 'static,
2632 {
2633 self.invalidator.debug_assert_paint_or_prepaint();
2634
2635 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2636 self.next_frame
2637 .accessed_element_states
2638 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2639
2640 if let Some(any) = self
2641 .next_frame
2642 .element_states
2643 .remove(&key)
2644 .or_else(|| self.rendered_frame.element_states.remove(&key))
2645 {
2646 let ElementStateBox {
2647 inner,
2648 #[cfg(debug_assertions)]
2649 type_name,
2650 } = any;
2651 // Using the extra inner option to avoid needing to reallocate a new box.
2652 let mut state_box = inner
2653 .downcast::<Option<S>>()
2654 .map_err(|_| {
2655 #[cfg(debug_assertions)]
2656 {
2657 anyhow::anyhow!(
2658 "invalid element state type for id, requested {:?}, actual: {:?}",
2659 std::any::type_name::<S>(),
2660 type_name
2661 )
2662 }
2663
2664 #[cfg(not(debug_assertions))]
2665 {
2666 anyhow::anyhow!(
2667 "invalid element state type for id, requested {:?}",
2668 std::any::type_name::<S>(),
2669 )
2670 }
2671 })
2672 .unwrap();
2673
2674 let state = state_box.take().expect(
2675 "reentrant call to with_element_state for the same state type and element id",
2676 );
2677 let (result, state) = f(Some(state), self);
2678 state_box.replace(state);
2679 self.next_frame.element_states.insert(
2680 key,
2681 ElementStateBox {
2682 inner: state_box,
2683 #[cfg(debug_assertions)]
2684 type_name,
2685 },
2686 );
2687 result
2688 } else {
2689 let (result, state) = f(None, self);
2690 self.next_frame.element_states.insert(
2691 key,
2692 ElementStateBox {
2693 inner: Box::new(Some(state)),
2694 #[cfg(debug_assertions)]
2695 type_name: std::any::type_name::<S>(),
2696 },
2697 );
2698 result
2699 }
2700 }
2701
2702 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2703 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2704 /// when the element is guaranteed to have an id.
2705 ///
2706 /// The first option means 'no ID provided'
2707 /// The second option means 'not yet initialized'
2708 pub fn with_optional_element_state<S, R>(
2709 &mut self,
2710 global_id: Option<&GlobalElementId>,
2711 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2712 ) -> R
2713 where
2714 S: 'static,
2715 {
2716 self.invalidator.debug_assert_paint_or_prepaint();
2717
2718 if let Some(global_id) = global_id {
2719 self.with_element_state(global_id, |state, cx| {
2720 let (result, state) = f(Some(state), cx);
2721 let state =
2722 state.expect("you must return some state when you pass some element id");
2723 (result, state)
2724 })
2725 } else {
2726 let (result, state) = f(None, self);
2727 debug_assert!(
2728 state.is_none(),
2729 "you must not return an element state when passing None for the global id"
2730 );
2731 result
2732 }
2733 }
2734
2735 /// Executes the given closure within the context of a tab group.
2736 #[inline]
2737 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2738 if let Some(index) = index {
2739 self.next_frame.tab_stops.begin_group(index);
2740 let result = f(self);
2741 self.next_frame.tab_stops.end_group();
2742 result
2743 } else {
2744 f(self)
2745 }
2746 }
2747
2748 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2749 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2750 /// with higher values being drawn on top.
2751 ///
2752 /// This method should only be called as part of the prepaint phase of element drawing.
2753 pub fn defer_draw(
2754 &mut self,
2755 element: AnyElement,
2756 absolute_offset: Point<Pixels>,
2757 priority: usize,
2758 ) {
2759 self.invalidator.debug_assert_prepaint();
2760 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2761 self.next_frame.deferred_draws.push(DeferredDraw {
2762 current_view: self.current_view(),
2763 parent_node,
2764 element_id_stack: self.element_id_stack.clone(),
2765 text_style_stack: self.text_style_stack.clone(),
2766 priority,
2767 element: Some(element),
2768 absolute_offset,
2769 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2770 paint_range: PaintIndex::default()..PaintIndex::default(),
2771 });
2772 }
2773
2774 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2775 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2776 /// for performance reasons.
2777 ///
2778 /// This method should only be called as part of the paint phase of element drawing.
2779 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2780 self.invalidator.debug_assert_paint();
2781
2782 let scale_factor = self.scale_factor();
2783 let content_mask = self.content_mask();
2784 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2785 if !clipped_bounds.is_empty() {
2786 self.next_frame
2787 .scene
2788 .push_layer(clipped_bounds.scale(scale_factor));
2789 }
2790
2791 let result = f(self);
2792
2793 if !clipped_bounds.is_empty() {
2794 self.next_frame.scene.pop_layer();
2795 }
2796
2797 result
2798 }
2799
2800 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2801 ///
2802 /// This method should only be called as part of the paint phase of element drawing.
2803 pub fn paint_shadows(
2804 &mut self,
2805 bounds: Bounds<Pixels>,
2806 corner_radii: Corners<Pixels>,
2807 shadows: &[BoxShadow],
2808 ) {
2809 self.invalidator.debug_assert_paint();
2810
2811 let scale_factor = self.scale_factor();
2812 let content_mask = self.content_mask();
2813 let opacity = self.element_opacity();
2814 for shadow in shadows {
2815 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2816 self.next_frame.scene.insert_primitive(Shadow {
2817 order: 0,
2818 blur_radius: shadow.blur_radius.scale(scale_factor),
2819 bounds: shadow_bounds.scale(scale_factor),
2820 content_mask: content_mask.scale(scale_factor),
2821 corner_radii: corner_radii.scale(scale_factor),
2822 color: shadow.color.opacity(opacity),
2823 });
2824 }
2825 }
2826
2827 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2828 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2829 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2830 ///
2831 /// This method should only be called as part of the paint phase of element drawing.
2832 ///
2833 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2834 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2835 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2836 pub fn paint_quad(&mut self, quad: PaintQuad) {
2837 self.invalidator.debug_assert_paint();
2838
2839 let scale_factor = self.scale_factor();
2840 let content_mask = self.content_mask();
2841 let opacity = self.element_opacity();
2842 self.next_frame.scene.insert_primitive(Quad {
2843 order: 0,
2844 bounds: quad.bounds.scale(scale_factor),
2845 content_mask: content_mask.scale(scale_factor),
2846 background: quad.background.opacity(opacity),
2847 border_color: quad.border_color.opacity(opacity),
2848 corner_radii: quad.corner_radii.scale(scale_factor),
2849 border_widths: quad.border_widths.scale(scale_factor),
2850 border_style: quad.border_style,
2851 });
2852 }
2853
2854 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2855 ///
2856 /// This method should only be called as part of the paint phase of element drawing.
2857 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2858 self.invalidator.debug_assert_paint();
2859
2860 let scale_factor = self.scale_factor();
2861 let content_mask = self.content_mask();
2862 let opacity = self.element_opacity();
2863 path.content_mask = content_mask;
2864 let color: Background = color.into();
2865 path.color = color.opacity(opacity);
2866 self.next_frame
2867 .scene
2868 .insert_primitive(path.scale(scale_factor));
2869 }
2870
2871 /// Paint an underline into the scene for the next frame at the current z-index.
2872 ///
2873 /// This method should only be called as part of the paint phase of element drawing.
2874 pub fn paint_underline(
2875 &mut self,
2876 origin: Point<Pixels>,
2877 width: Pixels,
2878 style: &UnderlineStyle,
2879 ) {
2880 self.invalidator.debug_assert_paint();
2881
2882 let scale_factor = self.scale_factor();
2883 let height = if style.wavy {
2884 style.thickness * 3.
2885 } else {
2886 style.thickness
2887 };
2888 let bounds = Bounds {
2889 origin,
2890 size: size(width, height),
2891 };
2892 let content_mask = self.content_mask();
2893 let element_opacity = self.element_opacity();
2894
2895 self.next_frame.scene.insert_primitive(Underline {
2896 order: 0,
2897 pad: 0,
2898 bounds: bounds.scale(scale_factor),
2899 content_mask: content_mask.scale(scale_factor),
2900 color: style.color.unwrap_or_default().opacity(element_opacity),
2901 thickness: style.thickness.scale(scale_factor),
2902 wavy: if style.wavy { 1 } else { 0 },
2903 });
2904 }
2905
2906 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2907 ///
2908 /// This method should only be called as part of the paint phase of element drawing.
2909 pub fn paint_strikethrough(
2910 &mut self,
2911 origin: Point<Pixels>,
2912 width: Pixels,
2913 style: &StrikethroughStyle,
2914 ) {
2915 self.invalidator.debug_assert_paint();
2916
2917 let scale_factor = self.scale_factor();
2918 let height = style.thickness;
2919 let bounds = Bounds {
2920 origin,
2921 size: size(width, height),
2922 };
2923 let content_mask = self.content_mask();
2924 let opacity = self.element_opacity();
2925
2926 self.next_frame.scene.insert_primitive(Underline {
2927 order: 0,
2928 pad: 0,
2929 bounds: bounds.scale(scale_factor),
2930 content_mask: content_mask.scale(scale_factor),
2931 thickness: style.thickness.scale(scale_factor),
2932 color: style.color.unwrap_or_default().opacity(opacity),
2933 wavy: 0,
2934 });
2935 }
2936
2937 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2938 ///
2939 /// The y component of the origin is the baseline of the glyph.
2940 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2941 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2942 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2943 ///
2944 /// This method should only be called as part of the paint phase of element drawing.
2945 pub fn paint_glyph(
2946 &mut self,
2947 origin: Point<Pixels>,
2948 font_id: FontId,
2949 glyph_id: GlyphId,
2950 font_size: Pixels,
2951 color: Hsla,
2952 ) -> Result<()> {
2953 self.invalidator.debug_assert_paint();
2954
2955 let element_opacity = self.element_opacity();
2956 let scale_factor = self.scale_factor();
2957 let glyph_origin = origin.scale(scale_factor);
2958
2959 let subpixel_variant = Point {
2960 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
2961 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
2962 };
2963 let params = RenderGlyphParams {
2964 font_id,
2965 glyph_id,
2966 font_size,
2967 subpixel_variant,
2968 scale_factor,
2969 is_emoji: false,
2970 };
2971
2972 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2973 if !raster_bounds.is_zero() {
2974 let tile = self
2975 .sprite_atlas
2976 .get_or_insert_with(¶ms.clone().into(), &mut || {
2977 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2978 Ok(Some((size, Cow::Owned(bytes))))
2979 })?
2980 .expect("Callback above only errors or returns Some");
2981 let bounds = Bounds {
2982 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2983 size: tile.bounds.size.map(Into::into),
2984 };
2985 let content_mask = self.content_mask().scale(scale_factor);
2986 self.next_frame.scene.insert_primitive(MonochromeSprite {
2987 order: 0,
2988 pad: 0,
2989 bounds,
2990 content_mask,
2991 color: color.opacity(element_opacity),
2992 tile,
2993 transformation: TransformationMatrix::unit(),
2994 });
2995 }
2996 Ok(())
2997 }
2998
2999 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3000 ///
3001 /// The y component of the origin is the baseline of the glyph.
3002 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3003 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3004 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3005 ///
3006 /// This method should only be called as part of the paint phase of element drawing.
3007 pub fn paint_emoji(
3008 &mut self,
3009 origin: Point<Pixels>,
3010 font_id: FontId,
3011 glyph_id: GlyphId,
3012 font_size: Pixels,
3013 ) -> Result<()> {
3014 self.invalidator.debug_assert_paint();
3015
3016 let scale_factor = self.scale_factor();
3017 let glyph_origin = origin.scale(scale_factor);
3018 let params = RenderGlyphParams {
3019 font_id,
3020 glyph_id,
3021 font_size,
3022 // We don't render emojis with subpixel variants.
3023 subpixel_variant: Default::default(),
3024 scale_factor,
3025 is_emoji: true,
3026 };
3027
3028 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3029 if !raster_bounds.is_zero() {
3030 let tile = self
3031 .sprite_atlas
3032 .get_or_insert_with(¶ms.clone().into(), &mut || {
3033 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3034 Ok(Some((size, Cow::Owned(bytes))))
3035 })?
3036 .expect("Callback above only errors or returns Some");
3037
3038 let bounds = Bounds {
3039 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3040 size: tile.bounds.size.map(Into::into),
3041 };
3042 let content_mask = self.content_mask().scale(scale_factor);
3043 let opacity = self.element_opacity();
3044
3045 self.next_frame.scene.insert_primitive(PolychromeSprite {
3046 order: 0,
3047 pad: 0,
3048 grayscale: false,
3049 bounds,
3050 corner_radii: Default::default(),
3051 content_mask,
3052 tile,
3053 opacity,
3054 });
3055 }
3056 Ok(())
3057 }
3058
3059 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3060 ///
3061 /// This method should only be called as part of the paint phase of element drawing.
3062 pub fn paint_svg(
3063 &mut self,
3064 bounds: Bounds<Pixels>,
3065 path: SharedString,
3066 transformation: TransformationMatrix,
3067 color: Hsla,
3068 cx: &App,
3069 ) -> Result<()> {
3070 self.invalidator.debug_assert_paint();
3071
3072 let element_opacity = self.element_opacity();
3073 let scale_factor = self.scale_factor();
3074 let bounds = bounds.scale(scale_factor);
3075 let params = RenderSvgParams {
3076 path,
3077 size: bounds.size.map(|pixels| {
3078 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3079 }),
3080 };
3081
3082 let Some(tile) =
3083 self.sprite_atlas
3084 .get_or_insert_with(¶ms.clone().into(), &mut || {
3085 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
3086 return Ok(None);
3087 };
3088 Ok(Some((params.size, Cow::Owned(bytes))))
3089 })?
3090 else {
3091 return Ok(());
3092 };
3093 let content_mask = self.content_mask().scale(scale_factor);
3094
3095 self.next_frame.scene.insert_primitive(MonochromeSprite {
3096 order: 0,
3097 pad: 0,
3098 bounds: bounds
3099 .map_origin(|origin| origin.floor())
3100 .map_size(|size| size.ceil()),
3101 content_mask,
3102 color: color.opacity(element_opacity),
3103 tile,
3104 transformation,
3105 });
3106
3107 Ok(())
3108 }
3109
3110 /// Paint an image into the scene for the next frame at the current z-index.
3111 /// This method will panic if the frame_index is not valid
3112 ///
3113 /// This method should only be called as part of the paint phase of element drawing.
3114 pub fn paint_image(
3115 &mut self,
3116 bounds: Bounds<Pixels>,
3117 corner_radii: Corners<Pixels>,
3118 data: Arc<RenderImage>,
3119 frame_index: usize,
3120 grayscale: bool,
3121 ) -> Result<()> {
3122 self.invalidator.debug_assert_paint();
3123
3124 let scale_factor = self.scale_factor();
3125 let bounds = bounds.scale(scale_factor);
3126 let params = RenderImageParams {
3127 image_id: data.id,
3128 frame_index,
3129 };
3130
3131 let tile = self
3132 .sprite_atlas
3133 .get_or_insert_with(¶ms.into(), &mut || {
3134 Ok(Some((
3135 data.size(frame_index),
3136 Cow::Borrowed(
3137 data.as_bytes(frame_index)
3138 .expect("It's the caller's job to pass a valid frame index"),
3139 ),
3140 )))
3141 })?
3142 .expect("Callback above only returns Some");
3143 let content_mask = self.content_mask().scale(scale_factor);
3144 let corner_radii = corner_radii.scale(scale_factor);
3145 let opacity = self.element_opacity();
3146
3147 self.next_frame.scene.insert_primitive(PolychromeSprite {
3148 order: 0,
3149 pad: 0,
3150 grayscale,
3151 bounds: bounds
3152 .map_origin(|origin| origin.floor())
3153 .map_size(|size| size.ceil()),
3154 content_mask,
3155 corner_radii,
3156 tile,
3157 opacity,
3158 });
3159 Ok(())
3160 }
3161
3162 /// Paint a surface into the scene for the next frame at the current z-index.
3163 ///
3164 /// This method should only be called as part of the paint phase of element drawing.
3165 #[cfg(target_os = "macos")]
3166 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3167 use crate::PaintSurface;
3168
3169 self.invalidator.debug_assert_paint();
3170
3171 let scale_factor = self.scale_factor();
3172 let bounds = bounds.scale(scale_factor);
3173 let content_mask = self.content_mask().scale(scale_factor);
3174 self.next_frame.scene.insert_primitive(PaintSurface {
3175 order: 0,
3176 bounds,
3177 content_mask,
3178 image_buffer,
3179 });
3180 }
3181
3182 /// Removes an image from the sprite atlas.
3183 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3184 for frame_index in 0..data.frame_count() {
3185 let params = RenderImageParams {
3186 image_id: data.id,
3187 frame_index,
3188 };
3189
3190 self.sprite_atlas.remove(¶ms.clone().into());
3191 }
3192
3193 Ok(())
3194 }
3195
3196 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3197 /// layout is being requested, along with the layout ids of any children. This method is called during
3198 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3199 ///
3200 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3201 #[must_use]
3202 pub fn request_layout(
3203 &mut self,
3204 style: Style,
3205 children: impl IntoIterator<Item = LayoutId>,
3206 cx: &mut App,
3207 ) -> LayoutId {
3208 self.invalidator.debug_assert_prepaint();
3209
3210 cx.layout_id_buffer.clear();
3211 cx.layout_id_buffer.extend(children);
3212 let rem_size = self.rem_size();
3213
3214 self.layout_engine
3215 .as_mut()
3216 .unwrap()
3217 .request_layout(style, rem_size, &cx.layout_id_buffer)
3218 }
3219
3220 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3221 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3222 /// determine the element's size. One place this is used internally is when measuring text.
3223 ///
3224 /// The given closure is invoked at layout time with the known dimensions and available space and
3225 /// returns a `Size`.
3226 ///
3227 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3228 pub fn request_measured_layout<
3229 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3230 + 'static,
3231 >(
3232 &mut self,
3233 style: Style,
3234 measure: F,
3235 ) -> LayoutId {
3236 self.invalidator.debug_assert_prepaint();
3237
3238 let rem_size = self.rem_size();
3239 self.layout_engine
3240 .as_mut()
3241 .unwrap()
3242 .request_measured_layout(style, rem_size, measure)
3243 }
3244
3245 /// Compute the layout for the given id within the given available space.
3246 /// This method is called for its side effect, typically by the framework prior to painting.
3247 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3248 ///
3249 /// This method should only be called as part of the prepaint phase of element drawing.
3250 pub fn compute_layout(
3251 &mut self,
3252 layout_id: LayoutId,
3253 available_space: Size<AvailableSpace>,
3254 cx: &mut App,
3255 ) {
3256 self.invalidator.debug_assert_prepaint();
3257
3258 let mut layout_engine = self.layout_engine.take().unwrap();
3259 layout_engine.compute_layout(layout_id, available_space, self, cx);
3260 self.layout_engine = Some(layout_engine);
3261 }
3262
3263 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3264 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3265 ///
3266 /// This method should only be called as part of element drawing.
3267 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3268 self.invalidator.debug_assert_prepaint();
3269
3270 let mut bounds = self
3271 .layout_engine
3272 .as_mut()
3273 .unwrap()
3274 .layout_bounds(layout_id)
3275 .map(Into::into);
3276 bounds.origin += self.element_offset();
3277 bounds
3278 }
3279
3280 /// This method should be called during `prepaint`. You can use
3281 /// the returned [Hitbox] during `paint` or in an event handler
3282 /// to determine whether the inserted hitbox was the topmost.
3283 ///
3284 /// This method should only be called as part of the prepaint phase of element drawing.
3285 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3286 self.invalidator.debug_assert_prepaint();
3287
3288 let content_mask = self.content_mask();
3289 let mut id = self.next_hitbox_id;
3290 self.next_hitbox_id = self.next_hitbox_id.next();
3291 let hitbox = Hitbox {
3292 id,
3293 bounds,
3294 content_mask,
3295 behavior,
3296 };
3297 self.next_frame.hitboxes.push(hitbox.clone());
3298 hitbox
3299 }
3300
3301 /// Set a hitbox which will act as a control area of the platform window.
3302 ///
3303 /// This method should only be called as part of the paint phase of element drawing.
3304 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3305 self.invalidator.debug_assert_paint();
3306 self.next_frame.window_control_hitboxes.push((area, hitbox));
3307 }
3308
3309 /// Sets the key context for the current element. This context will be used to translate
3310 /// keybindings into actions.
3311 ///
3312 /// This method should only be called as part of the paint phase of element drawing.
3313 pub fn set_key_context(&mut self, context: KeyContext) {
3314 self.invalidator.debug_assert_paint();
3315 self.next_frame.dispatch_tree.set_key_context(context);
3316 }
3317
3318 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3319 /// and keyboard event dispatch for the element.
3320 ///
3321 /// This method should only be called as part of the prepaint phase of element drawing.
3322 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3323 self.invalidator.debug_assert_prepaint();
3324 if focus_handle.is_focused(self) {
3325 self.next_frame.focus = Some(focus_handle.id);
3326 }
3327 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3328 }
3329
3330 /// Sets the view id for the current element, which will be used to manage view caching.
3331 ///
3332 /// This method should only be called as part of element prepaint. We plan on removing this
3333 /// method eventually when we solve some issues that require us to construct editor elements
3334 /// directly instead of always using editors via views.
3335 pub fn set_view_id(&mut self, view_id: EntityId) {
3336 self.invalidator.debug_assert_prepaint();
3337 self.next_frame.dispatch_tree.set_view_id(view_id);
3338 }
3339
3340 /// Get the entity ID for the currently rendering view
3341 pub fn current_view(&self) -> EntityId {
3342 self.invalidator.debug_assert_paint_or_prepaint();
3343 self.rendered_entity_stack.last().copied().unwrap()
3344 }
3345
3346 pub(crate) fn with_rendered_view<R>(
3347 &mut self,
3348 id: EntityId,
3349 f: impl FnOnce(&mut Self) -> R,
3350 ) -> R {
3351 self.rendered_entity_stack.push(id);
3352 let result = f(self);
3353 self.rendered_entity_stack.pop();
3354 result
3355 }
3356
3357 /// Executes the provided function with the specified image cache.
3358 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3359 where
3360 F: FnOnce(&mut Self) -> R,
3361 {
3362 if let Some(image_cache) = image_cache {
3363 self.image_cache_stack.push(image_cache);
3364 let result = f(self);
3365 self.image_cache_stack.pop();
3366 result
3367 } else {
3368 f(self)
3369 }
3370 }
3371
3372 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3373 /// platform to receive textual input with proper integration with concerns such
3374 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3375 /// rendered.
3376 ///
3377 /// This method should only be called as part of the paint phase of element drawing.
3378 ///
3379 /// [element_input_handler]: crate::ElementInputHandler
3380 pub fn handle_input(
3381 &mut self,
3382 focus_handle: &FocusHandle,
3383 input_handler: impl InputHandler,
3384 cx: &App,
3385 ) {
3386 self.invalidator.debug_assert_paint();
3387
3388 if focus_handle.is_focused(self) {
3389 let cx = self.to_async(cx);
3390 self.next_frame
3391 .input_handlers
3392 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3393 }
3394 }
3395
3396 /// Register a mouse event listener on the window for the next frame. The type of event
3397 /// is determined by the first parameter of the given listener. When the next frame is rendered
3398 /// the listener will be cleared.
3399 ///
3400 /// This method should only be called as part of the paint phase of element drawing.
3401 pub fn on_mouse_event<Event: MouseEvent>(
3402 &mut self,
3403 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3404 ) {
3405 self.invalidator.debug_assert_paint();
3406
3407 self.next_frame.mouse_listeners.push(Some(Box::new(
3408 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3409 if let Some(event) = event.downcast_ref() {
3410 handler(event, phase, window, cx)
3411 }
3412 },
3413 )));
3414 }
3415
3416 /// Register a key event listener on the window for the next frame. The type of event
3417 /// is determined by the first parameter of the given listener. When the next frame is rendered
3418 /// the listener will be cleared.
3419 ///
3420 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3421 /// a specific need to register a global listener.
3422 ///
3423 /// This method should only be called as part of the paint phase of element drawing.
3424 pub fn on_key_event<Event: KeyEvent>(
3425 &mut self,
3426 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3427 ) {
3428 self.invalidator.debug_assert_paint();
3429
3430 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3431 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3432 if let Some(event) = event.downcast_ref::<Event>() {
3433 listener(event, phase, window, cx)
3434 }
3435 },
3436 ));
3437 }
3438
3439 /// Register a modifiers changed event listener on the window for the next frame.
3440 ///
3441 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3442 /// a specific need to register a global listener.
3443 ///
3444 /// This method should only be called as part of the paint phase of element drawing.
3445 pub fn on_modifiers_changed(
3446 &mut self,
3447 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3448 ) {
3449 self.invalidator.debug_assert_paint();
3450
3451 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3452 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3453 listener(event, window, cx)
3454 },
3455 ));
3456 }
3457
3458 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3459 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3460 /// Returns a subscription and persists until the subscription is dropped.
3461 pub fn on_focus_in(
3462 &mut self,
3463 handle: &FocusHandle,
3464 cx: &mut App,
3465 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3466 ) -> Subscription {
3467 let focus_id = handle.id;
3468 let (subscription, activate) =
3469 self.new_focus_listener(Box::new(move |event, window, cx| {
3470 if event.is_focus_in(focus_id) {
3471 listener(window, cx);
3472 }
3473 true
3474 }));
3475 cx.defer(move |_| activate());
3476 subscription
3477 }
3478
3479 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3480 /// Returns a subscription and persists until the subscription is dropped.
3481 pub fn on_focus_out(
3482 &mut self,
3483 handle: &FocusHandle,
3484 cx: &mut App,
3485 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3486 ) -> Subscription {
3487 let focus_id = handle.id;
3488 let (subscription, activate) =
3489 self.new_focus_listener(Box::new(move |event, window, cx| {
3490 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3491 && event.is_focus_out(focus_id)
3492 {
3493 let event = FocusOutEvent {
3494 blurred: WeakFocusHandle {
3495 id: blurred_id,
3496 handles: Arc::downgrade(&cx.focus_handles),
3497 },
3498 };
3499 listener(event, window, cx)
3500 }
3501 true
3502 }));
3503 cx.defer(move |_| activate());
3504 subscription
3505 }
3506
3507 fn reset_cursor_style(&self, cx: &mut App) {
3508 // Set the cursor only if we're the active window.
3509 if self.is_window_hovered() {
3510 let style = self
3511 .rendered_frame
3512 .cursor_style(self)
3513 .unwrap_or(CursorStyle::Arrow);
3514 cx.platform.set_cursor_style(style);
3515 }
3516 }
3517
3518 /// Dispatch a given keystroke as though the user had typed it.
3519 /// You can create a keystroke with Keystroke::parse("").
3520 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3521 let keystroke = keystroke.with_simulated_ime();
3522 let result = self.dispatch_event(
3523 PlatformInput::KeyDown(KeyDownEvent {
3524 keystroke: keystroke.clone(),
3525 is_held: false,
3526 }),
3527 cx,
3528 );
3529 if !result.propagate {
3530 return true;
3531 }
3532
3533 if let Some(input) = keystroke.key_char
3534 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3535 {
3536 input_handler.dispatch_input(&input, self, cx);
3537 self.platform_window.set_input_handler(input_handler);
3538 return true;
3539 }
3540
3541 false
3542 }
3543
3544 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3545 /// binding for the action (last binding added to the keymap).
3546 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3547 self.highest_precedence_binding_for_action(action)
3548 .map(|binding| {
3549 binding
3550 .keystrokes()
3551 .iter()
3552 .map(ToString::to_string)
3553 .collect::<Vec<_>>()
3554 .join(" ")
3555 })
3556 .unwrap_or_else(|| action.name().to_string())
3557 }
3558
3559 /// Dispatch a mouse or keyboard event on the window.
3560 #[profiling::function]
3561 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3562 self.last_input_timestamp.set(Instant::now());
3563 // Handlers may set this to false by calling `stop_propagation`.
3564 cx.propagate_event = true;
3565 // Handlers may set this to true by calling `prevent_default`.
3566 self.default_prevented = false;
3567
3568 let event = match event {
3569 // Track the mouse position with our own state, since accessing the platform
3570 // API for the mouse position can only occur on the main thread.
3571 PlatformInput::MouseMove(mouse_move) => {
3572 self.mouse_position = mouse_move.position;
3573 self.modifiers = mouse_move.modifiers;
3574 PlatformInput::MouseMove(mouse_move)
3575 }
3576 PlatformInput::MouseDown(mouse_down) => {
3577 self.mouse_position = mouse_down.position;
3578 self.modifiers = mouse_down.modifiers;
3579 PlatformInput::MouseDown(mouse_down)
3580 }
3581 PlatformInput::MouseUp(mouse_up) => {
3582 self.mouse_position = mouse_up.position;
3583 self.modifiers = mouse_up.modifiers;
3584 PlatformInput::MouseUp(mouse_up)
3585 }
3586 PlatformInput::MouseExited(mouse_exited) => {
3587 self.modifiers = mouse_exited.modifiers;
3588 PlatformInput::MouseExited(mouse_exited)
3589 }
3590 PlatformInput::ModifiersChanged(modifiers_changed) => {
3591 self.modifiers = modifiers_changed.modifiers;
3592 self.capslock = modifiers_changed.capslock;
3593 PlatformInput::ModifiersChanged(modifiers_changed)
3594 }
3595 PlatformInput::ScrollWheel(scroll_wheel) => {
3596 self.mouse_position = scroll_wheel.position;
3597 self.modifiers = scroll_wheel.modifiers;
3598 PlatformInput::ScrollWheel(scroll_wheel)
3599 }
3600 // Translate dragging and dropping of external files from the operating system
3601 // to internal drag and drop events.
3602 PlatformInput::FileDrop(file_drop) => match file_drop {
3603 FileDropEvent::Entered { position, paths } => {
3604 self.mouse_position = position;
3605 if cx.active_drag.is_none() {
3606 cx.active_drag = Some(AnyDrag {
3607 value: Arc::new(paths.clone()),
3608 view: cx.new(|_| paths).into(),
3609 cursor_offset: position,
3610 cursor_style: None,
3611 });
3612 }
3613 PlatformInput::MouseMove(MouseMoveEvent {
3614 position,
3615 pressed_button: Some(MouseButton::Left),
3616 modifiers: Modifiers::default(),
3617 })
3618 }
3619 FileDropEvent::Pending { position } => {
3620 self.mouse_position = position;
3621 PlatformInput::MouseMove(MouseMoveEvent {
3622 position,
3623 pressed_button: Some(MouseButton::Left),
3624 modifiers: Modifiers::default(),
3625 })
3626 }
3627 FileDropEvent::Submit { position } => {
3628 cx.activate(true);
3629 self.mouse_position = position;
3630 PlatformInput::MouseUp(MouseUpEvent {
3631 button: MouseButton::Left,
3632 position,
3633 modifiers: Modifiers::default(),
3634 click_count: 1,
3635 })
3636 }
3637 FileDropEvent::Exited => {
3638 cx.active_drag.take();
3639 PlatformInput::FileDrop(FileDropEvent::Exited)
3640 }
3641 },
3642 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3643 };
3644
3645 if let Some(any_mouse_event) = event.mouse_event() {
3646 self.dispatch_mouse_event(any_mouse_event, cx);
3647 } else if let Some(any_key_event) = event.keyboard_event() {
3648 self.dispatch_key_event(any_key_event, cx);
3649 }
3650
3651 DispatchEventResult {
3652 propagate: cx.propagate_event,
3653 default_prevented: self.default_prevented,
3654 }
3655 }
3656
3657 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3658 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3659 if hit_test != self.mouse_hit_test {
3660 self.mouse_hit_test = hit_test;
3661 self.reset_cursor_style(cx);
3662 }
3663
3664 #[cfg(any(feature = "inspector", debug_assertions))]
3665 if self.is_inspector_picking(cx) {
3666 self.handle_inspector_mouse_event(event, cx);
3667 // When inspector is picking, all other mouse handling is skipped.
3668 return;
3669 }
3670
3671 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3672
3673 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3674 // special purposes, such as detecting events outside of a given Bounds.
3675 for listener in &mut mouse_listeners {
3676 let listener = listener.as_mut().unwrap();
3677 listener(event, DispatchPhase::Capture, self, cx);
3678 if !cx.propagate_event {
3679 break;
3680 }
3681 }
3682
3683 // Bubble phase, where most normal handlers do their work.
3684 if cx.propagate_event {
3685 for listener in mouse_listeners.iter_mut().rev() {
3686 let listener = listener.as_mut().unwrap();
3687 listener(event, DispatchPhase::Bubble, self, cx);
3688 if !cx.propagate_event {
3689 break;
3690 }
3691 }
3692 }
3693
3694 self.rendered_frame.mouse_listeners = mouse_listeners;
3695
3696 if cx.has_active_drag() {
3697 if event.is::<MouseMoveEvent>() {
3698 // If this was a mouse move event, redraw the window so that the
3699 // active drag can follow the mouse cursor.
3700 self.refresh();
3701 } else if event.is::<MouseUpEvent>() {
3702 // If this was a mouse up event, cancel the active drag and redraw
3703 // the window.
3704 cx.active_drag = None;
3705 self.refresh();
3706 }
3707 }
3708 }
3709
3710 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3711 if self.invalidator.is_dirty() {
3712 self.draw(cx).clear();
3713 }
3714
3715 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3716 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3717
3718 let mut keystroke: Option<Keystroke> = None;
3719
3720 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3721 if event.modifiers.number_of_modifiers() == 0
3722 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3723 && !self.pending_modifier.saw_keystroke
3724 {
3725 let key = match self.pending_modifier.modifiers {
3726 modifiers if modifiers.shift => Some("shift"),
3727 modifiers if modifiers.control => Some("control"),
3728 modifiers if modifiers.alt => Some("alt"),
3729 modifiers if modifiers.platform => Some("platform"),
3730 modifiers if modifiers.function => Some("function"),
3731 _ => None,
3732 };
3733 if let Some(key) = key {
3734 keystroke = Some(Keystroke {
3735 key: key.to_string(),
3736 key_char: None,
3737 modifiers: Modifiers::default(),
3738 });
3739 }
3740 }
3741
3742 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3743 && event.modifiers.number_of_modifiers() == 1
3744 {
3745 self.pending_modifier.saw_keystroke = false
3746 }
3747 self.pending_modifier.modifiers = event.modifiers
3748 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3749 self.pending_modifier.saw_keystroke = true;
3750 keystroke = Some(key_down_event.keystroke.clone());
3751 }
3752
3753 let Some(keystroke) = keystroke else {
3754 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3755 return;
3756 };
3757
3758 cx.propagate_event = true;
3759 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3760 if !cx.propagate_event {
3761 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3762 return;
3763 }
3764
3765 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3766 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3767 currently_pending = PendingInput::default();
3768 }
3769
3770 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3771 currently_pending.keystrokes,
3772 keystroke,
3773 &dispatch_path,
3774 );
3775
3776 if !match_result.to_replay.is_empty() {
3777 self.replay_pending_input(match_result.to_replay, cx);
3778 cx.propagate_event = true;
3779 }
3780
3781 if !match_result.pending.is_empty() {
3782 currently_pending.keystrokes = match_result.pending;
3783 currently_pending.focus = self.focus;
3784 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3785 cx.background_executor.timer(Duration::from_secs(1)).await;
3786 cx.update(move |window, cx| {
3787 let Some(currently_pending) = window
3788 .pending_input
3789 .take()
3790 .filter(|pending| pending.focus == window.focus)
3791 else {
3792 return;
3793 };
3794
3795 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3796 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3797
3798 let to_replay = window
3799 .rendered_frame
3800 .dispatch_tree
3801 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3802
3803 window.pending_input_changed(cx);
3804 window.replay_pending_input(to_replay, cx)
3805 })
3806 .log_err();
3807 }));
3808 self.pending_input = Some(currently_pending);
3809 self.pending_input_changed(cx);
3810 cx.propagate_event = false;
3811 return;
3812 }
3813
3814 for binding in match_result.bindings {
3815 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3816 if !cx.propagate_event {
3817 self.dispatch_keystroke_observers(
3818 event,
3819 Some(binding.action),
3820 match_result.context_stack,
3821 cx,
3822 );
3823 self.pending_input_changed(cx);
3824 return;
3825 }
3826 }
3827
3828 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3829 self.pending_input_changed(cx);
3830 }
3831
3832 fn finish_dispatch_key_event(
3833 &mut self,
3834 event: &dyn Any,
3835 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3836 context_stack: Vec<KeyContext>,
3837 cx: &mut App,
3838 ) {
3839 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3840 if !cx.propagate_event {
3841 return;
3842 }
3843
3844 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3845 if !cx.propagate_event {
3846 return;
3847 }
3848
3849 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3850 }
3851
3852 fn pending_input_changed(&mut self, cx: &mut App) {
3853 self.pending_input_observers
3854 .clone()
3855 .retain(&(), |callback| callback(self, cx));
3856 }
3857
3858 fn dispatch_key_down_up_event(
3859 &mut self,
3860 event: &dyn Any,
3861 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3862 cx: &mut App,
3863 ) {
3864 // Capture phase
3865 for node_id in dispatch_path {
3866 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3867
3868 for key_listener in node.key_listeners.clone() {
3869 key_listener(event, DispatchPhase::Capture, self, cx);
3870 if !cx.propagate_event {
3871 return;
3872 }
3873 }
3874 }
3875
3876 // Bubble phase
3877 for node_id in dispatch_path.iter().rev() {
3878 // Handle low level key events
3879 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3880 for key_listener in node.key_listeners.clone() {
3881 key_listener(event, DispatchPhase::Bubble, self, cx);
3882 if !cx.propagate_event {
3883 return;
3884 }
3885 }
3886 }
3887 }
3888
3889 fn dispatch_modifiers_changed_event(
3890 &mut self,
3891 event: &dyn Any,
3892 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3893 cx: &mut App,
3894 ) {
3895 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3896 return;
3897 };
3898 for node_id in dispatch_path.iter().rev() {
3899 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3900 for listener in node.modifiers_changed_listeners.clone() {
3901 listener(event, self, cx);
3902 if !cx.propagate_event {
3903 return;
3904 }
3905 }
3906 }
3907 }
3908
3909 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3910 pub fn has_pending_keystrokes(&self) -> bool {
3911 self.pending_input.is_some()
3912 }
3913
3914 pub(crate) fn clear_pending_keystrokes(&mut self) {
3915 self.pending_input.take();
3916 }
3917
3918 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3919 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3920 self.pending_input
3921 .as_ref()
3922 .map(|pending_input| pending_input.keystrokes.as_slice())
3923 }
3924
3925 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3926 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3927 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3928
3929 'replay: for replay in replays {
3930 let event = KeyDownEvent {
3931 keystroke: replay.keystroke.clone(),
3932 is_held: false,
3933 };
3934
3935 cx.propagate_event = true;
3936 for binding in replay.bindings {
3937 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3938 if !cx.propagate_event {
3939 self.dispatch_keystroke_observers(
3940 &event,
3941 Some(binding.action),
3942 Vec::default(),
3943 cx,
3944 );
3945 continue 'replay;
3946 }
3947 }
3948
3949 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3950 if !cx.propagate_event {
3951 continue 'replay;
3952 }
3953 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3954 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3955 {
3956 input_handler.dispatch_input(&input, self, cx);
3957 self.platform_window.set_input_handler(input_handler)
3958 }
3959 }
3960 }
3961
3962 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3963 focus_id
3964 .and_then(|focus_id| {
3965 self.rendered_frame
3966 .dispatch_tree
3967 .focusable_node_id(focus_id)
3968 })
3969 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3970 }
3971
3972 fn dispatch_action_on_node(
3973 &mut self,
3974 node_id: DispatchNodeId,
3975 action: &dyn Action,
3976 cx: &mut App,
3977 ) {
3978 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3979
3980 // Capture phase for global actions.
3981 cx.propagate_event = true;
3982 if let Some(mut global_listeners) = cx
3983 .global_action_listeners
3984 .remove(&action.as_any().type_id())
3985 {
3986 for listener in &global_listeners {
3987 listener(action.as_any(), DispatchPhase::Capture, cx);
3988 if !cx.propagate_event {
3989 break;
3990 }
3991 }
3992
3993 global_listeners.extend(
3994 cx.global_action_listeners
3995 .remove(&action.as_any().type_id())
3996 .unwrap_or_default(),
3997 );
3998
3999 cx.global_action_listeners
4000 .insert(action.as_any().type_id(), global_listeners);
4001 }
4002
4003 if !cx.propagate_event {
4004 return;
4005 }
4006
4007 // Capture phase for window actions.
4008 for node_id in &dispatch_path {
4009 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4010 for DispatchActionListener {
4011 action_type,
4012 listener,
4013 } in node.action_listeners.clone()
4014 {
4015 let any_action = action.as_any();
4016 if action_type == any_action.type_id() {
4017 listener(any_action, DispatchPhase::Capture, self, cx);
4018
4019 if !cx.propagate_event {
4020 return;
4021 }
4022 }
4023 }
4024 }
4025
4026 // Bubble phase for window actions.
4027 for node_id in dispatch_path.iter().rev() {
4028 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4029 for DispatchActionListener {
4030 action_type,
4031 listener,
4032 } in node.action_listeners.clone()
4033 {
4034 let any_action = action.as_any();
4035 if action_type == any_action.type_id() {
4036 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4037 listener(any_action, DispatchPhase::Bubble, self, cx);
4038
4039 if !cx.propagate_event {
4040 return;
4041 }
4042 }
4043 }
4044 }
4045
4046 // Bubble phase for global actions.
4047 if let Some(mut global_listeners) = cx
4048 .global_action_listeners
4049 .remove(&action.as_any().type_id())
4050 {
4051 for listener in global_listeners.iter().rev() {
4052 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4053
4054 listener(action.as_any(), DispatchPhase::Bubble, cx);
4055 if !cx.propagate_event {
4056 break;
4057 }
4058 }
4059
4060 global_listeners.extend(
4061 cx.global_action_listeners
4062 .remove(&action.as_any().type_id())
4063 .unwrap_or_default(),
4064 );
4065
4066 cx.global_action_listeners
4067 .insert(action.as_any().type_id(), global_listeners);
4068 }
4069 }
4070
4071 /// Register the given handler to be invoked whenever the global of the given type
4072 /// is updated.
4073 pub fn observe_global<G: Global>(
4074 &mut self,
4075 cx: &mut App,
4076 f: impl Fn(&mut Window, &mut App) + 'static,
4077 ) -> Subscription {
4078 let window_handle = self.handle;
4079 let (subscription, activate) = cx.global_observers.insert(
4080 TypeId::of::<G>(),
4081 Box::new(move |cx| {
4082 window_handle
4083 .update(cx, |_, window, cx| f(window, cx))
4084 .is_ok()
4085 }),
4086 );
4087 cx.defer(move |_| activate());
4088 subscription
4089 }
4090
4091 /// Focus the current window and bring it to the foreground at the platform level.
4092 pub fn activate_window(&self) {
4093 self.platform_window.activate();
4094 }
4095
4096 /// Minimize the current window at the platform level.
4097 pub fn minimize_window(&self) {
4098 self.platform_window.minimize();
4099 }
4100
4101 /// Toggle full screen status on the current window at the platform level.
4102 pub fn toggle_fullscreen(&self) {
4103 self.platform_window.toggle_fullscreen();
4104 }
4105
4106 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4107 pub fn invalidate_character_coordinates(&self) {
4108 self.on_next_frame(|window, cx| {
4109 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4110 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4111 window.platform_window.update_ime_position(bounds);
4112 }
4113 window.platform_window.set_input_handler(input_handler);
4114 }
4115 });
4116 }
4117
4118 /// Present a platform dialog.
4119 /// The provided message will be presented, along with buttons for each answer.
4120 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4121 pub fn prompt<T>(
4122 &mut self,
4123 level: PromptLevel,
4124 message: &str,
4125 detail: Option<&str>,
4126 answers: &[T],
4127 cx: &mut App,
4128 ) -> oneshot::Receiver<usize>
4129 where
4130 T: Clone + Into<PromptButton>,
4131 {
4132 let prompt_builder = cx.prompt_builder.take();
4133 let Some(prompt_builder) = prompt_builder else {
4134 unreachable!("Re-entrant window prompting is not supported by GPUI");
4135 };
4136
4137 let answers = answers
4138 .iter()
4139 .map(|answer| answer.clone().into())
4140 .collect::<Vec<_>>();
4141
4142 let receiver = match &prompt_builder {
4143 PromptBuilder::Default => self
4144 .platform_window
4145 .prompt(level, message, detail, &answers)
4146 .unwrap_or_else(|| {
4147 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4148 }),
4149 PromptBuilder::Custom(_) => {
4150 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4151 }
4152 };
4153
4154 cx.prompt_builder = Some(prompt_builder);
4155
4156 receiver
4157 }
4158
4159 fn build_custom_prompt(
4160 &mut self,
4161 prompt_builder: &PromptBuilder,
4162 level: PromptLevel,
4163 message: &str,
4164 detail: Option<&str>,
4165 answers: &[PromptButton],
4166 cx: &mut App,
4167 ) -> oneshot::Receiver<usize> {
4168 let (sender, receiver) = oneshot::channel();
4169 let handle = PromptHandle::new(sender);
4170 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4171 self.prompt = Some(handle);
4172 receiver
4173 }
4174
4175 /// Returns the current context stack.
4176 pub fn context_stack(&self) -> Vec<KeyContext> {
4177 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4178 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4179 dispatch_tree
4180 .dispatch_path(node_id)
4181 .iter()
4182 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4183 .collect()
4184 }
4185
4186 /// Returns all available actions for the focused element.
4187 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4188 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4189 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4190 for action_type in cx.global_action_listeners.keys() {
4191 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4192 let action = cx.actions.build_action_type(action_type).ok();
4193 if let Some(action) = action {
4194 actions.insert(ix, action);
4195 }
4196 }
4197 }
4198 actions
4199 }
4200
4201 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4202 /// returned in the order they were added. For display, the last binding should take precedence.
4203 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4204 self.rendered_frame
4205 .dispatch_tree
4206 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4207 }
4208
4209 /// Returns the highest precedence key binding that invokes an action on the currently focused
4210 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4211 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4212 self.rendered_frame
4213 .dispatch_tree
4214 .highest_precedence_binding_for_action(
4215 action,
4216 &self.rendered_frame.dispatch_tree.context_stack,
4217 )
4218 }
4219
4220 /// Returns the key bindings for an action in a context.
4221 pub fn bindings_for_action_in_context(
4222 &self,
4223 action: &dyn Action,
4224 context: KeyContext,
4225 ) -> Vec<KeyBinding> {
4226 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4227 dispatch_tree.bindings_for_action(action, &[context])
4228 }
4229
4230 /// Returns the highest precedence key binding for an action in a context. This is more
4231 /// efficient than getting the last result of `bindings_for_action_in_context`.
4232 pub fn highest_precedence_binding_for_action_in_context(
4233 &self,
4234 action: &dyn Action,
4235 context: KeyContext,
4236 ) -> Option<KeyBinding> {
4237 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4238 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4239 }
4240
4241 /// Returns any bindings that would invoke an action on the given focus handle if it were
4242 /// focused. Bindings are returned in the order they were added. For display, the last binding
4243 /// should take precedence.
4244 pub fn bindings_for_action_in(
4245 &self,
4246 action: &dyn Action,
4247 focus_handle: &FocusHandle,
4248 ) -> Vec<KeyBinding> {
4249 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4250 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4251 return vec![];
4252 };
4253 dispatch_tree.bindings_for_action(action, &context_stack)
4254 }
4255
4256 /// Returns the highest precedence key binding that would invoke an action on the given focus
4257 /// handle if it were focused. This is more efficient than getting the last result of
4258 /// `bindings_for_action_in`.
4259 pub fn highest_precedence_binding_for_action_in(
4260 &self,
4261 action: &dyn Action,
4262 focus_handle: &FocusHandle,
4263 ) -> Option<KeyBinding> {
4264 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4265 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4266 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4267 }
4268
4269 fn context_stack_for_focus_handle(
4270 &self,
4271 focus_handle: &FocusHandle,
4272 ) -> Option<Vec<KeyContext>> {
4273 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4274 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4275 let context_stack: Vec<_> = dispatch_tree
4276 .dispatch_path(node_id)
4277 .into_iter()
4278 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4279 .collect();
4280 Some(context_stack)
4281 }
4282
4283 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4284 pub fn listener_for<V: Render, E>(
4285 &self,
4286 view: &Entity<V>,
4287 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4288 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4289 let view = view.downgrade();
4290 move |e: &E, window: &mut Window, cx: &mut App| {
4291 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4292 }
4293 }
4294
4295 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4296 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4297 &self,
4298 view: &Entity<V>,
4299 f: Callback,
4300 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4301 let view = view.downgrade();
4302 move |window: &mut Window, cx: &mut App| {
4303 view.update(cx, |view, cx| f(view, window, cx)).ok();
4304 }
4305 }
4306
4307 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4308 /// If the callback returns false, the window won't be closed.
4309 pub fn on_window_should_close(
4310 &self,
4311 cx: &App,
4312 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4313 ) {
4314 let mut cx = self.to_async(cx);
4315 self.platform_window.on_should_close(Box::new(move || {
4316 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4317 }))
4318 }
4319
4320 /// Register an action listener on the window for the next frame. The type of action
4321 /// is determined by the first parameter of the given listener. When the next frame is rendered
4322 /// the listener will be cleared.
4323 ///
4324 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4325 /// a specific need to register a global listener.
4326 pub fn on_action(
4327 &mut self,
4328 action_type: TypeId,
4329 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4330 ) {
4331 self.next_frame
4332 .dispatch_tree
4333 .on_action(action_type, Rc::new(listener));
4334 }
4335
4336 /// Register an action listener on the window for the next frame if the condition is true.
4337 /// The type of action is determined by the first parameter of the given listener.
4338 /// When the next frame is rendered the listener will be cleared.
4339 ///
4340 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4341 /// a specific need to register a global listener.
4342 pub fn on_action_when(
4343 &mut self,
4344 condition: bool,
4345 action_type: TypeId,
4346 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4347 ) {
4348 if condition {
4349 self.next_frame
4350 .dispatch_tree
4351 .on_action(action_type, Rc::new(listener));
4352 }
4353 }
4354
4355 /// Read information about the GPU backing this window.
4356 /// Currently returns None on Mac and Windows.
4357 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4358 self.platform_window.gpu_specs()
4359 }
4360
4361 /// Perform titlebar double-click action.
4362 /// This is macOS specific.
4363 pub fn titlebar_double_click(&self) {
4364 self.platform_window.titlebar_double_click();
4365 }
4366
4367 /// Gets the window's title at the platform level.
4368 /// This is macOS specific.
4369 pub fn window_title(&self) -> String {
4370 self.platform_window.get_title()
4371 }
4372
4373 /// Returns a list of all tabbed windows and their titles.
4374 /// This is macOS specific.
4375 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4376 self.platform_window.tabbed_windows()
4377 }
4378
4379 /// Returns the tab bar visibility.
4380 /// This is macOS specific.
4381 pub fn tab_bar_visible(&self) -> bool {
4382 self.platform_window.tab_bar_visible()
4383 }
4384
4385 /// Merges all open windows into a single tabbed window.
4386 /// This is macOS specific.
4387 pub fn merge_all_windows(&self) {
4388 self.platform_window.merge_all_windows()
4389 }
4390
4391 /// Moves the tab to a new containing window.
4392 /// This is macOS specific.
4393 pub fn move_tab_to_new_window(&self) {
4394 self.platform_window.move_tab_to_new_window()
4395 }
4396
4397 /// Shows or hides the window tab overview.
4398 /// This is macOS specific.
4399 pub fn toggle_window_tab_overview(&self) {
4400 self.platform_window.toggle_window_tab_overview()
4401 }
4402
4403 /// Sets the tabbing identifier for the window.
4404 /// This is macOS specific.
4405 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4406 self.platform_window
4407 .set_tabbing_identifier(tabbing_identifier)
4408 }
4409
4410 /// Toggles the inspector mode on this window.
4411 #[cfg(any(feature = "inspector", debug_assertions))]
4412 pub fn toggle_inspector(&mut self, cx: &mut App) {
4413 self.inspector = match self.inspector {
4414 None => Some(cx.new(|_| Inspector::new())),
4415 Some(_) => None,
4416 };
4417 self.refresh();
4418 }
4419
4420 /// Returns true if the window is in inspector mode.
4421 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4422 #[cfg(any(feature = "inspector", debug_assertions))]
4423 {
4424 if let Some(inspector) = &self.inspector {
4425 return inspector.read(_cx).is_picking();
4426 }
4427 }
4428 false
4429 }
4430
4431 /// Executes the provided function with mutable access to an inspector state.
4432 #[cfg(any(feature = "inspector", debug_assertions))]
4433 pub fn with_inspector_state<T: 'static, R>(
4434 &mut self,
4435 _inspector_id: Option<&crate::InspectorElementId>,
4436 cx: &mut App,
4437 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4438 ) -> R {
4439 if let Some(inspector_id) = _inspector_id
4440 && let Some(inspector) = &self.inspector
4441 {
4442 let inspector = inspector.clone();
4443 let active_element_id = inspector.read(cx).active_element_id();
4444 if Some(inspector_id) == active_element_id {
4445 return inspector.update(cx, |inspector, _cx| {
4446 inspector.with_active_element_state(self, f)
4447 });
4448 }
4449 }
4450 f(&mut None, self)
4451 }
4452
4453 #[cfg(any(feature = "inspector", debug_assertions))]
4454 pub(crate) fn build_inspector_element_id(
4455 &mut self,
4456 path: crate::InspectorElementPath,
4457 ) -> crate::InspectorElementId {
4458 self.invalidator.debug_assert_paint_or_prepaint();
4459 let path = Rc::new(path);
4460 let next_instance_id = self
4461 .next_frame
4462 .next_inspector_instance_ids
4463 .entry(path.clone())
4464 .or_insert(0);
4465 let instance_id = *next_instance_id;
4466 *next_instance_id += 1;
4467 crate::InspectorElementId { path, instance_id }
4468 }
4469
4470 #[cfg(any(feature = "inspector", debug_assertions))]
4471 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4472 if let Some(inspector) = self.inspector.take() {
4473 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4474 inspector_element.prepaint_as_root(
4475 point(self.viewport_size.width - inspector_width, px(0.0)),
4476 size(inspector_width, self.viewport_size.height).into(),
4477 self,
4478 cx,
4479 );
4480 self.inspector = Some(inspector);
4481 Some(inspector_element)
4482 } else {
4483 None
4484 }
4485 }
4486
4487 #[cfg(any(feature = "inspector", debug_assertions))]
4488 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4489 if let Some(mut inspector_element) = inspector_element {
4490 inspector_element.paint(self, cx);
4491 };
4492 }
4493
4494 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4495 /// inspect UI elements by clicking on them.
4496 #[cfg(any(feature = "inspector", debug_assertions))]
4497 pub fn insert_inspector_hitbox(
4498 &mut self,
4499 hitbox_id: HitboxId,
4500 inspector_id: Option<&crate::InspectorElementId>,
4501 cx: &App,
4502 ) {
4503 self.invalidator.debug_assert_paint_or_prepaint();
4504 if !self.is_inspector_picking(cx) {
4505 return;
4506 }
4507 if let Some(inspector_id) = inspector_id {
4508 self.next_frame
4509 .inspector_hitboxes
4510 .insert(hitbox_id, inspector_id.clone());
4511 }
4512 }
4513
4514 #[cfg(any(feature = "inspector", debug_assertions))]
4515 fn paint_inspector_hitbox(&mut self, cx: &App) {
4516 if let Some(inspector) = self.inspector.as_ref() {
4517 let inspector = inspector.read(cx);
4518 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4519 && let Some(hitbox) = self
4520 .next_frame
4521 .hitboxes
4522 .iter()
4523 .find(|hitbox| hitbox.id == hitbox_id)
4524 {
4525 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4526 }
4527 }
4528 }
4529
4530 #[cfg(any(feature = "inspector", debug_assertions))]
4531 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4532 let Some(inspector) = self.inspector.clone() else {
4533 return;
4534 };
4535 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4536 inspector.update(cx, |inspector, _cx| {
4537 if let Some((_, inspector_id)) =
4538 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4539 {
4540 inspector.hover(inspector_id, self);
4541 }
4542 });
4543 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4544 inspector.update(cx, |inspector, _cx| {
4545 if let Some((_, inspector_id)) =
4546 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4547 {
4548 inspector.select(inspector_id, self);
4549 }
4550 });
4551 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4552 // This should be kept in sync with SCROLL_LINES in x11 platform.
4553 const SCROLL_LINES: f32 = 3.0;
4554 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4555 let delta_y = event
4556 .delta
4557 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4558 .y;
4559 if let Some(inspector) = self.inspector.clone() {
4560 inspector.update(cx, |inspector, _cx| {
4561 if let Some(depth) = inspector.pick_depth.as_mut() {
4562 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4563 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4564 if *depth < 0.0 {
4565 *depth = 0.0;
4566 } else if *depth > max_depth {
4567 *depth = max_depth;
4568 }
4569 if let Some((_, inspector_id)) =
4570 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4571 {
4572 inspector.set_active_element_id(inspector_id, self);
4573 }
4574 }
4575 });
4576 }
4577 }
4578 }
4579
4580 #[cfg(any(feature = "inspector", debug_assertions))]
4581 fn hovered_inspector_hitbox(
4582 &self,
4583 inspector: &Inspector,
4584 frame: &Frame,
4585 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4586 if let Some(pick_depth) = inspector.pick_depth {
4587 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4588 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4589 let skip_count = (depth as usize).min(max_skipped);
4590 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4591 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4592 return Some((*hitbox_id, inspector_id.clone()));
4593 }
4594 }
4595 }
4596 None
4597 }
4598
4599 /// For testing: set the current modifier keys state.
4600 /// This does not generate any events.
4601 #[cfg(any(test, feature = "test-support"))]
4602 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4603 self.modifiers = modifiers;
4604 }
4605}
4606
4607// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4608slotmap::new_key_type! {
4609 /// A unique identifier for a window.
4610 pub struct WindowId;
4611}
4612
4613impl WindowId {
4614 /// Converts this window ID to a `u64`.
4615 pub fn as_u64(&self) -> u64 {
4616 self.0.as_ffi()
4617 }
4618}
4619
4620impl From<u64> for WindowId {
4621 fn from(value: u64) -> Self {
4622 WindowId(slotmap::KeyData::from_ffi(value))
4623 }
4624}
4625
4626/// A handle to a window with a specific root view type.
4627/// Note that this does not keep the window alive on its own.
4628#[derive(Deref, DerefMut)]
4629pub struct WindowHandle<V> {
4630 #[deref]
4631 #[deref_mut]
4632 pub(crate) any_handle: AnyWindowHandle,
4633 state_type: PhantomData<V>,
4634}
4635
4636impl<V: 'static + Render> WindowHandle<V> {
4637 /// Creates a new handle from a window ID.
4638 /// This does not check if the root type of the window is `V`.
4639 pub fn new(id: WindowId) -> Self {
4640 WindowHandle {
4641 any_handle: AnyWindowHandle {
4642 id,
4643 state_type: TypeId::of::<V>(),
4644 },
4645 state_type: PhantomData,
4646 }
4647 }
4648
4649 /// Get the root view out of this window.
4650 ///
4651 /// This will fail if the window is closed or if the root view's type does not match `V`.
4652 #[cfg(any(test, feature = "test-support"))]
4653 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4654 where
4655 C: AppContext,
4656 {
4657 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4658 root_view
4659 .downcast::<V>()
4660 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4661 }))
4662 }
4663
4664 /// Updates the root view of this window.
4665 ///
4666 /// This will fail if the window has been closed or if the root view's type does not match
4667 pub fn update<C, R>(
4668 &self,
4669 cx: &mut C,
4670 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4671 ) -> Result<R>
4672 where
4673 C: AppContext,
4674 {
4675 cx.update_window(self.any_handle, |root_view, window, cx| {
4676 let view = root_view
4677 .downcast::<V>()
4678 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4679
4680 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4681 })?
4682 }
4683
4684 /// Read the root view out of this window.
4685 ///
4686 /// This will fail if the window is closed or if the root view's type does not match `V`.
4687 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4688 let x = cx
4689 .windows
4690 .get(self.id)
4691 .and_then(|window| {
4692 window
4693 .as_ref()
4694 .and_then(|window| window.root.clone())
4695 .map(|root_view| root_view.downcast::<V>())
4696 })
4697 .context("window not found")?
4698 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4699
4700 Ok(x.read(cx))
4701 }
4702
4703 /// Read the root view out of this window, with a callback
4704 ///
4705 /// This will fail if the window is closed or if the root view's type does not match `V`.
4706 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4707 where
4708 C: AppContext,
4709 {
4710 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4711 }
4712
4713 /// Read the root view pointer off of this window.
4714 ///
4715 /// This will fail if the window is closed or if the root view's type does not match `V`.
4716 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4717 where
4718 C: AppContext,
4719 {
4720 cx.read_window(self, |root_view, _cx| root_view)
4721 }
4722
4723 /// Check if this window is 'active'.
4724 ///
4725 /// Will return `None` if the window is closed or currently
4726 /// borrowed.
4727 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4728 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4729 .ok()
4730 }
4731}
4732
4733impl<V> Copy for WindowHandle<V> {}
4734
4735impl<V> Clone for WindowHandle<V> {
4736 fn clone(&self) -> Self {
4737 *self
4738 }
4739}
4740
4741impl<V> PartialEq for WindowHandle<V> {
4742 fn eq(&self, other: &Self) -> bool {
4743 self.any_handle == other.any_handle
4744 }
4745}
4746
4747impl<V> Eq for WindowHandle<V> {}
4748
4749impl<V> Hash for WindowHandle<V> {
4750 fn hash<H: Hasher>(&self, state: &mut H) {
4751 self.any_handle.hash(state);
4752 }
4753}
4754
4755impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4756 fn from(val: WindowHandle<V>) -> Self {
4757 val.any_handle
4758 }
4759}
4760
4761unsafe impl<V> Send for WindowHandle<V> {}
4762unsafe impl<V> Sync for WindowHandle<V> {}
4763
4764/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4765#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4766pub struct AnyWindowHandle {
4767 pub(crate) id: WindowId,
4768 state_type: TypeId,
4769}
4770
4771impl AnyWindowHandle {
4772 /// Get the ID of this window.
4773 pub fn window_id(&self) -> WindowId {
4774 self.id
4775 }
4776
4777 /// Attempt to convert this handle to a window handle with a specific root view type.
4778 /// If the types do not match, this will return `None`.
4779 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4780 if TypeId::of::<T>() == self.state_type {
4781 Some(WindowHandle {
4782 any_handle: *self,
4783 state_type: PhantomData,
4784 })
4785 } else {
4786 None
4787 }
4788 }
4789
4790 /// Updates the state of the root view of this window.
4791 ///
4792 /// This will fail if the window has been closed.
4793 pub fn update<C, R>(
4794 self,
4795 cx: &mut C,
4796 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4797 ) -> Result<R>
4798 where
4799 C: AppContext,
4800 {
4801 cx.update_window(self, update)
4802 }
4803
4804 /// Read the state of the root view of this window.
4805 ///
4806 /// This will fail if the window has been closed.
4807 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4808 where
4809 C: AppContext,
4810 T: 'static,
4811 {
4812 let view = self
4813 .downcast::<T>()
4814 .context("the type of the window's root view has changed")?;
4815
4816 cx.read_window(&view, read)
4817 }
4818}
4819
4820impl HasWindowHandle for Window {
4821 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4822 self.platform_window.window_handle()
4823 }
4824}
4825
4826impl HasDisplayHandle for Window {
4827 fn display_handle(
4828 &self,
4829 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4830 self.platform_window.display_handle()
4831 }
4832}
4833
4834/// An identifier for an [`Element`].
4835///
4836/// Can be constructed with a string, a number, or both, as well
4837/// as other internal representations.
4838#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4839pub enum ElementId {
4840 /// The ID of a View element
4841 View(EntityId),
4842 /// An integer ID.
4843 Integer(u64),
4844 /// A string based ID.
4845 Name(SharedString),
4846 /// A UUID.
4847 Uuid(Uuid),
4848 /// An ID that's equated with a focus handle.
4849 FocusHandle(FocusId),
4850 /// A combination of a name and an integer.
4851 NamedInteger(SharedString, u64),
4852 /// A path.
4853 Path(Arc<std::path::Path>),
4854 /// A code location.
4855 CodeLocation(core::panic::Location<'static>),
4856 /// A labeled child of an element.
4857 NamedChild(Box<ElementId>, SharedString),
4858}
4859
4860impl ElementId {
4861 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4862 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4863 Self::NamedInteger(name.into(), integer as u64)
4864 }
4865}
4866
4867impl Display for ElementId {
4868 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4869 match self {
4870 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4871 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4872 ElementId::Name(name) => write!(f, "{}", name)?,
4873 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4874 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4875 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4876 ElementId::Path(path) => write!(f, "{}", path.display())?,
4877 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4878 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4879 }
4880
4881 Ok(())
4882 }
4883}
4884
4885impl TryInto<SharedString> for ElementId {
4886 type Error = anyhow::Error;
4887
4888 fn try_into(self) -> anyhow::Result<SharedString> {
4889 if let ElementId::Name(name) = self {
4890 Ok(name)
4891 } else {
4892 anyhow::bail!("element id is not string")
4893 }
4894 }
4895}
4896
4897impl From<usize> for ElementId {
4898 fn from(id: usize) -> Self {
4899 ElementId::Integer(id as u64)
4900 }
4901}
4902
4903impl From<i32> for ElementId {
4904 fn from(id: i32) -> Self {
4905 Self::Integer(id as u64)
4906 }
4907}
4908
4909impl From<SharedString> for ElementId {
4910 fn from(name: SharedString) -> Self {
4911 ElementId::Name(name)
4912 }
4913}
4914
4915impl From<Arc<std::path::Path>> for ElementId {
4916 fn from(path: Arc<std::path::Path>) -> Self {
4917 ElementId::Path(path)
4918 }
4919}
4920
4921impl From<&'static str> for ElementId {
4922 fn from(name: &'static str) -> Self {
4923 ElementId::Name(name.into())
4924 }
4925}
4926
4927impl<'a> From<&'a FocusHandle> for ElementId {
4928 fn from(handle: &'a FocusHandle) -> Self {
4929 ElementId::FocusHandle(handle.id)
4930 }
4931}
4932
4933impl From<(&'static str, EntityId)> for ElementId {
4934 fn from((name, id): (&'static str, EntityId)) -> Self {
4935 ElementId::NamedInteger(name.into(), id.as_u64())
4936 }
4937}
4938
4939impl From<(&'static str, usize)> for ElementId {
4940 fn from((name, id): (&'static str, usize)) -> Self {
4941 ElementId::NamedInteger(name.into(), id as u64)
4942 }
4943}
4944
4945impl From<(SharedString, usize)> for ElementId {
4946 fn from((name, id): (SharedString, usize)) -> Self {
4947 ElementId::NamedInteger(name, id as u64)
4948 }
4949}
4950
4951impl From<(&'static str, u64)> for ElementId {
4952 fn from((name, id): (&'static str, u64)) -> Self {
4953 ElementId::NamedInteger(name.into(), id)
4954 }
4955}
4956
4957impl From<Uuid> for ElementId {
4958 fn from(value: Uuid) -> Self {
4959 Self::Uuid(value)
4960 }
4961}
4962
4963impl From<(&'static str, u32)> for ElementId {
4964 fn from((name, id): (&'static str, u32)) -> Self {
4965 ElementId::NamedInteger(name.into(), id.into())
4966 }
4967}
4968
4969impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4970 fn from((id, name): (ElementId, T)) -> Self {
4971 ElementId::NamedChild(Box::new(id), name.into())
4972 }
4973}
4974
4975impl From<&'static core::panic::Location<'static>> for ElementId {
4976 fn from(location: &'static core::panic::Location<'static>) -> Self {
4977 ElementId::CodeLocation(*location)
4978 }
4979}
4980
4981/// A rectangle to be rendered in the window at the given position and size.
4982/// Passed as an argument [`Window::paint_quad`].
4983#[derive(Clone)]
4984pub struct PaintQuad {
4985 /// The bounds of the quad within the window.
4986 pub bounds: Bounds<Pixels>,
4987 /// The radii of the quad's corners.
4988 pub corner_radii: Corners<Pixels>,
4989 /// The background color of the quad.
4990 pub background: Background,
4991 /// The widths of the quad's borders.
4992 pub border_widths: Edges<Pixels>,
4993 /// The color of the quad's borders.
4994 pub border_color: Hsla,
4995 /// The style of the quad's borders.
4996 pub border_style: BorderStyle,
4997}
4998
4999impl PaintQuad {
5000 /// Sets the corner radii of the quad.
5001 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5002 PaintQuad {
5003 corner_radii: corner_radii.into(),
5004 ..self
5005 }
5006 }
5007
5008 /// Sets the border widths of the quad.
5009 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5010 PaintQuad {
5011 border_widths: border_widths.into(),
5012 ..self
5013 }
5014 }
5015
5016 /// Sets the border color of the quad.
5017 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5018 PaintQuad {
5019 border_color: border_color.into(),
5020 ..self
5021 }
5022 }
5023
5024 /// Sets the background color of the quad.
5025 pub fn background(self, background: impl Into<Background>) -> Self {
5026 PaintQuad {
5027 background: background.into(),
5028 ..self
5029 }
5030 }
5031}
5032
5033/// Creates a quad with the given parameters.
5034pub fn quad(
5035 bounds: Bounds<Pixels>,
5036 corner_radii: impl Into<Corners<Pixels>>,
5037 background: impl Into<Background>,
5038 border_widths: impl Into<Edges<Pixels>>,
5039 border_color: impl Into<Hsla>,
5040 border_style: BorderStyle,
5041) -> PaintQuad {
5042 PaintQuad {
5043 bounds,
5044 corner_radii: corner_radii.into(),
5045 background: background.into(),
5046 border_widths: border_widths.into(),
5047 border_color: border_color.into(),
5048 border_style,
5049 }
5050}
5051
5052/// Creates a filled quad with the given bounds and background color.
5053pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5054 PaintQuad {
5055 bounds: bounds.into(),
5056 corner_radii: (0.).into(),
5057 background: background.into(),
5058 border_widths: (0.).into(),
5059 border_color: transparent_black(),
5060 border_style: BorderStyle::default(),
5061 }
5062}
5063
5064/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5065pub fn outline(
5066 bounds: impl Into<Bounds<Pixels>>,
5067 border_color: impl Into<Hsla>,
5068 border_style: BorderStyle,
5069) -> PaintQuad {
5070 PaintQuad {
5071 bounds: bounds.into(),
5072 corner_radii: (0.).into(),
5073 background: transparent_black().into(),
5074 border_widths: (1.).into(),
5075 border_color: border_color.into(),
5076 border_style,
5077 }
5078}