window.rs

   1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
  13    Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
  14    SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
  15    SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
  16    SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
  17    TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
  18    WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
  19    point, prelude::*, px, rems, size, transparent_black,
  20};
  21use anyhow::{Context as _, Result, anyhow};
  22use collections::{FxHashMap, FxHashSet};
  23#[cfg(target_os = "macos")]
  24use core_video::pixel_buffer::CVPixelBuffer;
  25use derive_more::{Deref, DerefMut};
  26use futures::FutureExt;
  27use futures::channel::oneshot;
  28use itertools::FoldWhile::{Continue, Done};
  29use itertools::Itertools;
  30use parking_lot::RwLock;
  31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  32use refineable::Refineable;
  33use slotmap::SlotMap;
  34use smallvec::SmallVec;
  35use std::{
  36    any::{Any, TypeId},
  37    borrow::Cow,
  38    cell::{Cell, RefCell},
  39    cmp,
  40    fmt::{Debug, Display},
  41    hash::{Hash, Hasher},
  42    marker::PhantomData,
  43    mem,
  44    ops::{DerefMut, Range},
  45    rc::Rc,
  46    sync::{
  47        Arc, Weak,
  48        atomic::{AtomicUsize, Ordering::SeqCst},
  49    },
  50    time::{Duration, Instant},
  51};
  52use util::post_inc;
  53use util::{ResultExt, measure};
  54use uuid::Uuid;
  55
  56mod prompts;
  57
  58use crate::util::atomic_incr_if_not_zero;
  59pub use prompts::*;
  60
  61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
  62
  63/// A 6:5 aspect ratio minimum window size to be used for functional,
  64/// additional-to-main-Zed windows, like the settings and rules library windows.
  65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
  66    width: Pixels(900.),
  67    height: Pixels(750.),
  68};
  69
  70/// Represents the two different phases when dispatching events.
  71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  72pub enum DispatchPhase {
  73    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  74    /// invoked front to back and keyboard event listeners are invoked from the focused element
  75    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  76    /// registering event listeners.
  77    #[default]
  78    Bubble,
  79    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  80    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  81    /// is used for special purposes such as clearing the "pressed" state for click events. If
  82    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  83    /// outside of the immediate region may rely on detecting non-local events during this phase.
  84    Capture,
  85}
  86
  87impl DispatchPhase {
  88    /// Returns true if this represents the "bubble" phase.
  89    #[inline]
  90    pub fn bubble(self) -> bool {
  91        self == DispatchPhase::Bubble
  92    }
  93
  94    /// Returns true if this represents the "capture" phase.
  95    #[inline]
  96    pub fn capture(self) -> bool {
  97        self == DispatchPhase::Capture
  98    }
  99}
 100
 101struct WindowInvalidatorInner {
 102    pub dirty: bool,
 103    pub draw_phase: DrawPhase,
 104    pub dirty_views: FxHashSet<EntityId>,
 105}
 106
 107#[derive(Clone)]
 108pub(crate) struct WindowInvalidator {
 109    inner: Rc<RefCell<WindowInvalidatorInner>>,
 110}
 111
 112impl WindowInvalidator {
 113    pub fn new() -> Self {
 114        WindowInvalidator {
 115            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 116                dirty: true,
 117                draw_phase: DrawPhase::None,
 118                dirty_views: FxHashSet::default(),
 119            })),
 120        }
 121    }
 122
 123    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 124        let mut inner = self.inner.borrow_mut();
 125        inner.dirty_views.insert(entity);
 126        if inner.draw_phase == DrawPhase::None {
 127            inner.dirty = true;
 128            cx.push_effect(Effect::Notify { emitter: entity });
 129            true
 130        } else {
 131            false
 132        }
 133    }
 134
 135    pub fn is_dirty(&self) -> bool {
 136        self.inner.borrow().dirty
 137    }
 138
 139    pub fn set_dirty(&self, dirty: bool) {
 140        self.inner.borrow_mut().dirty = dirty
 141    }
 142
 143    pub fn set_phase(&self, phase: DrawPhase) {
 144        self.inner.borrow_mut().draw_phase = phase
 145    }
 146
 147    pub fn take_views(&self) -> FxHashSet<EntityId> {
 148        mem::take(&mut self.inner.borrow_mut().dirty_views)
 149    }
 150
 151    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 152        self.inner.borrow_mut().dirty_views = views;
 153    }
 154
 155    pub fn not_drawing(&self) -> bool {
 156        self.inner.borrow().draw_phase == DrawPhase::None
 157    }
 158
 159    #[track_caller]
 160    pub fn debug_assert_paint(&self) {
 161        debug_assert!(
 162            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 163            "this method can only be called during paint"
 164        );
 165    }
 166
 167    #[track_caller]
 168    pub fn debug_assert_prepaint(&self) {
 169        debug_assert!(
 170            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 171            "this method can only be called during request_layout, or prepaint"
 172        );
 173    }
 174
 175    #[track_caller]
 176    pub fn debug_assert_paint_or_prepaint(&self) {
 177        debug_assert!(
 178            matches!(
 179                self.inner.borrow().draw_phase,
 180                DrawPhase::Paint | DrawPhase::Prepaint
 181            ),
 182            "this method can only be called during request_layout, prepaint, or paint"
 183        );
 184    }
 185}
 186
 187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 188
 189pub(crate) type AnyWindowFocusListener =
 190    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 191
 192pub(crate) struct WindowFocusEvent {
 193    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 194    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 195}
 196
 197impl WindowFocusEvent {
 198    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 199        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 200    }
 201
 202    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 203        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 204    }
 205}
 206
 207/// This is provided when subscribing for `Context::on_focus_out` events.
 208pub struct FocusOutEvent {
 209    /// A weak focus handle representing what was blurred.
 210    pub blurred: WeakFocusHandle,
 211}
 212
 213slotmap::new_key_type! {
 214    /// A globally unique identifier for a focusable element.
 215    pub struct FocusId;
 216}
 217
 218thread_local! {
 219    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 220}
 221
 222/// Returned when the element arena has been used and so must be cleared before the next draw.
 223#[must_use]
 224pub struct ArenaClearNeeded;
 225
 226impl ArenaClearNeeded {
 227    /// Clear the element arena.
 228    pub fn clear(self) {
 229        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 230            element_arena.clear();
 231        });
 232    }
 233}
 234
 235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
 236pub(crate) struct FocusRef {
 237    pub(crate) ref_count: AtomicUsize,
 238    pub(crate) tab_index: isize,
 239    pub(crate) tab_stop: bool,
 240}
 241
 242impl FocusId {
 243    /// Obtains whether the element associated with this handle is currently focused.
 244    pub fn is_focused(&self, window: &Window) -> bool {
 245        window.focus == Some(*self)
 246    }
 247
 248    /// Obtains whether the element associated with this handle contains the focused
 249    /// element or is itself focused.
 250    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 251        window
 252            .focused(cx)
 253            .is_some_and(|focused| self.contains(focused.id, window))
 254    }
 255
 256    /// Obtains whether the element associated with this handle is contained within the
 257    /// focused element or is itself focused.
 258    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 259        let focused = window.focused(cx);
 260        focused.is_some_and(|focused| focused.id.contains(*self, window))
 261    }
 262
 263    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 264    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 265        window
 266            .rendered_frame
 267            .dispatch_tree
 268            .focus_contains(*self, other)
 269    }
 270}
 271
 272/// A handle which can be used to track and manipulate the focused element in a window.
 273pub struct FocusHandle {
 274    pub(crate) id: FocusId,
 275    handles: Arc<FocusMap>,
 276    /// The index of this element in the tab order.
 277    pub tab_index: isize,
 278    /// Whether this element can be focused by tab navigation.
 279    pub tab_stop: bool,
 280}
 281
 282impl std::fmt::Debug for FocusHandle {
 283    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 284        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 285    }
 286}
 287
 288impl FocusHandle {
 289    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 290        let id = handles.write().insert(FocusRef {
 291            ref_count: AtomicUsize::new(1),
 292            tab_index: 0,
 293            tab_stop: false,
 294        });
 295
 296        Self {
 297            id,
 298            tab_index: 0,
 299            tab_stop: false,
 300            handles: handles.clone(),
 301        }
 302    }
 303
 304    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 305        let lock = handles.read();
 306        let focus = lock.get(id)?;
 307        if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
 308            return None;
 309        }
 310        Some(Self {
 311            id,
 312            tab_index: focus.tab_index,
 313            tab_stop: focus.tab_stop,
 314            handles: handles.clone(),
 315        })
 316    }
 317
 318    /// Sets the tab index of the element associated with this handle.
 319    pub fn tab_index(mut self, index: isize) -> Self {
 320        self.tab_index = index;
 321        if let Some(focus) = self.handles.write().get_mut(self.id) {
 322            focus.tab_index = index;
 323        }
 324        self
 325    }
 326
 327    /// Sets whether the element associated with this handle is a tab stop.
 328    ///
 329    /// When `false`, the element will not be included in the tab order.
 330    pub fn tab_stop(mut self, tab_stop: bool) -> Self {
 331        self.tab_stop = tab_stop;
 332        if let Some(focus) = self.handles.write().get_mut(self.id) {
 333            focus.tab_stop = tab_stop;
 334        }
 335        self
 336    }
 337
 338    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 339    pub fn downgrade(&self) -> WeakFocusHandle {
 340        WeakFocusHandle {
 341            id: self.id,
 342            handles: Arc::downgrade(&self.handles),
 343        }
 344    }
 345
 346    /// Moves the focus to the element associated with this handle.
 347    pub fn focus(&self, window: &mut Window) {
 348        window.focus(self)
 349    }
 350
 351    /// Obtains whether the element associated with this handle is currently focused.
 352    pub fn is_focused(&self, window: &Window) -> bool {
 353        self.id.is_focused(window)
 354    }
 355
 356    /// Obtains whether the element associated with this handle contains the focused
 357    /// element or is itself focused.
 358    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 359        self.id.contains_focused(window, cx)
 360    }
 361
 362    /// Obtains whether the element associated with this handle is contained within the
 363    /// focused element or is itself focused.
 364    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 365        self.id.within_focused(window, cx)
 366    }
 367
 368    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 369    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 370        self.id.contains(other.id, window)
 371    }
 372
 373    /// Dispatch an action on the element that rendered this focus handle
 374    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 375        if let Some(node_id) = window
 376            .rendered_frame
 377            .dispatch_tree
 378            .focusable_node_id(self.id)
 379        {
 380            window.dispatch_action_on_node(node_id, action, cx)
 381        }
 382    }
 383}
 384
 385impl Clone for FocusHandle {
 386    fn clone(&self) -> Self {
 387        Self::for_id(self.id, &self.handles).unwrap()
 388    }
 389}
 390
 391impl PartialEq for FocusHandle {
 392    fn eq(&self, other: &Self) -> bool {
 393        self.id == other.id
 394    }
 395}
 396
 397impl Eq for FocusHandle {}
 398
 399impl Drop for FocusHandle {
 400    fn drop(&mut self) {
 401        self.handles
 402            .read()
 403            .get(self.id)
 404            .unwrap()
 405            .ref_count
 406            .fetch_sub(1, SeqCst);
 407    }
 408}
 409
 410/// A weak reference to a focus handle.
 411#[derive(Clone, Debug)]
 412pub struct WeakFocusHandle {
 413    pub(crate) id: FocusId,
 414    pub(crate) handles: Weak<FocusMap>,
 415}
 416
 417impl WeakFocusHandle {
 418    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 419    pub fn upgrade(&self) -> Option<FocusHandle> {
 420        let handles = self.handles.upgrade()?;
 421        FocusHandle::for_id(self.id, &handles)
 422    }
 423}
 424
 425impl PartialEq for WeakFocusHandle {
 426    fn eq(&self, other: &WeakFocusHandle) -> bool {
 427        self.id == other.id
 428    }
 429}
 430
 431impl Eq for WeakFocusHandle {}
 432
 433impl PartialEq<FocusHandle> for WeakFocusHandle {
 434    fn eq(&self, other: &FocusHandle) -> bool {
 435        self.id == other.id
 436    }
 437}
 438
 439impl PartialEq<WeakFocusHandle> for FocusHandle {
 440    fn eq(&self, other: &WeakFocusHandle) -> bool {
 441        self.id == other.id
 442    }
 443}
 444
 445/// Focusable allows users of your view to easily
 446/// focus it (using window.focus_view(cx, view))
 447pub trait Focusable: 'static {
 448    /// Returns the focus handle associated with this view.
 449    fn focus_handle(&self, cx: &App) -> FocusHandle;
 450}
 451
 452impl<V: Focusable> Focusable for Entity<V> {
 453    fn focus_handle(&self, cx: &App) -> FocusHandle {
 454        self.read(cx).focus_handle(cx)
 455    }
 456}
 457
 458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 459/// where the lifecycle of the view is handled by another view.
 460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 461
 462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 463
 464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 465pub struct DismissEvent;
 466
 467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 468
 469pub(crate) type AnyMouseListener =
 470    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 471
 472#[derive(Clone)]
 473pub(crate) struct CursorStyleRequest {
 474    pub(crate) hitbox_id: Option<HitboxId>,
 475    pub(crate) style: CursorStyle,
 476}
 477
 478#[derive(Default, Eq, PartialEq)]
 479pub(crate) struct HitTest {
 480    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 481    pub(crate) hover_hitbox_count: usize,
 482}
 483
 484/// A type of window control area that corresponds to the platform window.
 485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 486pub enum WindowControlArea {
 487    /// An area that allows dragging of the platform window.
 488    Drag,
 489    /// An area that allows closing of the platform window.
 490    Close,
 491    /// An area that allows maximizing of the platform window.
 492    Max,
 493    /// An area that allows minimizing of the platform window.
 494    Min,
 495}
 496
 497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 499pub struct HitboxId(u64);
 500
 501impl HitboxId {
 502    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 503    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 504    /// events or paint hover styles.
 505    ///
 506    /// See [`Hitbox::is_hovered`] for details.
 507    pub fn is_hovered(self, window: &Window) -> bool {
 508        let hit_test = &window.mouse_hit_test;
 509        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 510            if self == *id {
 511                return true;
 512            }
 513        }
 514        false
 515    }
 516
 517    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 518    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 519    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 520    /// this distinction.
 521    pub fn should_handle_scroll(self, window: &Window) -> bool {
 522        window.mouse_hit_test.ids.contains(&self)
 523    }
 524
 525    fn next(mut self) -> HitboxId {
 526        HitboxId(self.0.wrapping_add(1))
 527    }
 528}
 529
 530/// A rectangular region that potentially blocks hitboxes inserted prior.
 531/// See [Window::insert_hitbox] for more details.
 532#[derive(Clone, Debug, Deref)]
 533pub struct Hitbox {
 534    /// A unique identifier for the hitbox.
 535    pub id: HitboxId,
 536    /// The bounds of the hitbox.
 537    #[deref]
 538    pub bounds: Bounds<Pixels>,
 539    /// The content mask when the hitbox was inserted.
 540    pub content_mask: ContentMask<Pixels>,
 541    /// Flags that specify hitbox behavior.
 542    pub behavior: HitboxBehavior,
 543}
 544
 545impl Hitbox {
 546    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 547    /// typically what you want when determining whether to handle mouse events or paint hover
 548    /// styles.
 549    ///
 550    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 551    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 552    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 553    ///
 554    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 555    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 556    /// non-interactive while still allowing scrolling. More abstractly, this is because
 557    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 558    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 559    /// container.
 560    pub fn is_hovered(&self, window: &Window) -> bool {
 561        self.id.is_hovered(window)
 562    }
 563
 564    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 565    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 566    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 567    ///
 568    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 569    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 570    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 571        self.id.should_handle_scroll(window)
 572    }
 573}
 574
 575/// How the hitbox affects mouse behavior.
 576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 577pub enum HitboxBehavior {
 578    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 579    #[default]
 580    Normal,
 581
 582    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 583    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 584    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 585    /// [`InteractiveElement::occlude`].
 586    ///
 587    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 588    /// bubble-phase handler for every mouse event type:
 589    ///
 590    /// ```ignore
 591    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 592    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 593    ///         cx.stop_propagation();
 594    ///     }
 595    /// })
 596    /// ```
 597    ///
 598    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 599    /// styles and tooltops. These other behaviors are the main point of this mechanism. An
 600    /// alternative might be to not affect mouse event handling - but this would allow
 601    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 602    /// be hovered.
 603    BlockMouse,
 604
 605    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 606    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 607    /// interaction except scroll events to be ignored - see the documentation of
 608    /// [`Hitbox::is_hovered`] for details. This flag is set by
 609    /// [`InteractiveElement::block_mouse_except_scroll`].
 610    ///
 611    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 612    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 613    ///
 614    /// ```ignore
 615    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
 616    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 617    ///         cx.stop_propagation();
 618    ///     }
 619    /// })
 620    /// ```
 621    ///
 622    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 623    /// handled differently than other mouse events. If also blocking these scroll events is
 624    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 625    ///
 626    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 627    /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
 628    /// An alternative might be to not affect mouse event handling - but this would allow
 629    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 630    /// be hovered.
 631    BlockMouseExceptScroll,
 632}
 633
 634/// An identifier for a tooltip.
 635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 636pub struct TooltipId(usize);
 637
 638impl TooltipId {
 639    /// Checks if the tooltip is currently hovered.
 640    pub fn is_hovered(&self, window: &Window) -> bool {
 641        window
 642            .tooltip_bounds
 643            .as_ref()
 644            .is_some_and(|tooltip_bounds| {
 645                tooltip_bounds.id == *self
 646                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 647            })
 648    }
 649}
 650
 651pub(crate) struct TooltipBounds {
 652    id: TooltipId,
 653    bounds: Bounds<Pixels>,
 654}
 655
 656#[derive(Clone)]
 657pub(crate) struct TooltipRequest {
 658    id: TooltipId,
 659    tooltip: AnyTooltip,
 660}
 661
 662pub(crate) struct DeferredDraw {
 663    current_view: EntityId,
 664    priority: usize,
 665    parent_node: DispatchNodeId,
 666    element_id_stack: SmallVec<[ElementId; 32]>,
 667    text_style_stack: Vec<TextStyleRefinement>,
 668    element: Option<AnyElement>,
 669    absolute_offset: Point<Pixels>,
 670    prepaint_range: Range<PrepaintStateIndex>,
 671    paint_range: Range<PaintIndex>,
 672}
 673
 674pub(crate) struct Frame {
 675    pub(crate) focus: Option<FocusId>,
 676    pub(crate) window_active: bool,
 677    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 678    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 679    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 680    pub(crate) dispatch_tree: DispatchTree,
 681    pub(crate) scene: Scene,
 682    pub(crate) hitboxes: Vec<Hitbox>,
 683    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 684    pub(crate) deferred_draws: Vec<DeferredDraw>,
 685    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 686    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 687    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 688    #[cfg(any(test, feature = "test-support"))]
 689    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 690    #[cfg(any(feature = "inspector", debug_assertions))]
 691    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 692    #[cfg(any(feature = "inspector", debug_assertions))]
 693    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 694    pub(crate) tab_stops: TabStopMap,
 695}
 696
 697#[derive(Clone, Default)]
 698pub(crate) struct PrepaintStateIndex {
 699    hitboxes_index: usize,
 700    tooltips_index: usize,
 701    deferred_draws_index: usize,
 702    dispatch_tree_index: usize,
 703    accessed_element_states_index: usize,
 704    line_layout_index: LineLayoutIndex,
 705}
 706
 707#[derive(Clone, Default)]
 708pub(crate) struct PaintIndex {
 709    scene_index: usize,
 710    mouse_listeners_index: usize,
 711    input_handlers_index: usize,
 712    cursor_styles_index: usize,
 713    accessed_element_states_index: usize,
 714    tab_handle_index: usize,
 715    line_layout_index: LineLayoutIndex,
 716}
 717
 718impl Frame {
 719    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 720        Frame {
 721            focus: None,
 722            window_active: false,
 723            element_states: FxHashMap::default(),
 724            accessed_element_states: Vec::new(),
 725            mouse_listeners: Vec::new(),
 726            dispatch_tree,
 727            scene: Scene::default(),
 728            hitboxes: Vec::new(),
 729            window_control_hitboxes: Vec::new(),
 730            deferred_draws: Vec::new(),
 731            input_handlers: Vec::new(),
 732            tooltip_requests: Vec::new(),
 733            cursor_styles: Vec::new(),
 734
 735            #[cfg(any(test, feature = "test-support"))]
 736            debug_bounds: FxHashMap::default(),
 737
 738            #[cfg(any(feature = "inspector", debug_assertions))]
 739            next_inspector_instance_ids: FxHashMap::default(),
 740
 741            #[cfg(any(feature = "inspector", debug_assertions))]
 742            inspector_hitboxes: FxHashMap::default(),
 743            tab_stops: TabStopMap::default(),
 744        }
 745    }
 746
 747    pub(crate) fn clear(&mut self) {
 748        self.element_states.clear();
 749        self.accessed_element_states.clear();
 750        self.mouse_listeners.clear();
 751        self.dispatch_tree.clear();
 752        self.scene.clear();
 753        self.input_handlers.clear();
 754        self.tooltip_requests.clear();
 755        self.cursor_styles.clear();
 756        self.hitboxes.clear();
 757        self.window_control_hitboxes.clear();
 758        self.deferred_draws.clear();
 759        self.tab_stops.clear();
 760        self.focus = None;
 761
 762        #[cfg(any(feature = "inspector", debug_assertions))]
 763        {
 764            self.next_inspector_instance_ids.clear();
 765            self.inspector_hitboxes.clear();
 766        }
 767    }
 768
 769    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 770        self.cursor_styles
 771            .iter()
 772            .rev()
 773            .fold_while(None, |style, request| match request.hitbox_id {
 774                None => Done(Some(request.style)),
 775                Some(hitbox_id) => Continue(
 776                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 777                ),
 778            })
 779            .into_inner()
 780    }
 781
 782    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 783        let mut set_hover_hitbox_count = false;
 784        let mut hit_test = HitTest::default();
 785        for hitbox in self.hitboxes.iter().rev() {
 786            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 787            if bounds.contains(&position) {
 788                hit_test.ids.push(hitbox.id);
 789                if !set_hover_hitbox_count
 790                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 791                {
 792                    hit_test.hover_hitbox_count = hit_test.ids.len();
 793                    set_hover_hitbox_count = true;
 794                }
 795                if hitbox.behavior == HitboxBehavior::BlockMouse {
 796                    break;
 797                }
 798            }
 799        }
 800        if !set_hover_hitbox_count {
 801            hit_test.hover_hitbox_count = hit_test.ids.len();
 802        }
 803        hit_test
 804    }
 805
 806    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 807        self.focus
 808            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 809            .unwrap_or_default()
 810    }
 811
 812    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 813        for element_state_key in &self.accessed_element_states {
 814            if let Some((element_state_key, element_state)) =
 815                prev_frame.element_states.remove_entry(element_state_key)
 816            {
 817                self.element_states.insert(element_state_key, element_state);
 818            }
 819        }
 820
 821        self.scene.finish();
 822    }
 823}
 824
 825#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
 826enum InputModality {
 827    Mouse,
 828    Keyboard,
 829}
 830
 831/// Holds the state for a specific window.
 832pub struct Window {
 833    pub(crate) handle: AnyWindowHandle,
 834    pub(crate) invalidator: WindowInvalidator,
 835    pub(crate) removed: bool,
 836    pub(crate) platform_window: Box<dyn PlatformWindow>,
 837    display_id: Option<DisplayId>,
 838    sprite_atlas: Arc<dyn PlatformAtlas>,
 839    text_system: Arc<WindowTextSystem>,
 840    rem_size: Pixels,
 841    /// The stack of override values for the window's rem size.
 842    ///
 843    /// This is used by `with_rem_size` to allow rendering an element tree with
 844    /// a given rem size.
 845    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 846    pub(crate) viewport_size: Size<Pixels>,
 847    layout_engine: Option<TaffyLayoutEngine>,
 848    pub(crate) root: Option<AnyView>,
 849    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 850    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 851    pub(crate) rendered_entity_stack: Vec<EntityId>,
 852    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 853    pub(crate) element_opacity: f32,
 854    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 855    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 856    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 857    pub(crate) rendered_frame: Frame,
 858    pub(crate) next_frame: Frame,
 859    next_hitbox_id: HitboxId,
 860    pub(crate) next_tooltip_id: TooltipId,
 861    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 862    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 863    pub(crate) dirty_views: FxHashSet<EntityId>,
 864    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 865    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 866    default_prevented: bool,
 867    mouse_position: Point<Pixels>,
 868    mouse_hit_test: HitTest,
 869    modifiers: Modifiers,
 870    capslock: Capslock,
 871    scale_factor: f32,
 872    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 873    appearance: WindowAppearance,
 874    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 875    active: Rc<Cell<bool>>,
 876    hovered: Rc<Cell<bool>>,
 877    pub(crate) needs_present: Rc<Cell<bool>>,
 878    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 879    last_input_modality: InputModality,
 880    pub(crate) refreshing: bool,
 881    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 882    pub(crate) focus: Option<FocusId>,
 883    focus_enabled: bool,
 884    pending_input: Option<PendingInput>,
 885    pending_modifier: ModifierState,
 886    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 887    prompt: Option<RenderablePromptHandle>,
 888    pub(crate) client_inset: Option<Pixels>,
 889    #[cfg(any(feature = "inspector", debug_assertions))]
 890    inspector: Option<Entity<Inspector>>,
 891}
 892
 893#[derive(Clone, Debug, Default)]
 894struct ModifierState {
 895    modifiers: Modifiers,
 896    saw_keystroke: bool,
 897}
 898
 899#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 900pub(crate) enum DrawPhase {
 901    None,
 902    Prepaint,
 903    Paint,
 904    Focus,
 905}
 906
 907#[derive(Default, Debug)]
 908struct PendingInput {
 909    keystrokes: SmallVec<[Keystroke; 1]>,
 910    focus: Option<FocusId>,
 911    timer: Option<Task<()>>,
 912}
 913
 914pub(crate) struct ElementStateBox {
 915    pub(crate) inner: Box<dyn Any>,
 916    #[cfg(debug_assertions)]
 917    pub(crate) type_name: &'static str,
 918}
 919
 920fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
 921    #[cfg(target_os = "macos")]
 922    {
 923        const CASCADE_OFFSET: f32 = 25.0;
 924
 925        let display = display_id
 926            .map(|id| cx.find_display(id))
 927            .unwrap_or_else(|| cx.primary_display());
 928
 929        let display_bounds = display
 930            .as_ref()
 931            .map(|d| d.bounds())
 932            .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
 933
 934        // TODO, BUG: if you open a window with the currently active window
 935        // on the stack, this will erroneously select the 'unwrap_or_else'
 936        // code path
 937        let (base_origin, base_size) = cx
 938            .active_window()
 939            .and_then(|w| {
 940                w.update(cx, |_, window, _| {
 941                    let bounds = window.bounds();
 942                    (bounds.origin, bounds.size)
 943                })
 944                .ok()
 945            })
 946            .unwrap_or_else(|| {
 947                let default_bounds = display
 948                    .as_ref()
 949                    .map(|d| d.default_bounds())
 950                    .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE));
 951                (default_bounds.origin, default_bounds.size)
 952            });
 953
 954        let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
 955        let proposed_origin = base_origin + cascade_offset;
 956        let proposed_bounds = Bounds::new(proposed_origin, base_size);
 957
 958        let display_right = display_bounds.origin.x + display_bounds.size.width;
 959        let display_bottom = display_bounds.origin.y + display_bounds.size.height;
 960        let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
 961        let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
 962
 963        let fits_horizontally = window_right <= display_right;
 964        let fits_vertically = window_bottom <= display_bottom;
 965
 966        let final_origin = match (fits_horizontally, fits_vertically) {
 967            (true, true) => proposed_origin,
 968            (false, true) => point(display_bounds.origin.x, base_origin.y),
 969            (true, false) => point(base_origin.x, display_bounds.origin.y),
 970            (false, false) => display_bounds.origin,
 971        };
 972
 973        Bounds::new(final_origin, base_size)
 974    }
 975
 976    #[cfg(not(target_os = "macos"))]
 977    {
 978        const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
 979
 980        // TODO, BUG: if you open a window with the currently active window
 981        // on the stack, this will erroneously select the 'unwrap_or_else'
 982        // code path
 983        cx.active_window()
 984            .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
 985            .map(|mut bounds| {
 986                bounds.origin += DEFAULT_WINDOW_OFFSET;
 987                bounds
 988            })
 989            .unwrap_or_else(|| {
 990                let display = display_id
 991                    .map(|id| cx.find_display(id))
 992                    .unwrap_or_else(|| cx.primary_display());
 993
 994                display
 995                    .as_ref()
 996                    .map(|display| display.default_bounds())
 997                    .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
 998            })
 999    }
1000}
1001
1002impl Window {
1003    pub(crate) fn new(
1004        handle: AnyWindowHandle,
1005        options: WindowOptions,
1006        cx: &mut App,
1007    ) -> Result<Self> {
1008        let WindowOptions {
1009            window_bounds,
1010            titlebar,
1011            focus,
1012            show,
1013            kind,
1014            is_movable,
1015            is_resizable,
1016            is_minimizable,
1017            display_id,
1018            window_background,
1019            app_id,
1020            window_min_size,
1021            window_decorations,
1022            #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1023            tabbing_identifier,
1024        } = options;
1025
1026        let bounds = window_bounds
1027            .map(|bounds| bounds.get_bounds())
1028            .unwrap_or_else(|| default_bounds(display_id, cx));
1029        let mut platform_window = cx.platform.open_window(
1030            handle,
1031            WindowParams {
1032                bounds,
1033                titlebar,
1034                kind,
1035                is_movable,
1036                is_resizable,
1037                is_minimizable,
1038                focus,
1039                show,
1040                display_id,
1041                window_min_size,
1042                #[cfg(target_os = "macos")]
1043                tabbing_identifier,
1044            },
1045        )?;
1046
1047        let tab_bar_visible = platform_window.tab_bar_visible();
1048        SystemWindowTabController::init_visible(cx, tab_bar_visible);
1049        if let Some(tabs) = platform_window.tabbed_windows() {
1050            SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1051        }
1052
1053        let display_id = platform_window.display().map(|display| display.id());
1054        let sprite_atlas = platform_window.sprite_atlas();
1055        let mouse_position = platform_window.mouse_position();
1056        let modifiers = platform_window.modifiers();
1057        let capslock = platform_window.capslock();
1058        let content_size = platform_window.content_size();
1059        let scale_factor = platform_window.scale_factor();
1060        let appearance = platform_window.appearance();
1061        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1062        let invalidator = WindowInvalidator::new();
1063        let active = Rc::new(Cell::new(platform_window.is_active()));
1064        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1065        let needs_present = Rc::new(Cell::new(false));
1066        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1067        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1068
1069        platform_window
1070            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1071        platform_window.set_background_appearance(window_background);
1072
1073        if let Some(ref window_open_state) = window_bounds {
1074            match window_open_state {
1075                WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1076                WindowBounds::Maximized(_) => platform_window.zoom(),
1077                WindowBounds::Windowed(_) => {}
1078            }
1079        }
1080
1081        platform_window.on_close(Box::new({
1082            let window_id = handle.window_id();
1083            let mut cx = cx.to_async();
1084            move || {
1085                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1086                let _ = cx.update(|cx| {
1087                    SystemWindowTabController::remove_tab(cx, window_id);
1088                });
1089            }
1090        }));
1091        platform_window.on_request_frame(Box::new({
1092            let mut cx = cx.to_async();
1093            let invalidator = invalidator.clone();
1094            let active = active.clone();
1095            let needs_present = needs_present.clone();
1096            let next_frame_callbacks = next_frame_callbacks.clone();
1097            let last_input_timestamp = last_input_timestamp.clone();
1098            move |request_frame_options| {
1099                let next_frame_callbacks = next_frame_callbacks.take();
1100                if !next_frame_callbacks.is_empty() {
1101                    handle
1102                        .update(&mut cx, |_, window, cx| {
1103                            for callback in next_frame_callbacks {
1104                                callback(window, cx);
1105                            }
1106                        })
1107                        .log_err();
1108                }
1109
1110                // Keep presenting the current scene for 1 extra second since the
1111                // last input to prevent the display from underclocking the refresh rate.
1112                let needs_present = request_frame_options.require_presentation
1113                    || needs_present.get()
1114                    || (active.get()
1115                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1116
1117                if invalidator.is_dirty() || request_frame_options.force_render {
1118                    measure("frame duration", || {
1119                        handle
1120                            .update(&mut cx, |_, window, cx| {
1121                                let arena_clear_needed = window.draw(cx);
1122                                window.present();
1123                                // drop the arena elements after present to reduce latency
1124                                arena_clear_needed.clear();
1125                            })
1126                            .log_err();
1127                    })
1128                } else if needs_present {
1129                    handle
1130                        .update(&mut cx, |_, window, _| window.present())
1131                        .log_err();
1132                }
1133
1134                handle
1135                    .update(&mut cx, |_, window, _| {
1136                        window.complete_frame();
1137                    })
1138                    .log_err();
1139            }
1140        }));
1141        platform_window.on_resize(Box::new({
1142            let mut cx = cx.to_async();
1143            move |_, _| {
1144                handle
1145                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1146                    .log_err();
1147            }
1148        }));
1149        platform_window.on_moved(Box::new({
1150            let mut cx = cx.to_async();
1151            move || {
1152                handle
1153                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1154                    .log_err();
1155            }
1156        }));
1157        platform_window.on_appearance_changed(Box::new({
1158            let mut cx = cx.to_async();
1159            move || {
1160                handle
1161                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1162                    .log_err();
1163            }
1164        }));
1165        platform_window.on_active_status_change(Box::new({
1166            let mut cx = cx.to_async();
1167            move |active| {
1168                handle
1169                    .update(&mut cx, |_, window, cx| {
1170                        window.active.set(active);
1171                        window.modifiers = window.platform_window.modifiers();
1172                        window.capslock = window.platform_window.capslock();
1173                        window
1174                            .activation_observers
1175                            .clone()
1176                            .retain(&(), |callback| callback(window, cx));
1177
1178                        window.bounds_changed(cx);
1179                        window.refresh();
1180
1181                        SystemWindowTabController::update_last_active(cx, window.handle.id);
1182                    })
1183                    .log_err();
1184            }
1185        }));
1186        platform_window.on_hover_status_change(Box::new({
1187            let mut cx = cx.to_async();
1188            move |active| {
1189                handle
1190                    .update(&mut cx, |_, window, _| {
1191                        window.hovered.set(active);
1192                        window.refresh();
1193                    })
1194                    .log_err();
1195            }
1196        }));
1197        platform_window.on_input({
1198            let mut cx = cx.to_async();
1199            Box::new(move |event| {
1200                handle
1201                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1202                    .log_err()
1203                    .unwrap_or(DispatchEventResult::default())
1204            })
1205        });
1206        platform_window.on_hit_test_window_control({
1207            let mut cx = cx.to_async();
1208            Box::new(move || {
1209                handle
1210                    .update(&mut cx, |_, window, _cx| {
1211                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1212                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1213                                return Some(*area);
1214                            }
1215                        }
1216                        None
1217                    })
1218                    .log_err()
1219                    .unwrap_or(None)
1220            })
1221        });
1222        platform_window.on_move_tab_to_new_window({
1223            let mut cx = cx.to_async();
1224            Box::new(move || {
1225                handle
1226                    .update(&mut cx, |_, _window, cx| {
1227                        SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1228                    })
1229                    .log_err();
1230            })
1231        });
1232        platform_window.on_merge_all_windows({
1233            let mut cx = cx.to_async();
1234            Box::new(move || {
1235                handle
1236                    .update(&mut cx, |_, _window, cx| {
1237                        SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1238                    })
1239                    .log_err();
1240            })
1241        });
1242        platform_window.on_select_next_tab({
1243            let mut cx = cx.to_async();
1244            Box::new(move || {
1245                handle
1246                    .update(&mut cx, |_, _window, cx| {
1247                        SystemWindowTabController::select_next_tab(cx, handle.window_id());
1248                    })
1249                    .log_err();
1250            })
1251        });
1252        platform_window.on_select_previous_tab({
1253            let mut cx = cx.to_async();
1254            Box::new(move || {
1255                handle
1256                    .update(&mut cx, |_, _window, cx| {
1257                        SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1258                    })
1259                    .log_err();
1260            })
1261        });
1262        platform_window.on_toggle_tab_bar({
1263            let mut cx = cx.to_async();
1264            Box::new(move || {
1265                handle
1266                    .update(&mut cx, |_, window, cx| {
1267                        let tab_bar_visible = window.platform_window.tab_bar_visible();
1268                        SystemWindowTabController::set_visible(cx, tab_bar_visible);
1269                    })
1270                    .log_err();
1271            })
1272        });
1273
1274        if let Some(app_id) = app_id {
1275            platform_window.set_app_id(&app_id);
1276        }
1277
1278        platform_window.map_window().unwrap();
1279
1280        Ok(Window {
1281            handle,
1282            invalidator,
1283            removed: false,
1284            platform_window,
1285            display_id,
1286            sprite_atlas,
1287            text_system,
1288            rem_size: px(16.),
1289            rem_size_override_stack: SmallVec::new(),
1290            viewport_size: content_size,
1291            layout_engine: Some(TaffyLayoutEngine::new()),
1292            root: None,
1293            element_id_stack: SmallVec::default(),
1294            text_style_stack: Vec::new(),
1295            rendered_entity_stack: Vec::new(),
1296            element_offset_stack: Vec::new(),
1297            content_mask_stack: Vec::new(),
1298            element_opacity: 1.0,
1299            requested_autoscroll: None,
1300            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1301            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1302            next_frame_callbacks,
1303            next_hitbox_id: HitboxId(0),
1304            next_tooltip_id: TooltipId::default(),
1305            tooltip_bounds: None,
1306            dirty_views: FxHashSet::default(),
1307            focus_listeners: SubscriberSet::new(),
1308            focus_lost_listeners: SubscriberSet::new(),
1309            default_prevented: true,
1310            mouse_position,
1311            mouse_hit_test: HitTest::default(),
1312            modifiers,
1313            capslock,
1314            scale_factor,
1315            bounds_observers: SubscriberSet::new(),
1316            appearance,
1317            appearance_observers: SubscriberSet::new(),
1318            active,
1319            hovered,
1320            needs_present,
1321            last_input_timestamp,
1322            last_input_modality: InputModality::Mouse,
1323            refreshing: false,
1324            activation_observers: SubscriberSet::new(),
1325            focus: None,
1326            focus_enabled: true,
1327            pending_input: None,
1328            pending_modifier: ModifierState::default(),
1329            pending_input_observers: SubscriberSet::new(),
1330            prompt: None,
1331            client_inset: None,
1332            image_cache_stack: Vec::new(),
1333            #[cfg(any(feature = "inspector", debug_assertions))]
1334            inspector: None,
1335        })
1336    }
1337
1338    pub(crate) fn new_focus_listener(
1339        &self,
1340        value: AnyWindowFocusListener,
1341    ) -> (Subscription, impl FnOnce() + use<>) {
1342        self.focus_listeners.insert((), value)
1343    }
1344}
1345
1346#[derive(Clone, Debug, Default, PartialEq, Eq)]
1347pub(crate) struct DispatchEventResult {
1348    pub propagate: bool,
1349    pub default_prevented: bool,
1350}
1351
1352/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1353/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1354/// to leave room to support more complex shapes in the future.
1355#[derive(Clone, Debug, Default, PartialEq, Eq)]
1356#[repr(C)]
1357pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1358    /// The bounds
1359    pub bounds: Bounds<P>,
1360}
1361
1362impl ContentMask<Pixels> {
1363    /// Scale the content mask's pixel units by the given scaling factor.
1364    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1365        ContentMask {
1366            bounds: self.bounds.scale(factor),
1367        }
1368    }
1369
1370    /// Intersect the content mask with the given content mask.
1371    pub fn intersect(&self, other: &Self) -> Self {
1372        let bounds = self.bounds.intersect(&other.bounds);
1373        ContentMask { bounds }
1374    }
1375}
1376
1377impl Window {
1378    fn mark_view_dirty(&mut self, view_id: EntityId) {
1379        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1380        // should already be dirty.
1381        for view_id in self
1382            .rendered_frame
1383            .dispatch_tree
1384            .view_path_reversed(view_id)
1385        {
1386            if !self.dirty_views.insert(view_id) {
1387                break;
1388            }
1389        }
1390    }
1391
1392    /// Registers a callback to be invoked when the window appearance changes.
1393    pub fn observe_window_appearance(
1394        &self,
1395        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1396    ) -> Subscription {
1397        let (subscription, activate) = self.appearance_observers.insert(
1398            (),
1399            Box::new(move |window, cx| {
1400                callback(window, cx);
1401                true
1402            }),
1403        );
1404        activate();
1405        subscription
1406    }
1407
1408    /// Replaces the root entity of the window with a new one.
1409    pub fn replace_root<E>(
1410        &mut self,
1411        cx: &mut App,
1412        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1413    ) -> Entity<E>
1414    where
1415        E: 'static + Render,
1416    {
1417        let view = cx.new(|cx| build_view(self, cx));
1418        self.root = Some(view.clone().into());
1419        self.refresh();
1420        view
1421    }
1422
1423    /// Returns the root entity of the window, if it has one.
1424    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1425    where
1426        E: 'static + Render,
1427    {
1428        self.root
1429            .as_ref()
1430            .map(|view| view.clone().downcast::<E>().ok())
1431    }
1432
1433    /// Obtain a handle to the window that belongs to this context.
1434    pub fn window_handle(&self) -> AnyWindowHandle {
1435        self.handle
1436    }
1437
1438    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1439    pub fn refresh(&mut self) {
1440        if self.invalidator.not_drawing() {
1441            self.refreshing = true;
1442            self.invalidator.set_dirty(true);
1443        }
1444    }
1445
1446    /// Close this window.
1447    pub fn remove_window(&mut self) {
1448        self.removed = true;
1449    }
1450
1451    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1452    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1453        self.focus
1454            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1455    }
1456
1457    /// Move focus to the element associated with the given [`FocusHandle`].
1458    pub fn focus(&mut self, handle: &FocusHandle) {
1459        if !self.focus_enabled || self.focus == Some(handle.id) {
1460            return;
1461        }
1462
1463        self.focus = Some(handle.id);
1464        self.clear_pending_keystrokes();
1465        self.refresh();
1466    }
1467
1468    /// Remove focus from all elements within this context's window.
1469    pub fn blur(&mut self) {
1470        if !self.focus_enabled {
1471            return;
1472        }
1473
1474        self.focus = None;
1475        self.refresh();
1476    }
1477
1478    /// Blur the window and don't allow anything in it to be focused again.
1479    pub fn disable_focus(&mut self) {
1480        self.blur();
1481        self.focus_enabled = false;
1482    }
1483
1484    /// Move focus to next tab stop.
1485    pub fn focus_next(&mut self) {
1486        if !self.focus_enabled {
1487            return;
1488        }
1489
1490        if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1491            self.focus(&handle)
1492        }
1493    }
1494
1495    /// Move focus to previous tab stop.
1496    pub fn focus_prev(&mut self) {
1497        if !self.focus_enabled {
1498            return;
1499        }
1500
1501        if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1502            self.focus(&handle)
1503        }
1504    }
1505
1506    /// Accessor for the text system.
1507    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1508        &self.text_system
1509    }
1510
1511    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1512    pub fn text_style(&self) -> TextStyle {
1513        let mut style = TextStyle::default();
1514        for refinement in &self.text_style_stack {
1515            style.refine(refinement);
1516        }
1517        style
1518    }
1519
1520    /// Check if the platform window is maximized
1521    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1522    pub fn is_maximized(&self) -> bool {
1523        self.platform_window.is_maximized()
1524    }
1525
1526    /// request a certain window decoration (Wayland)
1527    pub fn request_decorations(&self, decorations: WindowDecorations) {
1528        self.platform_window.request_decorations(decorations);
1529    }
1530
1531    /// Start a window resize operation (Wayland)
1532    pub fn start_window_resize(&self, edge: ResizeEdge) {
1533        self.platform_window.start_window_resize(edge);
1534    }
1535
1536    /// Return the `WindowBounds` to indicate that how a window should be opened
1537    /// after it has been closed
1538    pub fn window_bounds(&self) -> WindowBounds {
1539        self.platform_window.window_bounds()
1540    }
1541
1542    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1543    pub fn inner_window_bounds(&self) -> WindowBounds {
1544        self.platform_window.inner_window_bounds()
1545    }
1546
1547    /// Dispatch the given action on the currently focused element.
1548    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1549        let focus_id = self.focused(cx).map(|handle| handle.id);
1550
1551        let window = self.handle;
1552        cx.defer(move |cx| {
1553            window
1554                .update(cx, |_, window, cx| {
1555                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1556                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1557                })
1558                .log_err();
1559        })
1560    }
1561
1562    pub(crate) fn dispatch_keystroke_observers(
1563        &mut self,
1564        event: &dyn Any,
1565        action: Option<Box<dyn Action>>,
1566        context_stack: Vec<KeyContext>,
1567        cx: &mut App,
1568    ) {
1569        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1570            return;
1571        };
1572
1573        cx.keystroke_observers.clone().retain(&(), move |callback| {
1574            (callback)(
1575                &KeystrokeEvent {
1576                    keystroke: key_down_event.keystroke.clone(),
1577                    action: action.as_ref().map(|action| action.boxed_clone()),
1578                    context_stack: context_stack.clone(),
1579                },
1580                self,
1581                cx,
1582            )
1583        });
1584    }
1585
1586    pub(crate) fn dispatch_keystroke_interceptors(
1587        &mut self,
1588        event: &dyn Any,
1589        context_stack: Vec<KeyContext>,
1590        cx: &mut App,
1591    ) {
1592        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1593            return;
1594        };
1595
1596        cx.keystroke_interceptors
1597            .clone()
1598            .retain(&(), move |callback| {
1599                (callback)(
1600                    &KeystrokeEvent {
1601                        keystroke: key_down_event.keystroke.clone(),
1602                        action: None,
1603                        context_stack: context_stack.clone(),
1604                    },
1605                    self,
1606                    cx,
1607                )
1608            });
1609    }
1610
1611    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1612    /// that are currently on the stack to be returned to the app.
1613    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1614        let handle = self.handle;
1615        cx.defer(move |cx| {
1616            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1617        });
1618    }
1619
1620    /// Subscribe to events emitted by a entity.
1621    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1622    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1623    pub fn observe<T: 'static>(
1624        &mut self,
1625        observed: &Entity<T>,
1626        cx: &mut App,
1627        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1628    ) -> Subscription {
1629        let entity_id = observed.entity_id();
1630        let observed = observed.downgrade();
1631        let window_handle = self.handle;
1632        cx.new_observer(
1633            entity_id,
1634            Box::new(move |cx| {
1635                window_handle
1636                    .update(cx, |_, window, cx| {
1637                        if let Some(handle) = observed.upgrade() {
1638                            on_notify(handle, window, cx);
1639                            true
1640                        } else {
1641                            false
1642                        }
1643                    })
1644                    .unwrap_or(false)
1645            }),
1646        )
1647    }
1648
1649    /// Subscribe to events emitted by a entity.
1650    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1651    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1652    pub fn subscribe<Emitter, Evt>(
1653        &mut self,
1654        entity: &Entity<Emitter>,
1655        cx: &mut App,
1656        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1657    ) -> Subscription
1658    where
1659        Emitter: EventEmitter<Evt>,
1660        Evt: 'static,
1661    {
1662        let entity_id = entity.entity_id();
1663        let handle = entity.downgrade();
1664        let window_handle = self.handle;
1665        cx.new_subscription(
1666            entity_id,
1667            (
1668                TypeId::of::<Evt>(),
1669                Box::new(move |event, cx| {
1670                    window_handle
1671                        .update(cx, |_, window, cx| {
1672                            if let Some(entity) = handle.upgrade() {
1673                                let event = event.downcast_ref().expect("invalid event type");
1674                                on_event(entity, event, window, cx);
1675                                true
1676                            } else {
1677                                false
1678                            }
1679                        })
1680                        .unwrap_or(false)
1681                }),
1682            ),
1683        )
1684    }
1685
1686    /// Register a callback to be invoked when the given `Entity` is released.
1687    pub fn observe_release<T>(
1688        &self,
1689        entity: &Entity<T>,
1690        cx: &mut App,
1691        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1692    ) -> Subscription
1693    where
1694        T: 'static,
1695    {
1696        let entity_id = entity.entity_id();
1697        let window_handle = self.handle;
1698        let (subscription, activate) = cx.release_listeners.insert(
1699            entity_id,
1700            Box::new(move |entity, cx| {
1701                let entity = entity.downcast_mut().expect("invalid entity type");
1702                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1703            }),
1704        );
1705        activate();
1706        subscription
1707    }
1708
1709    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1710    /// await points in async code.
1711    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1712        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1713    }
1714
1715    /// Schedule the given closure to be run directly after the current frame is rendered.
1716    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1717        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1718    }
1719
1720    /// Schedule a frame to be drawn on the next animation frame.
1721    ///
1722    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1723    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1724    ///
1725    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1726    pub fn request_animation_frame(&self) {
1727        let entity = self.current_view();
1728        self.on_next_frame(move |_, cx| cx.notify(entity));
1729    }
1730
1731    /// Spawn the future returned by the given closure on the application thread pool.
1732    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1733    /// use within your future.
1734    #[track_caller]
1735    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1736    where
1737        R: 'static,
1738        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1739    {
1740        let handle = self.handle;
1741        cx.spawn(async move |app| {
1742            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1743            f(&mut async_window_cx).await
1744        })
1745    }
1746
1747    fn bounds_changed(&mut self, cx: &mut App) {
1748        self.scale_factor = self.platform_window.scale_factor();
1749        self.viewport_size = self.platform_window.content_size();
1750        self.display_id = self.platform_window.display().map(|display| display.id());
1751
1752        self.refresh();
1753
1754        self.bounds_observers
1755            .clone()
1756            .retain(&(), |callback| callback(self, cx));
1757    }
1758
1759    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1760    pub fn bounds(&self) -> Bounds<Pixels> {
1761        self.platform_window.bounds()
1762    }
1763
1764    /// Set the content size of the window.
1765    pub fn resize(&mut self, size: Size<Pixels>) {
1766        self.platform_window.resize(size);
1767    }
1768
1769    /// Returns whether or not the window is currently fullscreen
1770    pub fn is_fullscreen(&self) -> bool {
1771        self.platform_window.is_fullscreen()
1772    }
1773
1774    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1775        self.appearance = self.platform_window.appearance();
1776
1777        self.appearance_observers
1778            .clone()
1779            .retain(&(), |callback| callback(self, cx));
1780    }
1781
1782    /// Returns the appearance of the current window.
1783    pub fn appearance(&self) -> WindowAppearance {
1784        self.appearance
1785    }
1786
1787    /// Returns the size of the drawable area within the window.
1788    pub fn viewport_size(&self) -> Size<Pixels> {
1789        self.viewport_size
1790    }
1791
1792    /// Returns whether this window is focused by the operating system (receiving key events).
1793    pub fn is_window_active(&self) -> bool {
1794        self.active.get()
1795    }
1796
1797    /// Returns whether this window is considered to be the window
1798    /// that currently owns the mouse cursor.
1799    /// On mac, this is equivalent to `is_window_active`.
1800    pub fn is_window_hovered(&self) -> bool {
1801        if cfg!(any(
1802            target_os = "windows",
1803            target_os = "linux",
1804            target_os = "freebsd"
1805        )) {
1806            self.hovered.get()
1807        } else {
1808            self.is_window_active()
1809        }
1810    }
1811
1812    /// Toggle zoom on the window.
1813    pub fn zoom_window(&self) {
1814        self.platform_window.zoom();
1815    }
1816
1817    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1818    pub fn show_window_menu(&self, position: Point<Pixels>) {
1819        self.platform_window.show_window_menu(position)
1820    }
1821
1822    /// Tells the compositor to take control of window movement (Wayland and X11)
1823    ///
1824    /// Events may not be received during a move operation.
1825    pub fn start_window_move(&self) {
1826        self.platform_window.start_window_move()
1827    }
1828
1829    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1830    pub fn set_client_inset(&mut self, inset: Pixels) {
1831        self.client_inset = Some(inset);
1832        self.platform_window.set_client_inset(inset);
1833    }
1834
1835    /// Returns the client_inset value by [`Self::set_client_inset`].
1836    pub fn client_inset(&self) -> Option<Pixels> {
1837        self.client_inset
1838    }
1839
1840    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1841    pub fn window_decorations(&self) -> Decorations {
1842        self.platform_window.window_decorations()
1843    }
1844
1845    /// Returns which window controls are currently visible (Wayland)
1846    pub fn window_controls(&self) -> WindowControls {
1847        self.platform_window.window_controls()
1848    }
1849
1850    /// Updates the window's title at the platform level.
1851    pub fn set_window_title(&mut self, title: &str) {
1852        self.platform_window.set_title(title);
1853    }
1854
1855    /// Sets the application identifier.
1856    pub fn set_app_id(&mut self, app_id: &str) {
1857        self.platform_window.set_app_id(app_id);
1858    }
1859
1860    /// Sets the window background appearance.
1861    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1862        self.platform_window
1863            .set_background_appearance(background_appearance);
1864    }
1865
1866    /// Mark the window as dirty at the platform level.
1867    pub fn set_window_edited(&mut self, edited: bool) {
1868        self.platform_window.set_edited(edited);
1869    }
1870
1871    /// Determine the display on which the window is visible.
1872    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1873        cx.platform
1874            .displays()
1875            .into_iter()
1876            .find(|display| Some(display.id()) == self.display_id)
1877    }
1878
1879    /// Show the platform character palette.
1880    pub fn show_character_palette(&self) {
1881        self.platform_window.show_character_palette();
1882    }
1883
1884    /// The scale factor of the display associated with the window. For example, it could
1885    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1886    /// be rendered as two pixels on screen.
1887    pub fn scale_factor(&self) -> f32 {
1888        self.scale_factor
1889    }
1890
1891    /// The size of an em for the base font of the application. Adjusting this value allows the
1892    /// UI to scale, just like zooming a web page.
1893    pub fn rem_size(&self) -> Pixels {
1894        self.rem_size_override_stack
1895            .last()
1896            .copied()
1897            .unwrap_or(self.rem_size)
1898    }
1899
1900    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1901    /// UI to scale, just like zooming a web page.
1902    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1903        self.rem_size = rem_size.into();
1904    }
1905
1906    /// Acquire a globally unique identifier for the given ElementId.
1907    /// Only valid for the duration of the provided closure.
1908    pub fn with_global_id<R>(
1909        &mut self,
1910        element_id: ElementId,
1911        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1912    ) -> R {
1913        self.element_id_stack.push(element_id);
1914        let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1915
1916        let result = f(&global_id, self);
1917        self.element_id_stack.pop();
1918        result
1919    }
1920
1921    /// Executes the provided function with the specified rem size.
1922    ///
1923    /// This method must only be called as part of element drawing.
1924    // This function is called in a highly recursive manner in editor
1925    // prepainting, make sure its inlined to reduce the stack burden
1926    #[inline]
1927    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1928    where
1929        F: FnOnce(&mut Self) -> R,
1930    {
1931        self.invalidator.debug_assert_paint_or_prepaint();
1932
1933        if let Some(rem_size) = rem_size {
1934            self.rem_size_override_stack.push(rem_size.into());
1935            let result = f(self);
1936            self.rem_size_override_stack.pop();
1937            result
1938        } else {
1939            f(self)
1940        }
1941    }
1942
1943    /// The line height associated with the current text style.
1944    pub fn line_height(&self) -> Pixels {
1945        self.text_style().line_height_in_pixels(self.rem_size())
1946    }
1947
1948    /// Call to prevent the default action of an event. Currently only used to prevent
1949    /// parent elements from becoming focused on mouse down.
1950    pub fn prevent_default(&mut self) {
1951        self.default_prevented = true;
1952    }
1953
1954    /// Obtain whether default has been prevented for the event currently being dispatched.
1955    pub fn default_prevented(&self) -> bool {
1956        self.default_prevented
1957    }
1958
1959    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1960    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1961        let node_id =
1962            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1963        self.rendered_frame
1964            .dispatch_tree
1965            .is_action_available(action, node_id)
1966    }
1967
1968    /// The position of the mouse relative to the window.
1969    pub fn mouse_position(&self) -> Point<Pixels> {
1970        self.mouse_position
1971    }
1972
1973    /// The current state of the keyboard's modifiers
1974    pub fn modifiers(&self) -> Modifiers {
1975        self.modifiers
1976    }
1977
1978    /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1979    /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1980    pub fn last_input_was_keyboard(&self) -> bool {
1981        self.last_input_modality == InputModality::Keyboard
1982    }
1983
1984    /// The current state of the keyboard's capslock
1985    pub fn capslock(&self) -> Capslock {
1986        self.capslock
1987    }
1988
1989    fn complete_frame(&self) {
1990        self.platform_window.completed_frame();
1991    }
1992
1993    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1994    /// the contents of the new [`Scene`], use [`Self::present`].
1995    #[profiling::function]
1996    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1997        self.invalidate_entities();
1998        cx.entities.clear_accessed();
1999        debug_assert!(self.rendered_entity_stack.is_empty());
2000        self.invalidator.set_dirty(false);
2001        self.requested_autoscroll = None;
2002
2003        // Restore the previously-used input handler.
2004        if let Some(input_handler) = self.platform_window.take_input_handler() {
2005            self.rendered_frame.input_handlers.push(Some(input_handler));
2006        }
2007        self.draw_roots(cx);
2008        self.dirty_views.clear();
2009        self.next_frame.window_active = self.active.get();
2010
2011        // Register requested input handler with the platform window.
2012        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2013            self.platform_window
2014                .set_input_handler(input_handler.unwrap());
2015        }
2016
2017        self.layout_engine.as_mut().unwrap().clear();
2018        self.text_system().finish_frame();
2019        self.next_frame.finish(&mut self.rendered_frame);
2020
2021        self.invalidator.set_phase(DrawPhase::Focus);
2022        let previous_focus_path = self.rendered_frame.focus_path();
2023        let previous_window_active = self.rendered_frame.window_active;
2024        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2025        self.next_frame.clear();
2026        let current_focus_path = self.rendered_frame.focus_path();
2027        let current_window_active = self.rendered_frame.window_active;
2028
2029        if previous_focus_path != current_focus_path
2030            || previous_window_active != current_window_active
2031        {
2032            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2033                self.focus_lost_listeners
2034                    .clone()
2035                    .retain(&(), |listener| listener(self, cx));
2036            }
2037
2038            let event = WindowFocusEvent {
2039                previous_focus_path: if previous_window_active {
2040                    previous_focus_path
2041                } else {
2042                    Default::default()
2043                },
2044                current_focus_path: if current_window_active {
2045                    current_focus_path
2046                } else {
2047                    Default::default()
2048                },
2049            };
2050            self.focus_listeners
2051                .clone()
2052                .retain(&(), |listener| listener(&event, self, cx));
2053        }
2054
2055        debug_assert!(self.rendered_entity_stack.is_empty());
2056        self.record_entities_accessed(cx);
2057        self.reset_cursor_style(cx);
2058        self.refreshing = false;
2059        self.invalidator.set_phase(DrawPhase::None);
2060        self.needs_present.set(true);
2061
2062        ArenaClearNeeded
2063    }
2064
2065    fn record_entities_accessed(&mut self, cx: &mut App) {
2066        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2067        let mut entities = mem::take(entities_ref.deref_mut());
2068        drop(entities_ref);
2069        let handle = self.handle;
2070        cx.record_entities_accessed(
2071            handle,
2072            // Try moving window invalidator into the Window
2073            self.invalidator.clone(),
2074            &entities,
2075        );
2076        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2077        mem::swap(&mut entities, entities_ref.deref_mut());
2078    }
2079
2080    fn invalidate_entities(&mut self) {
2081        let mut views = self.invalidator.take_views();
2082        for entity in views.drain() {
2083            self.mark_view_dirty(entity);
2084        }
2085        self.invalidator.replace_views(views);
2086    }
2087
2088    #[profiling::function]
2089    fn present(&self) {
2090        self.platform_window.draw(&self.rendered_frame.scene);
2091        self.needs_present.set(false);
2092        profiling::finish_frame!();
2093    }
2094
2095    fn draw_roots(&mut self, cx: &mut App) {
2096        self.invalidator.set_phase(DrawPhase::Prepaint);
2097        self.tooltip_bounds.take();
2098
2099        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2100        let root_size = {
2101            #[cfg(any(feature = "inspector", debug_assertions))]
2102            {
2103                if self.inspector.is_some() {
2104                    let mut size = self.viewport_size;
2105                    size.width = (size.width - _inspector_width).max(px(0.0));
2106                    size
2107                } else {
2108                    self.viewport_size
2109                }
2110            }
2111            #[cfg(not(any(feature = "inspector", debug_assertions)))]
2112            {
2113                self.viewport_size
2114            }
2115        };
2116
2117        // Layout all root elements.
2118        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2119        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2120
2121        #[cfg(any(feature = "inspector", debug_assertions))]
2122        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2123
2124        let mut sorted_deferred_draws =
2125            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2126        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2127        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2128
2129        let mut prompt_element = None;
2130        let mut active_drag_element = None;
2131        let mut tooltip_element = None;
2132        if let Some(prompt) = self.prompt.take() {
2133            let mut element = prompt.view.any_view().into_any();
2134            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2135            prompt_element = Some(element);
2136            self.prompt = Some(prompt);
2137        } else if let Some(active_drag) = cx.active_drag.take() {
2138            let mut element = active_drag.view.clone().into_any();
2139            let offset = self.mouse_position() - active_drag.cursor_offset;
2140            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2141            active_drag_element = Some(element);
2142            cx.active_drag = Some(active_drag);
2143        } else {
2144            tooltip_element = self.prepaint_tooltip(cx);
2145        }
2146
2147        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2148
2149        // Now actually paint the elements.
2150        self.invalidator.set_phase(DrawPhase::Paint);
2151        root_element.paint(self, cx);
2152
2153        #[cfg(any(feature = "inspector", debug_assertions))]
2154        self.paint_inspector(inspector_element, cx);
2155
2156        self.paint_deferred_draws(&sorted_deferred_draws, cx);
2157
2158        if let Some(mut prompt_element) = prompt_element {
2159            prompt_element.paint(self, cx);
2160        } else if let Some(mut drag_element) = active_drag_element {
2161            drag_element.paint(self, cx);
2162        } else if let Some(mut tooltip_element) = tooltip_element {
2163            tooltip_element.paint(self, cx);
2164        }
2165
2166        #[cfg(any(feature = "inspector", debug_assertions))]
2167        self.paint_inspector_hitbox(cx);
2168    }
2169
2170    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2171        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2172        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2173            let Some(Some(tooltip_request)) = self
2174                .next_frame
2175                .tooltip_requests
2176                .get(tooltip_request_index)
2177                .cloned()
2178            else {
2179                log::error!("Unexpectedly absent TooltipRequest");
2180                continue;
2181            };
2182            let mut element = tooltip_request.tooltip.view.clone().into_any();
2183            let mouse_position = tooltip_request.tooltip.mouse_position;
2184            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2185
2186            let mut tooltip_bounds =
2187                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2188            let window_bounds = Bounds {
2189                origin: Point::default(),
2190                size: self.viewport_size(),
2191            };
2192
2193            if tooltip_bounds.right() > window_bounds.right() {
2194                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2195                if new_x >= Pixels::ZERO {
2196                    tooltip_bounds.origin.x = new_x;
2197                } else {
2198                    tooltip_bounds.origin.x = cmp::max(
2199                        Pixels::ZERO,
2200                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2201                    );
2202                }
2203            }
2204
2205            if tooltip_bounds.bottom() > window_bounds.bottom() {
2206                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2207                if new_y >= Pixels::ZERO {
2208                    tooltip_bounds.origin.y = new_y;
2209                } else {
2210                    tooltip_bounds.origin.y = cmp::max(
2211                        Pixels::ZERO,
2212                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2213                    );
2214                }
2215            }
2216
2217            // It's possible for an element to have an active tooltip while not being painted (e.g.
2218            // via the `visible_on_hover` method). Since mouse listeners are not active in this
2219            // case, instead update the tooltip's visibility here.
2220            let is_visible =
2221                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2222            if !is_visible {
2223                continue;
2224            }
2225
2226            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2227                element.prepaint(window, cx)
2228            });
2229
2230            self.tooltip_bounds = Some(TooltipBounds {
2231                id: tooltip_request.id,
2232                bounds: tooltip_bounds,
2233            });
2234            return Some(element);
2235        }
2236        None
2237    }
2238
2239    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2240        assert_eq!(self.element_id_stack.len(), 0);
2241
2242        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2243        for deferred_draw_ix in deferred_draw_indices {
2244            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2245            self.element_id_stack
2246                .clone_from(&deferred_draw.element_id_stack);
2247            self.text_style_stack
2248                .clone_from(&deferred_draw.text_style_stack);
2249            self.next_frame
2250                .dispatch_tree
2251                .set_active_node(deferred_draw.parent_node);
2252
2253            let prepaint_start = self.prepaint_index();
2254            if let Some(element) = deferred_draw.element.as_mut() {
2255                self.with_rendered_view(deferred_draw.current_view, |window| {
2256                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2257                        element.prepaint(window, cx)
2258                    });
2259                })
2260            } else {
2261                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2262            }
2263            let prepaint_end = self.prepaint_index();
2264            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2265        }
2266        assert_eq!(
2267            self.next_frame.deferred_draws.len(),
2268            0,
2269            "cannot call defer_draw during deferred drawing"
2270        );
2271        self.next_frame.deferred_draws = deferred_draws;
2272        self.element_id_stack.clear();
2273        self.text_style_stack.clear();
2274    }
2275
2276    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2277        assert_eq!(self.element_id_stack.len(), 0);
2278
2279        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2280        for deferred_draw_ix in deferred_draw_indices {
2281            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2282            self.element_id_stack
2283                .clone_from(&deferred_draw.element_id_stack);
2284            self.next_frame
2285                .dispatch_tree
2286                .set_active_node(deferred_draw.parent_node);
2287
2288            let paint_start = self.paint_index();
2289            if let Some(element) = deferred_draw.element.as_mut() {
2290                self.with_rendered_view(deferred_draw.current_view, |window| {
2291                    element.paint(window, cx);
2292                })
2293            } else {
2294                self.reuse_paint(deferred_draw.paint_range.clone());
2295            }
2296            let paint_end = self.paint_index();
2297            deferred_draw.paint_range = paint_start..paint_end;
2298        }
2299        self.next_frame.deferred_draws = deferred_draws;
2300        self.element_id_stack.clear();
2301    }
2302
2303    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2304        PrepaintStateIndex {
2305            hitboxes_index: self.next_frame.hitboxes.len(),
2306            tooltips_index: self.next_frame.tooltip_requests.len(),
2307            deferred_draws_index: self.next_frame.deferred_draws.len(),
2308            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2309            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2310            line_layout_index: self.text_system.layout_index(),
2311        }
2312    }
2313
2314    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2315        self.next_frame.hitboxes.extend(
2316            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2317                .iter()
2318                .cloned(),
2319        );
2320        self.next_frame.tooltip_requests.extend(
2321            self.rendered_frame.tooltip_requests
2322                [range.start.tooltips_index..range.end.tooltips_index]
2323                .iter_mut()
2324                .map(|request| request.take()),
2325        );
2326        self.next_frame.accessed_element_states.extend(
2327            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2328                ..range.end.accessed_element_states_index]
2329                .iter()
2330                .map(|(id, type_id)| (id.clone(), *type_id)),
2331        );
2332        self.text_system
2333            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2334
2335        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2336            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2337            &mut self.rendered_frame.dispatch_tree,
2338            self.focus,
2339        );
2340
2341        if reused_subtree.contains_focus() {
2342            self.next_frame.focus = self.focus;
2343        }
2344
2345        self.next_frame.deferred_draws.extend(
2346            self.rendered_frame.deferred_draws
2347                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2348                .iter()
2349                .map(|deferred_draw| DeferredDraw {
2350                    current_view: deferred_draw.current_view,
2351                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2352                    element_id_stack: deferred_draw.element_id_stack.clone(),
2353                    text_style_stack: deferred_draw.text_style_stack.clone(),
2354                    priority: deferred_draw.priority,
2355                    element: None,
2356                    absolute_offset: deferred_draw.absolute_offset,
2357                    prepaint_range: deferred_draw.prepaint_range.clone(),
2358                    paint_range: deferred_draw.paint_range.clone(),
2359                }),
2360        );
2361    }
2362
2363    pub(crate) fn paint_index(&self) -> PaintIndex {
2364        PaintIndex {
2365            scene_index: self.next_frame.scene.len(),
2366            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2367            input_handlers_index: self.next_frame.input_handlers.len(),
2368            cursor_styles_index: self.next_frame.cursor_styles.len(),
2369            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2370            tab_handle_index: self.next_frame.tab_stops.paint_index(),
2371            line_layout_index: self.text_system.layout_index(),
2372        }
2373    }
2374
2375    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2376        self.next_frame.cursor_styles.extend(
2377            self.rendered_frame.cursor_styles
2378                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2379                .iter()
2380                .cloned(),
2381        );
2382        self.next_frame.input_handlers.extend(
2383            self.rendered_frame.input_handlers
2384                [range.start.input_handlers_index..range.end.input_handlers_index]
2385                .iter_mut()
2386                .map(|handler| handler.take()),
2387        );
2388        self.next_frame.mouse_listeners.extend(
2389            self.rendered_frame.mouse_listeners
2390                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2391                .iter_mut()
2392                .map(|listener| listener.take()),
2393        );
2394        self.next_frame.accessed_element_states.extend(
2395            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2396                ..range.end.accessed_element_states_index]
2397                .iter()
2398                .map(|(id, type_id)| (id.clone(), *type_id)),
2399        );
2400        self.next_frame.tab_stops.replay(
2401            &self.rendered_frame.tab_stops.insertion_history
2402                [range.start.tab_handle_index..range.end.tab_handle_index],
2403        );
2404
2405        self.text_system
2406            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2407        self.next_frame.scene.replay(
2408            range.start.scene_index..range.end.scene_index,
2409            &self.rendered_frame.scene,
2410        );
2411    }
2412
2413    /// Push a text style onto the stack, and call a function with that style active.
2414    /// Use [`Window::text_style`] to get the current, combined text style. This method
2415    /// should only be called as part of element drawing.
2416    // This function is called in a highly recursive manner in editor
2417    // prepainting, make sure its inlined to reduce the stack burden
2418    #[inline]
2419    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2420    where
2421        F: FnOnce(&mut Self) -> R,
2422    {
2423        self.invalidator.debug_assert_paint_or_prepaint();
2424        if let Some(style) = style {
2425            self.text_style_stack.push(style);
2426            let result = f(self);
2427            self.text_style_stack.pop();
2428            result
2429        } else {
2430            f(self)
2431        }
2432    }
2433
2434    /// Updates the cursor style at the platform level. This method should only be called
2435    /// during the prepaint phase of element drawing.
2436    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2437        self.invalidator.debug_assert_paint();
2438        self.next_frame.cursor_styles.push(CursorStyleRequest {
2439            hitbox_id: Some(hitbox.id),
2440            style,
2441        });
2442    }
2443
2444    /// Updates the cursor style for the entire window at the platform level. A cursor
2445    /// style using this method will have precedence over any cursor style set using
2446    /// `set_cursor_style`. This method should only be called during the prepaint
2447    /// phase of element drawing.
2448    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2449        self.invalidator.debug_assert_paint();
2450        self.next_frame.cursor_styles.push(CursorStyleRequest {
2451            hitbox_id: None,
2452            style,
2453        })
2454    }
2455
2456    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2457    /// during the paint phase of element drawing.
2458    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2459        self.invalidator.debug_assert_prepaint();
2460        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2461        self.next_frame
2462            .tooltip_requests
2463            .push(Some(TooltipRequest { id, tooltip }));
2464        id
2465    }
2466
2467    /// Invoke the given function with the given content mask after intersecting it
2468    /// with the current mask. This method should only be called during element drawing.
2469    // This function is called in a highly recursive manner in editor
2470    // prepainting, make sure its inlined to reduce the stack burden
2471    #[inline]
2472    pub fn with_content_mask<R>(
2473        &mut self,
2474        mask: Option<ContentMask<Pixels>>,
2475        f: impl FnOnce(&mut Self) -> R,
2476    ) -> R {
2477        self.invalidator.debug_assert_paint_or_prepaint();
2478        if let Some(mask) = mask {
2479            let mask = mask.intersect(&self.content_mask());
2480            self.content_mask_stack.push(mask);
2481            let result = f(self);
2482            self.content_mask_stack.pop();
2483            result
2484        } else {
2485            f(self)
2486        }
2487    }
2488
2489    /// Updates the global element offset relative to the current offset. This is used to implement
2490    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2491    pub fn with_element_offset<R>(
2492        &mut self,
2493        offset: Point<Pixels>,
2494        f: impl FnOnce(&mut Self) -> R,
2495    ) -> R {
2496        self.invalidator.debug_assert_prepaint();
2497
2498        if offset.is_zero() {
2499            return f(self);
2500        };
2501
2502        let abs_offset = self.element_offset() + offset;
2503        self.with_absolute_element_offset(abs_offset, f)
2504    }
2505
2506    /// Updates the global element offset based on the given offset. This is used to implement
2507    /// drag handles and other manual painting of elements. This method should only be called during
2508    /// the prepaint phase of element drawing.
2509    pub fn with_absolute_element_offset<R>(
2510        &mut self,
2511        offset: Point<Pixels>,
2512        f: impl FnOnce(&mut Self) -> R,
2513    ) -> R {
2514        self.invalidator.debug_assert_prepaint();
2515        self.element_offset_stack.push(offset);
2516        let result = f(self);
2517        self.element_offset_stack.pop();
2518        result
2519    }
2520
2521    pub(crate) fn with_element_opacity<R>(
2522        &mut self,
2523        opacity: Option<f32>,
2524        f: impl FnOnce(&mut Self) -> R,
2525    ) -> R {
2526        self.invalidator.debug_assert_paint_or_prepaint();
2527
2528        let Some(opacity) = opacity else {
2529            return f(self);
2530        };
2531
2532        let previous_opacity = self.element_opacity;
2533        self.element_opacity = previous_opacity * opacity;
2534        let result = f(self);
2535        self.element_opacity = previous_opacity;
2536        result
2537    }
2538
2539    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2540    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2541    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2542    /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2543    /// called during the prepaint phase of element drawing.
2544    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2545        self.invalidator.debug_assert_prepaint();
2546        let index = self.prepaint_index();
2547        let result = f(self);
2548        if result.is_err() {
2549            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2550            self.next_frame
2551                .tooltip_requests
2552                .truncate(index.tooltips_index);
2553            self.next_frame
2554                .deferred_draws
2555                .truncate(index.deferred_draws_index);
2556            self.next_frame
2557                .dispatch_tree
2558                .truncate(index.dispatch_tree_index);
2559            self.next_frame
2560                .accessed_element_states
2561                .truncate(index.accessed_element_states_index);
2562            self.text_system.truncate_layouts(index.line_layout_index);
2563        }
2564        result
2565    }
2566
2567    /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2568    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2569    /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2570    /// that supports this method being called on the elements it contains. This method should only be
2571    /// called during the prepaint phase of element drawing.
2572    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2573        self.invalidator.debug_assert_prepaint();
2574        self.requested_autoscroll = Some(bounds);
2575    }
2576
2577    /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2578    /// described in [`Self::request_autoscroll`].
2579    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2580        self.invalidator.debug_assert_prepaint();
2581        self.requested_autoscroll.take()
2582    }
2583
2584    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2585    /// Your view will be re-drawn once the asset has finished loading.
2586    ///
2587    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2588    /// time.
2589    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2590        let (task, is_first) = cx.fetch_asset::<A>(source);
2591        task.clone().now_or_never().or_else(|| {
2592            if is_first {
2593                let entity_id = self.current_view();
2594                self.spawn(cx, {
2595                    let task = task.clone();
2596                    async move |cx| {
2597                        task.await;
2598
2599                        cx.on_next_frame(move |_, cx| {
2600                            cx.notify(entity_id);
2601                        });
2602                    }
2603                })
2604                .detach();
2605            }
2606
2607            None
2608        })
2609    }
2610
2611    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2612    /// Your view will not be re-drawn once the asset has finished loading.
2613    ///
2614    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2615    /// time.
2616    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2617        let (task, _) = cx.fetch_asset::<A>(source);
2618        task.now_or_never()
2619    }
2620    /// Obtain the current element offset. This method should only be called during the
2621    /// prepaint phase of element drawing.
2622    pub fn element_offset(&self) -> Point<Pixels> {
2623        self.invalidator.debug_assert_prepaint();
2624        self.element_offset_stack
2625            .last()
2626            .copied()
2627            .unwrap_or_default()
2628    }
2629
2630    /// Obtain the current element opacity. This method should only be called during the
2631    /// prepaint phase of element drawing.
2632    #[inline]
2633    pub(crate) fn element_opacity(&self) -> f32 {
2634        self.invalidator.debug_assert_paint_or_prepaint();
2635        self.element_opacity
2636    }
2637
2638    /// Obtain the current content mask. This method should only be called during element drawing.
2639    pub fn content_mask(&self) -> ContentMask<Pixels> {
2640        self.invalidator.debug_assert_paint_or_prepaint();
2641        self.content_mask_stack
2642            .last()
2643            .cloned()
2644            .unwrap_or_else(|| ContentMask {
2645                bounds: Bounds {
2646                    origin: Point::default(),
2647                    size: self.viewport_size,
2648                },
2649            })
2650    }
2651
2652    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2653    /// This can be used within a custom element to distinguish multiple sets of child elements.
2654    pub fn with_element_namespace<R>(
2655        &mut self,
2656        element_id: impl Into<ElementId>,
2657        f: impl FnOnce(&mut Self) -> R,
2658    ) -> R {
2659        self.element_id_stack.push(element_id.into());
2660        let result = f(self);
2661        self.element_id_stack.pop();
2662        result
2663    }
2664
2665    /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2666    pub fn use_keyed_state<S: 'static>(
2667        &mut self,
2668        key: impl Into<ElementId>,
2669        cx: &mut App,
2670        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2671    ) -> Entity<S> {
2672        let current_view = self.current_view();
2673        self.with_global_id(key.into(), |global_id, window| {
2674            window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2675                if let Some(state) = state {
2676                    (state.clone(), state)
2677                } else {
2678                    let new_state = cx.new(|cx| init(window, cx));
2679                    cx.observe(&new_state, move |_, cx| {
2680                        cx.notify(current_view);
2681                    })
2682                    .detach();
2683                    (new_state.clone(), new_state)
2684                }
2685            })
2686        })
2687    }
2688
2689    /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2690    pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2691        self.with_global_id(id.into(), |_, window| f(window))
2692    }
2693
2694    /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2695    ///
2696    /// NOTE: This method uses the location of the caller to generate an ID for this state.
2697    ///       If this is not sufficient to identify your state (e.g. you're rendering a list item),
2698    ///       you can provide a custom ElementID using the `use_keyed_state` method.
2699    #[track_caller]
2700    pub fn use_state<S: 'static>(
2701        &mut self,
2702        cx: &mut App,
2703        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2704    ) -> Entity<S> {
2705        self.use_keyed_state(
2706            ElementId::CodeLocation(*core::panic::Location::caller()),
2707            cx,
2708            init,
2709        )
2710    }
2711
2712    /// Updates or initializes state for an element with the given id that lives across multiple
2713    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2714    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2715    /// when drawing the next frame. This method should only be called as part of element drawing.
2716    pub fn with_element_state<S, R>(
2717        &mut self,
2718        global_id: &GlobalElementId,
2719        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2720    ) -> R
2721    where
2722        S: 'static,
2723    {
2724        self.invalidator.debug_assert_paint_or_prepaint();
2725
2726        let key = (global_id.clone(), TypeId::of::<S>());
2727        self.next_frame.accessed_element_states.push(key.clone());
2728
2729        if let Some(any) = self
2730            .next_frame
2731            .element_states
2732            .remove(&key)
2733            .or_else(|| self.rendered_frame.element_states.remove(&key))
2734        {
2735            let ElementStateBox {
2736                inner,
2737                #[cfg(debug_assertions)]
2738                type_name,
2739            } = any;
2740            // Using the extra inner option to avoid needing to reallocate a new box.
2741            let mut state_box = inner
2742                .downcast::<Option<S>>()
2743                .map_err(|_| {
2744                    #[cfg(debug_assertions)]
2745                    {
2746                        anyhow::anyhow!(
2747                            "invalid element state type for id, requested {:?}, actual: {:?}",
2748                            std::any::type_name::<S>(),
2749                            type_name
2750                        )
2751                    }
2752
2753                    #[cfg(not(debug_assertions))]
2754                    {
2755                        anyhow::anyhow!(
2756                            "invalid element state type for id, requested {:?}",
2757                            std::any::type_name::<S>(),
2758                        )
2759                    }
2760                })
2761                .unwrap();
2762
2763            let state = state_box.take().expect(
2764                "reentrant call to with_element_state for the same state type and element id",
2765            );
2766            let (result, state) = f(Some(state), self);
2767            state_box.replace(state);
2768            self.next_frame.element_states.insert(
2769                key,
2770                ElementStateBox {
2771                    inner: state_box,
2772                    #[cfg(debug_assertions)]
2773                    type_name,
2774                },
2775            );
2776            result
2777        } else {
2778            let (result, state) = f(None, self);
2779            self.next_frame.element_states.insert(
2780                key,
2781                ElementStateBox {
2782                    inner: Box::new(Some(state)),
2783                    #[cfg(debug_assertions)]
2784                    type_name: std::any::type_name::<S>(),
2785                },
2786            );
2787            result
2788        }
2789    }
2790
2791    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2792    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2793    /// when the element is guaranteed to have an id.
2794    ///
2795    /// The first option means 'no ID provided'
2796    /// The second option means 'not yet initialized'
2797    pub fn with_optional_element_state<S, R>(
2798        &mut self,
2799        global_id: Option<&GlobalElementId>,
2800        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2801    ) -> R
2802    where
2803        S: 'static,
2804    {
2805        self.invalidator.debug_assert_paint_or_prepaint();
2806
2807        if let Some(global_id) = global_id {
2808            self.with_element_state(global_id, |state, cx| {
2809                let (result, state) = f(Some(state), cx);
2810                let state =
2811                    state.expect("you must return some state when you pass some element id");
2812                (result, state)
2813            })
2814        } else {
2815            let (result, state) = f(None, self);
2816            debug_assert!(
2817                state.is_none(),
2818                "you must not return an element state when passing None for the global id"
2819            );
2820            result
2821        }
2822    }
2823
2824    /// Executes the given closure within the context of a tab group.
2825    #[inline]
2826    pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2827        if let Some(index) = index {
2828            self.next_frame.tab_stops.begin_group(index);
2829            let result = f(self);
2830            self.next_frame.tab_stops.end_group();
2831            result
2832        } else {
2833            f(self)
2834        }
2835    }
2836
2837    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2838    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2839    /// with higher values being drawn on top.
2840    ///
2841    /// This method should only be called as part of the prepaint phase of element drawing.
2842    pub fn defer_draw(
2843        &mut self,
2844        element: AnyElement,
2845        absolute_offset: Point<Pixels>,
2846        priority: usize,
2847    ) {
2848        self.invalidator.debug_assert_prepaint();
2849        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2850        self.next_frame.deferred_draws.push(DeferredDraw {
2851            current_view: self.current_view(),
2852            parent_node,
2853            element_id_stack: self.element_id_stack.clone(),
2854            text_style_stack: self.text_style_stack.clone(),
2855            priority,
2856            element: Some(element),
2857            absolute_offset,
2858            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2859            paint_range: PaintIndex::default()..PaintIndex::default(),
2860        });
2861    }
2862
2863    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2864    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2865    /// for performance reasons.
2866    ///
2867    /// This method should only be called as part of the paint phase of element drawing.
2868    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2869        self.invalidator.debug_assert_paint();
2870
2871        let scale_factor = self.scale_factor();
2872        let content_mask = self.content_mask();
2873        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2874        if !clipped_bounds.is_empty() {
2875            self.next_frame
2876                .scene
2877                .push_layer(clipped_bounds.scale(scale_factor));
2878        }
2879
2880        let result = f(self);
2881
2882        if !clipped_bounds.is_empty() {
2883            self.next_frame.scene.pop_layer();
2884        }
2885
2886        result
2887    }
2888
2889    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2890    ///
2891    /// This method should only be called as part of the paint phase of element drawing.
2892    pub fn paint_shadows(
2893        &mut self,
2894        bounds: Bounds<Pixels>,
2895        corner_radii: Corners<Pixels>,
2896        shadows: &[BoxShadow],
2897    ) {
2898        self.invalidator.debug_assert_paint();
2899
2900        let scale_factor = self.scale_factor();
2901        let content_mask = self.content_mask();
2902        let opacity = self.element_opacity();
2903        for shadow in shadows {
2904            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2905            self.next_frame.scene.insert_primitive(Shadow {
2906                order: 0,
2907                blur_radius: shadow.blur_radius.scale(scale_factor),
2908                bounds: shadow_bounds.scale(scale_factor),
2909                content_mask: content_mask.scale(scale_factor),
2910                corner_radii: corner_radii.scale(scale_factor),
2911                color: shadow.color.opacity(opacity),
2912            });
2913        }
2914    }
2915
2916    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2917    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2918    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2919    ///
2920    /// This method should only be called as part of the paint phase of element drawing.
2921    ///
2922    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2923    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2924    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2925    pub fn paint_quad(&mut self, quad: PaintQuad) {
2926        self.invalidator.debug_assert_paint();
2927
2928        let scale_factor = self.scale_factor();
2929        let content_mask = self.content_mask();
2930        let opacity = self.element_opacity();
2931        self.next_frame.scene.insert_primitive(Quad {
2932            order: 0,
2933            bounds: quad.bounds.scale(scale_factor),
2934            content_mask: content_mask.scale(scale_factor),
2935            background: quad.background.opacity(opacity),
2936            border_color: quad.border_color.opacity(opacity),
2937            corner_radii: quad.corner_radii.scale(scale_factor),
2938            border_widths: quad.border_widths.scale(scale_factor),
2939            border_style: quad.border_style,
2940        });
2941    }
2942
2943    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2944    ///
2945    /// This method should only be called as part of the paint phase of element drawing.
2946    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2947        self.invalidator.debug_assert_paint();
2948
2949        let scale_factor = self.scale_factor();
2950        let content_mask = self.content_mask();
2951        let opacity = self.element_opacity();
2952        path.content_mask = content_mask;
2953        let color: Background = color.into();
2954        path.color = color.opacity(opacity);
2955        self.next_frame
2956            .scene
2957            .insert_primitive(path.scale(scale_factor));
2958    }
2959
2960    /// Paint an underline into the scene for the next frame at the current z-index.
2961    ///
2962    /// This method should only be called as part of the paint phase of element drawing.
2963    pub fn paint_underline(
2964        &mut self,
2965        origin: Point<Pixels>,
2966        width: Pixels,
2967        style: &UnderlineStyle,
2968    ) {
2969        self.invalidator.debug_assert_paint();
2970
2971        let scale_factor = self.scale_factor();
2972        let height = if style.wavy {
2973            style.thickness * 3.
2974        } else {
2975            style.thickness
2976        };
2977        let bounds = Bounds {
2978            origin,
2979            size: size(width, height),
2980        };
2981        let content_mask = self.content_mask();
2982        let element_opacity = self.element_opacity();
2983
2984        self.next_frame.scene.insert_primitive(Underline {
2985            order: 0,
2986            pad: 0,
2987            bounds: bounds.scale(scale_factor),
2988            content_mask: content_mask.scale(scale_factor),
2989            color: style.color.unwrap_or_default().opacity(element_opacity),
2990            thickness: style.thickness.scale(scale_factor),
2991            wavy: if style.wavy { 1 } else { 0 },
2992        });
2993    }
2994
2995    /// Paint a strikethrough into the scene for the next frame at the current z-index.
2996    ///
2997    /// This method should only be called as part of the paint phase of element drawing.
2998    pub fn paint_strikethrough(
2999        &mut self,
3000        origin: Point<Pixels>,
3001        width: Pixels,
3002        style: &StrikethroughStyle,
3003    ) {
3004        self.invalidator.debug_assert_paint();
3005
3006        let scale_factor = self.scale_factor();
3007        let height = style.thickness;
3008        let bounds = Bounds {
3009            origin,
3010            size: size(width, height),
3011        };
3012        let content_mask = self.content_mask();
3013        let opacity = self.element_opacity();
3014
3015        self.next_frame.scene.insert_primitive(Underline {
3016            order: 0,
3017            pad: 0,
3018            bounds: bounds.scale(scale_factor),
3019            content_mask: content_mask.scale(scale_factor),
3020            thickness: style.thickness.scale(scale_factor),
3021            color: style.color.unwrap_or_default().opacity(opacity),
3022            wavy: 0,
3023        });
3024    }
3025
3026    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3027    ///
3028    /// The y component of the origin is the baseline of the glyph.
3029    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3030    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3031    /// This method is only useful if you need to paint a single glyph that has already been shaped.
3032    ///
3033    /// This method should only be called as part of the paint phase of element drawing.
3034    pub fn paint_glyph(
3035        &mut self,
3036        origin: Point<Pixels>,
3037        font_id: FontId,
3038        glyph_id: GlyphId,
3039        font_size: Pixels,
3040        color: Hsla,
3041    ) -> Result<()> {
3042        self.invalidator.debug_assert_paint();
3043
3044        let element_opacity = self.element_opacity();
3045        let scale_factor = self.scale_factor();
3046        let glyph_origin = origin.scale(scale_factor);
3047
3048        let subpixel_variant = Point {
3049            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3050            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3051        };
3052        let params = RenderGlyphParams {
3053            font_id,
3054            glyph_id,
3055            font_size,
3056            subpixel_variant,
3057            scale_factor,
3058            is_emoji: false,
3059        };
3060
3061        let raster_bounds = self.text_system().raster_bounds(&params)?;
3062        if !raster_bounds.is_zero() {
3063            let tile = self
3064                .sprite_atlas
3065                .get_or_insert_with(&params.clone().into(), &mut || {
3066                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3067                    Ok(Some((size, Cow::Owned(bytes))))
3068                })?
3069                .expect("Callback above only errors or returns Some");
3070            let bounds = Bounds {
3071                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3072                size: tile.bounds.size.map(Into::into),
3073            };
3074            let content_mask = self.content_mask().scale(scale_factor);
3075            self.next_frame.scene.insert_primitive(MonochromeSprite {
3076                order: 0,
3077                pad: 0,
3078                bounds,
3079                content_mask,
3080                color: color.opacity(element_opacity),
3081                tile,
3082                transformation: TransformationMatrix::unit(),
3083            });
3084        }
3085        Ok(())
3086    }
3087
3088    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3089    ///
3090    /// The y component of the origin is the baseline of the glyph.
3091    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3092    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3093    /// This method is only useful if you need to paint a single emoji that has already been shaped.
3094    ///
3095    /// This method should only be called as part of the paint phase of element drawing.
3096    pub fn paint_emoji(
3097        &mut self,
3098        origin: Point<Pixels>,
3099        font_id: FontId,
3100        glyph_id: GlyphId,
3101        font_size: Pixels,
3102    ) -> Result<()> {
3103        self.invalidator.debug_assert_paint();
3104
3105        let scale_factor = self.scale_factor();
3106        let glyph_origin = origin.scale(scale_factor);
3107        let params = RenderGlyphParams {
3108            font_id,
3109            glyph_id,
3110            font_size,
3111            // We don't render emojis with subpixel variants.
3112            subpixel_variant: Default::default(),
3113            scale_factor,
3114            is_emoji: true,
3115        };
3116
3117        let raster_bounds = self.text_system().raster_bounds(&params)?;
3118        if !raster_bounds.is_zero() {
3119            let tile = self
3120                .sprite_atlas
3121                .get_or_insert_with(&params.clone().into(), &mut || {
3122                    let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
3123                    Ok(Some((size, Cow::Owned(bytes))))
3124                })?
3125                .expect("Callback above only errors or returns Some");
3126
3127            let bounds = Bounds {
3128                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3129                size: tile.bounds.size.map(Into::into),
3130            };
3131            let content_mask = self.content_mask().scale(scale_factor);
3132            let opacity = self.element_opacity();
3133
3134            self.next_frame.scene.insert_primitive(PolychromeSprite {
3135                order: 0,
3136                pad: 0,
3137                grayscale: false,
3138                bounds,
3139                corner_radii: Default::default(),
3140                content_mask,
3141                tile,
3142                opacity,
3143            });
3144        }
3145        Ok(())
3146    }
3147
3148    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3149    ///
3150    /// This method should only be called as part of the paint phase of element drawing.
3151    pub fn paint_svg(
3152        &mut self,
3153        bounds: Bounds<Pixels>,
3154        path: SharedString,
3155        mut data: Option<&[u8]>,
3156        transformation: TransformationMatrix,
3157        color: Hsla,
3158        cx: &App,
3159    ) -> Result<()> {
3160        self.invalidator.debug_assert_paint();
3161
3162        let element_opacity = self.element_opacity();
3163        let scale_factor = self.scale_factor();
3164
3165        let bounds = bounds.scale(scale_factor);
3166        let params = RenderSvgParams {
3167            path,
3168            size: bounds.size.map(|pixels| {
3169                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3170            }),
3171        };
3172
3173        let Some(tile) =
3174            self.sprite_atlas
3175                .get_or_insert_with(&params.clone().into(), &mut || {
3176                    let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(&params, data)?
3177                    else {
3178                        return Ok(None);
3179                    };
3180                    Ok(Some((size, Cow::Owned(bytes))))
3181                })?
3182        else {
3183            return Ok(());
3184        };
3185        let content_mask = self.content_mask().scale(scale_factor);
3186        let svg_bounds = Bounds {
3187            origin: bounds.center()
3188                - Point::new(
3189                    ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3190                    ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3191                ),
3192            size: tile
3193                .bounds
3194                .size
3195                .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3196        };
3197
3198        self.next_frame.scene.insert_primitive(MonochromeSprite {
3199            order: 0,
3200            pad: 0,
3201            bounds: svg_bounds
3202                .map_origin(|origin| origin.round())
3203                .map_size(|size| size.ceil()),
3204            content_mask,
3205            color: color.opacity(element_opacity),
3206            tile,
3207            transformation,
3208        });
3209
3210        Ok(())
3211    }
3212
3213    /// Paint an image into the scene for the next frame at the current z-index.
3214    /// This method will panic if the frame_index is not valid
3215    ///
3216    /// This method should only be called as part of the paint phase of element drawing.
3217    pub fn paint_image(
3218        &mut self,
3219        bounds: Bounds<Pixels>,
3220        corner_radii: Corners<Pixels>,
3221        data: Arc<RenderImage>,
3222        frame_index: usize,
3223        grayscale: bool,
3224    ) -> Result<()> {
3225        self.invalidator.debug_assert_paint();
3226
3227        let scale_factor = self.scale_factor();
3228        let bounds = bounds.scale(scale_factor);
3229        let params = RenderImageParams {
3230            image_id: data.id,
3231            frame_index,
3232        };
3233
3234        let tile = self
3235            .sprite_atlas
3236            .get_or_insert_with(&params.into(), &mut || {
3237                Ok(Some((
3238                    data.size(frame_index),
3239                    Cow::Borrowed(
3240                        data.as_bytes(frame_index)
3241                            .expect("It's the caller's job to pass a valid frame index"),
3242                    ),
3243                )))
3244            })?
3245            .expect("Callback above only returns Some");
3246        let content_mask = self.content_mask().scale(scale_factor);
3247        let corner_radii = corner_radii.scale(scale_factor);
3248        let opacity = self.element_opacity();
3249
3250        self.next_frame.scene.insert_primitive(PolychromeSprite {
3251            order: 0,
3252            pad: 0,
3253            grayscale,
3254            bounds: bounds
3255                .map_origin(|origin| origin.floor())
3256                .map_size(|size| size.ceil()),
3257            content_mask,
3258            corner_radii,
3259            tile,
3260            opacity,
3261        });
3262        Ok(())
3263    }
3264
3265    /// Paint a surface into the scene for the next frame at the current z-index.
3266    ///
3267    /// This method should only be called as part of the paint phase of element drawing.
3268    #[cfg(target_os = "macos")]
3269    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3270        use crate::PaintSurface;
3271
3272        self.invalidator.debug_assert_paint();
3273
3274        let scale_factor = self.scale_factor();
3275        let bounds = bounds.scale(scale_factor);
3276        let content_mask = self.content_mask().scale(scale_factor);
3277        self.next_frame.scene.insert_primitive(PaintSurface {
3278            order: 0,
3279            bounds,
3280            content_mask,
3281            image_buffer,
3282        });
3283    }
3284
3285    /// Removes an image from the sprite atlas.
3286    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3287        for frame_index in 0..data.frame_count() {
3288            let params = RenderImageParams {
3289                image_id: data.id,
3290                frame_index,
3291            };
3292
3293            self.sprite_atlas.remove(&params.clone().into());
3294        }
3295
3296        Ok(())
3297    }
3298
3299    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3300    /// layout is being requested, along with the layout ids of any children. This method is called during
3301    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3302    ///
3303    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3304    #[must_use]
3305    pub fn request_layout(
3306        &mut self,
3307        style: Style,
3308        children: impl IntoIterator<Item = LayoutId>,
3309        cx: &mut App,
3310    ) -> LayoutId {
3311        self.invalidator.debug_assert_prepaint();
3312
3313        cx.layout_id_buffer.clear();
3314        cx.layout_id_buffer.extend(children);
3315        let rem_size = self.rem_size();
3316        let scale_factor = self.scale_factor();
3317
3318        self.layout_engine.as_mut().unwrap().request_layout(
3319            style,
3320            rem_size,
3321            scale_factor,
3322            &cx.layout_id_buffer,
3323        )
3324    }
3325
3326    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3327    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3328    /// determine the element's size. One place this is used internally is when measuring text.
3329    ///
3330    /// The given closure is invoked at layout time with the known dimensions and available space and
3331    /// returns a `Size`.
3332    ///
3333    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3334    pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3335    where
3336        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3337            + 'static,
3338    {
3339        self.invalidator.debug_assert_prepaint();
3340
3341        let rem_size = self.rem_size();
3342        let scale_factor = self.scale_factor();
3343        self.layout_engine
3344            .as_mut()
3345            .unwrap()
3346            .request_measured_layout(style, rem_size, scale_factor, measure)
3347    }
3348
3349    /// Compute the layout for the given id within the given available space.
3350    /// This method is called for its side effect, typically by the framework prior to painting.
3351    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3352    ///
3353    /// This method should only be called as part of the prepaint phase of element drawing.
3354    pub fn compute_layout(
3355        &mut self,
3356        layout_id: LayoutId,
3357        available_space: Size<AvailableSpace>,
3358        cx: &mut App,
3359    ) {
3360        self.invalidator.debug_assert_prepaint();
3361
3362        let mut layout_engine = self.layout_engine.take().unwrap();
3363        layout_engine.compute_layout(layout_id, available_space, self, cx);
3364        self.layout_engine = Some(layout_engine);
3365    }
3366
3367    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3368    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3369    ///
3370    /// This method should only be called as part of element drawing.
3371    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3372        self.invalidator.debug_assert_prepaint();
3373
3374        let scale_factor = self.scale_factor();
3375        let mut bounds = self
3376            .layout_engine
3377            .as_mut()
3378            .unwrap()
3379            .layout_bounds(layout_id, scale_factor)
3380            .map(Into::into);
3381        bounds.origin += self.element_offset();
3382        bounds
3383    }
3384
3385    /// This method should be called during `prepaint`. You can use
3386    /// the returned [Hitbox] during `paint` or in an event handler
3387    /// to determine whether the inserted hitbox was the topmost.
3388    ///
3389    /// This method should only be called as part of the prepaint phase of element drawing.
3390    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3391        self.invalidator.debug_assert_prepaint();
3392
3393        let content_mask = self.content_mask();
3394        let mut id = self.next_hitbox_id;
3395        self.next_hitbox_id = self.next_hitbox_id.next();
3396        let hitbox = Hitbox {
3397            id,
3398            bounds,
3399            content_mask,
3400            behavior,
3401        };
3402        self.next_frame.hitboxes.push(hitbox.clone());
3403        hitbox
3404    }
3405
3406    /// Set a hitbox which will act as a control area of the platform window.
3407    ///
3408    /// This method should only be called as part of the paint phase of element drawing.
3409    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3410        self.invalidator.debug_assert_paint();
3411        self.next_frame.window_control_hitboxes.push((area, hitbox));
3412    }
3413
3414    /// Sets the key context for the current element. This context will be used to translate
3415    /// keybindings into actions.
3416    ///
3417    /// This method should only be called as part of the paint phase of element drawing.
3418    pub fn set_key_context(&mut self, context: KeyContext) {
3419        self.invalidator.debug_assert_paint();
3420        self.next_frame.dispatch_tree.set_key_context(context);
3421    }
3422
3423    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3424    /// and keyboard event dispatch for the element.
3425    ///
3426    /// This method should only be called as part of the prepaint phase of element drawing.
3427    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3428        self.invalidator.debug_assert_prepaint();
3429        if focus_handle.is_focused(self) {
3430            self.next_frame.focus = Some(focus_handle.id);
3431        }
3432        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3433    }
3434
3435    /// Sets the view id for the current element, which will be used to manage view caching.
3436    ///
3437    /// This method should only be called as part of element prepaint. We plan on removing this
3438    /// method eventually when we solve some issues that require us to construct editor elements
3439    /// directly instead of always using editors via views.
3440    pub fn set_view_id(&mut self, view_id: EntityId) {
3441        self.invalidator.debug_assert_prepaint();
3442        self.next_frame.dispatch_tree.set_view_id(view_id);
3443    }
3444
3445    /// Get the entity ID for the currently rendering view
3446    pub fn current_view(&self) -> EntityId {
3447        self.invalidator.debug_assert_paint_or_prepaint();
3448        self.rendered_entity_stack.last().copied().unwrap()
3449    }
3450
3451    pub(crate) fn with_rendered_view<R>(
3452        &mut self,
3453        id: EntityId,
3454        f: impl FnOnce(&mut Self) -> R,
3455    ) -> R {
3456        self.rendered_entity_stack.push(id);
3457        let result = f(self);
3458        self.rendered_entity_stack.pop();
3459        result
3460    }
3461
3462    /// Executes the provided function with the specified image cache.
3463    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3464    where
3465        F: FnOnce(&mut Self) -> R,
3466    {
3467        if let Some(image_cache) = image_cache {
3468            self.image_cache_stack.push(image_cache);
3469            let result = f(self);
3470            self.image_cache_stack.pop();
3471            result
3472        } else {
3473            f(self)
3474        }
3475    }
3476
3477    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3478    /// platform to receive textual input with proper integration with concerns such
3479    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3480    /// rendered.
3481    ///
3482    /// This method should only be called as part of the paint phase of element drawing.
3483    ///
3484    /// [element_input_handler]: crate::ElementInputHandler
3485    pub fn handle_input(
3486        &mut self,
3487        focus_handle: &FocusHandle,
3488        input_handler: impl InputHandler,
3489        cx: &App,
3490    ) {
3491        self.invalidator.debug_assert_paint();
3492
3493        if focus_handle.is_focused(self) {
3494            let cx = self.to_async(cx);
3495            self.next_frame
3496                .input_handlers
3497                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3498        }
3499    }
3500
3501    /// Register a mouse event listener on the window for the next frame. The type of event
3502    /// is determined by the first parameter of the given listener. When the next frame is rendered
3503    /// the listener will be cleared.
3504    ///
3505    /// This method should only be called as part of the paint phase of element drawing.
3506    pub fn on_mouse_event<Event: MouseEvent>(
3507        &mut self,
3508        mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3509    ) {
3510        self.invalidator.debug_assert_paint();
3511
3512        self.next_frame.mouse_listeners.push(Some(Box::new(
3513            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3514                if let Some(event) = event.downcast_ref() {
3515                    listener(event, phase, window, cx)
3516                }
3517            },
3518        )));
3519    }
3520
3521    /// Register a key event listener on this node for the next frame. The type of event
3522    /// is determined by the first parameter of the given listener. When the next frame is rendered
3523    /// the listener will be cleared.
3524    ///
3525    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3526    /// a specific need to register a listener yourself.
3527    ///
3528    /// This method should only be called as part of the paint phase of element drawing.
3529    pub fn on_key_event<Event: KeyEvent>(
3530        &mut self,
3531        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3532    ) {
3533        self.invalidator.debug_assert_paint();
3534
3535        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3536            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3537                if let Some(event) = event.downcast_ref::<Event>() {
3538                    listener(event, phase, window, cx)
3539                }
3540            },
3541        ));
3542    }
3543
3544    /// Register a modifiers changed event listener on the window for the next frame.
3545    ///
3546    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3547    /// a specific need to register a global listener.
3548    ///
3549    /// This method should only be called as part of the paint phase of element drawing.
3550    pub fn on_modifiers_changed(
3551        &mut self,
3552        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3553    ) {
3554        self.invalidator.debug_assert_paint();
3555
3556        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3557            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3558                listener(event, window, cx)
3559            },
3560        ));
3561    }
3562
3563    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3564    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3565    /// Returns a subscription and persists until the subscription is dropped.
3566    pub fn on_focus_in(
3567        &mut self,
3568        handle: &FocusHandle,
3569        cx: &mut App,
3570        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3571    ) -> Subscription {
3572        let focus_id = handle.id;
3573        let (subscription, activate) =
3574            self.new_focus_listener(Box::new(move |event, window, cx| {
3575                if event.is_focus_in(focus_id) {
3576                    listener(window, cx);
3577                }
3578                true
3579            }));
3580        cx.defer(move |_| activate());
3581        subscription
3582    }
3583
3584    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3585    /// Returns a subscription and persists until the subscription is dropped.
3586    pub fn on_focus_out(
3587        &mut self,
3588        handle: &FocusHandle,
3589        cx: &mut App,
3590        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3591    ) -> Subscription {
3592        let focus_id = handle.id;
3593        let (subscription, activate) =
3594            self.new_focus_listener(Box::new(move |event, window, cx| {
3595                if let Some(blurred_id) = event.previous_focus_path.last().copied()
3596                    && event.is_focus_out(focus_id)
3597                {
3598                    let event = FocusOutEvent {
3599                        blurred: WeakFocusHandle {
3600                            id: blurred_id,
3601                            handles: Arc::downgrade(&cx.focus_handles),
3602                        },
3603                    };
3604                    listener(event, window, cx)
3605                }
3606                true
3607            }));
3608        cx.defer(move |_| activate());
3609        subscription
3610    }
3611
3612    fn reset_cursor_style(&self, cx: &mut App) {
3613        // Set the cursor only if we're the active window.
3614        if self.is_window_hovered() {
3615            let style = self
3616                .rendered_frame
3617                .cursor_style(self)
3618                .unwrap_or(CursorStyle::Arrow);
3619            cx.platform.set_cursor_style(style);
3620        }
3621    }
3622
3623    /// Dispatch a given keystroke as though the user had typed it.
3624    /// You can create a keystroke with Keystroke::parse("").
3625    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3626        let keystroke = keystroke.with_simulated_ime();
3627        let result = self.dispatch_event(
3628            PlatformInput::KeyDown(KeyDownEvent {
3629                keystroke: keystroke.clone(),
3630                is_held: false,
3631                prefer_character_input: false,
3632            }),
3633            cx,
3634        );
3635        if !result.propagate {
3636            return true;
3637        }
3638
3639        if let Some(input) = keystroke.key_char
3640            && let Some(mut input_handler) = self.platform_window.take_input_handler()
3641        {
3642            input_handler.dispatch_input(&input, self, cx);
3643            self.platform_window.set_input_handler(input_handler);
3644            return true;
3645        }
3646
3647        false
3648    }
3649
3650    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3651    /// binding for the action (last binding added to the keymap).
3652    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3653        self.highest_precedence_binding_for_action(action)
3654            .map(|binding| {
3655                binding
3656                    .keystrokes()
3657                    .iter()
3658                    .map(ToString::to_string)
3659                    .collect::<Vec<_>>()
3660                    .join(" ")
3661            })
3662            .unwrap_or_else(|| action.name().to_string())
3663    }
3664
3665    /// Dispatch a mouse or keyboard event on the window.
3666    #[profiling::function]
3667    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3668        self.last_input_timestamp.set(Instant::now());
3669
3670        // Track whether this input was keyboard-based for focus-visible styling
3671        self.last_input_modality = match &event {
3672            PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3673                InputModality::Keyboard
3674            }
3675            PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3676            _ => self.last_input_modality,
3677        };
3678
3679        // Handlers may set this to false by calling `stop_propagation`.
3680        cx.propagate_event = true;
3681        // Handlers may set this to true by calling `prevent_default`.
3682        self.default_prevented = false;
3683
3684        let event = match event {
3685            // Track the mouse position with our own state, since accessing the platform
3686            // API for the mouse position can only occur on the main thread.
3687            PlatformInput::MouseMove(mouse_move) => {
3688                self.mouse_position = mouse_move.position;
3689                self.modifiers = mouse_move.modifiers;
3690                PlatformInput::MouseMove(mouse_move)
3691            }
3692            PlatformInput::MouseDown(mouse_down) => {
3693                self.mouse_position = mouse_down.position;
3694                self.modifiers = mouse_down.modifiers;
3695                PlatformInput::MouseDown(mouse_down)
3696            }
3697            PlatformInput::MouseUp(mouse_up) => {
3698                self.mouse_position = mouse_up.position;
3699                self.modifiers = mouse_up.modifiers;
3700                PlatformInput::MouseUp(mouse_up)
3701            }
3702            PlatformInput::MouseExited(mouse_exited) => {
3703                self.modifiers = mouse_exited.modifiers;
3704                PlatformInput::MouseExited(mouse_exited)
3705            }
3706            PlatformInput::ModifiersChanged(modifiers_changed) => {
3707                self.modifiers = modifiers_changed.modifiers;
3708                self.capslock = modifiers_changed.capslock;
3709                PlatformInput::ModifiersChanged(modifiers_changed)
3710            }
3711            PlatformInput::ScrollWheel(scroll_wheel) => {
3712                self.mouse_position = scroll_wheel.position;
3713                self.modifiers = scroll_wheel.modifiers;
3714                PlatformInput::ScrollWheel(scroll_wheel)
3715            }
3716            // Translate dragging and dropping of external files from the operating system
3717            // to internal drag and drop events.
3718            PlatformInput::FileDrop(file_drop) => match file_drop {
3719                FileDropEvent::Entered { position, paths } => {
3720                    self.mouse_position = position;
3721                    if cx.active_drag.is_none() {
3722                        cx.active_drag = Some(AnyDrag {
3723                            value: Arc::new(paths.clone()),
3724                            view: cx.new(|_| paths).into(),
3725                            cursor_offset: position,
3726                            cursor_style: None,
3727                        });
3728                    }
3729                    PlatformInput::MouseMove(MouseMoveEvent {
3730                        position,
3731                        pressed_button: Some(MouseButton::Left),
3732                        modifiers: Modifiers::default(),
3733                    })
3734                }
3735                FileDropEvent::Pending { position } => {
3736                    self.mouse_position = position;
3737                    PlatformInput::MouseMove(MouseMoveEvent {
3738                        position,
3739                        pressed_button: Some(MouseButton::Left),
3740                        modifiers: Modifiers::default(),
3741                    })
3742                }
3743                FileDropEvent::Submit { position } => {
3744                    cx.activate(true);
3745                    self.mouse_position = position;
3746                    PlatformInput::MouseUp(MouseUpEvent {
3747                        button: MouseButton::Left,
3748                        position,
3749                        modifiers: Modifiers::default(),
3750                        click_count: 1,
3751                    })
3752                }
3753                FileDropEvent::Exited => {
3754                    cx.active_drag.take();
3755                    PlatformInput::FileDrop(FileDropEvent::Exited)
3756                }
3757            },
3758            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3759        };
3760
3761        if let Some(any_mouse_event) = event.mouse_event() {
3762            self.dispatch_mouse_event(any_mouse_event, cx);
3763        } else if let Some(any_key_event) = event.keyboard_event() {
3764            self.dispatch_key_event(any_key_event, cx);
3765        }
3766
3767        DispatchEventResult {
3768            propagate: cx.propagate_event,
3769            default_prevented: self.default_prevented,
3770        }
3771    }
3772
3773    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3774        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3775        if hit_test != self.mouse_hit_test {
3776            self.mouse_hit_test = hit_test;
3777            self.reset_cursor_style(cx);
3778        }
3779
3780        #[cfg(any(feature = "inspector", debug_assertions))]
3781        if self.is_inspector_picking(cx) {
3782            self.handle_inspector_mouse_event(event, cx);
3783            // When inspector is picking, all other mouse handling is skipped.
3784            return;
3785        }
3786
3787        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3788
3789        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3790        // special purposes, such as detecting events outside of a given Bounds.
3791        for listener in &mut mouse_listeners {
3792            let listener = listener.as_mut().unwrap();
3793            listener(event, DispatchPhase::Capture, self, cx);
3794            if !cx.propagate_event {
3795                break;
3796            }
3797        }
3798
3799        // Bubble phase, where most normal handlers do their work.
3800        if cx.propagate_event {
3801            for listener in mouse_listeners.iter_mut().rev() {
3802                let listener = listener.as_mut().unwrap();
3803                listener(event, DispatchPhase::Bubble, self, cx);
3804                if !cx.propagate_event {
3805                    break;
3806                }
3807            }
3808        }
3809
3810        self.rendered_frame.mouse_listeners = mouse_listeners;
3811
3812        if cx.has_active_drag() {
3813            if event.is::<MouseMoveEvent>() {
3814                // If this was a mouse move event, redraw the window so that the
3815                // active drag can follow the mouse cursor.
3816                self.refresh();
3817            } else if event.is::<MouseUpEvent>() {
3818                // If this was a mouse up event, cancel the active drag and redraw
3819                // the window.
3820                cx.active_drag = None;
3821                self.refresh();
3822            }
3823        }
3824    }
3825
3826    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3827        if self.invalidator.is_dirty() {
3828            self.draw(cx).clear();
3829        }
3830
3831        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3832        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3833
3834        let mut keystroke: Option<Keystroke> = None;
3835
3836        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3837            if event.modifiers.number_of_modifiers() == 0
3838                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3839                && !self.pending_modifier.saw_keystroke
3840            {
3841                let key = match self.pending_modifier.modifiers {
3842                    modifiers if modifiers.shift => Some("shift"),
3843                    modifiers if modifiers.control => Some("control"),
3844                    modifiers if modifiers.alt => Some("alt"),
3845                    modifiers if modifiers.platform => Some("platform"),
3846                    modifiers if modifiers.function => Some("function"),
3847                    _ => None,
3848                };
3849                if let Some(key) = key {
3850                    keystroke = Some(Keystroke {
3851                        key: key.to_string(),
3852                        key_char: None,
3853                        modifiers: Modifiers::default(),
3854                    });
3855                }
3856            }
3857
3858            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3859                && event.modifiers.number_of_modifiers() == 1
3860            {
3861                self.pending_modifier.saw_keystroke = false
3862            }
3863            self.pending_modifier.modifiers = event.modifiers
3864        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3865            self.pending_modifier.saw_keystroke = true;
3866            keystroke = Some(key_down_event.keystroke.clone());
3867        }
3868
3869        let Some(keystroke) = keystroke else {
3870            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3871            return;
3872        };
3873
3874        cx.propagate_event = true;
3875        self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3876        if !cx.propagate_event {
3877            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3878            return;
3879        }
3880
3881        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3882        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3883            currently_pending = PendingInput::default();
3884        }
3885
3886        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3887            currently_pending.keystrokes,
3888            keystroke,
3889            &dispatch_path,
3890        );
3891
3892        if !match_result.to_replay.is_empty() {
3893            self.replay_pending_input(match_result.to_replay, cx);
3894            cx.propagate_event = true;
3895        }
3896
3897        if !match_result.pending.is_empty() {
3898            currently_pending.keystrokes = match_result.pending;
3899            currently_pending.focus = self.focus;
3900            currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3901                cx.background_executor.timer(Duration::from_secs(1)).await;
3902                cx.update(move |window, cx| {
3903                    let Some(currently_pending) = window
3904                        .pending_input
3905                        .take()
3906                        .filter(|pending| pending.focus == window.focus)
3907                    else {
3908                        return;
3909                    };
3910
3911                    let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3912                    let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3913
3914                    let to_replay = window
3915                        .rendered_frame
3916                        .dispatch_tree
3917                        .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3918
3919                    window.pending_input_changed(cx);
3920                    window.replay_pending_input(to_replay, cx)
3921                })
3922                .log_err();
3923            }));
3924            self.pending_input = Some(currently_pending);
3925            self.pending_input_changed(cx);
3926            cx.propagate_event = false;
3927            return;
3928        }
3929
3930        let skip_bindings = event
3931            .downcast_ref::<KeyDownEvent>()
3932            .filter(|key_down_event| key_down_event.prefer_character_input)
3933            .map(|_| {
3934                self.platform_window
3935                    .take_input_handler()
3936                    .map_or(false, |mut input_handler| {
3937                        let accepts = input_handler.accepts_text_input(self, cx);
3938                        self.platform_window.set_input_handler(input_handler);
3939                        // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3940                        // we prefer the text input over bindings.
3941                        accepts
3942                    })
3943            })
3944            .unwrap_or(false);
3945
3946        if !skip_bindings {
3947            for binding in match_result.bindings {
3948                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3949                if !cx.propagate_event {
3950                    self.dispatch_keystroke_observers(
3951                        event,
3952                        Some(binding.action),
3953                        match_result.context_stack,
3954                        cx,
3955                    );
3956                    self.pending_input_changed(cx);
3957                    return;
3958                }
3959            }
3960        }
3961
3962        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3963        self.pending_input_changed(cx);
3964    }
3965
3966    fn finish_dispatch_key_event(
3967        &mut self,
3968        event: &dyn Any,
3969        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3970        context_stack: Vec<KeyContext>,
3971        cx: &mut App,
3972    ) {
3973        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3974        if !cx.propagate_event {
3975            return;
3976        }
3977
3978        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3979        if !cx.propagate_event {
3980            return;
3981        }
3982
3983        self.dispatch_keystroke_observers(event, None, context_stack, cx);
3984    }
3985
3986    fn pending_input_changed(&mut self, cx: &mut App) {
3987        self.pending_input_observers
3988            .clone()
3989            .retain(&(), |callback| callback(self, cx));
3990    }
3991
3992    fn dispatch_key_down_up_event(
3993        &mut self,
3994        event: &dyn Any,
3995        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3996        cx: &mut App,
3997    ) {
3998        // Capture phase
3999        for node_id in dispatch_path {
4000            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4001
4002            for key_listener in node.key_listeners.clone() {
4003                key_listener(event, DispatchPhase::Capture, self, cx);
4004                if !cx.propagate_event {
4005                    return;
4006                }
4007            }
4008        }
4009
4010        // Bubble phase
4011        for node_id in dispatch_path.iter().rev() {
4012            // Handle low level key events
4013            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4014            for key_listener in node.key_listeners.clone() {
4015                key_listener(event, DispatchPhase::Bubble, self, cx);
4016                if !cx.propagate_event {
4017                    return;
4018                }
4019            }
4020        }
4021    }
4022
4023    fn dispatch_modifiers_changed_event(
4024        &mut self,
4025        event: &dyn Any,
4026        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4027        cx: &mut App,
4028    ) {
4029        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4030            return;
4031        };
4032        for node_id in dispatch_path.iter().rev() {
4033            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4034            for listener in node.modifiers_changed_listeners.clone() {
4035                listener(event, self, cx);
4036                if !cx.propagate_event {
4037                    return;
4038                }
4039            }
4040        }
4041    }
4042
4043    /// Determine whether a potential multi-stroke key binding is in progress on this window.
4044    pub fn has_pending_keystrokes(&self) -> bool {
4045        self.pending_input.is_some()
4046    }
4047
4048    pub(crate) fn clear_pending_keystrokes(&mut self) {
4049        self.pending_input.take();
4050    }
4051
4052    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4053    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4054        self.pending_input
4055            .as_ref()
4056            .map(|pending_input| pending_input.keystrokes.as_slice())
4057    }
4058
4059    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4060        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4061        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4062
4063        'replay: for replay in replays {
4064            let event = KeyDownEvent {
4065                keystroke: replay.keystroke.clone(),
4066                is_held: false,
4067                prefer_character_input: true,
4068            };
4069
4070            cx.propagate_event = true;
4071            for binding in replay.bindings {
4072                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4073                if !cx.propagate_event {
4074                    self.dispatch_keystroke_observers(
4075                        &event,
4076                        Some(binding.action),
4077                        Vec::default(),
4078                        cx,
4079                    );
4080                    continue 'replay;
4081                }
4082            }
4083
4084            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4085            if !cx.propagate_event {
4086                continue 'replay;
4087            }
4088            if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4089                && let Some(mut input_handler) = self.platform_window.take_input_handler()
4090            {
4091                input_handler.dispatch_input(&input, self, cx);
4092                self.platform_window.set_input_handler(input_handler)
4093            }
4094        }
4095    }
4096
4097    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4098        focus_id
4099            .and_then(|focus_id| {
4100                self.rendered_frame
4101                    .dispatch_tree
4102                    .focusable_node_id(focus_id)
4103            })
4104            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4105    }
4106
4107    fn dispatch_action_on_node(
4108        &mut self,
4109        node_id: DispatchNodeId,
4110        action: &dyn Action,
4111        cx: &mut App,
4112    ) {
4113        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4114
4115        // Capture phase for global actions.
4116        cx.propagate_event = true;
4117        if let Some(mut global_listeners) = cx
4118            .global_action_listeners
4119            .remove(&action.as_any().type_id())
4120        {
4121            for listener in &global_listeners {
4122                listener(action.as_any(), DispatchPhase::Capture, cx);
4123                if !cx.propagate_event {
4124                    break;
4125                }
4126            }
4127
4128            global_listeners.extend(
4129                cx.global_action_listeners
4130                    .remove(&action.as_any().type_id())
4131                    .unwrap_or_default(),
4132            );
4133
4134            cx.global_action_listeners
4135                .insert(action.as_any().type_id(), global_listeners);
4136        }
4137
4138        if !cx.propagate_event {
4139            return;
4140        }
4141
4142        // Capture phase for window actions.
4143        for node_id in &dispatch_path {
4144            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4145            for DispatchActionListener {
4146                action_type,
4147                listener,
4148            } in node.action_listeners.clone()
4149            {
4150                let any_action = action.as_any();
4151                if action_type == any_action.type_id() {
4152                    listener(any_action, DispatchPhase::Capture, self, cx);
4153
4154                    if !cx.propagate_event {
4155                        return;
4156                    }
4157                }
4158            }
4159        }
4160
4161        // Bubble phase for window actions.
4162        for node_id in dispatch_path.iter().rev() {
4163            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4164            for DispatchActionListener {
4165                action_type,
4166                listener,
4167            } in node.action_listeners.clone()
4168            {
4169                let any_action = action.as_any();
4170                if action_type == any_action.type_id() {
4171                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4172                    listener(any_action, DispatchPhase::Bubble, self, cx);
4173
4174                    if !cx.propagate_event {
4175                        return;
4176                    }
4177                }
4178            }
4179        }
4180
4181        // Bubble phase for global actions.
4182        if let Some(mut global_listeners) = cx
4183            .global_action_listeners
4184            .remove(&action.as_any().type_id())
4185        {
4186            for listener in global_listeners.iter().rev() {
4187                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4188
4189                listener(action.as_any(), DispatchPhase::Bubble, cx);
4190                if !cx.propagate_event {
4191                    break;
4192                }
4193            }
4194
4195            global_listeners.extend(
4196                cx.global_action_listeners
4197                    .remove(&action.as_any().type_id())
4198                    .unwrap_or_default(),
4199            );
4200
4201            cx.global_action_listeners
4202                .insert(action.as_any().type_id(), global_listeners);
4203        }
4204    }
4205
4206    /// Register the given handler to be invoked whenever the global of the given type
4207    /// is updated.
4208    pub fn observe_global<G: Global>(
4209        &mut self,
4210        cx: &mut App,
4211        f: impl Fn(&mut Window, &mut App) + 'static,
4212    ) -> Subscription {
4213        let window_handle = self.handle;
4214        let (subscription, activate) = cx.global_observers.insert(
4215            TypeId::of::<G>(),
4216            Box::new(move |cx| {
4217                window_handle
4218                    .update(cx, |_, window, cx| f(window, cx))
4219                    .is_ok()
4220            }),
4221        );
4222        cx.defer(move |_| activate());
4223        subscription
4224    }
4225
4226    /// Focus the current window and bring it to the foreground at the platform level.
4227    pub fn activate_window(&self) {
4228        self.platform_window.activate();
4229    }
4230
4231    /// Minimize the current window at the platform level.
4232    pub fn minimize_window(&self) {
4233        self.platform_window.minimize();
4234    }
4235
4236    /// Toggle full screen status on the current window at the platform level.
4237    pub fn toggle_fullscreen(&self) {
4238        self.platform_window.toggle_fullscreen();
4239    }
4240
4241    /// Updates the IME panel position suggestions for languages like japanese, chinese.
4242    pub fn invalidate_character_coordinates(&self) {
4243        self.on_next_frame(|window, cx| {
4244            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4245                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4246                    window.platform_window.update_ime_position(bounds);
4247                }
4248                window.platform_window.set_input_handler(input_handler);
4249            }
4250        });
4251    }
4252
4253    /// Present a platform dialog.
4254    /// The provided message will be presented, along with buttons for each answer.
4255    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4256    pub fn prompt<T>(
4257        &mut self,
4258        level: PromptLevel,
4259        message: &str,
4260        detail: Option<&str>,
4261        answers: &[T],
4262        cx: &mut App,
4263    ) -> oneshot::Receiver<usize>
4264    where
4265        T: Clone + Into<PromptButton>,
4266    {
4267        let prompt_builder = cx.prompt_builder.take();
4268        let Some(prompt_builder) = prompt_builder else {
4269            unreachable!("Re-entrant window prompting is not supported by GPUI");
4270        };
4271
4272        let answers = answers
4273            .iter()
4274            .map(|answer| answer.clone().into())
4275            .collect::<Vec<_>>();
4276
4277        let receiver = match &prompt_builder {
4278            PromptBuilder::Default => self
4279                .platform_window
4280                .prompt(level, message, detail, &answers)
4281                .unwrap_or_else(|| {
4282                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4283                }),
4284            PromptBuilder::Custom(_) => {
4285                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4286            }
4287        };
4288
4289        cx.prompt_builder = Some(prompt_builder);
4290
4291        receiver
4292    }
4293
4294    fn build_custom_prompt(
4295        &mut self,
4296        prompt_builder: &PromptBuilder,
4297        level: PromptLevel,
4298        message: &str,
4299        detail: Option<&str>,
4300        answers: &[PromptButton],
4301        cx: &mut App,
4302    ) -> oneshot::Receiver<usize> {
4303        let (sender, receiver) = oneshot::channel();
4304        let handle = PromptHandle::new(sender);
4305        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4306        self.prompt = Some(handle);
4307        receiver
4308    }
4309
4310    /// Returns the current context stack.
4311    pub fn context_stack(&self) -> Vec<KeyContext> {
4312        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4313        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4314        dispatch_tree
4315            .dispatch_path(node_id)
4316            .iter()
4317            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4318            .collect()
4319    }
4320
4321    /// Returns all available actions for the focused element.
4322    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4323        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4324        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4325        for action_type in cx.global_action_listeners.keys() {
4326            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4327                let action = cx.actions.build_action_type(action_type).ok();
4328                if let Some(action) = action {
4329                    actions.insert(ix, action);
4330                }
4331            }
4332        }
4333        actions
4334    }
4335
4336    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4337    /// returned in the order they were added. For display, the last binding should take precedence.
4338    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4339        self.rendered_frame
4340            .dispatch_tree
4341            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4342    }
4343
4344    /// Returns the highest precedence key binding that invokes an action on the currently focused
4345    /// element. This is more efficient than getting the last result of `bindings_for_action`.
4346    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4347        self.rendered_frame
4348            .dispatch_tree
4349            .highest_precedence_binding_for_action(
4350                action,
4351                &self.rendered_frame.dispatch_tree.context_stack,
4352            )
4353    }
4354
4355    /// Returns the key bindings for an action in a context.
4356    pub fn bindings_for_action_in_context(
4357        &self,
4358        action: &dyn Action,
4359        context: KeyContext,
4360    ) -> Vec<KeyBinding> {
4361        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4362        dispatch_tree.bindings_for_action(action, &[context])
4363    }
4364
4365    /// Returns the highest precedence key binding for an action in a context. This is more
4366    /// efficient than getting the last result of `bindings_for_action_in_context`.
4367    pub fn highest_precedence_binding_for_action_in_context(
4368        &self,
4369        action: &dyn Action,
4370        context: KeyContext,
4371    ) -> Option<KeyBinding> {
4372        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4373        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4374    }
4375
4376    /// Returns any bindings that would invoke an action on the given focus handle if it were
4377    /// focused. Bindings are returned in the order they were added. For display, the last binding
4378    /// should take precedence.
4379    pub fn bindings_for_action_in(
4380        &self,
4381        action: &dyn Action,
4382        focus_handle: &FocusHandle,
4383    ) -> Vec<KeyBinding> {
4384        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4385        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4386            return vec![];
4387        };
4388        dispatch_tree.bindings_for_action(action, &context_stack)
4389    }
4390
4391    /// Returns the highest precedence key binding that would invoke an action on the given focus
4392    /// handle if it were focused. This is more efficient than getting the last result of
4393    /// `bindings_for_action_in`.
4394    pub fn highest_precedence_binding_for_action_in(
4395        &self,
4396        action: &dyn Action,
4397        focus_handle: &FocusHandle,
4398    ) -> Option<KeyBinding> {
4399        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4400        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4401        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4402    }
4403
4404    fn context_stack_for_focus_handle(
4405        &self,
4406        focus_handle: &FocusHandle,
4407    ) -> Option<Vec<KeyContext>> {
4408        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4409        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4410        let context_stack: Vec<_> = dispatch_tree
4411            .dispatch_path(node_id)
4412            .into_iter()
4413            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4414            .collect();
4415        Some(context_stack)
4416    }
4417
4418    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4419    pub fn listener_for<T: 'static, E>(
4420        &self,
4421        view: &Entity<T>,
4422        f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4423    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4424        let view = view.downgrade();
4425        move |e: &E, window: &mut Window, cx: &mut App| {
4426            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4427        }
4428    }
4429
4430    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4431    pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4432        &self,
4433        entity: &Entity<E>,
4434        f: Callback,
4435    ) -> impl Fn(&mut Window, &mut App) + 'static {
4436        let entity = entity.downgrade();
4437        move |window: &mut Window, cx: &mut App| {
4438            entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4439        }
4440    }
4441
4442    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4443    /// If the callback returns false, the window won't be closed.
4444    pub fn on_window_should_close(
4445        &self,
4446        cx: &App,
4447        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4448    ) {
4449        let mut cx = self.to_async(cx);
4450        self.platform_window.on_should_close(Box::new(move || {
4451            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4452        }))
4453    }
4454
4455    /// Register an action listener on this node for the next frame. The type of action
4456    /// is determined by the first parameter of the given listener. When the next frame is rendered
4457    /// the listener will be cleared.
4458    ///
4459    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4460    /// a specific need to register a listener yourself.
4461    ///
4462    /// This method should only be called as part of the paint phase of element drawing.
4463    pub fn on_action(
4464        &mut self,
4465        action_type: TypeId,
4466        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4467    ) {
4468        self.invalidator.debug_assert_paint();
4469
4470        self.next_frame
4471            .dispatch_tree
4472            .on_action(action_type, Rc::new(listener));
4473    }
4474
4475    /// Register a capturing action listener on this node for the next frame if the condition is true.
4476    /// The type of action is determined by the first parameter of the given listener. When the next
4477    /// frame is rendered the listener will be cleared.
4478    ///
4479    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4480    /// a specific need to register a listener yourself.
4481    ///
4482    /// This method should only be called as part of the paint phase of element drawing.
4483    pub fn on_action_when(
4484        &mut self,
4485        condition: bool,
4486        action_type: TypeId,
4487        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4488    ) {
4489        self.invalidator.debug_assert_paint();
4490
4491        if condition {
4492            self.next_frame
4493                .dispatch_tree
4494                .on_action(action_type, Rc::new(listener));
4495        }
4496    }
4497
4498    /// Read information about the GPU backing this window.
4499    /// Currently returns None on Mac and Windows.
4500    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4501        self.platform_window.gpu_specs()
4502    }
4503
4504    /// Perform titlebar double-click action.
4505    /// This is macOS specific.
4506    pub fn titlebar_double_click(&self) {
4507        self.platform_window.titlebar_double_click();
4508    }
4509
4510    /// Gets the window's title at the platform level.
4511    /// This is macOS specific.
4512    pub fn window_title(&self) -> String {
4513        self.platform_window.get_title()
4514    }
4515
4516    /// Returns a list of all tabbed windows and their titles.
4517    /// This is macOS specific.
4518    pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4519        self.platform_window.tabbed_windows()
4520    }
4521
4522    /// Returns the tab bar visibility.
4523    /// This is macOS specific.
4524    pub fn tab_bar_visible(&self) -> bool {
4525        self.platform_window.tab_bar_visible()
4526    }
4527
4528    /// Merges all open windows into a single tabbed window.
4529    /// This is macOS specific.
4530    pub fn merge_all_windows(&self) {
4531        self.platform_window.merge_all_windows()
4532    }
4533
4534    /// Moves the tab to a new containing window.
4535    /// This is macOS specific.
4536    pub fn move_tab_to_new_window(&self) {
4537        self.platform_window.move_tab_to_new_window()
4538    }
4539
4540    /// Shows or hides the window tab overview.
4541    /// This is macOS specific.
4542    pub fn toggle_window_tab_overview(&self) {
4543        self.platform_window.toggle_window_tab_overview()
4544    }
4545
4546    /// Sets the tabbing identifier for the window.
4547    /// This is macOS specific.
4548    pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4549        self.platform_window
4550            .set_tabbing_identifier(tabbing_identifier)
4551    }
4552
4553    /// Toggles the inspector mode on this window.
4554    #[cfg(any(feature = "inspector", debug_assertions))]
4555    pub fn toggle_inspector(&mut self, cx: &mut App) {
4556        self.inspector = match self.inspector {
4557            None => Some(cx.new(|_| Inspector::new())),
4558            Some(_) => None,
4559        };
4560        self.refresh();
4561    }
4562
4563    /// Returns true if the window is in inspector mode.
4564    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4565        #[cfg(any(feature = "inspector", debug_assertions))]
4566        {
4567            if let Some(inspector) = &self.inspector {
4568                return inspector.read(_cx).is_picking();
4569            }
4570        }
4571        false
4572    }
4573
4574    /// Executes the provided function with mutable access to an inspector state.
4575    #[cfg(any(feature = "inspector", debug_assertions))]
4576    pub fn with_inspector_state<T: 'static, R>(
4577        &mut self,
4578        _inspector_id: Option<&crate::InspectorElementId>,
4579        cx: &mut App,
4580        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4581    ) -> R {
4582        if let Some(inspector_id) = _inspector_id
4583            && let Some(inspector) = &self.inspector
4584        {
4585            let inspector = inspector.clone();
4586            let active_element_id = inspector.read(cx).active_element_id();
4587            if Some(inspector_id) == active_element_id {
4588                return inspector.update(cx, |inspector, _cx| {
4589                    inspector.with_active_element_state(self, f)
4590                });
4591            }
4592        }
4593        f(&mut None, self)
4594    }
4595
4596    #[cfg(any(feature = "inspector", debug_assertions))]
4597    pub(crate) fn build_inspector_element_id(
4598        &mut self,
4599        path: crate::InspectorElementPath,
4600    ) -> crate::InspectorElementId {
4601        self.invalidator.debug_assert_paint_or_prepaint();
4602        let path = Rc::new(path);
4603        let next_instance_id = self
4604            .next_frame
4605            .next_inspector_instance_ids
4606            .entry(path.clone())
4607            .or_insert(0);
4608        let instance_id = *next_instance_id;
4609        *next_instance_id += 1;
4610        crate::InspectorElementId { path, instance_id }
4611    }
4612
4613    #[cfg(any(feature = "inspector", debug_assertions))]
4614    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4615        if let Some(inspector) = self.inspector.take() {
4616            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4617            inspector_element.prepaint_as_root(
4618                point(self.viewport_size.width - inspector_width, px(0.0)),
4619                size(inspector_width, self.viewport_size.height).into(),
4620                self,
4621                cx,
4622            );
4623            self.inspector = Some(inspector);
4624            Some(inspector_element)
4625        } else {
4626            None
4627        }
4628    }
4629
4630    #[cfg(any(feature = "inspector", debug_assertions))]
4631    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4632        if let Some(mut inspector_element) = inspector_element {
4633            inspector_element.paint(self, cx);
4634        };
4635    }
4636
4637    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4638    /// inspect UI elements by clicking on them.
4639    #[cfg(any(feature = "inspector", debug_assertions))]
4640    pub fn insert_inspector_hitbox(
4641        &mut self,
4642        hitbox_id: HitboxId,
4643        inspector_id: Option<&crate::InspectorElementId>,
4644        cx: &App,
4645    ) {
4646        self.invalidator.debug_assert_paint_or_prepaint();
4647        if !self.is_inspector_picking(cx) {
4648            return;
4649        }
4650        if let Some(inspector_id) = inspector_id {
4651            self.next_frame
4652                .inspector_hitboxes
4653                .insert(hitbox_id, inspector_id.clone());
4654        }
4655    }
4656
4657    #[cfg(any(feature = "inspector", debug_assertions))]
4658    fn paint_inspector_hitbox(&mut self, cx: &App) {
4659        if let Some(inspector) = self.inspector.as_ref() {
4660            let inspector = inspector.read(cx);
4661            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4662                && let Some(hitbox) = self
4663                    .next_frame
4664                    .hitboxes
4665                    .iter()
4666                    .find(|hitbox| hitbox.id == hitbox_id)
4667            {
4668                self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4669            }
4670        }
4671    }
4672
4673    #[cfg(any(feature = "inspector", debug_assertions))]
4674    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4675        let Some(inspector) = self.inspector.clone() else {
4676            return;
4677        };
4678        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4679            inspector.update(cx, |inspector, _cx| {
4680                if let Some((_, inspector_id)) =
4681                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4682                {
4683                    inspector.hover(inspector_id, self);
4684                }
4685            });
4686        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4687            inspector.update(cx, |inspector, _cx| {
4688                if let Some((_, inspector_id)) =
4689                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4690                {
4691                    inspector.select(inspector_id, self);
4692                }
4693            });
4694        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4695            // This should be kept in sync with SCROLL_LINES in x11 platform.
4696            const SCROLL_LINES: f32 = 3.0;
4697            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4698            let delta_y = event
4699                .delta
4700                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4701                .y;
4702            if let Some(inspector) = self.inspector.clone() {
4703                inspector.update(cx, |inspector, _cx| {
4704                    if let Some(depth) = inspector.pick_depth.as_mut() {
4705                        *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4706                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4707                        if *depth < 0.0 {
4708                            *depth = 0.0;
4709                        } else if *depth > max_depth {
4710                            *depth = max_depth;
4711                        }
4712                        if let Some((_, inspector_id)) =
4713                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4714                        {
4715                            inspector.set_active_element_id(inspector_id, self);
4716                        }
4717                    }
4718                });
4719            }
4720        }
4721    }
4722
4723    #[cfg(any(feature = "inspector", debug_assertions))]
4724    fn hovered_inspector_hitbox(
4725        &self,
4726        inspector: &Inspector,
4727        frame: &Frame,
4728    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4729        if let Some(pick_depth) = inspector.pick_depth {
4730            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4731            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4732            let skip_count = (depth as usize).min(max_skipped);
4733            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4734                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4735                    return Some((*hitbox_id, inspector_id.clone()));
4736                }
4737            }
4738        }
4739        None
4740    }
4741
4742    /// For testing: set the current modifier keys state.
4743    /// This does not generate any events.
4744    #[cfg(any(test, feature = "test-support"))]
4745    pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4746        self.modifiers = modifiers;
4747    }
4748}
4749
4750// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4751slotmap::new_key_type! {
4752    /// A unique identifier for a window.
4753    pub struct WindowId;
4754}
4755
4756impl WindowId {
4757    /// Converts this window ID to a `u64`.
4758    pub fn as_u64(&self) -> u64 {
4759        self.0.as_ffi()
4760    }
4761}
4762
4763impl From<u64> for WindowId {
4764    fn from(value: u64) -> Self {
4765        WindowId(slotmap::KeyData::from_ffi(value))
4766    }
4767}
4768
4769/// A handle to a window with a specific root view type.
4770/// Note that this does not keep the window alive on its own.
4771#[derive(Deref, DerefMut)]
4772pub struct WindowHandle<V> {
4773    #[deref]
4774    #[deref_mut]
4775    pub(crate) any_handle: AnyWindowHandle,
4776    state_type: PhantomData<fn(V) -> V>,
4777}
4778
4779impl<V> Debug for WindowHandle<V> {
4780    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4781        f.debug_struct("WindowHandle")
4782            .field("any_handle", &self.any_handle.id.as_u64())
4783            .finish()
4784    }
4785}
4786
4787impl<V: 'static + Render> WindowHandle<V> {
4788    /// Creates a new handle from a window ID.
4789    /// This does not check if the root type of the window is `V`.
4790    pub fn new(id: WindowId) -> Self {
4791        WindowHandle {
4792            any_handle: AnyWindowHandle {
4793                id,
4794                state_type: TypeId::of::<V>(),
4795            },
4796            state_type: PhantomData,
4797        }
4798    }
4799
4800    /// Get the root view out of this window.
4801    ///
4802    /// This will fail if the window is closed or if the root view's type does not match `V`.
4803    #[cfg(any(test, feature = "test-support"))]
4804    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4805    where
4806        C: AppContext,
4807    {
4808        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4809            root_view
4810                .downcast::<V>()
4811                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4812        }))
4813    }
4814
4815    /// Updates the root view of this window.
4816    ///
4817    /// This will fail if the window has been closed or if the root view's type does not match
4818    pub fn update<C, R>(
4819        &self,
4820        cx: &mut C,
4821        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4822    ) -> Result<R>
4823    where
4824        C: AppContext,
4825    {
4826        cx.update_window(self.any_handle, |root_view, window, cx| {
4827            let view = root_view
4828                .downcast::<V>()
4829                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4830
4831            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4832        })?
4833    }
4834
4835    /// Read the root view out of this window.
4836    ///
4837    /// This will fail if the window is closed or if the root view's type does not match `V`.
4838    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4839        let x = cx
4840            .windows
4841            .get(self.id)
4842            .and_then(|window| {
4843                window
4844                    .as_deref()
4845                    .and_then(|window| window.root.clone())
4846                    .map(|root_view| root_view.downcast::<V>())
4847            })
4848            .context("window not found")?
4849            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4850
4851        Ok(x.read(cx))
4852    }
4853
4854    /// Read the root view out of this window, with a callback
4855    ///
4856    /// This will fail if the window is closed or if the root view's type does not match `V`.
4857    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4858    where
4859        C: AppContext,
4860    {
4861        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4862    }
4863
4864    /// Read the root view pointer off of this window.
4865    ///
4866    /// This will fail if the window is closed or if the root view's type does not match `V`.
4867    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4868    where
4869        C: AppContext,
4870    {
4871        cx.read_window(self, |root_view, _cx| root_view)
4872    }
4873
4874    /// Check if this window is 'active'.
4875    ///
4876    /// Will return `None` if the window is closed or currently
4877    /// borrowed.
4878    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4879        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4880            .ok()
4881    }
4882}
4883
4884impl<V> Copy for WindowHandle<V> {}
4885
4886impl<V> Clone for WindowHandle<V> {
4887    fn clone(&self) -> Self {
4888        *self
4889    }
4890}
4891
4892impl<V> PartialEq for WindowHandle<V> {
4893    fn eq(&self, other: &Self) -> bool {
4894        self.any_handle == other.any_handle
4895    }
4896}
4897
4898impl<V> Eq for WindowHandle<V> {}
4899
4900impl<V> Hash for WindowHandle<V> {
4901    fn hash<H: Hasher>(&self, state: &mut H) {
4902        self.any_handle.hash(state);
4903    }
4904}
4905
4906impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4907    fn from(val: WindowHandle<V>) -> Self {
4908        val.any_handle
4909    }
4910}
4911
4912/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4913#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4914pub struct AnyWindowHandle {
4915    pub(crate) id: WindowId,
4916    state_type: TypeId,
4917}
4918
4919impl AnyWindowHandle {
4920    /// Get the ID of this window.
4921    pub fn window_id(&self) -> WindowId {
4922        self.id
4923    }
4924
4925    /// Attempt to convert this handle to a window handle with a specific root view type.
4926    /// If the types do not match, this will return `None`.
4927    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4928        if TypeId::of::<T>() == self.state_type {
4929            Some(WindowHandle {
4930                any_handle: *self,
4931                state_type: PhantomData,
4932            })
4933        } else {
4934            None
4935        }
4936    }
4937
4938    /// Updates the state of the root view of this window.
4939    ///
4940    /// This will fail if the window has been closed.
4941    pub fn update<C, R>(
4942        self,
4943        cx: &mut C,
4944        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4945    ) -> Result<R>
4946    where
4947        C: AppContext,
4948    {
4949        cx.update_window(self, update)
4950    }
4951
4952    /// Read the state of the root view of this window.
4953    ///
4954    /// This will fail if the window has been closed.
4955    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4956    where
4957        C: AppContext,
4958        T: 'static,
4959    {
4960        let view = self
4961            .downcast::<T>()
4962            .context("the type of the window's root view has changed")?;
4963
4964        cx.read_window(&view, read)
4965    }
4966}
4967
4968impl HasWindowHandle for Window {
4969    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4970        self.platform_window.window_handle()
4971    }
4972}
4973
4974impl HasDisplayHandle for Window {
4975    fn display_handle(
4976        &self,
4977    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4978        self.platform_window.display_handle()
4979    }
4980}
4981
4982/// An identifier for an [`Element`].
4983///
4984/// Can be constructed with a string, a number, or both, as well
4985/// as other internal representations.
4986#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4987pub enum ElementId {
4988    /// The ID of a View element
4989    View(EntityId),
4990    /// An integer ID.
4991    Integer(u64),
4992    /// A string based ID.
4993    Name(SharedString),
4994    /// A UUID.
4995    Uuid(Uuid),
4996    /// An ID that's equated with a focus handle.
4997    FocusHandle(FocusId),
4998    /// A combination of a name and an integer.
4999    NamedInteger(SharedString, u64),
5000    /// A path.
5001    Path(Arc<std::path::Path>),
5002    /// A code location.
5003    CodeLocation(core::panic::Location<'static>),
5004    /// A labeled child of an element.
5005    NamedChild(Arc<ElementId>, SharedString),
5006}
5007
5008impl ElementId {
5009    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5010    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5011        Self::NamedInteger(name.into(), integer as u64)
5012    }
5013}
5014
5015impl Display for ElementId {
5016    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5017        match self {
5018            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5019            ElementId::Integer(ix) => write!(f, "{}", ix)?,
5020            ElementId::Name(name) => write!(f, "{}", name)?,
5021            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5022            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5023            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5024            ElementId::Path(path) => write!(f, "{}", path.display())?,
5025            ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5026            ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5027        }
5028
5029        Ok(())
5030    }
5031}
5032
5033impl TryInto<SharedString> for ElementId {
5034    type Error = anyhow::Error;
5035
5036    fn try_into(self) -> anyhow::Result<SharedString> {
5037        if let ElementId::Name(name) = self {
5038            Ok(name)
5039        } else {
5040            anyhow::bail!("element id is not string")
5041        }
5042    }
5043}
5044
5045impl From<usize> for ElementId {
5046    fn from(id: usize) -> Self {
5047        ElementId::Integer(id as u64)
5048    }
5049}
5050
5051impl From<i32> for ElementId {
5052    fn from(id: i32) -> Self {
5053        Self::Integer(id as u64)
5054    }
5055}
5056
5057impl From<SharedString> for ElementId {
5058    fn from(name: SharedString) -> Self {
5059        ElementId::Name(name)
5060    }
5061}
5062
5063impl From<Arc<std::path::Path>> for ElementId {
5064    fn from(path: Arc<std::path::Path>) -> Self {
5065        ElementId::Path(path)
5066    }
5067}
5068
5069impl From<&'static str> for ElementId {
5070    fn from(name: &'static str) -> Self {
5071        ElementId::Name(name.into())
5072    }
5073}
5074
5075impl<'a> From<&'a FocusHandle> for ElementId {
5076    fn from(handle: &'a FocusHandle) -> Self {
5077        ElementId::FocusHandle(handle.id)
5078    }
5079}
5080
5081impl From<(&'static str, EntityId)> for ElementId {
5082    fn from((name, id): (&'static str, EntityId)) -> Self {
5083        ElementId::NamedInteger(name.into(), id.as_u64())
5084    }
5085}
5086
5087impl From<(&'static str, usize)> for ElementId {
5088    fn from((name, id): (&'static str, usize)) -> Self {
5089        ElementId::NamedInteger(name.into(), id as u64)
5090    }
5091}
5092
5093impl From<(SharedString, usize)> for ElementId {
5094    fn from((name, id): (SharedString, usize)) -> Self {
5095        ElementId::NamedInteger(name, id as u64)
5096    }
5097}
5098
5099impl From<(&'static str, u64)> for ElementId {
5100    fn from((name, id): (&'static str, u64)) -> Self {
5101        ElementId::NamedInteger(name.into(), id)
5102    }
5103}
5104
5105impl From<Uuid> for ElementId {
5106    fn from(value: Uuid) -> Self {
5107        Self::Uuid(value)
5108    }
5109}
5110
5111impl From<(&'static str, u32)> for ElementId {
5112    fn from((name, id): (&'static str, u32)) -> Self {
5113        ElementId::NamedInteger(name.into(), id.into())
5114    }
5115}
5116
5117impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5118    fn from((id, name): (ElementId, T)) -> Self {
5119        ElementId::NamedChild(Arc::new(id), name.into())
5120    }
5121}
5122
5123impl From<&'static core::panic::Location<'static>> for ElementId {
5124    fn from(location: &'static core::panic::Location<'static>) -> Self {
5125        ElementId::CodeLocation(*location)
5126    }
5127}
5128
5129/// A rectangle to be rendered in the window at the given position and size.
5130/// Passed as an argument [`Window::paint_quad`].
5131#[derive(Clone)]
5132pub struct PaintQuad {
5133    /// The bounds of the quad within the window.
5134    pub bounds: Bounds<Pixels>,
5135    /// The radii of the quad's corners.
5136    pub corner_radii: Corners<Pixels>,
5137    /// The background color of the quad.
5138    pub background: Background,
5139    /// The widths of the quad's borders.
5140    pub border_widths: Edges<Pixels>,
5141    /// The color of the quad's borders.
5142    pub border_color: Hsla,
5143    /// The style of the quad's borders.
5144    pub border_style: BorderStyle,
5145}
5146
5147impl PaintQuad {
5148    /// Sets the corner radii of the quad.
5149    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5150        PaintQuad {
5151            corner_radii: corner_radii.into(),
5152            ..self
5153        }
5154    }
5155
5156    /// Sets the border widths of the quad.
5157    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5158        PaintQuad {
5159            border_widths: border_widths.into(),
5160            ..self
5161        }
5162    }
5163
5164    /// Sets the border color of the quad.
5165    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5166        PaintQuad {
5167            border_color: border_color.into(),
5168            ..self
5169        }
5170    }
5171
5172    /// Sets the background color of the quad.
5173    pub fn background(self, background: impl Into<Background>) -> Self {
5174        PaintQuad {
5175            background: background.into(),
5176            ..self
5177        }
5178    }
5179}
5180
5181/// Creates a quad with the given parameters.
5182pub fn quad(
5183    bounds: Bounds<Pixels>,
5184    corner_radii: impl Into<Corners<Pixels>>,
5185    background: impl Into<Background>,
5186    border_widths: impl Into<Edges<Pixels>>,
5187    border_color: impl Into<Hsla>,
5188    border_style: BorderStyle,
5189) -> PaintQuad {
5190    PaintQuad {
5191        bounds,
5192        corner_radii: corner_radii.into(),
5193        background: background.into(),
5194        border_widths: border_widths.into(),
5195        border_color: border_color.into(),
5196        border_style,
5197    }
5198}
5199
5200/// Creates a filled quad with the given bounds and background color.
5201pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5202    PaintQuad {
5203        bounds: bounds.into(),
5204        corner_radii: (0.).into(),
5205        background: background.into(),
5206        border_widths: (0.).into(),
5207        border_color: transparent_black(),
5208        border_style: BorderStyle::default(),
5209    }
5210}
5211
5212/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5213pub fn outline(
5214    bounds: impl Into<Bounds<Pixels>>,
5215    border_color: impl Into<Hsla>,
5216    border_style: BorderStyle,
5217) -> PaintQuad {
5218    PaintQuad {
5219        bounds: bounds.into(),
5220        corner_radii: (0.).into(),
5221        background: transparent_black().into(),
5222        border_widths: (1.).into(),
5223        border_color: border_color.into(),
5224        border_style,
5225    }
5226}