request.rs

  1use std::io::{Cursor, Write};
  2use std::sync::Arc;
  3
  4use anyhow::Result;
  5use base64::write::EncoderWriter;
  6use cloud_llm_client::{CompletionIntent, CompletionMode};
  7use gpui::{
  8    App, AppContext as _, DevicePixels, Image, ImageFormat, ObjectFit, SharedString, Size, Task,
  9    point, px, size,
 10};
 11use image::codecs::png::PngEncoder;
 12use serde::{Deserialize, Serialize};
 13use util::ResultExt;
 14
 15use crate::role::Role;
 16use crate::{LanguageModelToolUse, LanguageModelToolUseId};
 17
 18#[derive(Clone, PartialEq, Eq, Serialize, Deserialize, Hash)]
 19pub struct LanguageModelImage {
 20    /// A base64-encoded PNG image.
 21    pub source: SharedString,
 22    pub size: Size<DevicePixels>,
 23}
 24
 25impl LanguageModelImage {
 26    pub fn len(&self) -> usize {
 27        self.source.len()
 28    }
 29
 30    pub fn is_empty(&self) -> bool {
 31        self.source.is_empty()
 32    }
 33
 34    // Parse Self from a JSON object with case-insensitive field names
 35    pub fn from_json(obj: &serde_json::Map<String, serde_json::Value>) -> Option<Self> {
 36        let mut source = None;
 37        let mut size_obj = None;
 38
 39        // Find source and size fields (case-insensitive)
 40        for (k, v) in obj.iter() {
 41            match k.to_lowercase().as_str() {
 42                "source" => source = v.as_str(),
 43                "size" => size_obj = v.as_object(),
 44                _ => {}
 45            }
 46        }
 47
 48        let source = source?;
 49        let size_obj = size_obj?;
 50
 51        let mut width = None;
 52        let mut height = None;
 53
 54        // Find width and height in size object (case-insensitive)
 55        for (k, v) in size_obj.iter() {
 56            match k.to_lowercase().as_str() {
 57                "width" => width = v.as_i64().map(|w| w as i32),
 58                "height" => height = v.as_i64().map(|h| h as i32),
 59                _ => {}
 60            }
 61        }
 62
 63        Some(Self {
 64            size: size(DevicePixels(width?), DevicePixels(height?)),
 65            source: SharedString::from(source.to_string()),
 66        })
 67    }
 68}
 69
 70impl std::fmt::Debug for LanguageModelImage {
 71    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 72        f.debug_struct("LanguageModelImage")
 73            .field("source", &format!("<{} bytes>", self.source.len()))
 74            .field("size", &self.size)
 75            .finish()
 76    }
 77}
 78
 79/// Anthropic wants uploaded images to be smaller than this in both dimensions.
 80const ANTHROPIC_SIZE_LIMT: f32 = 1568.;
 81
 82impl LanguageModelImage {
 83    pub fn empty() -> Self {
 84        Self {
 85            source: "".into(),
 86            size: size(DevicePixels(0), DevicePixels(0)),
 87        }
 88    }
 89
 90    pub fn from_image(data: Arc<Image>, cx: &mut App) -> Task<Option<Self>> {
 91        cx.background_spawn(async move {
 92            let image_bytes = Cursor::new(data.bytes());
 93            let dynamic_image = match data.format() {
 94                ImageFormat::Png => image::codecs::png::PngDecoder::new(image_bytes)
 95                    .and_then(image::DynamicImage::from_decoder),
 96                ImageFormat::Jpeg => image::codecs::jpeg::JpegDecoder::new(image_bytes)
 97                    .and_then(image::DynamicImage::from_decoder),
 98                ImageFormat::Webp => image::codecs::webp::WebPDecoder::new(image_bytes)
 99                    .and_then(image::DynamicImage::from_decoder),
100                ImageFormat::Gif => image::codecs::gif::GifDecoder::new(image_bytes)
101                    .and_then(image::DynamicImage::from_decoder),
102                _ => return None,
103            }
104            .log_err()?;
105
106            let width = dynamic_image.width();
107            let height = dynamic_image.height();
108            let image_size = size(DevicePixels(width as i32), DevicePixels(height as i32));
109
110            let base64_image = {
111                if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32
112                    || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32
113                {
114                    let new_bounds = ObjectFit::ScaleDown.get_bounds(
115                        gpui::Bounds {
116                            origin: point(px(0.0), px(0.0)),
117                            size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)),
118                        },
119                        image_size,
120                    );
121                    let resized_image = dynamic_image.resize(
122                        new_bounds.size.width.0 as u32,
123                        new_bounds.size.height.0 as u32,
124                        image::imageops::FilterType::Triangle,
125                    );
126
127                    encode_as_base64(data, resized_image)
128                } else {
129                    encode_as_base64(data, dynamic_image)
130                }
131            }
132            .log_err()?;
133
134            // SAFETY: The base64 encoder should not produce non-UTF8.
135            let source = unsafe { String::from_utf8_unchecked(base64_image) };
136
137            Some(LanguageModelImage {
138                size: image_size,
139                source: source.into(),
140            })
141        })
142    }
143
144    pub fn estimate_tokens(&self) -> usize {
145        let width = self.size.width.0.unsigned_abs() as usize;
146        let height = self.size.height.0.unsigned_abs() as usize;
147
148        // From: https://docs.anthropic.com/en/docs/build-with-claude/vision#calculate-image-costs
149        // Note that are a lot of conditions on Anthropic's API, and OpenAI doesn't use this,
150        // so this method is more of a rough guess.
151        (width * height) / 750
152    }
153
154    pub fn to_base64_url(&self) -> String {
155        format!("data:image/png;base64,{}", self.source)
156    }
157}
158
159fn encode_as_base64(data: Arc<Image>, image: image::DynamicImage) -> Result<Vec<u8>> {
160    let mut base64_image = Vec::new();
161    {
162        let mut base64_encoder = EncoderWriter::new(
163            Cursor::new(&mut base64_image),
164            &base64::engine::general_purpose::STANDARD,
165        );
166        if data.format() == ImageFormat::Png {
167            base64_encoder.write_all(data.bytes())?;
168        } else {
169            let mut png = Vec::new();
170            image.write_with_encoder(PngEncoder::new(&mut png))?;
171
172            base64_encoder.write_all(png.as_slice())?;
173        }
174    }
175    Ok(base64_image)
176}
177
178#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)]
179pub struct LanguageModelToolResult {
180    pub tool_use_id: LanguageModelToolUseId,
181    pub tool_name: Arc<str>,
182    pub is_error: bool,
183    pub content: LanguageModelToolResultContent,
184    pub output: Option<serde_json::Value>,
185}
186
187#[derive(Debug, Clone, Serialize, Eq, PartialEq, Hash)]
188pub enum LanguageModelToolResultContent {
189    Text(Arc<str>),
190    Image(LanguageModelImage),
191}
192
193impl<'de> Deserialize<'de> for LanguageModelToolResultContent {
194    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
195    where
196        D: serde::Deserializer<'de>,
197    {
198        use serde::de::Error;
199
200        let value = serde_json::Value::deserialize(deserializer)?;
201
202        // Models can provide these responses in several styles. Try each in order.
203
204        // 1. Try as plain string
205        if let Ok(text) = serde_json::from_value::<String>(value.clone()) {
206            return Ok(Self::Text(Arc::from(text)));
207        }
208
209        // 2. Try as object
210        if let Some(obj) = value.as_object() {
211            // get a JSON field case-insensitively
212            fn get_field<'a>(
213                obj: &'a serde_json::Map<String, serde_json::Value>,
214                field: &str,
215            ) -> Option<&'a serde_json::Value> {
216                obj.iter()
217                    .find(|(k, _)| k.to_lowercase() == field.to_lowercase())
218                    .map(|(_, v)| v)
219            }
220
221            // Accept wrapped text format: { "type": "text", "text": "..." }
222            if let (Some(type_value), Some(text_value)) =
223                (get_field(obj, "type"), get_field(obj, "text"))
224                && let Some(type_str) = type_value.as_str()
225                && type_str.to_lowercase() == "text"
226                && let Some(text) = text_value.as_str()
227            {
228                return Ok(Self::Text(Arc::from(text)));
229            }
230
231            // Check for wrapped Text variant: { "text": "..." }
232            if let Some((_key, value)) = obj.iter().find(|(k, _)| k.to_lowercase() == "text")
233                && obj.len() == 1
234            {
235                // Only one field, and it's "text" (case-insensitive)
236                if let Some(text) = value.as_str() {
237                    return Ok(Self::Text(Arc::from(text)));
238                }
239            }
240
241            // Check for wrapped Image variant: { "image": { "source": "...", "size": ... } }
242            if let Some((_key, value)) = obj.iter().find(|(k, _)| k.to_lowercase() == "image")
243                && obj.len() == 1
244            {
245                // Only one field, and it's "image" (case-insensitive)
246                // Try to parse the nested image object
247                if let Some(image_obj) = value.as_object()
248                    && let Some(image) = LanguageModelImage::from_json(image_obj)
249                {
250                    return Ok(Self::Image(image));
251                }
252            }
253
254            // Try as direct Image (object with "source" and "size" fields)
255            if let Some(image) = LanguageModelImage::from_json(obj) {
256                return Ok(Self::Image(image));
257            }
258        }
259
260        // If none of the variants match, return an error with the problematic JSON
261        Err(D::Error::custom(format!(
262            "data did not match any variant of LanguageModelToolResultContent. Expected either a string, \
263             an object with 'type': 'text', a wrapped variant like {{\"Text\": \"...\"}}, or an image object. Got: {}",
264            serde_json::to_string_pretty(&value).unwrap_or_else(|_| value.to_string())
265        )))
266    }
267}
268
269impl LanguageModelToolResultContent {
270    pub fn to_str(&self) -> Option<&str> {
271        match self {
272            Self::Text(text) => Some(text),
273            Self::Image(_) => None,
274        }
275    }
276
277    pub fn is_empty(&self) -> bool {
278        match self {
279            Self::Text(text) => text.chars().all(|c| c.is_whitespace()),
280            Self::Image(_) => false,
281        }
282    }
283}
284
285impl From<&str> for LanguageModelToolResultContent {
286    fn from(value: &str) -> Self {
287        Self::Text(Arc::from(value))
288    }
289}
290
291impl From<String> for LanguageModelToolResultContent {
292    fn from(value: String) -> Self {
293        Self::Text(Arc::from(value))
294    }
295}
296
297impl From<LanguageModelImage> for LanguageModelToolResultContent {
298    fn from(image: LanguageModelImage) -> Self {
299        Self::Image(image)
300    }
301}
302
303#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)]
304pub enum MessageContent {
305    Text(String),
306    Thinking {
307        text: String,
308        signature: Option<String>,
309    },
310    RedactedThinking(String),
311    Image(LanguageModelImage),
312    ToolUse(LanguageModelToolUse),
313    ToolResult(LanguageModelToolResult),
314}
315
316impl MessageContent {
317    pub fn to_str(&self) -> Option<&str> {
318        match self {
319            MessageContent::Text(text) => Some(text.as_str()),
320            MessageContent::Thinking { text, .. } => Some(text.as_str()),
321            MessageContent::RedactedThinking(_) => None,
322            MessageContent::ToolResult(tool_result) => tool_result.content.to_str(),
323            MessageContent::ToolUse(_) | MessageContent::Image(_) => None,
324        }
325    }
326
327    pub fn is_empty(&self) -> bool {
328        match self {
329            MessageContent::Text(text) => text.chars().all(|c| c.is_whitespace()),
330            MessageContent::Thinking { text, .. } => text.chars().all(|c| c.is_whitespace()),
331            MessageContent::ToolResult(tool_result) => tool_result.content.is_empty(),
332            MessageContent::RedactedThinking(_)
333            | MessageContent::ToolUse(_)
334            | MessageContent::Image(_) => false,
335        }
336    }
337}
338
339impl From<String> for MessageContent {
340    fn from(value: String) -> Self {
341        MessageContent::Text(value)
342    }
343}
344
345impl From<&str> for MessageContent {
346    fn from(value: &str) -> Self {
347        MessageContent::Text(value.to_string())
348    }
349}
350
351#[derive(Clone, Serialize, Deserialize, Debug, PartialEq, Hash)]
352pub struct LanguageModelRequestMessage {
353    pub role: Role,
354    pub content: Vec<MessageContent>,
355    pub cache: bool,
356}
357
358impl LanguageModelRequestMessage {
359    pub fn string_contents(&self) -> String {
360        let mut buffer = String::new();
361        for string in self.content.iter().filter_map(|content| content.to_str()) {
362            buffer.push_str(string);
363        }
364
365        buffer
366    }
367
368    pub fn contents_empty(&self) -> bool {
369        self.content.iter().all(|content| content.is_empty())
370    }
371}
372
373#[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)]
374pub struct LanguageModelRequestTool {
375    pub name: String,
376    pub description: String,
377    pub input_schema: serde_json::Value,
378}
379
380#[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)]
381pub enum LanguageModelToolChoice {
382    Auto,
383    Any,
384    None,
385}
386
387#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
388pub struct LanguageModelRequest {
389    pub thread_id: Option<String>,
390    pub prompt_id: Option<String>,
391    pub intent: Option<CompletionIntent>,
392    pub mode: Option<CompletionMode>,
393    pub messages: Vec<LanguageModelRequestMessage>,
394    pub tools: Vec<LanguageModelRequestTool>,
395    pub tool_choice: Option<LanguageModelToolChoice>,
396    pub stop: Vec<String>,
397    pub temperature: Option<f32>,
398    pub thinking_allowed: bool,
399}
400
401#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
402pub struct LanguageModelResponseMessage {
403    pub role: Option<Role>,
404    pub content: Option<String>,
405}
406
407#[cfg(test)]
408mod tests {
409    use super::*;
410
411    #[test]
412    fn test_language_model_tool_result_content_deserialization() {
413        let json = r#""This is plain text""#;
414        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
415        assert_eq!(
416            result,
417            LanguageModelToolResultContent::Text("This is plain text".into())
418        );
419
420        let json = r#"{"type": "text", "text": "This is wrapped text"}"#;
421        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
422        assert_eq!(
423            result,
424            LanguageModelToolResultContent::Text("This is wrapped text".into())
425        );
426
427        let json = r#"{"Type": "TEXT", "TEXT": "Case insensitive"}"#;
428        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
429        assert_eq!(
430            result,
431            LanguageModelToolResultContent::Text("Case insensitive".into())
432        );
433
434        let json = r#"{"Text": "Wrapped variant"}"#;
435        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
436        assert_eq!(
437            result,
438            LanguageModelToolResultContent::Text("Wrapped variant".into())
439        );
440
441        let json = r#"{"text": "Lowercase wrapped"}"#;
442        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
443        assert_eq!(
444            result,
445            LanguageModelToolResultContent::Text("Lowercase wrapped".into())
446        );
447
448        // Test image deserialization
449        let json = r#"{
450            "source": "base64encodedimagedata",
451            "size": {
452                "width": 100,
453                "height": 200
454            }
455        }"#;
456        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
457        match result {
458            LanguageModelToolResultContent::Image(image) => {
459                assert_eq!(image.source.as_ref(), "base64encodedimagedata");
460                assert_eq!(image.size.width.0, 100);
461                assert_eq!(image.size.height.0, 200);
462            }
463            _ => panic!("Expected Image variant"),
464        }
465
466        // Test wrapped Image variant
467        let json = r#"{
468            "Image": {
469                "source": "wrappedimagedata",
470                "size": {
471                    "width": 50,
472                    "height": 75
473                }
474            }
475        }"#;
476        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
477        match result {
478            LanguageModelToolResultContent::Image(image) => {
479                assert_eq!(image.source.as_ref(), "wrappedimagedata");
480                assert_eq!(image.size.width.0, 50);
481                assert_eq!(image.size.height.0, 75);
482            }
483            _ => panic!("Expected Image variant"),
484        }
485
486        // Test wrapped Image variant with case insensitive
487        let json = r#"{
488            "image": {
489                "Source": "caseinsensitive",
490                "SIZE": {
491                    "width": 30,
492                    "height": 40
493                }
494            }
495        }"#;
496        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
497        match result {
498            LanguageModelToolResultContent::Image(image) => {
499                assert_eq!(image.source.as_ref(), "caseinsensitive");
500                assert_eq!(image.size.width.0, 30);
501                assert_eq!(image.size.height.0, 40);
502            }
503            _ => panic!("Expected Image variant"),
504        }
505
506        // Test that wrapped text with wrong type fails
507        let json = r#"{"type": "blahblah", "text": "This should fail"}"#;
508        let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
509        assert!(result.is_err());
510
511        // Test that malformed JSON fails
512        let json = r#"{"invalid": "structure"}"#;
513        let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
514        assert!(result.is_err());
515
516        // Test edge cases
517        let json = r#""""#; // Empty string
518        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
519        assert_eq!(result, LanguageModelToolResultContent::Text("".into()));
520
521        // Test with extra fields in wrapped text (should be ignored)
522        let json = r#"{"type": "text", "text": "Hello", "extra": "field"}"#;
523        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
524        assert_eq!(result, LanguageModelToolResultContent::Text("Hello".into()));
525
526        // Test direct image with case-insensitive fields
527        let json = r#"{
528            "SOURCE": "directimage",
529            "Size": {
530                "width": 200,
531                "height": 300
532            }
533        }"#;
534        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
535        match result {
536            LanguageModelToolResultContent::Image(image) => {
537                assert_eq!(image.source.as_ref(), "directimage");
538                assert_eq!(image.size.width.0, 200);
539                assert_eq!(image.size.height.0, 300);
540            }
541            _ => panic!("Expected Image variant"),
542        }
543
544        // Test that multiple fields prevent wrapped variant interpretation
545        let json = r#"{"Text": "not wrapped", "extra": "field"}"#;
546        let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
547        assert!(result.is_err());
548
549        // Test wrapped text with uppercase TEXT variant
550        let json = r#"{"TEXT": "Uppercase variant"}"#;
551        let result: LanguageModelToolResultContent = serde_json::from_str(json).unwrap();
552        assert_eq!(
553            result,
554            LanguageModelToolResultContent::Text("Uppercase variant".into())
555        );
556
557        // Test that numbers and other JSON values fail gracefully
558        let json = r#"123"#;
559        let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
560        assert!(result.is_err());
561
562        let json = r#"null"#;
563        let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
564        assert!(result.is_err());
565
566        let json = r#"[1, 2, 3]"#;
567        let result: Result<LanguageModelToolResultContent, _> = serde_json::from_str(json);
568        assert!(result.is_err());
569    }
570}