google.rs

  1use anyhow::{Context as _, Result};
  2use collections::BTreeMap;
  3use credentials_provider::CredentialsProvider;
  4use editor::{Editor, EditorElement, EditorStyle};
  5use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
  6use google_ai::{
  7    FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
  8    ThinkingConfig, UsageMetadata,
  9};
 10use gpui::{
 11    AnyView, App, AsyncApp, Context, Entity, FontStyle, SharedString, Task, TextStyle, WhiteSpace,
 12    Window,
 13};
 14use http_client::HttpClient;
 15use language_model::{
 16    AuthenticateError, ConfigurationViewTargetAgent, LanguageModelCompletionError,
 17    LanguageModelCompletionEvent, LanguageModelToolChoice, LanguageModelToolSchemaFormat,
 18    LanguageModelToolUse, LanguageModelToolUseId, MessageContent, StopReason,
 19};
 20use language_model::{
 21    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
 22    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 23    LanguageModelRequest, RateLimiter, Role,
 24};
 25use schemars::JsonSchema;
 26use serde::{Deserialize, Serialize};
 27use settings::{Settings, SettingsStore};
 28use std::pin::Pin;
 29use std::sync::{
 30    Arc, LazyLock,
 31    atomic::{self, AtomicU64},
 32};
 33use strum::IntoEnumIterator;
 34use theme::ThemeSettings;
 35use ui::{Icon, IconName, List, Tooltip, prelude::*};
 36use util::ResultExt;
 37use zed_env_vars::EnvVar;
 38
 39use crate::api_key::ApiKey;
 40use crate::ui::InstructionListItem;
 41use crate::{AllLanguageModelSettings, api_key::ApiKeyState};
 42
 43const PROVIDER_ID: LanguageModelProviderId = language_model::GOOGLE_PROVIDER_ID;
 44const PROVIDER_NAME: LanguageModelProviderName = language_model::GOOGLE_PROVIDER_NAME;
 45
 46#[derive(Default, Clone, Debug, PartialEq)]
 47pub struct GoogleSettings {
 48    pub api_url: String,
 49    pub available_models: Vec<AvailableModel>,
 50}
 51
 52#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
 53#[serde(tag = "type", rename_all = "lowercase")]
 54pub enum ModelMode {
 55    #[default]
 56    Default,
 57    Thinking {
 58        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
 59        budget_tokens: Option<u32>,
 60    },
 61}
 62
 63impl From<ModelMode> for GoogleModelMode {
 64    fn from(value: ModelMode) -> Self {
 65        match value {
 66            ModelMode::Default => GoogleModelMode::Default,
 67            ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
 68        }
 69    }
 70}
 71
 72impl From<GoogleModelMode> for ModelMode {
 73    fn from(value: GoogleModelMode) -> Self {
 74        match value {
 75            GoogleModelMode::Default => ModelMode::Default,
 76            GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
 77        }
 78    }
 79}
 80
 81#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 82pub struct AvailableModel {
 83    name: String,
 84    display_name: Option<String>,
 85    max_tokens: u64,
 86    mode: Option<ModelMode>,
 87}
 88
 89pub struct GoogleLanguageModelProvider {
 90    http_client: Arc<dyn HttpClient>,
 91    state: gpui::Entity<State>,
 92}
 93
 94pub struct State {
 95    api_key_state: ApiKeyState,
 96}
 97
 98const GEMINI_API_KEY_VAR_NAME: &str = "GEMINI_API_KEY";
 99const GOOGLE_AI_API_KEY_VAR_NAME: &str = "GOOGLE_AI_API_KEY";
100
101static API_KEY_ENV_VAR: LazyLock<EnvVar> = LazyLock::new(|| {
102    // Try GEMINI_API_KEY first as primary, fallback to GOOGLE_AI_API_KEY
103    EnvVar::new(GEMINI_API_KEY_VAR_NAME.into()).or(EnvVar::new(GOOGLE_AI_API_KEY_VAR_NAME.into()))
104});
105
106impl State {
107    fn is_authenticated(&self) -> bool {
108        self.api_key_state.has_key()
109    }
110
111    fn set_api_key(&mut self, api_key: Option<String>, cx: &mut Context<Self>) -> Task<Result<()>> {
112        let api_url = GoogleLanguageModelProvider::api_url(cx);
113        self.api_key_state
114            .store(api_url, api_key, |this| &mut this.api_key_state, cx)
115    }
116
117    fn authenticate(&mut self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
118        let api_url = GoogleLanguageModelProvider::api_url(cx);
119        self.api_key_state.load_if_needed(
120            api_url,
121            &API_KEY_ENV_VAR,
122            |this| &mut this.api_key_state,
123            cx,
124        )
125    }
126}
127
128impl GoogleLanguageModelProvider {
129    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
130        let state = cx.new(|cx| {
131            cx.observe_global::<SettingsStore>(|this: &mut State, cx| {
132                let api_url = Self::api_url(cx);
133                this.api_key_state.handle_url_change(
134                    api_url,
135                    &API_KEY_ENV_VAR,
136                    |this| &mut this.api_key_state,
137                    cx,
138                );
139                cx.notify();
140            })
141            .detach();
142            State {
143                api_key_state: ApiKeyState::new(Self::api_url(cx)),
144            }
145        });
146
147        Self { http_client, state }
148    }
149
150    fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
151        Arc::new(GoogleLanguageModel {
152            id: LanguageModelId::from(model.id().to_string()),
153            model,
154            state: self.state.clone(),
155            http_client: self.http_client.clone(),
156            request_limiter: RateLimiter::new(4),
157        })
158    }
159
160    pub fn api_key_for_gemini_cli(cx: &mut App) -> Task<Result<String>> {
161        if let Some(key) = API_KEY_ENV_VAR.value.clone() {
162            return Task::ready(Ok(key));
163        }
164        let credentials_provider = <dyn CredentialsProvider>::global(cx);
165        let api_url = Self::api_url(cx).to_string();
166        cx.spawn(async move |cx| {
167            Ok(
168                ApiKey::load_from_system_keychain(&api_url, credentials_provider.as_ref(), cx)
169                    .await?
170                    .key()
171                    .to_string(),
172            )
173        })
174    }
175
176    fn api_url(cx: &App) -> SharedString {
177        let api_url = &AllLanguageModelSettings::get_global(cx).google.api_url;
178        if api_url.is_empty() {
179            google_ai::API_URL.into()
180        } else {
181            SharedString::new(api_url.as_str())
182        }
183    }
184}
185
186impl LanguageModelProviderState for GoogleLanguageModelProvider {
187    type ObservableEntity = State;
188
189    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
190        Some(self.state.clone())
191    }
192}
193
194impl LanguageModelProvider for GoogleLanguageModelProvider {
195    fn id(&self) -> LanguageModelProviderId {
196        PROVIDER_ID
197    }
198
199    fn name(&self) -> LanguageModelProviderName {
200        PROVIDER_NAME
201    }
202
203    fn icon(&self) -> IconName {
204        IconName::AiGoogle
205    }
206
207    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
208        Some(self.create_language_model(google_ai::Model::default()))
209    }
210
211    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
212        Some(self.create_language_model(google_ai::Model::default_fast()))
213    }
214
215    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
216        let mut models = BTreeMap::default();
217
218        // Add base models from google_ai::Model::iter()
219        for model in google_ai::Model::iter() {
220            if !matches!(model, google_ai::Model::Custom { .. }) {
221                models.insert(model.id().to_string(), model);
222            }
223        }
224
225        // Override with available models from settings
226        for model in &AllLanguageModelSettings::get_global(cx)
227            .google
228            .available_models
229        {
230            models.insert(
231                model.name.clone(),
232                google_ai::Model::Custom {
233                    name: model.name.clone(),
234                    display_name: model.display_name.clone(),
235                    max_tokens: model.max_tokens,
236                    mode: model.mode.unwrap_or_default().into(),
237                },
238            );
239        }
240
241        models
242            .into_values()
243            .map(|model| {
244                Arc::new(GoogleLanguageModel {
245                    id: LanguageModelId::from(model.id().to_string()),
246                    model,
247                    state: self.state.clone(),
248                    http_client: self.http_client.clone(),
249                    request_limiter: RateLimiter::new(4),
250                }) as Arc<dyn LanguageModel>
251            })
252            .collect()
253    }
254
255    fn is_authenticated(&self, cx: &App) -> bool {
256        self.state.read(cx).is_authenticated()
257    }
258
259    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
260        self.state.update(cx, |state, cx| state.authenticate(cx))
261    }
262
263    fn configuration_view(
264        &self,
265        target_agent: language_model::ConfigurationViewTargetAgent,
266        window: &mut Window,
267        cx: &mut App,
268    ) -> AnyView {
269        cx.new(|cx| ConfigurationView::new(self.state.clone(), target_agent, window, cx))
270            .into()
271    }
272
273    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
274        self.state
275            .update(cx, |state, cx| state.set_api_key(None, cx))
276    }
277}
278
279pub struct GoogleLanguageModel {
280    id: LanguageModelId,
281    model: google_ai::Model,
282    state: gpui::Entity<State>,
283    http_client: Arc<dyn HttpClient>,
284    request_limiter: RateLimiter,
285}
286
287impl GoogleLanguageModel {
288    fn stream_completion(
289        &self,
290        request: google_ai::GenerateContentRequest,
291        cx: &AsyncApp,
292    ) -> BoxFuture<
293        'static,
294        Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
295    > {
296        let http_client = self.http_client.clone();
297
298        let api_key_and_url = self.state.read_with(cx, |state, cx| {
299            let api_url = GoogleLanguageModelProvider::api_url(cx);
300            let api_key = state.api_key_state.key(&api_url);
301            (api_key, api_url)
302        });
303        let (api_key, api_url) = match api_key_and_url {
304            Ok(api_key_and_url) => api_key_and_url,
305            Err(err) => {
306                return futures::future::ready(Err(err)).boxed();
307            }
308        };
309
310        async move {
311            let api_key = api_key.context("Missing Google API key")?;
312            let request = google_ai::stream_generate_content(
313                http_client.as_ref(),
314                &api_url,
315                &api_key,
316                request,
317            );
318            request.await.context("failed to stream completion")
319        }
320        .boxed()
321    }
322}
323
324impl LanguageModel for GoogleLanguageModel {
325    fn id(&self) -> LanguageModelId {
326        self.id.clone()
327    }
328
329    fn name(&self) -> LanguageModelName {
330        LanguageModelName::from(self.model.display_name().to_string())
331    }
332
333    fn provider_id(&self) -> LanguageModelProviderId {
334        PROVIDER_ID
335    }
336
337    fn provider_name(&self) -> LanguageModelProviderName {
338        PROVIDER_NAME
339    }
340
341    fn supports_tools(&self) -> bool {
342        self.model.supports_tools()
343    }
344
345    fn supports_images(&self) -> bool {
346        self.model.supports_images()
347    }
348
349    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
350        match choice {
351            LanguageModelToolChoice::Auto
352            | LanguageModelToolChoice::Any
353            | LanguageModelToolChoice::None => true,
354        }
355    }
356
357    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
358        LanguageModelToolSchemaFormat::JsonSchemaSubset
359    }
360
361    fn telemetry_id(&self) -> String {
362        format!("google/{}", self.model.request_id())
363    }
364
365    fn max_token_count(&self) -> u64 {
366        self.model.max_token_count()
367    }
368
369    fn max_output_tokens(&self) -> Option<u64> {
370        self.model.max_output_tokens()
371    }
372
373    fn count_tokens(
374        &self,
375        request: LanguageModelRequest,
376        cx: &App,
377    ) -> BoxFuture<'static, Result<u64>> {
378        let model_id = self.model.request_id().to_string();
379        let request = into_google(request, model_id, self.model.mode());
380        let http_client = self.http_client.clone();
381        let api_url = GoogleLanguageModelProvider::api_url(cx);
382        let api_key = self.state.read(cx).api_key_state.key(&api_url);
383
384        async move {
385            let Some(api_key) = api_key else {
386                return Err(LanguageModelCompletionError::NoApiKey {
387                    provider: PROVIDER_NAME,
388                }
389                .into());
390            };
391            let response = google_ai::count_tokens(
392                http_client.as_ref(),
393                &api_url,
394                &api_key,
395                google_ai::CountTokensRequest {
396                    generate_content_request: request,
397                },
398            )
399            .await?;
400            Ok(response.total_tokens)
401        }
402        .boxed()
403    }
404
405    fn stream_completion(
406        &self,
407        request: LanguageModelRequest,
408        cx: &AsyncApp,
409    ) -> BoxFuture<
410        'static,
411        Result<
412            futures::stream::BoxStream<
413                'static,
414                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
415            >,
416            LanguageModelCompletionError,
417        >,
418    > {
419        let request = into_google(
420            request,
421            self.model.request_id().to_string(),
422            self.model.mode(),
423        );
424        let request = self.stream_completion(request, cx);
425        let future = self.request_limiter.stream(async move {
426            let response = request.await.map_err(LanguageModelCompletionError::from)?;
427            Ok(GoogleEventMapper::new().map_stream(response))
428        });
429        async move { Ok(future.await?.boxed()) }.boxed()
430    }
431}
432
433pub fn into_google(
434    mut request: LanguageModelRequest,
435    model_id: String,
436    mode: GoogleModelMode,
437) -> google_ai::GenerateContentRequest {
438    fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
439        content
440            .into_iter()
441            .flat_map(|content| match content {
442                language_model::MessageContent::Text(text) => {
443                    if !text.is_empty() {
444                        vec![Part::TextPart(google_ai::TextPart { text })]
445                    } else {
446                        vec![]
447                    }
448                }
449                language_model::MessageContent::Thinking {
450                    text: _,
451                    signature: Some(signature),
452                } => {
453                    if !signature.is_empty() {
454                        vec![Part::ThoughtPart(google_ai::ThoughtPart {
455                            thought: true,
456                            thought_signature: signature,
457                        })]
458                    } else {
459                        vec![]
460                    }
461                }
462                language_model::MessageContent::Thinking { .. } => {
463                    vec![]
464                }
465                language_model::MessageContent::RedactedThinking(_) => vec![],
466                language_model::MessageContent::Image(image) => {
467                    vec![Part::InlineDataPart(google_ai::InlineDataPart {
468                        inline_data: google_ai::GenerativeContentBlob {
469                            mime_type: "image/png".to_string(),
470                            data: image.source.to_string(),
471                        },
472                    })]
473                }
474                language_model::MessageContent::ToolUse(tool_use) => {
475                    vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
476                        function_call: google_ai::FunctionCall {
477                            name: tool_use.name.to_string(),
478                            args: tool_use.input,
479                        },
480                    })]
481                }
482                language_model::MessageContent::ToolResult(tool_result) => {
483                    match tool_result.content {
484                        language_model::LanguageModelToolResultContent::Text(text) => {
485                            vec![Part::FunctionResponsePart(
486                                google_ai::FunctionResponsePart {
487                                    function_response: google_ai::FunctionResponse {
488                                        name: tool_result.tool_name.to_string(),
489                                        // The API expects a valid JSON object
490                                        response: serde_json::json!({
491                                            "output": text
492                                        }),
493                                    },
494                                },
495                            )]
496                        }
497                        language_model::LanguageModelToolResultContent::Image(image) => {
498                            vec![
499                                Part::FunctionResponsePart(google_ai::FunctionResponsePart {
500                                    function_response: google_ai::FunctionResponse {
501                                        name: tool_result.tool_name.to_string(),
502                                        // The API expects a valid JSON object
503                                        response: serde_json::json!({
504                                            "output": "Tool responded with an image"
505                                        }),
506                                    },
507                                }),
508                                Part::InlineDataPart(google_ai::InlineDataPart {
509                                    inline_data: google_ai::GenerativeContentBlob {
510                                        mime_type: "image/png".to_string(),
511                                        data: image.source.to_string(),
512                                    },
513                                }),
514                            ]
515                        }
516                    }
517                }
518            })
519            .collect()
520    }
521
522    let system_instructions = if request
523        .messages
524        .first()
525        .is_some_and(|msg| matches!(msg.role, Role::System))
526    {
527        let message = request.messages.remove(0);
528        Some(SystemInstruction {
529            parts: map_content(message.content),
530        })
531    } else {
532        None
533    };
534
535    google_ai::GenerateContentRequest {
536        model: google_ai::ModelName { model_id },
537        system_instruction: system_instructions,
538        contents: request
539            .messages
540            .into_iter()
541            .filter_map(|message| {
542                let parts = map_content(message.content);
543                if parts.is_empty() {
544                    None
545                } else {
546                    Some(google_ai::Content {
547                        parts,
548                        role: match message.role {
549                            Role::User => google_ai::Role::User,
550                            Role::Assistant => google_ai::Role::Model,
551                            Role::System => google_ai::Role::User, // Google AI doesn't have a system role
552                        },
553                    })
554                }
555            })
556            .collect(),
557        generation_config: Some(google_ai::GenerationConfig {
558            candidate_count: Some(1),
559            stop_sequences: Some(request.stop),
560            max_output_tokens: None,
561            temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
562            thinking_config: match (request.thinking_allowed, mode) {
563                (true, GoogleModelMode::Thinking { budget_tokens }) => {
564                    budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
565                }
566                _ => None,
567            },
568            top_p: None,
569            top_k: None,
570        }),
571        safety_settings: None,
572        tools: (!request.tools.is_empty()).then(|| {
573            vec![google_ai::Tool {
574                function_declarations: request
575                    .tools
576                    .into_iter()
577                    .map(|tool| FunctionDeclaration {
578                        name: tool.name,
579                        description: tool.description,
580                        parameters: tool.input_schema,
581                    })
582                    .collect(),
583            }]
584        }),
585        tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
586            function_calling_config: google_ai::FunctionCallingConfig {
587                mode: match choice {
588                    LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
589                    LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
590                    LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
591                },
592                allowed_function_names: None,
593            },
594        }),
595    }
596}
597
598pub struct GoogleEventMapper {
599    usage: UsageMetadata,
600    stop_reason: StopReason,
601}
602
603impl GoogleEventMapper {
604    pub fn new() -> Self {
605        Self {
606            usage: UsageMetadata::default(),
607            stop_reason: StopReason::EndTurn,
608        }
609    }
610
611    pub fn map_stream(
612        mut self,
613        events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
614    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
615    {
616        events
617            .map(Some)
618            .chain(futures::stream::once(async { None }))
619            .flat_map(move |event| {
620                futures::stream::iter(match event {
621                    Some(Ok(event)) => self.map_event(event),
622                    Some(Err(error)) => {
623                        vec![Err(LanguageModelCompletionError::from(error))]
624                    }
625                    None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
626                })
627            })
628    }
629
630    pub fn map_event(
631        &mut self,
632        event: GenerateContentResponse,
633    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
634        static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
635
636        let mut events: Vec<_> = Vec::new();
637        let mut wants_to_use_tool = false;
638        if let Some(usage_metadata) = event.usage_metadata {
639            update_usage(&mut self.usage, &usage_metadata);
640            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
641                convert_usage(&self.usage),
642            )))
643        }
644        if let Some(candidates) = event.candidates {
645            for candidate in candidates {
646                if let Some(finish_reason) = candidate.finish_reason.as_deref() {
647                    self.stop_reason = match finish_reason {
648                        "STOP" => StopReason::EndTurn,
649                        "MAX_TOKENS" => StopReason::MaxTokens,
650                        _ => {
651                            log::error!("Unexpected google finish_reason: {finish_reason}");
652                            StopReason::EndTurn
653                        }
654                    };
655                }
656                candidate
657                    .content
658                    .parts
659                    .into_iter()
660                    .for_each(|part| match part {
661                        Part::TextPart(text_part) => {
662                            events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
663                        }
664                        Part::InlineDataPart(_) => {}
665                        Part::FunctionCallPart(function_call_part) => {
666                            wants_to_use_tool = true;
667                            let name: Arc<str> = function_call_part.function_call.name.into();
668                            let next_tool_id =
669                                TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
670                            let id: LanguageModelToolUseId =
671                                format!("{}-{}", name, next_tool_id).into();
672
673                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
674                                LanguageModelToolUse {
675                                    id,
676                                    name,
677                                    is_input_complete: true,
678                                    raw_input: function_call_part.function_call.args.to_string(),
679                                    input: function_call_part.function_call.args,
680                                },
681                            )));
682                        }
683                        Part::FunctionResponsePart(_) => {}
684                        Part::ThoughtPart(part) => {
685                            events.push(Ok(LanguageModelCompletionEvent::Thinking {
686                                text: "(Encrypted thought)".to_string(), // TODO: Can we populate this from thought summaries?
687                                signature: Some(part.thought_signature),
688                            }));
689                        }
690                    });
691            }
692        }
693
694        // Even when Gemini wants to use a Tool, the API
695        // responds with `finish_reason: STOP`
696        if wants_to_use_tool {
697            self.stop_reason = StopReason::ToolUse;
698            events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
699        }
700        events
701    }
702}
703
704pub fn count_google_tokens(
705    request: LanguageModelRequest,
706    cx: &App,
707) -> BoxFuture<'static, Result<u64>> {
708    // We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
709    // So we have to use tokenizer from tiktoken_rs to count tokens.
710    cx.background_spawn(async move {
711        let messages = request
712            .messages
713            .into_iter()
714            .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
715                role: match message.role {
716                    Role::User => "user".into(),
717                    Role::Assistant => "assistant".into(),
718                    Role::System => "system".into(),
719                },
720                content: Some(message.string_contents()),
721                name: None,
722                function_call: None,
723            })
724            .collect::<Vec<_>>();
725
726        // Tiktoken doesn't yet support these models, so we manually use the
727        // same tokenizer as GPT-4.
728        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages).map(|tokens| tokens as u64)
729    })
730    .boxed()
731}
732
733fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
734    if let Some(prompt_token_count) = new.prompt_token_count {
735        usage.prompt_token_count = Some(prompt_token_count);
736    }
737    if let Some(cached_content_token_count) = new.cached_content_token_count {
738        usage.cached_content_token_count = Some(cached_content_token_count);
739    }
740    if let Some(candidates_token_count) = new.candidates_token_count {
741        usage.candidates_token_count = Some(candidates_token_count);
742    }
743    if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
744        usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
745    }
746    if let Some(thoughts_token_count) = new.thoughts_token_count {
747        usage.thoughts_token_count = Some(thoughts_token_count);
748    }
749    if let Some(total_token_count) = new.total_token_count {
750        usage.total_token_count = Some(total_token_count);
751    }
752}
753
754fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
755    let prompt_tokens = usage.prompt_token_count.unwrap_or(0);
756    let cached_tokens = usage.cached_content_token_count.unwrap_or(0);
757    let input_tokens = prompt_tokens - cached_tokens;
758    let output_tokens = usage.candidates_token_count.unwrap_or(0);
759
760    language_model::TokenUsage {
761        input_tokens,
762        output_tokens,
763        cache_read_input_tokens: cached_tokens,
764        cache_creation_input_tokens: 0,
765    }
766}
767
768struct ConfigurationView {
769    api_key_editor: Entity<Editor>,
770    state: gpui::Entity<State>,
771    target_agent: language_model::ConfigurationViewTargetAgent,
772    load_credentials_task: Option<Task<()>>,
773}
774
775impl ConfigurationView {
776    fn new(
777        state: gpui::Entity<State>,
778        target_agent: language_model::ConfigurationViewTargetAgent,
779        window: &mut Window,
780        cx: &mut Context<Self>,
781    ) -> Self {
782        cx.observe(&state, |_, _, cx| {
783            cx.notify();
784        })
785        .detach();
786
787        let load_credentials_task = Some(cx.spawn_in(window, {
788            let state = state.clone();
789            async move |this, cx| {
790                if let Some(task) = state
791                    .update(cx, |state, cx| state.authenticate(cx))
792                    .log_err()
793                {
794                    // We don't log an error, because "not signed in" is also an error.
795                    let _ = task.await;
796                }
797                this.update(cx, |this, cx| {
798                    this.load_credentials_task = None;
799                    cx.notify();
800                })
801                .log_err();
802            }
803        }));
804
805        Self {
806            api_key_editor: cx.new(|cx| {
807                let mut editor = Editor::single_line(window, cx);
808                editor.set_placeholder_text("AIzaSy...", window, cx);
809                editor
810            }),
811            target_agent,
812            state,
813            load_credentials_task,
814        }
815    }
816
817    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
818        let api_key = self.api_key_editor.read(cx).text(cx).trim().to_string();
819        if api_key.is_empty() {
820            return;
821        }
822
823        let state = self.state.clone();
824        cx.spawn_in(window, async move |_, cx| {
825            state
826                .update(cx, |state, cx| state.set_api_key(Some(api_key), cx))?
827                .await
828        })
829        .detach_and_log_err(cx);
830    }
831
832    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
833        self.api_key_editor
834            .update(cx, |editor, cx| editor.set_text("", window, cx));
835
836        let state = self.state.clone();
837        cx.spawn_in(window, async move |_, cx| {
838            state
839                .update(cx, |state, cx| state.set_api_key(None, cx))?
840                .await
841        })
842        .detach_and_log_err(cx);
843    }
844
845    fn render_api_key_editor(&self, cx: &mut Context<Self>) -> impl IntoElement {
846        let settings = ThemeSettings::get_global(cx);
847        let text_style = TextStyle {
848            color: cx.theme().colors().text,
849            font_family: settings.ui_font.family.clone(),
850            font_features: settings.ui_font.features.clone(),
851            font_fallbacks: settings.ui_font.fallbacks.clone(),
852            font_size: rems(0.875).into(),
853            font_weight: settings.ui_font.weight,
854            font_style: FontStyle::Normal,
855            line_height: relative(1.3),
856            white_space: WhiteSpace::Normal,
857            ..Default::default()
858        };
859        EditorElement::new(
860            &self.api_key_editor,
861            EditorStyle {
862                background: cx.theme().colors().editor_background,
863                local_player: cx.theme().players().local(),
864                text: text_style,
865                ..Default::default()
866            },
867        )
868    }
869
870    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
871        !self.state.read(cx).is_authenticated()
872    }
873}
874
875impl Render for ConfigurationView {
876    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
877        let env_var_set = self.state.read(cx).api_key_state.is_from_env_var();
878
879        if self.load_credentials_task.is_some() {
880            div().child(Label::new("Loading credentials...")).into_any()
881        } else if self.should_render_editor(cx) {
882            v_flex()
883                .size_full()
884                .on_action(cx.listener(Self::save_api_key))
885                .child(Label::new(format!("To use {}, you need to add an API key. Follow these steps:", match &self.target_agent {
886                    ConfigurationViewTargetAgent::ZedAgent => "Zed's agent with Google AI".into(),
887                    ConfigurationViewTargetAgent::Other(agent) => agent.clone(),
888                })))
889                .child(
890                    List::new()
891                        .child(InstructionListItem::new(
892                            "Create one by visiting",
893                            Some("Google AI's console"),
894                            Some("https://aistudio.google.com/app/apikey"),
895                        ))
896                        .child(InstructionListItem::text_only(
897                            "Paste your API key below and hit enter to start using the assistant",
898                        )),
899                )
900                .child(
901                    h_flex()
902                        .w_full()
903                        .my_2()
904                        .px_2()
905                        .py_1()
906                        .bg(cx.theme().colors().editor_background)
907                        .border_1()
908                        .border_color(cx.theme().colors().border)
909                        .rounded_sm()
910                        .child(self.render_api_key_editor(cx)),
911                )
912                .child(
913                    Label::new(
914                        format!("You can also assign the {GEMINI_API_KEY_VAR_NAME} environment variable and restart Zed."),
915                    )
916                    .size(LabelSize::Small).color(Color::Muted),
917                )
918                .into_any()
919        } else {
920            h_flex()
921                .mt_1()
922                .p_1()
923                .justify_between()
924                .rounded_md()
925                .border_1()
926                .border_color(cx.theme().colors().border)
927                .bg(cx.theme().colors().background)
928                .child(
929                    h_flex()
930                        .gap_1()
931                        .child(Icon::new(IconName::Check).color(Color::Success))
932                        .child(Label::new(if env_var_set {
933                            format!("API key set in {GEMINI_API_KEY_VAR_NAME} environment variable.")
934                        } else {
935                            "API key configured.".to_string()
936                        })),
937                )
938                .child(
939                    Button::new("reset-key", "Reset Key")
940                        .label_size(LabelSize::Small)
941                        .icon(Some(IconName::Trash))
942                        .icon_size(IconSize::Small)
943                        .icon_position(IconPosition::Start)
944                        .disabled(env_var_set)
945                        .when(env_var_set, |this| {
946                            this.tooltip(Tooltip::text(format!("To reset your API key, make sure {GEMINI_API_KEY_VAR_NAME} and {GOOGLE_AI_API_KEY_VAR_NAME} environment variables are unset.")))
947                        })
948                        .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
949                )
950                .into_any()
951        }
952    }
953}