1#[cfg(any(feature = "inspector", debug_assertions))]
   2use crate::Inspector;
   3use crate::{
   4    Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
   5    AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
   6    Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
   7    DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
   8    FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
   9    KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
  10    LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
  11    MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
  12    PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
  13    Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
  14    SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y, ScaledPixels, Scene, Shadow,
  15    SharedString, Size, StrikethroughStyle, Style, SubscriberSet, Subscription, SystemWindowTab,
  16    SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
  17    TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
  18    WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
  19    point, prelude::*, px, rems, size, transparent_black,
  20};
  21use anyhow::{Context as _, Result, anyhow};
  22use collections::{FxHashMap, FxHashSet};
  23#[cfg(target_os = "macos")]
  24use core_video::pixel_buffer::CVPixelBuffer;
  25use derive_more::{Deref, DerefMut};
  26use futures::FutureExt;
  27use futures::channel::oneshot;
  28use itertools::FoldWhile::{Continue, Done};
  29use itertools::Itertools;
  30use parking_lot::RwLock;
  31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
  32use refineable::Refineable;
  33use slotmap::SlotMap;
  34use smallvec::SmallVec;
  35use std::{
  36    any::{Any, TypeId},
  37    borrow::Cow,
  38    cell::{Cell, RefCell},
  39    cmp,
  40    fmt::{Debug, Display},
  41    hash::{Hash, Hasher},
  42    marker::PhantomData,
  43    mem,
  44    ops::{DerefMut, Range},
  45    rc::Rc,
  46    sync::{
  47        Arc, Weak,
  48        atomic::{AtomicUsize, Ordering::SeqCst},
  49    },
  50    time::{Duration, Instant},
  51};
  52use util::post_inc;
  53use util::{ResultExt, measure};
  54use uuid::Uuid;
  55
  56mod prompts;
  57
  58use crate::util::atomic_incr_if_not_zero;
  59pub use prompts::*;
  60
  61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
  62
  63/// A 6:5 aspect ratio minimum window size to be used for functional,
  64/// additional-to-main-Zed windows, like the settings and rules library windows.
  65pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
  66    width: Pixels(900.),
  67    height: Pixels(750.),
  68};
  69
  70/// Represents the two different phases when dispatching events.
  71#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  72pub enum DispatchPhase {
  73    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  74    /// invoked front to back and keyboard event listeners are invoked from the focused element
  75    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  76    /// registering event listeners.
  77    #[default]
  78    Bubble,
  79    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  80    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  81    /// is used for special purposes such as clearing the "pressed" state for click events. If
  82    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  83    /// outside of the immediate region may rely on detecting non-local events during this phase.
  84    Capture,
  85}
  86
  87impl DispatchPhase {
  88    /// Returns true if this represents the "bubble" phase.
  89    #[inline]
  90    pub fn bubble(self) -> bool {
  91        self == DispatchPhase::Bubble
  92    }
  93
  94    /// Returns true if this represents the "capture" phase.
  95    #[inline]
  96    pub fn capture(self) -> bool {
  97        self == DispatchPhase::Capture
  98    }
  99}
 100
 101struct WindowInvalidatorInner {
 102    pub dirty: bool,
 103    pub draw_phase: DrawPhase,
 104    pub dirty_views: FxHashSet<EntityId>,
 105}
 106
 107#[derive(Clone)]
 108pub(crate) struct WindowInvalidator {
 109    inner: Rc<RefCell<WindowInvalidatorInner>>,
 110}
 111
 112impl WindowInvalidator {
 113    pub fn new() -> Self {
 114        WindowInvalidator {
 115            inner: Rc::new(RefCell::new(WindowInvalidatorInner {
 116                dirty: true,
 117                draw_phase: DrawPhase::None,
 118                dirty_views: FxHashSet::default(),
 119            })),
 120        }
 121    }
 122
 123    pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
 124        let mut inner = self.inner.borrow_mut();
 125        inner.dirty_views.insert(entity);
 126        if inner.draw_phase == DrawPhase::None {
 127            inner.dirty = true;
 128            cx.push_effect(Effect::Notify { emitter: entity });
 129            true
 130        } else {
 131            false
 132        }
 133    }
 134
 135    pub fn is_dirty(&self) -> bool {
 136        self.inner.borrow().dirty
 137    }
 138
 139    pub fn set_dirty(&self, dirty: bool) {
 140        self.inner.borrow_mut().dirty = dirty
 141    }
 142
 143    pub fn set_phase(&self, phase: DrawPhase) {
 144        self.inner.borrow_mut().draw_phase = phase
 145    }
 146
 147    pub fn take_views(&self) -> FxHashSet<EntityId> {
 148        mem::take(&mut self.inner.borrow_mut().dirty_views)
 149    }
 150
 151    pub fn replace_views(&self, views: FxHashSet<EntityId>) {
 152        self.inner.borrow_mut().dirty_views = views;
 153    }
 154
 155    pub fn not_drawing(&self) -> bool {
 156        self.inner.borrow().draw_phase == DrawPhase::None
 157    }
 158
 159    #[track_caller]
 160    pub fn debug_assert_paint(&self) {
 161        debug_assert!(
 162            matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
 163            "this method can only be called during paint"
 164        );
 165    }
 166
 167    #[track_caller]
 168    pub fn debug_assert_prepaint(&self) {
 169        debug_assert!(
 170            matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
 171            "this method can only be called during request_layout, or prepaint"
 172        );
 173    }
 174
 175    #[track_caller]
 176    pub fn debug_assert_paint_or_prepaint(&self) {
 177        debug_assert!(
 178            matches!(
 179                self.inner.borrow().draw_phase,
 180                DrawPhase::Paint | DrawPhase::Prepaint
 181            ),
 182            "this method can only be called during request_layout, prepaint, or paint"
 183        );
 184    }
 185}
 186
 187type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
 188
 189pub(crate) type AnyWindowFocusListener =
 190    Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
 191
 192pub(crate) struct WindowFocusEvent {
 193    pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
 194    pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
 195}
 196
 197impl WindowFocusEvent {
 198    pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
 199        !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
 200    }
 201
 202    pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
 203        self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
 204    }
 205}
 206
 207/// This is provided when subscribing for `Context::on_focus_out` events.
 208pub struct FocusOutEvent {
 209    /// A weak focus handle representing what was blurred.
 210    pub blurred: WeakFocusHandle,
 211}
 212
 213slotmap::new_key_type! {
 214    /// A globally unique identifier for a focusable element.
 215    pub struct FocusId;
 216}
 217
 218thread_local! {
 219    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
 220}
 221
 222/// Returned when the element arena has been used and so must be cleared before the next draw.
 223#[must_use]
 224pub struct ArenaClearNeeded;
 225
 226impl ArenaClearNeeded {
 227    /// Clear the element arena.
 228    pub fn clear(self) {
 229        ELEMENT_ARENA.with_borrow_mut(|element_arena| {
 230            element_arena.clear();
 231        });
 232    }
 233}
 234
 235pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
 236pub(crate) struct FocusRef {
 237    pub(crate) ref_count: AtomicUsize,
 238    pub(crate) tab_index: isize,
 239    pub(crate) tab_stop: bool,
 240}
 241
 242impl FocusId {
 243    /// Obtains whether the element associated with this handle is currently focused.
 244    pub fn is_focused(&self, window: &Window) -> bool {
 245        window.focus == Some(*self)
 246    }
 247
 248    /// Obtains whether the element associated with this handle contains the focused
 249    /// element or is itself focused.
 250    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 251        window
 252            .focused(cx)
 253            .is_some_and(|focused| self.contains(focused.id, window))
 254    }
 255
 256    /// Obtains whether the element associated with this handle is contained within the
 257    /// focused element or is itself focused.
 258    pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
 259        let focused = window.focused(cx);
 260        focused.is_some_and(|focused| focused.id.contains(*self, window))
 261    }
 262
 263    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 264    pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
 265        window
 266            .rendered_frame
 267            .dispatch_tree
 268            .focus_contains(*self, other)
 269    }
 270}
 271
 272/// A handle which can be used to track and manipulate the focused element in a window.
 273pub struct FocusHandle {
 274    pub(crate) id: FocusId,
 275    handles: Arc<FocusMap>,
 276    /// The index of this element in the tab order.
 277    pub tab_index: isize,
 278    /// Whether this element can be focused by tab navigation.
 279    pub tab_stop: bool,
 280}
 281
 282impl std::fmt::Debug for FocusHandle {
 283    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 284        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 285    }
 286}
 287
 288impl FocusHandle {
 289    pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
 290        let id = handles.write().insert(FocusRef {
 291            ref_count: AtomicUsize::new(1),
 292            tab_index: 0,
 293            tab_stop: false,
 294        });
 295
 296        Self {
 297            id,
 298            tab_index: 0,
 299            tab_stop: false,
 300            handles: handles.clone(),
 301        }
 302    }
 303
 304    pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
 305        let lock = handles.read();
 306        let focus = lock.get(id)?;
 307        if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
 308            return None;
 309        }
 310        Some(Self {
 311            id,
 312            tab_index: focus.tab_index,
 313            tab_stop: focus.tab_stop,
 314            handles: handles.clone(),
 315        })
 316    }
 317
 318    /// Sets the tab index of the element associated with this handle.
 319    pub fn tab_index(mut self, index: isize) -> Self {
 320        self.tab_index = index;
 321        if let Some(focus) = self.handles.write().get_mut(self.id) {
 322            focus.tab_index = index;
 323        }
 324        self
 325    }
 326
 327    /// Sets whether the element associated with this handle is a tab stop.
 328    ///
 329    /// When `false`, the element will not be included in the tab order.
 330    pub fn tab_stop(mut self, tab_stop: bool) -> Self {
 331        self.tab_stop = tab_stop;
 332        if let Some(focus) = self.handles.write().get_mut(self.id) {
 333            focus.tab_stop = tab_stop;
 334        }
 335        self
 336    }
 337
 338    /// Converts this focus handle into a weak variant, which does not prevent it from being released.
 339    pub fn downgrade(&self) -> WeakFocusHandle {
 340        WeakFocusHandle {
 341            id: self.id,
 342            handles: Arc::downgrade(&self.handles),
 343        }
 344    }
 345
 346    /// Moves the focus to the element associated with this handle.
 347    pub fn focus(&self, window: &mut Window) {
 348        window.focus(self)
 349    }
 350
 351    /// Obtains whether the element associated with this handle is currently focused.
 352    pub fn is_focused(&self, window: &Window) -> bool {
 353        self.id.is_focused(window)
 354    }
 355
 356    /// Obtains whether the element associated with this handle contains the focused
 357    /// element or is itself focused.
 358    pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
 359        self.id.contains_focused(window, cx)
 360    }
 361
 362    /// Obtains whether the element associated with this handle is contained within the
 363    /// focused element or is itself focused.
 364    pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
 365        self.id.within_focused(window, cx)
 366    }
 367
 368    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 369    pub fn contains(&self, other: &Self, window: &Window) -> bool {
 370        self.id.contains(other.id, window)
 371    }
 372
 373    /// Dispatch an action on the element that rendered this focus handle
 374    pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
 375        if let Some(node_id) = window
 376            .rendered_frame
 377            .dispatch_tree
 378            .focusable_node_id(self.id)
 379        {
 380            window.dispatch_action_on_node(node_id, action, cx)
 381        }
 382    }
 383}
 384
 385impl Clone for FocusHandle {
 386    fn clone(&self) -> Self {
 387        Self::for_id(self.id, &self.handles).unwrap()
 388    }
 389}
 390
 391impl PartialEq for FocusHandle {
 392    fn eq(&self, other: &Self) -> bool {
 393        self.id == other.id
 394    }
 395}
 396
 397impl Eq for FocusHandle {}
 398
 399impl Drop for FocusHandle {
 400    fn drop(&mut self) {
 401        self.handles
 402            .read()
 403            .get(self.id)
 404            .unwrap()
 405            .ref_count
 406            .fetch_sub(1, SeqCst);
 407    }
 408}
 409
 410/// A weak reference to a focus handle.
 411#[derive(Clone, Debug)]
 412pub struct WeakFocusHandle {
 413    pub(crate) id: FocusId,
 414    pub(crate) handles: Weak<FocusMap>,
 415}
 416
 417impl WeakFocusHandle {
 418    /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
 419    pub fn upgrade(&self) -> Option<FocusHandle> {
 420        let handles = self.handles.upgrade()?;
 421        FocusHandle::for_id(self.id, &handles)
 422    }
 423}
 424
 425impl PartialEq for WeakFocusHandle {
 426    fn eq(&self, other: &WeakFocusHandle) -> bool {
 427        self.id == other.id
 428    }
 429}
 430
 431impl Eq for WeakFocusHandle {}
 432
 433impl PartialEq<FocusHandle> for WeakFocusHandle {
 434    fn eq(&self, other: &FocusHandle) -> bool {
 435        self.id == other.id
 436    }
 437}
 438
 439impl PartialEq<WeakFocusHandle> for FocusHandle {
 440    fn eq(&self, other: &WeakFocusHandle) -> bool {
 441        self.id == other.id
 442    }
 443}
 444
 445/// Focusable allows users of your view to easily
 446/// focus it (using window.focus_view(cx, view))
 447pub trait Focusable: 'static {
 448    /// Returns the focus handle associated with this view.
 449    fn focus_handle(&self, cx: &App) -> FocusHandle;
 450}
 451
 452impl<V: Focusable> Focusable for Entity<V> {
 453    fn focus_handle(&self, cx: &App) -> FocusHandle {
 454        self.read(cx).focus_handle(cx)
 455    }
 456}
 457
 458/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 459/// where the lifecycle of the view is handled by another view.
 460pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
 461
 462impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
 463
 464/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 465pub struct DismissEvent;
 466
 467type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
 468
 469pub(crate) type AnyMouseListener =
 470    Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
 471
 472#[derive(Clone)]
 473pub(crate) struct CursorStyleRequest {
 474    pub(crate) hitbox_id: Option<HitboxId>,
 475    pub(crate) style: CursorStyle,
 476}
 477
 478#[derive(Default, Eq, PartialEq)]
 479pub(crate) struct HitTest {
 480    pub(crate) ids: SmallVec<[HitboxId; 8]>,
 481    pub(crate) hover_hitbox_count: usize,
 482}
 483
 484/// A type of window control area that corresponds to the platform window.
 485#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 486pub enum WindowControlArea {
 487    /// An area that allows dragging of the platform window.
 488    Drag,
 489    /// An area that allows closing of the platform window.
 490    Close,
 491    /// An area that allows maximizing of the platform window.
 492    Max,
 493    /// An area that allows minimizing of the platform window.
 494    Min,
 495}
 496
 497/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
 498#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
 499pub struct HitboxId(u64);
 500
 501impl HitboxId {
 502    /// Checks if the hitbox with this ID is currently hovered. Except when handling
 503    /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
 504    /// events or paint hover styles.
 505    ///
 506    /// See [`Hitbox::is_hovered`] for details.
 507    pub fn is_hovered(self, window: &Window) -> bool {
 508        let hit_test = &window.mouse_hit_test;
 509        for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
 510            if self == *id {
 511                return true;
 512            }
 513        }
 514        false
 515    }
 516
 517    /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
 518    /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
 519    /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
 520    /// this distinction.
 521    pub fn should_handle_scroll(self, window: &Window) -> bool {
 522        window.mouse_hit_test.ids.contains(&self)
 523    }
 524
 525    fn next(mut self) -> HitboxId {
 526        HitboxId(self.0.wrapping_add(1))
 527    }
 528}
 529
 530/// A rectangular region that potentially blocks hitboxes inserted prior.
 531/// See [Window::insert_hitbox] for more details.
 532#[derive(Clone, Debug, Deref)]
 533pub struct Hitbox {
 534    /// A unique identifier for the hitbox.
 535    pub id: HitboxId,
 536    /// The bounds of the hitbox.
 537    #[deref]
 538    pub bounds: Bounds<Pixels>,
 539    /// The content mask when the hitbox was inserted.
 540    pub content_mask: ContentMask<Pixels>,
 541    /// Flags that specify hitbox behavior.
 542    pub behavior: HitboxBehavior,
 543}
 544
 545impl Hitbox {
 546    /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
 547    /// typically what you want when determining whether to handle mouse events or paint hover
 548    /// styles.
 549    ///
 550    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 551    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
 552    /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
 553    ///
 554    /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
 555    /// Concretely, this is due to use-cases like overlays that cause the elements under to be
 556    /// non-interactive while still allowing scrolling. More abstractly, this is because
 557    /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
 558    /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
 559    /// container.
 560    pub fn is_hovered(&self, window: &Window) -> bool {
 561        self.id.is_hovered(window)
 562    }
 563
 564    /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
 565    /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
 566    /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
 567    ///
 568    /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
 569    /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
 570    pub fn should_handle_scroll(&self, window: &Window) -> bool {
 571        self.id.should_handle_scroll(window)
 572    }
 573}
 574
 575/// How the hitbox affects mouse behavior.
 576#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
 577pub enum HitboxBehavior {
 578    /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
 579    #[default]
 580    Normal,
 581
 582    /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
 583    /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
 584    /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
 585    /// [`InteractiveElement::occlude`].
 586    ///
 587    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 588    /// bubble-phase handler for every mouse event type:
 589    ///
 590    /// ```ignore
 591    /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
 592    ///     if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
 593    ///         cx.stop_propagation();
 594    ///     }
 595    /// })
 596    /// ```
 597    ///
 598    /// This has effects beyond event handling - any use of hitbox checking, such as hover
 599    /// styles and tooltops. These other behaviors are the main point of this mechanism. An
 600    /// alternative might be to not affect mouse event handling - but this would allow
 601    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 602    /// be hovered.
 603    BlockMouse,
 604
 605    /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
 606    /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
 607    /// interaction except scroll events to be ignored - see the documentation of
 608    /// [`Hitbox::is_hovered`] for details. This flag is set by
 609    /// [`InteractiveElement::block_mouse_except_scroll`].
 610    ///
 611    /// For mouse handlers that check those hitboxes, this behaves the same as registering a
 612    /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
 613    ///
 614    /// ```ignore
 615    /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
 616    ///     if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
 617    ///         cx.stop_propagation();
 618    ///     }
 619    /// })
 620    /// ```
 621    ///
 622    /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
 623    /// handled differently than other mouse events. If also blocking these scroll events is
 624    /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
 625    ///
 626    /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
 627    /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
 628    /// An alternative might be to not affect mouse event handling - but this would allow
 629    /// inconsistent UI where clicks and moves interact with elements that are not considered to
 630    /// be hovered.
 631    BlockMouseExceptScroll,
 632}
 633
 634/// An identifier for a tooltip.
 635#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
 636pub struct TooltipId(usize);
 637
 638impl TooltipId {
 639    /// Checks if the tooltip is currently hovered.
 640    pub fn is_hovered(&self, window: &Window) -> bool {
 641        window
 642            .tooltip_bounds
 643            .as_ref()
 644            .is_some_and(|tooltip_bounds| {
 645                tooltip_bounds.id == *self
 646                    && tooltip_bounds.bounds.contains(&window.mouse_position())
 647            })
 648    }
 649}
 650
 651pub(crate) struct TooltipBounds {
 652    id: TooltipId,
 653    bounds: Bounds<Pixels>,
 654}
 655
 656#[derive(Clone)]
 657pub(crate) struct TooltipRequest {
 658    id: TooltipId,
 659    tooltip: AnyTooltip,
 660}
 661
 662pub(crate) struct DeferredDraw {
 663    current_view: EntityId,
 664    priority: usize,
 665    parent_node: DispatchNodeId,
 666    element_id_stack: SmallVec<[ElementId; 32]>,
 667    text_style_stack: Vec<TextStyleRefinement>,
 668    element: Option<AnyElement>,
 669    absolute_offset: Point<Pixels>,
 670    prepaint_range: Range<PrepaintStateIndex>,
 671    paint_range: Range<PaintIndex>,
 672}
 673
 674pub(crate) struct Frame {
 675    pub(crate) focus: Option<FocusId>,
 676    pub(crate) window_active: bool,
 677    pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
 678    accessed_element_states: Vec<(GlobalElementId, TypeId)>,
 679    pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
 680    pub(crate) dispatch_tree: DispatchTree,
 681    pub(crate) scene: Scene,
 682    pub(crate) hitboxes: Vec<Hitbox>,
 683    pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
 684    pub(crate) deferred_draws: Vec<DeferredDraw>,
 685    pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
 686    pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
 687    pub(crate) cursor_styles: Vec<CursorStyleRequest>,
 688    #[cfg(any(test, feature = "test-support"))]
 689    pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
 690    #[cfg(any(feature = "inspector", debug_assertions))]
 691    pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
 692    #[cfg(any(feature = "inspector", debug_assertions))]
 693    pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
 694    pub(crate) tab_stops: TabStopMap,
 695}
 696
 697#[derive(Clone, Default)]
 698pub(crate) struct PrepaintStateIndex {
 699    hitboxes_index: usize,
 700    tooltips_index: usize,
 701    deferred_draws_index: usize,
 702    dispatch_tree_index: usize,
 703    accessed_element_states_index: usize,
 704    line_layout_index: LineLayoutIndex,
 705}
 706
 707#[derive(Clone, Default)]
 708pub(crate) struct PaintIndex {
 709    scene_index: usize,
 710    mouse_listeners_index: usize,
 711    input_handlers_index: usize,
 712    cursor_styles_index: usize,
 713    accessed_element_states_index: usize,
 714    tab_handle_index: usize,
 715    line_layout_index: LineLayoutIndex,
 716}
 717
 718impl Frame {
 719    pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
 720        Frame {
 721            focus: None,
 722            window_active: false,
 723            element_states: FxHashMap::default(),
 724            accessed_element_states: Vec::new(),
 725            mouse_listeners: Vec::new(),
 726            dispatch_tree,
 727            scene: Scene::default(),
 728            hitboxes: Vec::new(),
 729            window_control_hitboxes: Vec::new(),
 730            deferred_draws: Vec::new(),
 731            input_handlers: Vec::new(),
 732            tooltip_requests: Vec::new(),
 733            cursor_styles: Vec::new(),
 734
 735            #[cfg(any(test, feature = "test-support"))]
 736            debug_bounds: FxHashMap::default(),
 737
 738            #[cfg(any(feature = "inspector", debug_assertions))]
 739            next_inspector_instance_ids: FxHashMap::default(),
 740
 741            #[cfg(any(feature = "inspector", debug_assertions))]
 742            inspector_hitboxes: FxHashMap::default(),
 743            tab_stops: TabStopMap::default(),
 744        }
 745    }
 746
 747    pub(crate) fn clear(&mut self) {
 748        self.element_states.clear();
 749        self.accessed_element_states.clear();
 750        self.mouse_listeners.clear();
 751        self.dispatch_tree.clear();
 752        self.scene.clear();
 753        self.input_handlers.clear();
 754        self.tooltip_requests.clear();
 755        self.cursor_styles.clear();
 756        self.hitboxes.clear();
 757        self.window_control_hitboxes.clear();
 758        self.deferred_draws.clear();
 759        self.tab_stops.clear();
 760        self.focus = None;
 761
 762        #[cfg(any(feature = "inspector", debug_assertions))]
 763        {
 764            self.next_inspector_instance_ids.clear();
 765            self.inspector_hitboxes.clear();
 766        }
 767    }
 768
 769    pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
 770        self.cursor_styles
 771            .iter()
 772            .rev()
 773            .fold_while(None, |style, request| match request.hitbox_id {
 774                None => Done(Some(request.style)),
 775                Some(hitbox_id) => Continue(
 776                    style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
 777                ),
 778            })
 779            .into_inner()
 780    }
 781
 782    pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
 783        let mut set_hover_hitbox_count = false;
 784        let mut hit_test = HitTest::default();
 785        for hitbox in self.hitboxes.iter().rev() {
 786            let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
 787            if bounds.contains(&position) {
 788                hit_test.ids.push(hitbox.id);
 789                if !set_hover_hitbox_count
 790                    && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
 791                {
 792                    hit_test.hover_hitbox_count = hit_test.ids.len();
 793                    set_hover_hitbox_count = true;
 794                }
 795                if hitbox.behavior == HitboxBehavior::BlockMouse {
 796                    break;
 797                }
 798            }
 799        }
 800        if !set_hover_hitbox_count {
 801            hit_test.hover_hitbox_count = hit_test.ids.len();
 802        }
 803        hit_test
 804    }
 805
 806    pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 807        self.focus
 808            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 809            .unwrap_or_default()
 810    }
 811
 812    pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
 813        for element_state_key in &self.accessed_element_states {
 814            if let Some((element_state_key, element_state)) =
 815                prev_frame.element_states.remove_entry(element_state_key)
 816            {
 817                self.element_states.insert(element_state_key, element_state);
 818            }
 819        }
 820
 821        self.scene.finish();
 822    }
 823}
 824
 825#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
 826enum InputModality {
 827    Mouse,
 828    Keyboard,
 829}
 830
 831/// Holds the state for a specific window.
 832pub struct Window {
 833    pub(crate) handle: AnyWindowHandle,
 834    pub(crate) invalidator: WindowInvalidator,
 835    pub(crate) removed: bool,
 836    pub(crate) platform_window: Box<dyn PlatformWindow>,
 837    display_id: Option<DisplayId>,
 838    sprite_atlas: Arc<dyn PlatformAtlas>,
 839    text_system: Arc<WindowTextSystem>,
 840    rem_size: Pixels,
 841    /// The stack of override values for the window's rem size.
 842    ///
 843    /// This is used by `with_rem_size` to allow rendering an element tree with
 844    /// a given rem size.
 845    rem_size_override_stack: SmallVec<[Pixels; 8]>,
 846    pub(crate) viewport_size: Size<Pixels>,
 847    layout_engine: Option<TaffyLayoutEngine>,
 848    pub(crate) root: Option<AnyView>,
 849    pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
 850    pub(crate) text_style_stack: Vec<TextStyleRefinement>,
 851    pub(crate) rendered_entity_stack: Vec<EntityId>,
 852    pub(crate) element_offset_stack: Vec<Point<Pixels>>,
 853    pub(crate) element_opacity: f32,
 854    pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
 855    pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
 856    pub(crate) image_cache_stack: Vec<AnyImageCache>,
 857    pub(crate) rendered_frame: Frame,
 858    pub(crate) next_frame: Frame,
 859    next_hitbox_id: HitboxId,
 860    pub(crate) next_tooltip_id: TooltipId,
 861    pub(crate) tooltip_bounds: Option<TooltipBounds>,
 862    next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
 863    pub(crate) dirty_views: FxHashSet<EntityId>,
 864    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 865    pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 866    default_prevented: bool,
 867    mouse_position: Point<Pixels>,
 868    mouse_hit_test: HitTest,
 869    modifiers: Modifiers,
 870    capslock: Capslock,
 871    scale_factor: f32,
 872    pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
 873    appearance: WindowAppearance,
 874    pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
 875    active: Rc<Cell<bool>>,
 876    hovered: Rc<Cell<bool>>,
 877    pub(crate) needs_present: Rc<Cell<bool>>,
 878    pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
 879    last_input_modality: InputModality,
 880    pub(crate) refreshing: bool,
 881    pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
 882    pub(crate) focus: Option<FocusId>,
 883    focus_enabled: bool,
 884    pending_input: Option<PendingInput>,
 885    pending_modifier: ModifierState,
 886    pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
 887    prompt: Option<RenderablePromptHandle>,
 888    pub(crate) client_inset: Option<Pixels>,
 889    #[cfg(any(feature = "inspector", debug_assertions))]
 890    inspector: Option<Entity<Inspector>>,
 891}
 892
 893#[derive(Clone, Debug, Default)]
 894struct ModifierState {
 895    modifiers: Modifiers,
 896    saw_keystroke: bool,
 897}
 898
 899#[derive(Clone, Copy, Debug, Eq, PartialEq)]
 900pub(crate) enum DrawPhase {
 901    None,
 902    Prepaint,
 903    Paint,
 904    Focus,
 905}
 906
 907#[derive(Default, Debug)]
 908struct PendingInput {
 909    keystrokes: SmallVec<[Keystroke; 1]>,
 910    focus: Option<FocusId>,
 911    timer: Option<Task<()>>,
 912}
 913
 914pub(crate) struct ElementStateBox {
 915    pub(crate) inner: Box<dyn Any>,
 916    #[cfg(debug_assertions)]
 917    pub(crate) type_name: &'static str,
 918}
 919
 920fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
 921    const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
 922
 923    // TODO, BUG: if you open a window with the currently active window
 924    // on the stack, this will erroneously select the 'unwrap_or_else'
 925    // code path
 926    cx.active_window()
 927        .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
 928        .map(|mut bounds| {
 929            bounds.origin += DEFAULT_WINDOW_OFFSET;
 930            bounds
 931        })
 932        .unwrap_or_else(|| {
 933            let display = display_id
 934                .map(|id| cx.find_display(id))
 935                .unwrap_or_else(|| cx.primary_display());
 936
 937            display
 938                .map(|display| display.default_bounds())
 939                .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
 940        })
 941}
 942
 943impl Window {
 944    pub(crate) fn new(
 945        handle: AnyWindowHandle,
 946        options: WindowOptions,
 947        cx: &mut App,
 948    ) -> Result<Self> {
 949        let WindowOptions {
 950            window_bounds,
 951            titlebar,
 952            focus,
 953            show,
 954            kind,
 955            is_movable,
 956            is_resizable,
 957            is_minimizable,
 958            display_id,
 959            window_background,
 960            app_id,
 961            window_min_size,
 962            window_decorations,
 963            #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
 964            tabbing_identifier,
 965        } = options;
 966
 967        let bounds = window_bounds
 968            .map(|bounds| bounds.get_bounds())
 969            .unwrap_or_else(|| default_bounds(display_id, cx));
 970        let mut platform_window = cx.platform.open_window(
 971            handle,
 972            WindowParams {
 973                bounds,
 974                titlebar,
 975                kind,
 976                is_movable,
 977                is_resizable,
 978                is_minimizable,
 979                focus,
 980                show,
 981                display_id,
 982                window_min_size,
 983                #[cfg(target_os = "macos")]
 984                tabbing_identifier,
 985            },
 986        )?;
 987
 988        let tab_bar_visible = platform_window.tab_bar_visible();
 989        SystemWindowTabController::init_visible(cx, tab_bar_visible);
 990        if let Some(tabs) = platform_window.tabbed_windows() {
 991            SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
 992        }
 993
 994        let display_id = platform_window.display().map(|display| display.id());
 995        let sprite_atlas = platform_window.sprite_atlas();
 996        let mouse_position = platform_window.mouse_position();
 997        let modifiers = platform_window.modifiers();
 998        let capslock = platform_window.capslock();
 999        let content_size = platform_window.content_size();
1000        let scale_factor = platform_window.scale_factor();
1001        let appearance = platform_window.appearance();
1002        let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1003        let invalidator = WindowInvalidator::new();
1004        let active = Rc::new(Cell::new(platform_window.is_active()));
1005        let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1006        let needs_present = Rc::new(Cell::new(false));
1007        let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1008        let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1009
1010        platform_window
1011            .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1012        platform_window.set_background_appearance(window_background);
1013
1014        if let Some(ref window_open_state) = window_bounds {
1015            match window_open_state {
1016                WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1017                WindowBounds::Maximized(_) => platform_window.zoom(),
1018                WindowBounds::Windowed(_) => {}
1019            }
1020        }
1021
1022        platform_window.on_close(Box::new({
1023            let window_id = handle.window_id();
1024            let mut cx = cx.to_async();
1025            move || {
1026                let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1027                let _ = cx.update(|cx| {
1028                    SystemWindowTabController::remove_tab(cx, window_id);
1029                });
1030            }
1031        }));
1032        platform_window.on_request_frame(Box::new({
1033            let mut cx = cx.to_async();
1034            let invalidator = invalidator.clone();
1035            let active = active.clone();
1036            let needs_present = needs_present.clone();
1037            let next_frame_callbacks = next_frame_callbacks.clone();
1038            let last_input_timestamp = last_input_timestamp.clone();
1039            move |request_frame_options| {
1040                let next_frame_callbacks = next_frame_callbacks.take();
1041                if !next_frame_callbacks.is_empty() {
1042                    handle
1043                        .update(&mut cx, |_, window, cx| {
1044                            for callback in next_frame_callbacks {
1045                                callback(window, cx);
1046                            }
1047                        })
1048                        .log_err();
1049                }
1050
1051                // Keep presenting the current scene for 1 extra second since the
1052                // last input to prevent the display from underclocking the refresh rate.
1053                let needs_present = request_frame_options.require_presentation
1054                    || needs_present.get()
1055                    || (active.get()
1056                        && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1057
1058                if invalidator.is_dirty() || request_frame_options.force_render {
1059                    measure("frame duration", || {
1060                        handle
1061                            .update(&mut cx, |_, window, cx| {
1062                                let arena_clear_needed = window.draw(cx);
1063                                window.present();
1064                                // drop the arena elements after present to reduce latency
1065                                arena_clear_needed.clear();
1066                            })
1067                            .log_err();
1068                    })
1069                } else if needs_present {
1070                    handle
1071                        .update(&mut cx, |_, window, _| window.present())
1072                        .log_err();
1073                }
1074
1075                handle
1076                    .update(&mut cx, |_, window, _| {
1077                        window.complete_frame();
1078                    })
1079                    .log_err();
1080            }
1081        }));
1082        platform_window.on_resize(Box::new({
1083            let mut cx = cx.to_async();
1084            move |_, _| {
1085                handle
1086                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1087                    .log_err();
1088            }
1089        }));
1090        platform_window.on_moved(Box::new({
1091            let mut cx = cx.to_async();
1092            move || {
1093                handle
1094                    .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1095                    .log_err();
1096            }
1097        }));
1098        platform_window.on_appearance_changed(Box::new({
1099            let mut cx = cx.to_async();
1100            move || {
1101                handle
1102                    .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1103                    .log_err();
1104            }
1105        }));
1106        platform_window.on_active_status_change(Box::new({
1107            let mut cx = cx.to_async();
1108            move |active| {
1109                handle
1110                    .update(&mut cx, |_, window, cx| {
1111                        window.active.set(active);
1112                        window.modifiers = window.platform_window.modifiers();
1113                        window.capslock = window.platform_window.capslock();
1114                        window
1115                            .activation_observers
1116                            .clone()
1117                            .retain(&(), |callback| callback(window, cx));
1118
1119                        window.bounds_changed(cx);
1120                        window.refresh();
1121
1122                        SystemWindowTabController::update_last_active(cx, window.handle.id);
1123                    })
1124                    .log_err();
1125            }
1126        }));
1127        platform_window.on_hover_status_change(Box::new({
1128            let mut cx = cx.to_async();
1129            move |active| {
1130                handle
1131                    .update(&mut cx, |_, window, _| {
1132                        window.hovered.set(active);
1133                        window.refresh();
1134                    })
1135                    .log_err();
1136            }
1137        }));
1138        platform_window.on_input({
1139            let mut cx = cx.to_async();
1140            Box::new(move |event| {
1141                handle
1142                    .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1143                    .log_err()
1144                    .unwrap_or(DispatchEventResult::default())
1145            })
1146        });
1147        platform_window.on_hit_test_window_control({
1148            let mut cx = cx.to_async();
1149            Box::new(move || {
1150                handle
1151                    .update(&mut cx, |_, window, _cx| {
1152                        for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1153                            if window.mouse_hit_test.ids.contains(&hitbox.id) {
1154                                return Some(*area);
1155                            }
1156                        }
1157                        None
1158                    })
1159                    .log_err()
1160                    .unwrap_or(None)
1161            })
1162        });
1163        platform_window.on_move_tab_to_new_window({
1164            let mut cx = cx.to_async();
1165            Box::new(move || {
1166                handle
1167                    .update(&mut cx, |_, _window, cx| {
1168                        SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1169                    })
1170                    .log_err();
1171            })
1172        });
1173        platform_window.on_merge_all_windows({
1174            let mut cx = cx.to_async();
1175            Box::new(move || {
1176                handle
1177                    .update(&mut cx, |_, _window, cx| {
1178                        SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1179                    })
1180                    .log_err();
1181            })
1182        });
1183        platform_window.on_select_next_tab({
1184            let mut cx = cx.to_async();
1185            Box::new(move || {
1186                handle
1187                    .update(&mut cx, |_, _window, cx| {
1188                        SystemWindowTabController::select_next_tab(cx, handle.window_id());
1189                    })
1190                    .log_err();
1191            })
1192        });
1193        platform_window.on_select_previous_tab({
1194            let mut cx = cx.to_async();
1195            Box::new(move || {
1196                handle
1197                    .update(&mut cx, |_, _window, cx| {
1198                        SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1199                    })
1200                    .log_err();
1201            })
1202        });
1203        platform_window.on_toggle_tab_bar({
1204            let mut cx = cx.to_async();
1205            Box::new(move || {
1206                handle
1207                    .update(&mut cx, |_, window, cx| {
1208                        let tab_bar_visible = window.platform_window.tab_bar_visible();
1209                        SystemWindowTabController::set_visible(cx, tab_bar_visible);
1210                    })
1211                    .log_err();
1212            })
1213        });
1214
1215        if let Some(app_id) = app_id {
1216            platform_window.set_app_id(&app_id);
1217        }
1218
1219        platform_window.map_window().unwrap();
1220
1221        Ok(Window {
1222            handle,
1223            invalidator,
1224            removed: false,
1225            platform_window,
1226            display_id,
1227            sprite_atlas,
1228            text_system,
1229            rem_size: px(16.),
1230            rem_size_override_stack: SmallVec::new(),
1231            viewport_size: content_size,
1232            layout_engine: Some(TaffyLayoutEngine::new()),
1233            root: None,
1234            element_id_stack: SmallVec::default(),
1235            text_style_stack: Vec::new(),
1236            rendered_entity_stack: Vec::new(),
1237            element_offset_stack: Vec::new(),
1238            content_mask_stack: Vec::new(),
1239            element_opacity: 1.0,
1240            requested_autoscroll: None,
1241            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1242            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1243            next_frame_callbacks,
1244            next_hitbox_id: HitboxId(0),
1245            next_tooltip_id: TooltipId::default(),
1246            tooltip_bounds: None,
1247            dirty_views: FxHashSet::default(),
1248            focus_listeners: SubscriberSet::new(),
1249            focus_lost_listeners: SubscriberSet::new(),
1250            default_prevented: true,
1251            mouse_position,
1252            mouse_hit_test: HitTest::default(),
1253            modifiers,
1254            capslock,
1255            scale_factor,
1256            bounds_observers: SubscriberSet::new(),
1257            appearance,
1258            appearance_observers: SubscriberSet::new(),
1259            active,
1260            hovered,
1261            needs_present,
1262            last_input_timestamp,
1263            last_input_modality: InputModality::Mouse,
1264            refreshing: false,
1265            activation_observers: SubscriberSet::new(),
1266            focus: None,
1267            focus_enabled: true,
1268            pending_input: None,
1269            pending_modifier: ModifierState::default(),
1270            pending_input_observers: SubscriberSet::new(),
1271            prompt: None,
1272            client_inset: None,
1273            image_cache_stack: Vec::new(),
1274            #[cfg(any(feature = "inspector", debug_assertions))]
1275            inspector: None,
1276        })
1277    }
1278
1279    pub(crate) fn new_focus_listener(
1280        &self,
1281        value: AnyWindowFocusListener,
1282    ) -> (Subscription, impl FnOnce() + use<>) {
1283        self.focus_listeners.insert((), value)
1284    }
1285}
1286
1287#[derive(Clone, Debug, Default, PartialEq, Eq)]
1288pub(crate) struct DispatchEventResult {
1289    pub propagate: bool,
1290    pub default_prevented: bool,
1291}
1292
1293/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1294/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1295/// to leave room to support more complex shapes in the future.
1296#[derive(Clone, Debug, Default, PartialEq, Eq)]
1297#[repr(C)]
1298pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1299    /// The bounds
1300    pub bounds: Bounds<P>,
1301}
1302
1303impl ContentMask<Pixels> {
1304    /// Scale the content mask's pixel units by the given scaling factor.
1305    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1306        ContentMask {
1307            bounds: self.bounds.scale(factor),
1308        }
1309    }
1310
1311    /// Intersect the content mask with the given content mask.
1312    pub fn intersect(&self, other: &Self) -> Self {
1313        let bounds = self.bounds.intersect(&other.bounds);
1314        ContentMask { bounds }
1315    }
1316}
1317
1318impl Window {
1319    fn mark_view_dirty(&mut self, view_id: EntityId) {
1320        // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1321        // should already be dirty.
1322        for view_id in self
1323            .rendered_frame
1324            .dispatch_tree
1325            .view_path_reversed(view_id)
1326        {
1327            if !self.dirty_views.insert(view_id) {
1328                break;
1329            }
1330        }
1331    }
1332
1333    /// Registers a callback to be invoked when the window appearance changes.
1334    pub fn observe_window_appearance(
1335        &self,
1336        mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1337    ) -> Subscription {
1338        let (subscription, activate) = self.appearance_observers.insert(
1339            (),
1340            Box::new(move |window, cx| {
1341                callback(window, cx);
1342                true
1343            }),
1344        );
1345        activate();
1346        subscription
1347    }
1348
1349    /// Replaces the root entity of the window with a new one.
1350    pub fn replace_root<E>(
1351        &mut self,
1352        cx: &mut App,
1353        build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1354    ) -> Entity<E>
1355    where
1356        E: 'static + Render,
1357    {
1358        let view = cx.new(|cx| build_view(self, cx));
1359        self.root = Some(view.clone().into());
1360        self.refresh();
1361        view
1362    }
1363
1364    /// Returns the root entity of the window, if it has one.
1365    pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1366    where
1367        E: 'static + Render,
1368    {
1369        self.root
1370            .as_ref()
1371            .map(|view| view.clone().downcast::<E>().ok())
1372    }
1373
1374    /// Obtain a handle to the window that belongs to this context.
1375    pub fn window_handle(&self) -> AnyWindowHandle {
1376        self.handle
1377    }
1378
1379    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1380    pub fn refresh(&mut self) {
1381        if self.invalidator.not_drawing() {
1382            self.refreshing = true;
1383            self.invalidator.set_dirty(true);
1384        }
1385    }
1386
1387    /// Close this window.
1388    pub fn remove_window(&mut self) {
1389        self.removed = true;
1390    }
1391
1392    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1393    pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1394        self.focus
1395            .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1396    }
1397
1398    /// Move focus to the element associated with the given [`FocusHandle`].
1399    pub fn focus(&mut self, handle: &FocusHandle) {
1400        if !self.focus_enabled || self.focus == Some(handle.id) {
1401            return;
1402        }
1403
1404        self.focus = Some(handle.id);
1405        self.clear_pending_keystrokes();
1406        self.refresh();
1407    }
1408
1409    /// Remove focus from all elements within this context's window.
1410    pub fn blur(&mut self) {
1411        if !self.focus_enabled {
1412            return;
1413        }
1414
1415        self.focus = None;
1416        self.refresh();
1417    }
1418
1419    /// Blur the window and don't allow anything in it to be focused again.
1420    pub fn disable_focus(&mut self) {
1421        self.blur();
1422        self.focus_enabled = false;
1423    }
1424
1425    /// Move focus to next tab stop.
1426    pub fn focus_next(&mut self) {
1427        if !self.focus_enabled {
1428            return;
1429        }
1430
1431        if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1432            self.focus(&handle)
1433        }
1434    }
1435
1436    /// Move focus to previous tab stop.
1437    pub fn focus_prev(&mut self) {
1438        if !self.focus_enabled {
1439            return;
1440        }
1441
1442        if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1443            self.focus(&handle)
1444        }
1445    }
1446
1447    /// Accessor for the text system.
1448    pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1449        &self.text_system
1450    }
1451
1452    /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1453    pub fn text_style(&self) -> TextStyle {
1454        let mut style = TextStyle::default();
1455        for refinement in &self.text_style_stack {
1456            style.refine(refinement);
1457        }
1458        style
1459    }
1460
1461    /// Check if the platform window is maximized
1462    /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1463    pub fn is_maximized(&self) -> bool {
1464        self.platform_window.is_maximized()
1465    }
1466
1467    /// request a certain window decoration (Wayland)
1468    pub fn request_decorations(&self, decorations: WindowDecorations) {
1469        self.platform_window.request_decorations(decorations);
1470    }
1471
1472    /// Start a window resize operation (Wayland)
1473    pub fn start_window_resize(&self, edge: ResizeEdge) {
1474        self.platform_window.start_window_resize(edge);
1475    }
1476
1477    /// Return the `WindowBounds` to indicate that how a window should be opened
1478    /// after it has been closed
1479    pub fn window_bounds(&self) -> WindowBounds {
1480        self.platform_window.window_bounds()
1481    }
1482
1483    /// Return the `WindowBounds` excluding insets (Wayland and X11)
1484    pub fn inner_window_bounds(&self) -> WindowBounds {
1485        self.platform_window.inner_window_bounds()
1486    }
1487
1488    /// Dispatch the given action on the currently focused element.
1489    pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1490        let focus_id = self.focused(cx).map(|handle| handle.id);
1491
1492        let window = self.handle;
1493        cx.defer(move |cx| {
1494            window
1495                .update(cx, |_, window, cx| {
1496                    let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1497                    window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1498                })
1499                .log_err();
1500        })
1501    }
1502
1503    pub(crate) fn dispatch_keystroke_observers(
1504        &mut self,
1505        event: &dyn Any,
1506        action: Option<Box<dyn Action>>,
1507        context_stack: Vec<KeyContext>,
1508        cx: &mut App,
1509    ) {
1510        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1511            return;
1512        };
1513
1514        cx.keystroke_observers.clone().retain(&(), move |callback| {
1515            (callback)(
1516                &KeystrokeEvent {
1517                    keystroke: key_down_event.keystroke.clone(),
1518                    action: action.as_ref().map(|action| action.boxed_clone()),
1519                    context_stack: context_stack.clone(),
1520                },
1521                self,
1522                cx,
1523            )
1524        });
1525    }
1526
1527    pub(crate) fn dispatch_keystroke_interceptors(
1528        &mut self,
1529        event: &dyn Any,
1530        context_stack: Vec<KeyContext>,
1531        cx: &mut App,
1532    ) {
1533        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1534            return;
1535        };
1536
1537        cx.keystroke_interceptors
1538            .clone()
1539            .retain(&(), move |callback| {
1540                (callback)(
1541                    &KeystrokeEvent {
1542                        keystroke: key_down_event.keystroke.clone(),
1543                        action: None,
1544                        context_stack: context_stack.clone(),
1545                    },
1546                    self,
1547                    cx,
1548                )
1549            });
1550    }
1551
1552    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1553    /// that are currently on the stack to be returned to the app.
1554    pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1555        let handle = self.handle;
1556        cx.defer(move |cx| {
1557            handle.update(cx, |_, window, cx| f(window, cx)).ok();
1558        });
1559    }
1560
1561    /// Subscribe to events emitted by a entity.
1562    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1563    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1564    pub fn observe<T: 'static>(
1565        &mut self,
1566        observed: &Entity<T>,
1567        cx: &mut App,
1568        mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1569    ) -> Subscription {
1570        let entity_id = observed.entity_id();
1571        let observed = observed.downgrade();
1572        let window_handle = self.handle;
1573        cx.new_observer(
1574            entity_id,
1575            Box::new(move |cx| {
1576                window_handle
1577                    .update(cx, |_, window, cx| {
1578                        if let Some(handle) = observed.upgrade() {
1579                            on_notify(handle, window, cx);
1580                            true
1581                        } else {
1582                            false
1583                        }
1584                    })
1585                    .unwrap_or(false)
1586            }),
1587        )
1588    }
1589
1590    /// Subscribe to events emitted by a entity.
1591    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1592    /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1593    pub fn subscribe<Emitter, Evt>(
1594        &mut self,
1595        entity: &Entity<Emitter>,
1596        cx: &mut App,
1597        mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1598    ) -> Subscription
1599    where
1600        Emitter: EventEmitter<Evt>,
1601        Evt: 'static,
1602    {
1603        let entity_id = entity.entity_id();
1604        let handle = entity.downgrade();
1605        let window_handle = self.handle;
1606        cx.new_subscription(
1607            entity_id,
1608            (
1609                TypeId::of::<Evt>(),
1610                Box::new(move |event, cx| {
1611                    window_handle
1612                        .update(cx, |_, window, cx| {
1613                            if let Some(entity) = handle.upgrade() {
1614                                let event = event.downcast_ref().expect("invalid event type");
1615                                on_event(entity, event, window, cx);
1616                                true
1617                            } else {
1618                                false
1619                            }
1620                        })
1621                        .unwrap_or(false)
1622                }),
1623            ),
1624        )
1625    }
1626
1627    /// Register a callback to be invoked when the given `Entity` is released.
1628    pub fn observe_release<T>(
1629        &self,
1630        entity: &Entity<T>,
1631        cx: &mut App,
1632        mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1633    ) -> Subscription
1634    where
1635        T: 'static,
1636    {
1637        let entity_id = entity.entity_id();
1638        let window_handle = self.handle;
1639        let (subscription, activate) = cx.release_listeners.insert(
1640            entity_id,
1641            Box::new(move |entity, cx| {
1642                let entity = entity.downcast_mut().expect("invalid entity type");
1643                let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1644            }),
1645        );
1646        activate();
1647        subscription
1648    }
1649
1650    /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1651    /// await points in async code.
1652    pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1653        AsyncWindowContext::new_context(cx.to_async(), self.handle)
1654    }
1655
1656    /// Schedule the given closure to be run directly after the current frame is rendered.
1657    pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1658        RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1659    }
1660
1661    /// Schedule a frame to be drawn on the next animation frame.
1662    ///
1663    /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1664    /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1665    ///
1666    /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1667    pub fn request_animation_frame(&self) {
1668        let entity = self.current_view();
1669        self.on_next_frame(move |_, cx| cx.notify(entity));
1670    }
1671
1672    /// Spawn the future returned by the given closure on the application thread pool.
1673    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1674    /// use within your future.
1675    #[track_caller]
1676    pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1677    where
1678        R: 'static,
1679        AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1680    {
1681        let handle = self.handle;
1682        cx.spawn(async move |app| {
1683            let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1684            f(&mut async_window_cx).await
1685        })
1686    }
1687
1688    fn bounds_changed(&mut self, cx: &mut App) {
1689        self.scale_factor = self.platform_window.scale_factor();
1690        self.viewport_size = self.platform_window.content_size();
1691        self.display_id = self.platform_window.display().map(|display| display.id());
1692
1693        self.refresh();
1694
1695        self.bounds_observers
1696            .clone()
1697            .retain(&(), |callback| callback(self, cx));
1698    }
1699
1700    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1701    pub fn bounds(&self) -> Bounds<Pixels> {
1702        self.platform_window.bounds()
1703    }
1704
1705    /// Set the content size of the window.
1706    pub fn resize(&mut self, size: Size<Pixels>) {
1707        self.platform_window.resize(size);
1708    }
1709
1710    /// Returns whether or not the window is currently fullscreen
1711    pub fn is_fullscreen(&self) -> bool {
1712        self.platform_window.is_fullscreen()
1713    }
1714
1715    pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1716        self.appearance = self.platform_window.appearance();
1717
1718        self.appearance_observers
1719            .clone()
1720            .retain(&(), |callback| callback(self, cx));
1721    }
1722
1723    /// Returns the appearance of the current window.
1724    pub fn appearance(&self) -> WindowAppearance {
1725        self.appearance
1726    }
1727
1728    /// Returns the size of the drawable area within the window.
1729    pub fn viewport_size(&self) -> Size<Pixels> {
1730        self.viewport_size
1731    }
1732
1733    /// Returns whether this window is focused by the operating system (receiving key events).
1734    pub fn is_window_active(&self) -> bool {
1735        self.active.get()
1736    }
1737
1738    /// Returns whether this window is considered to be the window
1739    /// that currently owns the mouse cursor.
1740    /// On mac, this is equivalent to `is_window_active`.
1741    pub fn is_window_hovered(&self) -> bool {
1742        if cfg!(any(
1743            target_os = "windows",
1744            target_os = "linux",
1745            target_os = "freebsd"
1746        )) {
1747            self.hovered.get()
1748        } else {
1749            self.is_window_active()
1750        }
1751    }
1752
1753    /// Toggle zoom on the window.
1754    pub fn zoom_window(&self) {
1755        self.platform_window.zoom();
1756    }
1757
1758    /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1759    pub fn show_window_menu(&self, position: Point<Pixels>) {
1760        self.platform_window.show_window_menu(position)
1761    }
1762
1763    /// Tells the compositor to take control of window movement (Wayland and X11)
1764    ///
1765    /// Events may not be received during a move operation.
1766    pub fn start_window_move(&self) {
1767        self.platform_window.start_window_move()
1768    }
1769
1770    /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1771    pub fn set_client_inset(&mut self, inset: Pixels) {
1772        self.client_inset = Some(inset);
1773        self.platform_window.set_client_inset(inset);
1774    }
1775
1776    /// Returns the client_inset value by [`Self::set_client_inset`].
1777    pub fn client_inset(&self) -> Option<Pixels> {
1778        self.client_inset
1779    }
1780
1781    /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1782    pub fn window_decorations(&self) -> Decorations {
1783        self.platform_window.window_decorations()
1784    }
1785
1786    /// Returns which window controls are currently visible (Wayland)
1787    pub fn window_controls(&self) -> WindowControls {
1788        self.platform_window.window_controls()
1789    }
1790
1791    /// Updates the window's title at the platform level.
1792    pub fn set_window_title(&mut self, title: &str) {
1793        self.platform_window.set_title(title);
1794    }
1795
1796    /// Sets the application identifier.
1797    pub fn set_app_id(&mut self, app_id: &str) {
1798        self.platform_window.set_app_id(app_id);
1799    }
1800
1801    /// Sets the window background appearance.
1802    pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1803        self.platform_window
1804            .set_background_appearance(background_appearance);
1805    }
1806
1807    /// Mark the window as dirty at the platform level.
1808    pub fn set_window_edited(&mut self, edited: bool) {
1809        self.platform_window.set_edited(edited);
1810    }
1811
1812    /// Determine the display on which the window is visible.
1813    pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1814        cx.platform
1815            .displays()
1816            .into_iter()
1817            .find(|display| Some(display.id()) == self.display_id)
1818    }
1819
1820    /// Show the platform character palette.
1821    pub fn show_character_palette(&self) {
1822        self.platform_window.show_character_palette();
1823    }
1824
1825    /// The scale factor of the display associated with the window. For example, it could
1826    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1827    /// be rendered as two pixels on screen.
1828    pub fn scale_factor(&self) -> f32 {
1829        self.scale_factor
1830    }
1831
1832    /// The size of an em for the base font of the application. Adjusting this value allows the
1833    /// UI to scale, just like zooming a web page.
1834    pub fn rem_size(&self) -> Pixels {
1835        self.rem_size_override_stack
1836            .last()
1837            .copied()
1838            .unwrap_or(self.rem_size)
1839    }
1840
1841    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1842    /// UI to scale, just like zooming a web page.
1843    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1844        self.rem_size = rem_size.into();
1845    }
1846
1847    /// Acquire a globally unique identifier for the given ElementId.
1848    /// Only valid for the duration of the provided closure.
1849    pub fn with_global_id<R>(
1850        &mut self,
1851        element_id: ElementId,
1852        f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1853    ) -> R {
1854        self.element_id_stack.push(element_id);
1855        let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1856
1857        let result = f(&global_id, self);
1858        self.element_id_stack.pop();
1859        result
1860    }
1861
1862    /// Executes the provided function with the specified rem size.
1863    ///
1864    /// This method must only be called as part of element drawing.
1865    pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1866    where
1867        F: FnOnce(&mut Self) -> R,
1868    {
1869        self.invalidator.debug_assert_paint_or_prepaint();
1870
1871        if let Some(rem_size) = rem_size {
1872            self.rem_size_override_stack.push(rem_size.into());
1873            let result = f(self);
1874            self.rem_size_override_stack.pop();
1875            result
1876        } else {
1877            f(self)
1878        }
1879    }
1880
1881    /// The line height associated with the current text style.
1882    pub fn line_height(&self) -> Pixels {
1883        self.text_style().line_height_in_pixels(self.rem_size())
1884    }
1885
1886    /// Call to prevent the default action of an event. Currently only used to prevent
1887    /// parent elements from becoming focused on mouse down.
1888    pub fn prevent_default(&mut self) {
1889        self.default_prevented = true;
1890    }
1891
1892    /// Obtain whether default has been prevented for the event currently being dispatched.
1893    pub fn default_prevented(&self) -> bool {
1894        self.default_prevented
1895    }
1896
1897    /// Determine whether the given action is available along the dispatch path to the currently focused element.
1898    pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1899        let node_id =
1900            self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1901        self.rendered_frame
1902            .dispatch_tree
1903            .is_action_available(action, node_id)
1904    }
1905
1906    /// The position of the mouse relative to the window.
1907    pub fn mouse_position(&self) -> Point<Pixels> {
1908        self.mouse_position
1909    }
1910
1911    /// The current state of the keyboard's modifiers
1912    pub fn modifiers(&self) -> Modifiers {
1913        self.modifiers
1914    }
1915
1916    /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1917    /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1918    pub fn last_input_was_keyboard(&self) -> bool {
1919        self.last_input_modality == InputModality::Keyboard
1920    }
1921
1922    /// The current state of the keyboard's capslock
1923    pub fn capslock(&self) -> Capslock {
1924        self.capslock
1925    }
1926
1927    fn complete_frame(&self) {
1928        self.platform_window.completed_frame();
1929    }
1930
1931    /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1932    /// the contents of the new [`Scene`], use [`Self::present`].
1933    #[profiling::function]
1934    pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1935        self.invalidate_entities();
1936        cx.entities.clear_accessed();
1937        debug_assert!(self.rendered_entity_stack.is_empty());
1938        self.invalidator.set_dirty(false);
1939        self.requested_autoscroll = None;
1940
1941        // Restore the previously-used input handler.
1942        if let Some(input_handler) = self.platform_window.take_input_handler() {
1943            self.rendered_frame.input_handlers.push(Some(input_handler));
1944        }
1945        self.draw_roots(cx);
1946        self.dirty_views.clear();
1947        self.next_frame.window_active = self.active.get();
1948
1949        // Register requested input handler with the platform window.
1950        if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1951            self.platform_window
1952                .set_input_handler(input_handler.unwrap());
1953        }
1954
1955        self.layout_engine.as_mut().unwrap().clear();
1956        self.text_system().finish_frame();
1957        self.next_frame.finish(&mut self.rendered_frame);
1958
1959        self.invalidator.set_phase(DrawPhase::Focus);
1960        let previous_focus_path = self.rendered_frame.focus_path();
1961        let previous_window_active = self.rendered_frame.window_active;
1962        mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1963        self.next_frame.clear();
1964        let current_focus_path = self.rendered_frame.focus_path();
1965        let current_window_active = self.rendered_frame.window_active;
1966
1967        if previous_focus_path != current_focus_path
1968            || previous_window_active != current_window_active
1969        {
1970            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1971                self.focus_lost_listeners
1972                    .clone()
1973                    .retain(&(), |listener| listener(self, cx));
1974            }
1975
1976            let event = WindowFocusEvent {
1977                previous_focus_path: if previous_window_active {
1978                    previous_focus_path
1979                } else {
1980                    Default::default()
1981                },
1982                current_focus_path: if current_window_active {
1983                    current_focus_path
1984                } else {
1985                    Default::default()
1986                },
1987            };
1988            self.focus_listeners
1989                .clone()
1990                .retain(&(), |listener| listener(&event, self, cx));
1991        }
1992
1993        debug_assert!(self.rendered_entity_stack.is_empty());
1994        self.record_entities_accessed(cx);
1995        self.reset_cursor_style(cx);
1996        self.refreshing = false;
1997        self.invalidator.set_phase(DrawPhase::None);
1998        self.needs_present.set(true);
1999
2000        ArenaClearNeeded
2001    }
2002
2003    fn record_entities_accessed(&mut self, cx: &mut App) {
2004        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2005        let mut entities = mem::take(entities_ref.deref_mut());
2006        drop(entities_ref);
2007        let handle = self.handle;
2008        cx.record_entities_accessed(
2009            handle,
2010            // Try moving window invalidator into the Window
2011            self.invalidator.clone(),
2012            &entities,
2013        );
2014        let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2015        mem::swap(&mut entities, entities_ref.deref_mut());
2016    }
2017
2018    fn invalidate_entities(&mut self) {
2019        let mut views = self.invalidator.take_views();
2020        for entity in views.drain() {
2021            self.mark_view_dirty(entity);
2022        }
2023        self.invalidator.replace_views(views);
2024    }
2025
2026    #[profiling::function]
2027    fn present(&self) {
2028        self.platform_window.draw(&self.rendered_frame.scene);
2029        self.needs_present.set(false);
2030        profiling::finish_frame!();
2031    }
2032
2033    fn draw_roots(&mut self, cx: &mut App) {
2034        self.invalidator.set_phase(DrawPhase::Prepaint);
2035        self.tooltip_bounds.take();
2036
2037        let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2038        let root_size = {
2039            #[cfg(any(feature = "inspector", debug_assertions))]
2040            {
2041                if self.inspector.is_some() {
2042                    let mut size = self.viewport_size;
2043                    size.width = (size.width - _inspector_width).max(px(0.0));
2044                    size
2045                } else {
2046                    self.viewport_size
2047                }
2048            }
2049            #[cfg(not(any(feature = "inspector", debug_assertions)))]
2050            {
2051                self.viewport_size
2052            }
2053        };
2054
2055        // Layout all root elements.
2056        let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2057        root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2058
2059        #[cfg(any(feature = "inspector", debug_assertions))]
2060        let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2061
2062        let mut sorted_deferred_draws =
2063            (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2064        sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2065        self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2066
2067        let mut prompt_element = None;
2068        let mut active_drag_element = None;
2069        let mut tooltip_element = None;
2070        if let Some(prompt) = self.prompt.take() {
2071            let mut element = prompt.view.any_view().into_any();
2072            element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2073            prompt_element = Some(element);
2074            self.prompt = Some(prompt);
2075        } else if let Some(active_drag) = cx.active_drag.take() {
2076            let mut element = active_drag.view.clone().into_any();
2077            let offset = self.mouse_position() - active_drag.cursor_offset;
2078            element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2079            active_drag_element = Some(element);
2080            cx.active_drag = Some(active_drag);
2081        } else {
2082            tooltip_element = self.prepaint_tooltip(cx);
2083        }
2084
2085        self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2086
2087        // Now actually paint the elements.
2088        self.invalidator.set_phase(DrawPhase::Paint);
2089        root_element.paint(self, cx);
2090
2091        #[cfg(any(feature = "inspector", debug_assertions))]
2092        self.paint_inspector(inspector_element, cx);
2093
2094        self.paint_deferred_draws(&sorted_deferred_draws, cx);
2095
2096        if let Some(mut prompt_element) = prompt_element {
2097            prompt_element.paint(self, cx);
2098        } else if let Some(mut drag_element) = active_drag_element {
2099            drag_element.paint(self, cx);
2100        } else if let Some(mut tooltip_element) = tooltip_element {
2101            tooltip_element.paint(self, cx);
2102        }
2103
2104        #[cfg(any(feature = "inspector", debug_assertions))]
2105        self.paint_inspector_hitbox(cx);
2106    }
2107
2108    fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2109        // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2110        for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2111            let Some(Some(tooltip_request)) = self
2112                .next_frame
2113                .tooltip_requests
2114                .get(tooltip_request_index)
2115                .cloned()
2116            else {
2117                log::error!("Unexpectedly absent TooltipRequest");
2118                continue;
2119            };
2120            let mut element = tooltip_request.tooltip.view.clone().into_any();
2121            let mouse_position = tooltip_request.tooltip.mouse_position;
2122            let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2123
2124            let mut tooltip_bounds =
2125                Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2126            let window_bounds = Bounds {
2127                origin: Point::default(),
2128                size: self.viewport_size(),
2129            };
2130
2131            if tooltip_bounds.right() > window_bounds.right() {
2132                let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2133                if new_x >= Pixels::ZERO {
2134                    tooltip_bounds.origin.x = new_x;
2135                } else {
2136                    tooltip_bounds.origin.x = cmp::max(
2137                        Pixels::ZERO,
2138                        tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2139                    );
2140                }
2141            }
2142
2143            if tooltip_bounds.bottom() > window_bounds.bottom() {
2144                let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2145                if new_y >= Pixels::ZERO {
2146                    tooltip_bounds.origin.y = new_y;
2147                } else {
2148                    tooltip_bounds.origin.y = cmp::max(
2149                        Pixels::ZERO,
2150                        tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2151                    );
2152                }
2153            }
2154
2155            // It's possible for an element to have an active tooltip while not being painted (e.g.
2156            // via the `visible_on_hover` method). Since mouse listeners are not active in this
2157            // case, instead update the tooltip's visibility here.
2158            let is_visible =
2159                (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2160            if !is_visible {
2161                continue;
2162            }
2163
2164            self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2165                element.prepaint(window, cx)
2166            });
2167
2168            self.tooltip_bounds = Some(TooltipBounds {
2169                id: tooltip_request.id,
2170                bounds: tooltip_bounds,
2171            });
2172            return Some(element);
2173        }
2174        None
2175    }
2176
2177    fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2178        assert_eq!(self.element_id_stack.len(), 0);
2179
2180        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2181        for deferred_draw_ix in deferred_draw_indices {
2182            let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2183            self.element_id_stack
2184                .clone_from(&deferred_draw.element_id_stack);
2185            self.text_style_stack
2186                .clone_from(&deferred_draw.text_style_stack);
2187            self.next_frame
2188                .dispatch_tree
2189                .set_active_node(deferred_draw.parent_node);
2190
2191            let prepaint_start = self.prepaint_index();
2192            if let Some(element) = deferred_draw.element.as_mut() {
2193                self.with_rendered_view(deferred_draw.current_view, |window| {
2194                    window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2195                        element.prepaint(window, cx)
2196                    });
2197                })
2198            } else {
2199                self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2200            }
2201            let prepaint_end = self.prepaint_index();
2202            deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2203        }
2204        assert_eq!(
2205            self.next_frame.deferred_draws.len(),
2206            0,
2207            "cannot call defer_draw during deferred drawing"
2208        );
2209        self.next_frame.deferred_draws = deferred_draws;
2210        self.element_id_stack.clear();
2211        self.text_style_stack.clear();
2212    }
2213
2214    fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2215        assert_eq!(self.element_id_stack.len(), 0);
2216
2217        let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2218        for deferred_draw_ix in deferred_draw_indices {
2219            let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2220            self.element_id_stack
2221                .clone_from(&deferred_draw.element_id_stack);
2222            self.next_frame
2223                .dispatch_tree
2224                .set_active_node(deferred_draw.parent_node);
2225
2226            let paint_start = self.paint_index();
2227            if let Some(element) = deferred_draw.element.as_mut() {
2228                self.with_rendered_view(deferred_draw.current_view, |window| {
2229                    element.paint(window, cx);
2230                })
2231            } else {
2232                self.reuse_paint(deferred_draw.paint_range.clone());
2233            }
2234            let paint_end = self.paint_index();
2235            deferred_draw.paint_range = paint_start..paint_end;
2236        }
2237        self.next_frame.deferred_draws = deferred_draws;
2238        self.element_id_stack.clear();
2239    }
2240
2241    pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2242        PrepaintStateIndex {
2243            hitboxes_index: self.next_frame.hitboxes.len(),
2244            tooltips_index: self.next_frame.tooltip_requests.len(),
2245            deferred_draws_index: self.next_frame.deferred_draws.len(),
2246            dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2247            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2248            line_layout_index: self.text_system.layout_index(),
2249        }
2250    }
2251
2252    pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2253        self.next_frame.hitboxes.extend(
2254            self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2255                .iter()
2256                .cloned(),
2257        );
2258        self.next_frame.tooltip_requests.extend(
2259            self.rendered_frame.tooltip_requests
2260                [range.start.tooltips_index..range.end.tooltips_index]
2261                .iter_mut()
2262                .map(|request| request.take()),
2263        );
2264        self.next_frame.accessed_element_states.extend(
2265            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2266                ..range.end.accessed_element_states_index]
2267                .iter()
2268                .map(|(id, type_id)| (id.clone(), *type_id)),
2269        );
2270        self.text_system
2271            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2272
2273        let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2274            range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2275            &mut self.rendered_frame.dispatch_tree,
2276            self.focus,
2277        );
2278
2279        if reused_subtree.contains_focus() {
2280            self.next_frame.focus = self.focus;
2281        }
2282
2283        self.next_frame.deferred_draws.extend(
2284            self.rendered_frame.deferred_draws
2285                [range.start.deferred_draws_index..range.end.deferred_draws_index]
2286                .iter()
2287                .map(|deferred_draw| DeferredDraw {
2288                    current_view: deferred_draw.current_view,
2289                    parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2290                    element_id_stack: deferred_draw.element_id_stack.clone(),
2291                    text_style_stack: deferred_draw.text_style_stack.clone(),
2292                    priority: deferred_draw.priority,
2293                    element: None,
2294                    absolute_offset: deferred_draw.absolute_offset,
2295                    prepaint_range: deferred_draw.prepaint_range.clone(),
2296                    paint_range: deferred_draw.paint_range.clone(),
2297                }),
2298        );
2299    }
2300
2301    pub(crate) fn paint_index(&self) -> PaintIndex {
2302        PaintIndex {
2303            scene_index: self.next_frame.scene.len(),
2304            mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2305            input_handlers_index: self.next_frame.input_handlers.len(),
2306            cursor_styles_index: self.next_frame.cursor_styles.len(),
2307            accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2308            tab_handle_index: self.next_frame.tab_stops.paint_index(),
2309            line_layout_index: self.text_system.layout_index(),
2310        }
2311    }
2312
2313    pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2314        self.next_frame.cursor_styles.extend(
2315            self.rendered_frame.cursor_styles
2316                [range.start.cursor_styles_index..range.end.cursor_styles_index]
2317                .iter()
2318                .cloned(),
2319        );
2320        self.next_frame.input_handlers.extend(
2321            self.rendered_frame.input_handlers
2322                [range.start.input_handlers_index..range.end.input_handlers_index]
2323                .iter_mut()
2324                .map(|handler| handler.take()),
2325        );
2326        self.next_frame.mouse_listeners.extend(
2327            self.rendered_frame.mouse_listeners
2328                [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2329                .iter_mut()
2330                .map(|listener| listener.take()),
2331        );
2332        self.next_frame.accessed_element_states.extend(
2333            self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2334                ..range.end.accessed_element_states_index]
2335                .iter()
2336                .map(|(id, type_id)| (id.clone(), *type_id)),
2337        );
2338        self.next_frame.tab_stops.replay(
2339            &self.rendered_frame.tab_stops.insertion_history
2340                [range.start.tab_handle_index..range.end.tab_handle_index],
2341        );
2342
2343        self.text_system
2344            .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2345        self.next_frame.scene.replay(
2346            range.start.scene_index..range.end.scene_index,
2347            &self.rendered_frame.scene,
2348        );
2349    }
2350
2351    /// Push a text style onto the stack, and call a function with that style active.
2352    /// Use [`Window::text_style`] to get the current, combined text style. This method
2353    /// should only be called as part of element drawing.
2354    pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2355    where
2356        F: FnOnce(&mut Self) -> R,
2357    {
2358        self.invalidator.debug_assert_paint_or_prepaint();
2359        if let Some(style) = style {
2360            self.text_style_stack.push(style);
2361            let result = f(self);
2362            self.text_style_stack.pop();
2363            result
2364        } else {
2365            f(self)
2366        }
2367    }
2368
2369    /// Updates the cursor style at the platform level. This method should only be called
2370    /// during the prepaint phase of element drawing.
2371    pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2372        self.invalidator.debug_assert_paint();
2373        self.next_frame.cursor_styles.push(CursorStyleRequest {
2374            hitbox_id: Some(hitbox.id),
2375            style,
2376        });
2377    }
2378
2379    /// Updates the cursor style for the entire window at the platform level. A cursor
2380    /// style using this method will have precedence over any cursor style set using
2381    /// `set_cursor_style`. This method should only be called during the prepaint
2382    /// phase of element drawing.
2383    pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2384        self.invalidator.debug_assert_paint();
2385        self.next_frame.cursor_styles.push(CursorStyleRequest {
2386            hitbox_id: None,
2387            style,
2388        })
2389    }
2390
2391    /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2392    /// during the paint phase of element drawing.
2393    pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2394        self.invalidator.debug_assert_prepaint();
2395        let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2396        self.next_frame
2397            .tooltip_requests
2398            .push(Some(TooltipRequest { id, tooltip }));
2399        id
2400    }
2401
2402    /// Invoke the given function with the given content mask after intersecting it
2403    /// with the current mask. This method should only be called during element drawing.
2404    pub fn with_content_mask<R>(
2405        &mut self,
2406        mask: Option<ContentMask<Pixels>>,
2407        f: impl FnOnce(&mut Self) -> R,
2408    ) -> R {
2409        self.invalidator.debug_assert_paint_or_prepaint();
2410        if let Some(mask) = mask {
2411            let mask = mask.intersect(&self.content_mask());
2412            self.content_mask_stack.push(mask);
2413            let result = f(self);
2414            self.content_mask_stack.pop();
2415            result
2416        } else {
2417            f(self)
2418        }
2419    }
2420
2421    /// Updates the global element offset relative to the current offset. This is used to implement
2422    /// scrolling. This method should only be called during the prepaint phase of element drawing.
2423    pub fn with_element_offset<R>(
2424        &mut self,
2425        offset: Point<Pixels>,
2426        f: impl FnOnce(&mut Self) -> R,
2427    ) -> R {
2428        self.invalidator.debug_assert_prepaint();
2429
2430        if offset.is_zero() {
2431            return f(self);
2432        };
2433
2434        let abs_offset = self.element_offset() + offset;
2435        self.with_absolute_element_offset(abs_offset, f)
2436    }
2437
2438    /// Updates the global element offset based on the given offset. This is used to implement
2439    /// drag handles and other manual painting of elements. This method should only be called during
2440    /// the prepaint phase of element drawing.
2441    pub fn with_absolute_element_offset<R>(
2442        &mut self,
2443        offset: Point<Pixels>,
2444        f: impl FnOnce(&mut Self) -> R,
2445    ) -> R {
2446        self.invalidator.debug_assert_prepaint();
2447        self.element_offset_stack.push(offset);
2448        let result = f(self);
2449        self.element_offset_stack.pop();
2450        result
2451    }
2452
2453    pub(crate) fn with_element_opacity<R>(
2454        &mut self,
2455        opacity: Option<f32>,
2456        f: impl FnOnce(&mut Self) -> R,
2457    ) -> R {
2458        self.invalidator.debug_assert_paint_or_prepaint();
2459
2460        let Some(opacity) = opacity else {
2461            return f(self);
2462        };
2463
2464        let previous_opacity = self.element_opacity;
2465        self.element_opacity = previous_opacity * opacity;
2466        let result = f(self);
2467        self.element_opacity = previous_opacity;
2468        result
2469    }
2470
2471    /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2472    /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2473    /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2474    /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2475    /// called during the prepaint phase of element drawing.
2476    pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2477        self.invalidator.debug_assert_prepaint();
2478        let index = self.prepaint_index();
2479        let result = f(self);
2480        if result.is_err() {
2481            self.next_frame.hitboxes.truncate(index.hitboxes_index);
2482            self.next_frame
2483                .tooltip_requests
2484                .truncate(index.tooltips_index);
2485            self.next_frame
2486                .deferred_draws
2487                .truncate(index.deferred_draws_index);
2488            self.next_frame
2489                .dispatch_tree
2490                .truncate(index.dispatch_tree_index);
2491            self.next_frame
2492                .accessed_element_states
2493                .truncate(index.accessed_element_states_index);
2494            self.text_system.truncate_layouts(index.line_layout_index);
2495        }
2496        result
2497    }
2498
2499    /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2500    /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2501    /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2502    /// that supports this method being called on the elements it contains. This method should only be
2503    /// called during the prepaint phase of element drawing.
2504    pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2505        self.invalidator.debug_assert_prepaint();
2506        self.requested_autoscroll = Some(bounds);
2507    }
2508
2509    /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2510    /// described in [`Self::request_autoscroll`].
2511    pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2512        self.invalidator.debug_assert_prepaint();
2513        self.requested_autoscroll.take()
2514    }
2515
2516    /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2517    /// Your view will be re-drawn once the asset has finished loading.
2518    ///
2519    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2520    /// time.
2521    pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2522        let (task, is_first) = cx.fetch_asset::<A>(source);
2523        task.clone().now_or_never().or_else(|| {
2524            if is_first {
2525                let entity_id = self.current_view();
2526                self.spawn(cx, {
2527                    let task = task.clone();
2528                    async move |cx| {
2529                        task.await;
2530
2531                        cx.on_next_frame(move |_, cx| {
2532                            cx.notify(entity_id);
2533                        });
2534                    }
2535                })
2536                .detach();
2537            }
2538
2539            None
2540        })
2541    }
2542
2543    /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2544    /// Your view will not be re-drawn once the asset has finished loading.
2545    ///
2546    /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2547    /// time.
2548    pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2549        let (task, _) = cx.fetch_asset::<A>(source);
2550        task.now_or_never()
2551    }
2552    /// Obtain the current element offset. This method should only be called during the
2553    /// prepaint phase of element drawing.
2554    pub fn element_offset(&self) -> Point<Pixels> {
2555        self.invalidator.debug_assert_prepaint();
2556        self.element_offset_stack
2557            .last()
2558            .copied()
2559            .unwrap_or_default()
2560    }
2561
2562    /// Obtain the current element opacity. This method should only be called during the
2563    /// prepaint phase of element drawing.
2564    #[inline]
2565    pub(crate) fn element_opacity(&self) -> f32 {
2566        self.invalidator.debug_assert_paint_or_prepaint();
2567        self.element_opacity
2568    }
2569
2570    /// Obtain the current content mask. This method should only be called during element drawing.
2571    pub fn content_mask(&self) -> ContentMask<Pixels> {
2572        self.invalidator.debug_assert_paint_or_prepaint();
2573        self.content_mask_stack
2574            .last()
2575            .cloned()
2576            .unwrap_or_else(|| ContentMask {
2577                bounds: Bounds {
2578                    origin: Point::default(),
2579                    size: self.viewport_size,
2580                },
2581            })
2582    }
2583
2584    /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2585    /// This can be used within a custom element to distinguish multiple sets of child elements.
2586    pub fn with_element_namespace<R>(
2587        &mut self,
2588        element_id: impl Into<ElementId>,
2589        f: impl FnOnce(&mut Self) -> R,
2590    ) -> R {
2591        self.element_id_stack.push(element_id.into());
2592        let result = f(self);
2593        self.element_id_stack.pop();
2594        result
2595    }
2596
2597    /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2598    pub fn use_keyed_state<S: 'static>(
2599        &mut self,
2600        key: impl Into<ElementId>,
2601        cx: &mut App,
2602        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2603    ) -> Entity<S> {
2604        let current_view = self.current_view();
2605        self.with_global_id(key.into(), |global_id, window| {
2606            window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2607                if let Some(state) = state {
2608                    (state.clone(), state)
2609                } else {
2610                    let new_state = cx.new(|cx| init(window, cx));
2611                    cx.observe(&new_state, move |_, cx| {
2612                        cx.notify(current_view);
2613                    })
2614                    .detach();
2615                    (new_state.clone(), new_state)
2616                }
2617            })
2618        })
2619    }
2620
2621    /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2622    pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2623        self.with_global_id(id.into(), |_, window| f(window))
2624    }
2625
2626    /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2627    ///
2628    /// NOTE: This method uses the location of the caller to generate an ID for this state.
2629    ///       If this is not sufficient to identify your state (e.g. you're rendering a list item),
2630    ///       you can provide a custom ElementID using the `use_keyed_state` method.
2631    #[track_caller]
2632    pub fn use_state<S: 'static>(
2633        &mut self,
2634        cx: &mut App,
2635        init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2636    ) -> Entity<S> {
2637        self.use_keyed_state(
2638            ElementId::CodeLocation(*core::panic::Location::caller()),
2639            cx,
2640            init,
2641        )
2642    }
2643
2644    /// Updates or initializes state for an element with the given id that lives across multiple
2645    /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2646    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2647    /// when drawing the next frame. This method should only be called as part of element drawing.
2648    pub fn with_element_state<S, R>(
2649        &mut self,
2650        global_id: &GlobalElementId,
2651        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2652    ) -> R
2653    where
2654        S: 'static,
2655    {
2656        self.invalidator.debug_assert_paint_or_prepaint();
2657
2658        let key = (global_id.clone(), TypeId::of::<S>());
2659        self.next_frame.accessed_element_states.push(key.clone());
2660
2661        if let Some(any) = self
2662            .next_frame
2663            .element_states
2664            .remove(&key)
2665            .or_else(|| self.rendered_frame.element_states.remove(&key))
2666        {
2667            let ElementStateBox {
2668                inner,
2669                #[cfg(debug_assertions)]
2670                type_name,
2671            } = any;
2672            // Using the extra inner option to avoid needing to reallocate a new box.
2673            let mut state_box = inner
2674                .downcast::<Option<S>>()
2675                .map_err(|_| {
2676                    #[cfg(debug_assertions)]
2677                    {
2678                        anyhow::anyhow!(
2679                            "invalid element state type for id, requested {:?}, actual: {:?}",
2680                            std::any::type_name::<S>(),
2681                            type_name
2682                        )
2683                    }
2684
2685                    #[cfg(not(debug_assertions))]
2686                    {
2687                        anyhow::anyhow!(
2688                            "invalid element state type for id, requested {:?}",
2689                            std::any::type_name::<S>(),
2690                        )
2691                    }
2692                })
2693                .unwrap();
2694
2695            let state = state_box.take().expect(
2696                "reentrant call to with_element_state for the same state type and element id",
2697            );
2698            let (result, state) = f(Some(state), self);
2699            state_box.replace(state);
2700            self.next_frame.element_states.insert(
2701                key,
2702                ElementStateBox {
2703                    inner: state_box,
2704                    #[cfg(debug_assertions)]
2705                    type_name,
2706                },
2707            );
2708            result
2709        } else {
2710            let (result, state) = f(None, self);
2711            self.next_frame.element_states.insert(
2712                key,
2713                ElementStateBox {
2714                    inner: Box::new(Some(state)),
2715                    #[cfg(debug_assertions)]
2716                    type_name: std::any::type_name::<S>(),
2717                },
2718            );
2719            result
2720        }
2721    }
2722
2723    /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2724    /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2725    /// when the element is guaranteed to have an id.
2726    ///
2727    /// The first option means 'no ID provided'
2728    /// The second option means 'not yet initialized'
2729    pub fn with_optional_element_state<S, R>(
2730        &mut self,
2731        global_id: Option<&GlobalElementId>,
2732        f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2733    ) -> R
2734    where
2735        S: 'static,
2736    {
2737        self.invalidator.debug_assert_paint_or_prepaint();
2738
2739        if let Some(global_id) = global_id {
2740            self.with_element_state(global_id, |state, cx| {
2741                let (result, state) = f(Some(state), cx);
2742                let state =
2743                    state.expect("you must return some state when you pass some element id");
2744                (result, state)
2745            })
2746        } else {
2747            let (result, state) = f(None, self);
2748            debug_assert!(
2749                state.is_none(),
2750                "you must not return an element state when passing None for the global id"
2751            );
2752            result
2753        }
2754    }
2755
2756    /// Executes the given closure within the context of a tab group.
2757    #[inline]
2758    pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2759        if let Some(index) = index {
2760            self.next_frame.tab_stops.begin_group(index);
2761            let result = f(self);
2762            self.next_frame.tab_stops.end_group();
2763            result
2764        } else {
2765            f(self)
2766        }
2767    }
2768
2769    /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2770    /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2771    /// with higher values being drawn on top.
2772    ///
2773    /// This method should only be called as part of the prepaint phase of element drawing.
2774    pub fn defer_draw(
2775        &mut self,
2776        element: AnyElement,
2777        absolute_offset: Point<Pixels>,
2778        priority: usize,
2779    ) {
2780        self.invalidator.debug_assert_prepaint();
2781        let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2782        self.next_frame.deferred_draws.push(DeferredDraw {
2783            current_view: self.current_view(),
2784            parent_node,
2785            element_id_stack: self.element_id_stack.clone(),
2786            text_style_stack: self.text_style_stack.clone(),
2787            priority,
2788            element: Some(element),
2789            absolute_offset,
2790            prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2791            paint_range: PaintIndex::default()..PaintIndex::default(),
2792        });
2793    }
2794
2795    /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2796    /// of geometry that are non-overlapping and have the same draw order. This is typically used
2797    /// for performance reasons.
2798    ///
2799    /// This method should only be called as part of the paint phase of element drawing.
2800    pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2801        self.invalidator.debug_assert_paint();
2802
2803        let scale_factor = self.scale_factor();
2804        let content_mask = self.content_mask();
2805        let clipped_bounds = bounds.intersect(&content_mask.bounds);
2806        if !clipped_bounds.is_empty() {
2807            self.next_frame
2808                .scene
2809                .push_layer(clipped_bounds.scale(scale_factor));
2810        }
2811
2812        let result = f(self);
2813
2814        if !clipped_bounds.is_empty() {
2815            self.next_frame.scene.pop_layer();
2816        }
2817
2818        result
2819    }
2820
2821    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2822    ///
2823    /// This method should only be called as part of the paint phase of element drawing.
2824    pub fn paint_shadows(
2825        &mut self,
2826        bounds: Bounds<Pixels>,
2827        corner_radii: Corners<Pixels>,
2828        shadows: &[BoxShadow],
2829    ) {
2830        self.invalidator.debug_assert_paint();
2831
2832        let scale_factor = self.scale_factor();
2833        let content_mask = self.content_mask();
2834        let opacity = self.element_opacity();
2835        for shadow in shadows {
2836            let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2837            self.next_frame.scene.insert_primitive(Shadow {
2838                order: 0,
2839                blur_radius: shadow.blur_radius.scale(scale_factor),
2840                bounds: shadow_bounds.scale(scale_factor),
2841                content_mask: content_mask.scale(scale_factor),
2842                corner_radii: corner_radii.scale(scale_factor),
2843                color: shadow.color.opacity(opacity),
2844            });
2845        }
2846    }
2847
2848    /// Paint one or more quads into the scene for the next frame at the current stacking context.
2849    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2850    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2851    ///
2852    /// This method should only be called as part of the paint phase of element drawing.
2853    ///
2854    /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2855    /// where the circular arcs meet. This will not display well when combined with dashed borders.
2856    /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2857    pub fn paint_quad(&mut self, quad: PaintQuad) {
2858        self.invalidator.debug_assert_paint();
2859
2860        let scale_factor = self.scale_factor();
2861        let content_mask = self.content_mask();
2862        let opacity = self.element_opacity();
2863        self.next_frame.scene.insert_primitive(Quad {
2864            order: 0,
2865            bounds: quad.bounds.scale(scale_factor),
2866            content_mask: content_mask.scale(scale_factor),
2867            background: quad.background.opacity(opacity),
2868            border_color: quad.border_color.opacity(opacity),
2869            corner_radii: quad.corner_radii.scale(scale_factor),
2870            border_widths: quad.border_widths.scale(scale_factor),
2871            border_style: quad.border_style,
2872        });
2873    }
2874
2875    /// Paint the given `Path` into the scene for the next frame at the current z-index.
2876    ///
2877    /// This method should only be called as part of the paint phase of element drawing.
2878    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2879        self.invalidator.debug_assert_paint();
2880
2881        let scale_factor = self.scale_factor();
2882        let content_mask = self.content_mask();
2883        let opacity = self.element_opacity();
2884        path.content_mask = content_mask;
2885        let color: Background = color.into();
2886        path.color = color.opacity(opacity);
2887        self.next_frame
2888            .scene
2889            .insert_primitive(path.scale(scale_factor));
2890    }
2891
2892    /// Paint an underline into the scene for the next frame at the current z-index.
2893    ///
2894    /// This method should only be called as part of the paint phase of element drawing.
2895    pub fn paint_underline(
2896        &mut self,
2897        origin: Point<Pixels>,
2898        width: Pixels,
2899        style: &UnderlineStyle,
2900    ) {
2901        self.invalidator.debug_assert_paint();
2902
2903        let scale_factor = self.scale_factor();
2904        let height = if style.wavy {
2905            style.thickness * 3.
2906        } else {
2907            style.thickness
2908        };
2909        let bounds = Bounds {
2910            origin,
2911            size: size(width, height),
2912        };
2913        let content_mask = self.content_mask();
2914        let element_opacity = self.element_opacity();
2915
2916        self.next_frame.scene.insert_primitive(Underline {
2917            order: 0,
2918            pad: 0,
2919            bounds: bounds.scale(scale_factor),
2920            content_mask: content_mask.scale(scale_factor),
2921            color: style.color.unwrap_or_default().opacity(element_opacity),
2922            thickness: style.thickness.scale(scale_factor),
2923            wavy: if style.wavy { 1 } else { 0 },
2924        });
2925    }
2926
2927    /// Paint a strikethrough into the scene for the next frame at the current z-index.
2928    ///
2929    /// This method should only be called as part of the paint phase of element drawing.
2930    pub fn paint_strikethrough(
2931        &mut self,
2932        origin: Point<Pixels>,
2933        width: Pixels,
2934        style: &StrikethroughStyle,
2935    ) {
2936        self.invalidator.debug_assert_paint();
2937
2938        let scale_factor = self.scale_factor();
2939        let height = style.thickness;
2940        let bounds = Bounds {
2941            origin,
2942            size: size(width, height),
2943        };
2944        let content_mask = self.content_mask();
2945        let opacity = self.element_opacity();
2946
2947        self.next_frame.scene.insert_primitive(Underline {
2948            order: 0,
2949            pad: 0,
2950            bounds: bounds.scale(scale_factor),
2951            content_mask: content_mask.scale(scale_factor),
2952            thickness: style.thickness.scale(scale_factor),
2953            color: style.color.unwrap_or_default().opacity(opacity),
2954            wavy: 0,
2955        });
2956    }
2957
2958    /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2959    ///
2960    /// The y component of the origin is the baseline of the glyph.
2961    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2962    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2963    /// This method is only useful if you need to paint a single glyph that has already been shaped.
2964    ///
2965    /// This method should only be called as part of the paint phase of element drawing.
2966    pub fn paint_glyph(
2967        &mut self,
2968        origin: Point<Pixels>,
2969        font_id: FontId,
2970        glyph_id: GlyphId,
2971        font_size: Pixels,
2972        color: Hsla,
2973    ) -> Result<()> {
2974        self.invalidator.debug_assert_paint();
2975
2976        let element_opacity = self.element_opacity();
2977        let scale_factor = self.scale_factor();
2978        let glyph_origin = origin.scale(scale_factor);
2979
2980        let subpixel_variant = Point {
2981            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
2982            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
2983        };
2984        let params = RenderGlyphParams {
2985            font_id,
2986            glyph_id,
2987            font_size,
2988            subpixel_variant,
2989            scale_factor,
2990            is_emoji: false,
2991        };
2992
2993        let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2994        if !raster_bounds.is_zero() {
2995            let tile = self
2996                .sprite_atlas
2997                .get_or_insert_with(¶ms.clone().into(), &mut || {
2998                    let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2999                    Ok(Some((size, Cow::Owned(bytes))))
3000                })?
3001                .expect("Callback above only errors or returns Some");
3002            let bounds = Bounds {
3003                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3004                size: tile.bounds.size.map(Into::into),
3005            };
3006            let content_mask = self.content_mask().scale(scale_factor);
3007            self.next_frame.scene.insert_primitive(MonochromeSprite {
3008                order: 0,
3009                pad: 0,
3010                bounds,
3011                content_mask,
3012                color: color.opacity(element_opacity),
3013                tile,
3014                transformation: TransformationMatrix::unit(),
3015            });
3016        }
3017        Ok(())
3018    }
3019
3020    /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3021    ///
3022    /// The y component of the origin is the baseline of the glyph.
3023    /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3024    /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3025    /// This method is only useful if you need to paint a single emoji that has already been shaped.
3026    ///
3027    /// This method should only be called as part of the paint phase of element drawing.
3028    pub fn paint_emoji(
3029        &mut self,
3030        origin: Point<Pixels>,
3031        font_id: FontId,
3032        glyph_id: GlyphId,
3033        font_size: Pixels,
3034    ) -> Result<()> {
3035        self.invalidator.debug_assert_paint();
3036
3037        let scale_factor = self.scale_factor();
3038        let glyph_origin = origin.scale(scale_factor);
3039        let params = RenderGlyphParams {
3040            font_id,
3041            glyph_id,
3042            font_size,
3043            // We don't render emojis with subpixel variants.
3044            subpixel_variant: Default::default(),
3045            scale_factor,
3046            is_emoji: true,
3047        };
3048
3049        let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3050        if !raster_bounds.is_zero() {
3051            let tile = self
3052                .sprite_atlas
3053                .get_or_insert_with(¶ms.clone().into(), &mut || {
3054                    let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3055                    Ok(Some((size, Cow::Owned(bytes))))
3056                })?
3057                .expect("Callback above only errors or returns Some");
3058
3059            let bounds = Bounds {
3060                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3061                size: tile.bounds.size.map(Into::into),
3062            };
3063            let content_mask = self.content_mask().scale(scale_factor);
3064            let opacity = self.element_opacity();
3065
3066            self.next_frame.scene.insert_primitive(PolychromeSprite {
3067                order: 0,
3068                pad: 0,
3069                grayscale: false,
3070                bounds,
3071                corner_radii: Default::default(),
3072                content_mask,
3073                tile,
3074                opacity,
3075            });
3076        }
3077        Ok(())
3078    }
3079
3080    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3081    ///
3082    /// This method should only be called as part of the paint phase of element drawing.
3083    pub fn paint_svg(
3084        &mut self,
3085        bounds: Bounds<Pixels>,
3086        path: SharedString,
3087        transformation: TransformationMatrix,
3088        color: Hsla,
3089        cx: &App,
3090    ) -> Result<()> {
3091        self.invalidator.debug_assert_paint();
3092
3093        let element_opacity = self.element_opacity();
3094        let scale_factor = self.scale_factor();
3095
3096        let bounds = bounds.scale(scale_factor);
3097        let params = RenderSvgParams {
3098            path,
3099            size: bounds.size.map(|pixels| {
3100                DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3101            }),
3102        };
3103
3104        let Some(tile) =
3105            self.sprite_atlas
3106                .get_or_insert_with(¶ms.clone().into(), &mut || {
3107                    let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms)? else {
3108                        return Ok(None);
3109                    };
3110                    Ok(Some((size, Cow::Owned(bytes))))
3111                })?
3112        else {
3113            return Ok(());
3114        };
3115        let content_mask = self.content_mask().scale(scale_factor);
3116        let svg_bounds = Bounds {
3117            origin: bounds.center()
3118                - Point::new(
3119                    ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3120                    ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3121                ),
3122            size: tile
3123                .bounds
3124                .size
3125                .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3126        };
3127
3128        self.next_frame.scene.insert_primitive(MonochromeSprite {
3129            order: 0,
3130            pad: 0,
3131            bounds: svg_bounds
3132                .map_origin(|origin| origin.round())
3133                .map_size(|size| size.ceil()),
3134            content_mask,
3135            color: color.opacity(element_opacity),
3136            tile,
3137            transformation,
3138        });
3139
3140        Ok(())
3141    }
3142
3143    /// Paint an image into the scene for the next frame at the current z-index.
3144    /// This method will panic if the frame_index is not valid
3145    ///
3146    /// This method should only be called as part of the paint phase of element drawing.
3147    pub fn paint_image(
3148        &mut self,
3149        bounds: Bounds<Pixels>,
3150        corner_radii: Corners<Pixels>,
3151        data: Arc<RenderImage>,
3152        frame_index: usize,
3153        grayscale: bool,
3154    ) -> Result<()> {
3155        self.invalidator.debug_assert_paint();
3156
3157        let scale_factor = self.scale_factor();
3158        let bounds = bounds.scale(scale_factor);
3159        let params = RenderImageParams {
3160            image_id: data.id,
3161            frame_index,
3162        };
3163
3164        let tile = self
3165            .sprite_atlas
3166            .get_or_insert_with(¶ms.into(), &mut || {
3167                Ok(Some((
3168                    data.size(frame_index),
3169                    Cow::Borrowed(
3170                        data.as_bytes(frame_index)
3171                            .expect("It's the caller's job to pass a valid frame index"),
3172                    ),
3173                )))
3174            })?
3175            .expect("Callback above only returns Some");
3176        let content_mask = self.content_mask().scale(scale_factor);
3177        let corner_radii = corner_radii.scale(scale_factor);
3178        let opacity = self.element_opacity();
3179
3180        self.next_frame.scene.insert_primitive(PolychromeSprite {
3181            order: 0,
3182            pad: 0,
3183            grayscale,
3184            bounds: bounds
3185                .map_origin(|origin| origin.floor())
3186                .map_size(|size| size.ceil()),
3187            content_mask,
3188            corner_radii,
3189            tile,
3190            opacity,
3191        });
3192        Ok(())
3193    }
3194
3195    /// Paint a surface into the scene for the next frame at the current z-index.
3196    ///
3197    /// This method should only be called as part of the paint phase of element drawing.
3198    #[cfg(target_os = "macos")]
3199    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3200        use crate::PaintSurface;
3201
3202        self.invalidator.debug_assert_paint();
3203
3204        let scale_factor = self.scale_factor();
3205        let bounds = bounds.scale(scale_factor);
3206        let content_mask = self.content_mask().scale(scale_factor);
3207        self.next_frame.scene.insert_primitive(PaintSurface {
3208            order: 0,
3209            bounds,
3210            content_mask,
3211            image_buffer,
3212        });
3213    }
3214
3215    /// Removes an image from the sprite atlas.
3216    pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3217        for frame_index in 0..data.frame_count() {
3218            let params = RenderImageParams {
3219                image_id: data.id,
3220                frame_index,
3221            };
3222
3223            self.sprite_atlas.remove(¶ms.clone().into());
3224        }
3225
3226        Ok(())
3227    }
3228
3229    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3230    /// layout is being requested, along with the layout ids of any children. This method is called during
3231    /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3232    ///
3233    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3234    #[must_use]
3235    pub fn request_layout(
3236        &mut self,
3237        style: Style,
3238        children: impl IntoIterator<Item = LayoutId>,
3239        cx: &mut App,
3240    ) -> LayoutId {
3241        self.invalidator.debug_assert_prepaint();
3242
3243        cx.layout_id_buffer.clear();
3244        cx.layout_id_buffer.extend(children);
3245        let rem_size = self.rem_size();
3246        let scale_factor = self.scale_factor();
3247
3248        self.layout_engine.as_mut().unwrap().request_layout(
3249            style,
3250            rem_size,
3251            scale_factor,
3252            &cx.layout_id_buffer,
3253        )
3254    }
3255
3256    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3257    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3258    /// determine the element's size. One place this is used internally is when measuring text.
3259    ///
3260    /// The given closure is invoked at layout time with the known dimensions and available space and
3261    /// returns a `Size`.
3262    ///
3263    /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3264    pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3265    where
3266        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3267            + 'static,
3268    {
3269        self.invalidator.debug_assert_prepaint();
3270
3271        let rem_size = self.rem_size();
3272        let scale_factor = self.scale_factor();
3273        self.layout_engine
3274            .as_mut()
3275            .unwrap()
3276            .request_measured_layout(style, rem_size, scale_factor, measure)
3277    }
3278
3279    /// Compute the layout for the given id within the given available space.
3280    /// This method is called for its side effect, typically by the framework prior to painting.
3281    /// After calling it, you can request the bounds of the given layout node id or any descendant.
3282    ///
3283    /// This method should only be called as part of the prepaint phase of element drawing.
3284    pub fn compute_layout(
3285        &mut self,
3286        layout_id: LayoutId,
3287        available_space: Size<AvailableSpace>,
3288        cx: &mut App,
3289    ) {
3290        self.invalidator.debug_assert_prepaint();
3291
3292        let mut layout_engine = self.layout_engine.take().unwrap();
3293        layout_engine.compute_layout(layout_id, available_space, self, cx);
3294        self.layout_engine = Some(layout_engine);
3295    }
3296
3297    /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3298    /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3299    ///
3300    /// This method should only be called as part of element drawing.
3301    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3302        self.invalidator.debug_assert_prepaint();
3303
3304        let scale_factor = self.scale_factor();
3305        let mut bounds = self
3306            .layout_engine
3307            .as_mut()
3308            .unwrap()
3309            .layout_bounds(layout_id, scale_factor)
3310            .map(Into::into);
3311        bounds.origin += self.element_offset();
3312        bounds
3313    }
3314
3315    /// This method should be called during `prepaint`. You can use
3316    /// the returned [Hitbox] during `paint` or in an event handler
3317    /// to determine whether the inserted hitbox was the topmost.
3318    ///
3319    /// This method should only be called as part of the prepaint phase of element drawing.
3320    pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3321        self.invalidator.debug_assert_prepaint();
3322
3323        let content_mask = self.content_mask();
3324        let mut id = self.next_hitbox_id;
3325        self.next_hitbox_id = self.next_hitbox_id.next();
3326        let hitbox = Hitbox {
3327            id,
3328            bounds,
3329            content_mask,
3330            behavior,
3331        };
3332        self.next_frame.hitboxes.push(hitbox.clone());
3333        hitbox
3334    }
3335
3336    /// Set a hitbox which will act as a control area of the platform window.
3337    ///
3338    /// This method should only be called as part of the paint phase of element drawing.
3339    pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3340        self.invalidator.debug_assert_paint();
3341        self.next_frame.window_control_hitboxes.push((area, hitbox));
3342    }
3343
3344    /// Sets the key context for the current element. This context will be used to translate
3345    /// keybindings into actions.
3346    ///
3347    /// This method should only be called as part of the paint phase of element drawing.
3348    pub fn set_key_context(&mut self, context: KeyContext) {
3349        self.invalidator.debug_assert_paint();
3350        self.next_frame.dispatch_tree.set_key_context(context);
3351    }
3352
3353    /// Sets the focus handle for the current element. This handle will be used to manage focus state
3354    /// and keyboard event dispatch for the element.
3355    ///
3356    /// This method should only be called as part of the prepaint phase of element drawing.
3357    pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3358        self.invalidator.debug_assert_prepaint();
3359        if focus_handle.is_focused(self) {
3360            self.next_frame.focus = Some(focus_handle.id);
3361        }
3362        self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3363    }
3364
3365    /// Sets the view id for the current element, which will be used to manage view caching.
3366    ///
3367    /// This method should only be called as part of element prepaint. We plan on removing this
3368    /// method eventually when we solve some issues that require us to construct editor elements
3369    /// directly instead of always using editors via views.
3370    pub fn set_view_id(&mut self, view_id: EntityId) {
3371        self.invalidator.debug_assert_prepaint();
3372        self.next_frame.dispatch_tree.set_view_id(view_id);
3373    }
3374
3375    /// Get the entity ID for the currently rendering view
3376    pub fn current_view(&self) -> EntityId {
3377        self.invalidator.debug_assert_paint_or_prepaint();
3378        self.rendered_entity_stack.last().copied().unwrap()
3379    }
3380
3381    pub(crate) fn with_rendered_view<R>(
3382        &mut self,
3383        id: EntityId,
3384        f: impl FnOnce(&mut Self) -> R,
3385    ) -> R {
3386        self.rendered_entity_stack.push(id);
3387        let result = f(self);
3388        self.rendered_entity_stack.pop();
3389        result
3390    }
3391
3392    /// Executes the provided function with the specified image cache.
3393    pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3394    where
3395        F: FnOnce(&mut Self) -> R,
3396    {
3397        if let Some(image_cache) = image_cache {
3398            self.image_cache_stack.push(image_cache);
3399            let result = f(self);
3400            self.image_cache_stack.pop();
3401            result
3402        } else {
3403            f(self)
3404        }
3405    }
3406
3407    /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3408    /// platform to receive textual input with proper integration with concerns such
3409    /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3410    /// rendered.
3411    ///
3412    /// This method should only be called as part of the paint phase of element drawing.
3413    ///
3414    /// [element_input_handler]: crate::ElementInputHandler
3415    pub fn handle_input(
3416        &mut self,
3417        focus_handle: &FocusHandle,
3418        input_handler: impl InputHandler,
3419        cx: &App,
3420    ) {
3421        self.invalidator.debug_assert_paint();
3422
3423        if focus_handle.is_focused(self) {
3424            let cx = self.to_async(cx);
3425            self.next_frame
3426                .input_handlers
3427                .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3428        }
3429    }
3430
3431    /// Register a mouse event listener on the window for the next frame. The type of event
3432    /// is determined by the first parameter of the given listener. When the next frame is rendered
3433    /// the listener will be cleared.
3434    ///
3435    /// This method should only be called as part of the paint phase of element drawing.
3436    pub fn on_mouse_event<Event: MouseEvent>(
3437        &mut self,
3438        mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3439    ) {
3440        self.invalidator.debug_assert_paint();
3441
3442        self.next_frame.mouse_listeners.push(Some(Box::new(
3443            move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3444                if let Some(event) = event.downcast_ref() {
3445                    handler(event, phase, window, cx)
3446                }
3447            },
3448        )));
3449    }
3450
3451    /// Register a key event listener on the window for the next frame. The type of event
3452    /// is determined by the first parameter of the given listener. When the next frame is rendered
3453    /// the listener will be cleared.
3454    ///
3455    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3456    /// a specific need to register a global listener.
3457    ///
3458    /// This method should only be called as part of the paint phase of element drawing.
3459    pub fn on_key_event<Event: KeyEvent>(
3460        &mut self,
3461        listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3462    ) {
3463        self.invalidator.debug_assert_paint();
3464
3465        self.next_frame.dispatch_tree.on_key_event(Rc::new(
3466            move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3467                if let Some(event) = event.downcast_ref::<Event>() {
3468                    listener(event, phase, window, cx)
3469                }
3470            },
3471        ));
3472    }
3473
3474    /// Register a modifiers changed event listener on the window for the next frame.
3475    ///
3476    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3477    /// a specific need to register a global listener.
3478    ///
3479    /// This method should only be called as part of the paint phase of element drawing.
3480    pub fn on_modifiers_changed(
3481        &mut self,
3482        listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3483    ) {
3484        self.invalidator.debug_assert_paint();
3485
3486        self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3487            move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3488                listener(event, window, cx)
3489            },
3490        ));
3491    }
3492
3493    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3494    /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3495    /// Returns a subscription and persists until the subscription is dropped.
3496    pub fn on_focus_in(
3497        &mut self,
3498        handle: &FocusHandle,
3499        cx: &mut App,
3500        mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3501    ) -> Subscription {
3502        let focus_id = handle.id;
3503        let (subscription, activate) =
3504            self.new_focus_listener(Box::new(move |event, window, cx| {
3505                if event.is_focus_in(focus_id) {
3506                    listener(window, cx);
3507                }
3508                true
3509            }));
3510        cx.defer(move |_| activate());
3511        subscription
3512    }
3513
3514    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3515    /// Returns a subscription and persists until the subscription is dropped.
3516    pub fn on_focus_out(
3517        &mut self,
3518        handle: &FocusHandle,
3519        cx: &mut App,
3520        mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3521    ) -> Subscription {
3522        let focus_id = handle.id;
3523        let (subscription, activate) =
3524            self.new_focus_listener(Box::new(move |event, window, cx| {
3525                if let Some(blurred_id) = event.previous_focus_path.last().copied()
3526                    && event.is_focus_out(focus_id)
3527                {
3528                    let event = FocusOutEvent {
3529                        blurred: WeakFocusHandle {
3530                            id: blurred_id,
3531                            handles: Arc::downgrade(&cx.focus_handles),
3532                        },
3533                    };
3534                    listener(event, window, cx)
3535                }
3536                true
3537            }));
3538        cx.defer(move |_| activate());
3539        subscription
3540    }
3541
3542    fn reset_cursor_style(&self, cx: &mut App) {
3543        // Set the cursor only if we're the active window.
3544        if self.is_window_hovered() {
3545            let style = self
3546                .rendered_frame
3547                .cursor_style(self)
3548                .unwrap_or(CursorStyle::Arrow);
3549            cx.platform.set_cursor_style(style);
3550        }
3551    }
3552
3553    /// Dispatch a given keystroke as though the user had typed it.
3554    /// You can create a keystroke with Keystroke::parse("").
3555    pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3556        let keystroke = keystroke.with_simulated_ime();
3557        let result = self.dispatch_event(
3558            PlatformInput::KeyDown(KeyDownEvent {
3559                keystroke: keystroke.clone(),
3560                is_held: false,
3561            }),
3562            cx,
3563        );
3564        if !result.propagate {
3565            return true;
3566        }
3567
3568        if let Some(input) = keystroke.key_char
3569            && let Some(mut input_handler) = self.platform_window.take_input_handler()
3570        {
3571            input_handler.dispatch_input(&input, self, cx);
3572            self.platform_window.set_input_handler(input_handler);
3573            return true;
3574        }
3575
3576        false
3577    }
3578
3579    /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3580    /// binding for the action (last binding added to the keymap).
3581    pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3582        self.highest_precedence_binding_for_action(action)
3583            .map(|binding| {
3584                binding
3585                    .keystrokes()
3586                    .iter()
3587                    .map(ToString::to_string)
3588                    .collect::<Vec<_>>()
3589                    .join(" ")
3590            })
3591            .unwrap_or_else(|| action.name().to_string())
3592    }
3593
3594    /// Dispatch a mouse or keyboard event on the window.
3595    #[profiling::function]
3596    pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3597        self.last_input_timestamp.set(Instant::now());
3598
3599        // Track whether this input was keyboard-based for focus-visible styling
3600        self.last_input_modality = match &event {
3601            PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3602                InputModality::Keyboard
3603            }
3604            PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3605            _ => self.last_input_modality,
3606        };
3607
3608        // Handlers may set this to false by calling `stop_propagation`.
3609        cx.propagate_event = true;
3610        // Handlers may set this to true by calling `prevent_default`.
3611        self.default_prevented = false;
3612
3613        let event = match event {
3614            // Track the mouse position with our own state, since accessing the platform
3615            // API for the mouse position can only occur on the main thread.
3616            PlatformInput::MouseMove(mouse_move) => {
3617                self.mouse_position = mouse_move.position;
3618                self.modifiers = mouse_move.modifiers;
3619                PlatformInput::MouseMove(mouse_move)
3620            }
3621            PlatformInput::MouseDown(mouse_down) => {
3622                self.mouse_position = mouse_down.position;
3623                self.modifiers = mouse_down.modifiers;
3624                PlatformInput::MouseDown(mouse_down)
3625            }
3626            PlatformInput::MouseUp(mouse_up) => {
3627                self.mouse_position = mouse_up.position;
3628                self.modifiers = mouse_up.modifiers;
3629                PlatformInput::MouseUp(mouse_up)
3630            }
3631            PlatformInput::MouseExited(mouse_exited) => {
3632                self.modifiers = mouse_exited.modifiers;
3633                PlatformInput::MouseExited(mouse_exited)
3634            }
3635            PlatformInput::ModifiersChanged(modifiers_changed) => {
3636                self.modifiers = modifiers_changed.modifiers;
3637                self.capslock = modifiers_changed.capslock;
3638                PlatformInput::ModifiersChanged(modifiers_changed)
3639            }
3640            PlatformInput::ScrollWheel(scroll_wheel) => {
3641                self.mouse_position = scroll_wheel.position;
3642                self.modifiers = scroll_wheel.modifiers;
3643                PlatformInput::ScrollWheel(scroll_wheel)
3644            }
3645            // Translate dragging and dropping of external files from the operating system
3646            // to internal drag and drop events.
3647            PlatformInput::FileDrop(file_drop) => match file_drop {
3648                FileDropEvent::Entered { position, paths } => {
3649                    self.mouse_position = position;
3650                    if cx.active_drag.is_none() {
3651                        cx.active_drag = Some(AnyDrag {
3652                            value: Arc::new(paths.clone()),
3653                            view: cx.new(|_| paths).into(),
3654                            cursor_offset: position,
3655                            cursor_style: None,
3656                        });
3657                    }
3658                    PlatformInput::MouseMove(MouseMoveEvent {
3659                        position,
3660                        pressed_button: Some(MouseButton::Left),
3661                        modifiers: Modifiers::default(),
3662                    })
3663                }
3664                FileDropEvent::Pending { position } => {
3665                    self.mouse_position = position;
3666                    PlatformInput::MouseMove(MouseMoveEvent {
3667                        position,
3668                        pressed_button: Some(MouseButton::Left),
3669                        modifiers: Modifiers::default(),
3670                    })
3671                }
3672                FileDropEvent::Submit { position } => {
3673                    cx.activate(true);
3674                    self.mouse_position = position;
3675                    PlatformInput::MouseUp(MouseUpEvent {
3676                        button: MouseButton::Left,
3677                        position,
3678                        modifiers: Modifiers::default(),
3679                        click_count: 1,
3680                    })
3681                }
3682                FileDropEvent::Exited => {
3683                    cx.active_drag.take();
3684                    PlatformInput::FileDrop(FileDropEvent::Exited)
3685                }
3686            },
3687            PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3688        };
3689
3690        if let Some(any_mouse_event) = event.mouse_event() {
3691            self.dispatch_mouse_event(any_mouse_event, cx);
3692        } else if let Some(any_key_event) = event.keyboard_event() {
3693            self.dispatch_key_event(any_key_event, cx);
3694        }
3695
3696        DispatchEventResult {
3697            propagate: cx.propagate_event,
3698            default_prevented: self.default_prevented,
3699        }
3700    }
3701
3702    fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3703        let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3704        if hit_test != self.mouse_hit_test {
3705            self.mouse_hit_test = hit_test;
3706            self.reset_cursor_style(cx);
3707        }
3708
3709        #[cfg(any(feature = "inspector", debug_assertions))]
3710        if self.is_inspector_picking(cx) {
3711            self.handle_inspector_mouse_event(event, cx);
3712            // When inspector is picking, all other mouse handling is skipped.
3713            return;
3714        }
3715
3716        let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3717
3718        // Capture phase, events bubble from back to front. Handlers for this phase are used for
3719        // special purposes, such as detecting events outside of a given Bounds.
3720        for listener in &mut mouse_listeners {
3721            let listener = listener.as_mut().unwrap();
3722            listener(event, DispatchPhase::Capture, self, cx);
3723            if !cx.propagate_event {
3724                break;
3725            }
3726        }
3727
3728        // Bubble phase, where most normal handlers do their work.
3729        if cx.propagate_event {
3730            for listener in mouse_listeners.iter_mut().rev() {
3731                let listener = listener.as_mut().unwrap();
3732                listener(event, DispatchPhase::Bubble, self, cx);
3733                if !cx.propagate_event {
3734                    break;
3735                }
3736            }
3737        }
3738
3739        self.rendered_frame.mouse_listeners = mouse_listeners;
3740
3741        if cx.has_active_drag() {
3742            if event.is::<MouseMoveEvent>() {
3743                // If this was a mouse move event, redraw the window so that the
3744                // active drag can follow the mouse cursor.
3745                self.refresh();
3746            } else if event.is::<MouseUpEvent>() {
3747                // If this was a mouse up event, cancel the active drag and redraw
3748                // the window.
3749                cx.active_drag = None;
3750                self.refresh();
3751            }
3752        }
3753    }
3754
3755    fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3756        if self.invalidator.is_dirty() {
3757            self.draw(cx).clear();
3758        }
3759
3760        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3761        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3762
3763        let mut keystroke: Option<Keystroke> = None;
3764
3765        if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3766            if event.modifiers.number_of_modifiers() == 0
3767                && self.pending_modifier.modifiers.number_of_modifiers() == 1
3768                && !self.pending_modifier.saw_keystroke
3769            {
3770                let key = match self.pending_modifier.modifiers {
3771                    modifiers if modifiers.shift => Some("shift"),
3772                    modifiers if modifiers.control => Some("control"),
3773                    modifiers if modifiers.alt => Some("alt"),
3774                    modifiers if modifiers.platform => Some("platform"),
3775                    modifiers if modifiers.function => Some("function"),
3776                    _ => None,
3777                };
3778                if let Some(key) = key {
3779                    keystroke = Some(Keystroke {
3780                        key: key.to_string(),
3781                        key_char: None,
3782                        modifiers: Modifiers::default(),
3783                    });
3784                }
3785            }
3786
3787            if self.pending_modifier.modifiers.number_of_modifiers() == 0
3788                && event.modifiers.number_of_modifiers() == 1
3789            {
3790                self.pending_modifier.saw_keystroke = false
3791            }
3792            self.pending_modifier.modifiers = event.modifiers
3793        } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3794            self.pending_modifier.saw_keystroke = true;
3795            keystroke = Some(key_down_event.keystroke.clone());
3796        }
3797
3798        let Some(keystroke) = keystroke else {
3799            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3800            return;
3801        };
3802
3803        cx.propagate_event = true;
3804        self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3805        if !cx.propagate_event {
3806            self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3807            return;
3808        }
3809
3810        let mut currently_pending = self.pending_input.take().unwrap_or_default();
3811        if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3812            currently_pending = PendingInput::default();
3813        }
3814
3815        let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3816            currently_pending.keystrokes,
3817            keystroke,
3818            &dispatch_path,
3819        );
3820
3821        if !match_result.to_replay.is_empty() {
3822            self.replay_pending_input(match_result.to_replay, cx);
3823            cx.propagate_event = true;
3824        }
3825
3826        if !match_result.pending.is_empty() {
3827            currently_pending.keystrokes = match_result.pending;
3828            currently_pending.focus = self.focus;
3829            currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3830                cx.background_executor.timer(Duration::from_secs(1)).await;
3831                cx.update(move |window, cx| {
3832                    let Some(currently_pending) = window
3833                        .pending_input
3834                        .take()
3835                        .filter(|pending| pending.focus == window.focus)
3836                    else {
3837                        return;
3838                    };
3839
3840                    let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3841                    let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3842
3843                    let to_replay = window
3844                        .rendered_frame
3845                        .dispatch_tree
3846                        .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3847
3848                    window.pending_input_changed(cx);
3849                    window.replay_pending_input(to_replay, cx)
3850                })
3851                .log_err();
3852            }));
3853            self.pending_input = Some(currently_pending);
3854            self.pending_input_changed(cx);
3855            cx.propagate_event = false;
3856            return;
3857        }
3858
3859        for binding in match_result.bindings {
3860            self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3861            if !cx.propagate_event {
3862                self.dispatch_keystroke_observers(
3863                    event,
3864                    Some(binding.action),
3865                    match_result.context_stack,
3866                    cx,
3867                );
3868                self.pending_input_changed(cx);
3869                return;
3870            }
3871        }
3872
3873        self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3874        self.pending_input_changed(cx);
3875    }
3876
3877    fn finish_dispatch_key_event(
3878        &mut self,
3879        event: &dyn Any,
3880        dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3881        context_stack: Vec<KeyContext>,
3882        cx: &mut App,
3883    ) {
3884        self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3885        if !cx.propagate_event {
3886            return;
3887        }
3888
3889        self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3890        if !cx.propagate_event {
3891            return;
3892        }
3893
3894        self.dispatch_keystroke_observers(event, None, context_stack, cx);
3895    }
3896
3897    fn pending_input_changed(&mut self, cx: &mut App) {
3898        self.pending_input_observers
3899            .clone()
3900            .retain(&(), |callback| callback(self, cx));
3901    }
3902
3903    fn dispatch_key_down_up_event(
3904        &mut self,
3905        event: &dyn Any,
3906        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3907        cx: &mut App,
3908    ) {
3909        // Capture phase
3910        for node_id in dispatch_path {
3911            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3912
3913            for key_listener in node.key_listeners.clone() {
3914                key_listener(event, DispatchPhase::Capture, self, cx);
3915                if !cx.propagate_event {
3916                    return;
3917                }
3918            }
3919        }
3920
3921        // Bubble phase
3922        for node_id in dispatch_path.iter().rev() {
3923            // Handle low level key events
3924            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3925            for key_listener in node.key_listeners.clone() {
3926                key_listener(event, DispatchPhase::Bubble, self, cx);
3927                if !cx.propagate_event {
3928                    return;
3929                }
3930            }
3931        }
3932    }
3933
3934    fn dispatch_modifiers_changed_event(
3935        &mut self,
3936        event: &dyn Any,
3937        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3938        cx: &mut App,
3939    ) {
3940        let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3941            return;
3942        };
3943        for node_id in dispatch_path.iter().rev() {
3944            let node = self.rendered_frame.dispatch_tree.node(*node_id);
3945            for listener in node.modifiers_changed_listeners.clone() {
3946                listener(event, self, cx);
3947                if !cx.propagate_event {
3948                    return;
3949                }
3950            }
3951        }
3952    }
3953
3954    /// Determine whether a potential multi-stroke key binding is in progress on this window.
3955    pub fn has_pending_keystrokes(&self) -> bool {
3956        self.pending_input.is_some()
3957    }
3958
3959    pub(crate) fn clear_pending_keystrokes(&mut self) {
3960        self.pending_input.take();
3961    }
3962
3963    /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3964    pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3965        self.pending_input
3966            .as_ref()
3967            .map(|pending_input| pending_input.keystrokes.as_slice())
3968    }
3969
3970    fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3971        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3972        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3973
3974        'replay: for replay in replays {
3975            let event = KeyDownEvent {
3976                keystroke: replay.keystroke.clone(),
3977                is_held: false,
3978            };
3979
3980            cx.propagate_event = true;
3981            for binding in replay.bindings {
3982                self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3983                if !cx.propagate_event {
3984                    self.dispatch_keystroke_observers(
3985                        &event,
3986                        Some(binding.action),
3987                        Vec::default(),
3988                        cx,
3989                    );
3990                    continue 'replay;
3991                }
3992            }
3993
3994            self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3995            if !cx.propagate_event {
3996                continue 'replay;
3997            }
3998            if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3999                && let Some(mut input_handler) = self.platform_window.take_input_handler()
4000            {
4001                input_handler.dispatch_input(&input, self, cx);
4002                self.platform_window.set_input_handler(input_handler)
4003            }
4004        }
4005    }
4006
4007    fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4008        focus_id
4009            .and_then(|focus_id| {
4010                self.rendered_frame
4011                    .dispatch_tree
4012                    .focusable_node_id(focus_id)
4013            })
4014            .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4015    }
4016
4017    fn dispatch_action_on_node(
4018        &mut self,
4019        node_id: DispatchNodeId,
4020        action: &dyn Action,
4021        cx: &mut App,
4022    ) {
4023        let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4024
4025        // Capture phase for global actions.
4026        cx.propagate_event = true;
4027        if let Some(mut global_listeners) = cx
4028            .global_action_listeners
4029            .remove(&action.as_any().type_id())
4030        {
4031            for listener in &global_listeners {
4032                listener(action.as_any(), DispatchPhase::Capture, cx);
4033                if !cx.propagate_event {
4034                    break;
4035                }
4036            }
4037
4038            global_listeners.extend(
4039                cx.global_action_listeners
4040                    .remove(&action.as_any().type_id())
4041                    .unwrap_or_default(),
4042            );
4043
4044            cx.global_action_listeners
4045                .insert(action.as_any().type_id(), global_listeners);
4046        }
4047
4048        if !cx.propagate_event {
4049            return;
4050        }
4051
4052        // Capture phase for window actions.
4053        for node_id in &dispatch_path {
4054            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4055            for DispatchActionListener {
4056                action_type,
4057                listener,
4058            } in node.action_listeners.clone()
4059            {
4060                let any_action = action.as_any();
4061                if action_type == any_action.type_id() {
4062                    listener(any_action, DispatchPhase::Capture, self, cx);
4063
4064                    if !cx.propagate_event {
4065                        return;
4066                    }
4067                }
4068            }
4069        }
4070
4071        // Bubble phase for window actions.
4072        for node_id in dispatch_path.iter().rev() {
4073            let node = self.rendered_frame.dispatch_tree.node(*node_id);
4074            for DispatchActionListener {
4075                action_type,
4076                listener,
4077            } in node.action_listeners.clone()
4078            {
4079                let any_action = action.as_any();
4080                if action_type == any_action.type_id() {
4081                    cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4082                    listener(any_action, DispatchPhase::Bubble, self, cx);
4083
4084                    if !cx.propagate_event {
4085                        return;
4086                    }
4087                }
4088            }
4089        }
4090
4091        // Bubble phase for global actions.
4092        if let Some(mut global_listeners) = cx
4093            .global_action_listeners
4094            .remove(&action.as_any().type_id())
4095        {
4096            for listener in global_listeners.iter().rev() {
4097                cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4098
4099                listener(action.as_any(), DispatchPhase::Bubble, cx);
4100                if !cx.propagate_event {
4101                    break;
4102                }
4103            }
4104
4105            global_listeners.extend(
4106                cx.global_action_listeners
4107                    .remove(&action.as_any().type_id())
4108                    .unwrap_or_default(),
4109            );
4110
4111            cx.global_action_listeners
4112                .insert(action.as_any().type_id(), global_listeners);
4113        }
4114    }
4115
4116    /// Register the given handler to be invoked whenever the global of the given type
4117    /// is updated.
4118    pub fn observe_global<G: Global>(
4119        &mut self,
4120        cx: &mut App,
4121        f: impl Fn(&mut Window, &mut App) + 'static,
4122    ) -> Subscription {
4123        let window_handle = self.handle;
4124        let (subscription, activate) = cx.global_observers.insert(
4125            TypeId::of::<G>(),
4126            Box::new(move |cx| {
4127                window_handle
4128                    .update(cx, |_, window, cx| f(window, cx))
4129                    .is_ok()
4130            }),
4131        );
4132        cx.defer(move |_| activate());
4133        subscription
4134    }
4135
4136    /// Focus the current window and bring it to the foreground at the platform level.
4137    pub fn activate_window(&self) {
4138        self.platform_window.activate();
4139    }
4140
4141    /// Minimize the current window at the platform level.
4142    pub fn minimize_window(&self) {
4143        self.platform_window.minimize();
4144    }
4145
4146    /// Toggle full screen status on the current window at the platform level.
4147    pub fn toggle_fullscreen(&self) {
4148        self.platform_window.toggle_fullscreen();
4149    }
4150
4151    /// Updates the IME panel position suggestions for languages like japanese, chinese.
4152    pub fn invalidate_character_coordinates(&self) {
4153        self.on_next_frame(|window, cx| {
4154            if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4155                if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4156                    window.platform_window.update_ime_position(bounds);
4157                }
4158                window.platform_window.set_input_handler(input_handler);
4159            }
4160        });
4161    }
4162
4163    /// Present a platform dialog.
4164    /// The provided message will be presented, along with buttons for each answer.
4165    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4166    pub fn prompt<T>(
4167        &mut self,
4168        level: PromptLevel,
4169        message: &str,
4170        detail: Option<&str>,
4171        answers: &[T],
4172        cx: &mut App,
4173    ) -> oneshot::Receiver<usize>
4174    where
4175        T: Clone + Into<PromptButton>,
4176    {
4177        let prompt_builder = cx.prompt_builder.take();
4178        let Some(prompt_builder) = prompt_builder else {
4179            unreachable!("Re-entrant window prompting is not supported by GPUI");
4180        };
4181
4182        let answers = answers
4183            .iter()
4184            .map(|answer| answer.clone().into())
4185            .collect::<Vec<_>>();
4186
4187        let receiver = match &prompt_builder {
4188            PromptBuilder::Default => self
4189                .platform_window
4190                .prompt(level, message, detail, &answers)
4191                .unwrap_or_else(|| {
4192                    self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4193                }),
4194            PromptBuilder::Custom(_) => {
4195                self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4196            }
4197        };
4198
4199        cx.prompt_builder = Some(prompt_builder);
4200
4201        receiver
4202    }
4203
4204    fn build_custom_prompt(
4205        &mut self,
4206        prompt_builder: &PromptBuilder,
4207        level: PromptLevel,
4208        message: &str,
4209        detail: Option<&str>,
4210        answers: &[PromptButton],
4211        cx: &mut App,
4212    ) -> oneshot::Receiver<usize> {
4213        let (sender, receiver) = oneshot::channel();
4214        let handle = PromptHandle::new(sender);
4215        let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4216        self.prompt = Some(handle);
4217        receiver
4218    }
4219
4220    /// Returns the current context stack.
4221    pub fn context_stack(&self) -> Vec<KeyContext> {
4222        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4223        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4224        dispatch_tree
4225            .dispatch_path(node_id)
4226            .iter()
4227            .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4228            .collect()
4229    }
4230
4231    /// Returns all available actions for the focused element.
4232    pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4233        let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4234        let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4235        for action_type in cx.global_action_listeners.keys() {
4236            if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4237                let action = cx.actions.build_action_type(action_type).ok();
4238                if let Some(action) = action {
4239                    actions.insert(ix, action);
4240                }
4241            }
4242        }
4243        actions
4244    }
4245
4246    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4247    /// returned in the order they were added. For display, the last binding should take precedence.
4248    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4249        self.rendered_frame
4250            .dispatch_tree
4251            .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4252    }
4253
4254    /// Returns the highest precedence key binding that invokes an action on the currently focused
4255    /// element. This is more efficient than getting the last result of `bindings_for_action`.
4256    pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4257        self.rendered_frame
4258            .dispatch_tree
4259            .highest_precedence_binding_for_action(
4260                action,
4261                &self.rendered_frame.dispatch_tree.context_stack,
4262            )
4263    }
4264
4265    /// Returns the key bindings for an action in a context.
4266    pub fn bindings_for_action_in_context(
4267        &self,
4268        action: &dyn Action,
4269        context: KeyContext,
4270    ) -> Vec<KeyBinding> {
4271        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4272        dispatch_tree.bindings_for_action(action, &[context])
4273    }
4274
4275    /// Returns the highest precedence key binding for an action in a context. This is more
4276    /// efficient than getting the last result of `bindings_for_action_in_context`.
4277    pub fn highest_precedence_binding_for_action_in_context(
4278        &self,
4279        action: &dyn Action,
4280        context: KeyContext,
4281    ) -> Option<KeyBinding> {
4282        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4283        dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4284    }
4285
4286    /// Returns any bindings that would invoke an action on the given focus handle if it were
4287    /// focused. Bindings are returned in the order they were added. For display, the last binding
4288    /// should take precedence.
4289    pub fn bindings_for_action_in(
4290        &self,
4291        action: &dyn Action,
4292        focus_handle: &FocusHandle,
4293    ) -> Vec<KeyBinding> {
4294        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4295        let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4296            return vec![];
4297        };
4298        dispatch_tree.bindings_for_action(action, &context_stack)
4299    }
4300
4301    /// Returns the highest precedence key binding that would invoke an action on the given focus
4302    /// handle if it were focused. This is more efficient than getting the last result of
4303    /// `bindings_for_action_in`.
4304    pub fn highest_precedence_binding_for_action_in(
4305        &self,
4306        action: &dyn Action,
4307        focus_handle: &FocusHandle,
4308    ) -> Option<KeyBinding> {
4309        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4310        let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4311        dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4312    }
4313
4314    fn context_stack_for_focus_handle(
4315        &self,
4316        focus_handle: &FocusHandle,
4317    ) -> Option<Vec<KeyContext>> {
4318        let dispatch_tree = &self.rendered_frame.dispatch_tree;
4319        let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4320        let context_stack: Vec<_> = dispatch_tree
4321            .dispatch_path(node_id)
4322            .into_iter()
4323            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4324            .collect();
4325        Some(context_stack)
4326    }
4327
4328    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4329    pub fn listener_for<V: Render, E>(
4330        &self,
4331        view: &Entity<V>,
4332        f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4333    ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4334        let view = view.downgrade();
4335        move |e: &E, window: &mut Window, cx: &mut App| {
4336            view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4337        }
4338    }
4339
4340    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4341    pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4342        &self,
4343        entity: &Entity<E>,
4344        f: Callback,
4345    ) -> impl Fn(&mut Window, &mut App) + 'static {
4346        let entity = entity.downgrade();
4347        move |window: &mut Window, cx: &mut App| {
4348            entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4349        }
4350    }
4351
4352    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4353    /// If the callback returns false, the window won't be closed.
4354    pub fn on_window_should_close(
4355        &self,
4356        cx: &App,
4357        f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4358    ) {
4359        let mut cx = self.to_async(cx);
4360        self.platform_window.on_should_close(Box::new(move || {
4361            cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4362        }))
4363    }
4364
4365    /// Register an action listener on the window for the next frame. The type of action
4366    /// is determined by the first parameter of the given listener. When the next frame is rendered
4367    /// the listener will be cleared.
4368    ///
4369    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4370    /// a specific need to register a global listener.
4371    pub fn on_action(
4372        &mut self,
4373        action_type: TypeId,
4374        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4375    ) {
4376        self.next_frame
4377            .dispatch_tree
4378            .on_action(action_type, Rc::new(listener));
4379    }
4380
4381    /// Register an action listener on the window for the next frame if the condition is true.
4382    /// The type of action is determined by the first parameter of the given listener.
4383    /// When the next frame is rendered the listener will be cleared.
4384    ///
4385    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4386    /// a specific need to register a global listener.
4387    pub fn on_action_when(
4388        &mut self,
4389        condition: bool,
4390        action_type: TypeId,
4391        listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4392    ) {
4393        if condition {
4394            self.next_frame
4395                .dispatch_tree
4396                .on_action(action_type, Rc::new(listener));
4397        }
4398    }
4399
4400    /// Read information about the GPU backing this window.
4401    /// Currently returns None on Mac and Windows.
4402    pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4403        self.platform_window.gpu_specs()
4404    }
4405
4406    /// Perform titlebar double-click action.
4407    /// This is macOS specific.
4408    pub fn titlebar_double_click(&self) {
4409        self.platform_window.titlebar_double_click();
4410    }
4411
4412    /// Gets the window's title at the platform level.
4413    /// This is macOS specific.
4414    pub fn window_title(&self) -> String {
4415        self.platform_window.get_title()
4416    }
4417
4418    /// Returns a list of all tabbed windows and their titles.
4419    /// This is macOS specific.
4420    pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4421        self.platform_window.tabbed_windows()
4422    }
4423
4424    /// Returns the tab bar visibility.
4425    /// This is macOS specific.
4426    pub fn tab_bar_visible(&self) -> bool {
4427        self.platform_window.tab_bar_visible()
4428    }
4429
4430    /// Merges all open windows into a single tabbed window.
4431    /// This is macOS specific.
4432    pub fn merge_all_windows(&self) {
4433        self.platform_window.merge_all_windows()
4434    }
4435
4436    /// Moves the tab to a new containing window.
4437    /// This is macOS specific.
4438    pub fn move_tab_to_new_window(&self) {
4439        self.platform_window.move_tab_to_new_window()
4440    }
4441
4442    /// Shows or hides the window tab overview.
4443    /// This is macOS specific.
4444    pub fn toggle_window_tab_overview(&self) {
4445        self.platform_window.toggle_window_tab_overview()
4446    }
4447
4448    /// Sets the tabbing identifier for the window.
4449    /// This is macOS specific.
4450    pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4451        self.platform_window
4452            .set_tabbing_identifier(tabbing_identifier)
4453    }
4454
4455    /// Toggles the inspector mode on this window.
4456    #[cfg(any(feature = "inspector", debug_assertions))]
4457    pub fn toggle_inspector(&mut self, cx: &mut App) {
4458        self.inspector = match self.inspector {
4459            None => Some(cx.new(|_| Inspector::new())),
4460            Some(_) => None,
4461        };
4462        self.refresh();
4463    }
4464
4465    /// Returns true if the window is in inspector mode.
4466    pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4467        #[cfg(any(feature = "inspector", debug_assertions))]
4468        {
4469            if let Some(inspector) = &self.inspector {
4470                return inspector.read(_cx).is_picking();
4471            }
4472        }
4473        false
4474    }
4475
4476    /// Executes the provided function with mutable access to an inspector state.
4477    #[cfg(any(feature = "inspector", debug_assertions))]
4478    pub fn with_inspector_state<T: 'static, R>(
4479        &mut self,
4480        _inspector_id: Option<&crate::InspectorElementId>,
4481        cx: &mut App,
4482        f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4483    ) -> R {
4484        if let Some(inspector_id) = _inspector_id
4485            && let Some(inspector) = &self.inspector
4486        {
4487            let inspector = inspector.clone();
4488            let active_element_id = inspector.read(cx).active_element_id();
4489            if Some(inspector_id) == active_element_id {
4490                return inspector.update(cx, |inspector, _cx| {
4491                    inspector.with_active_element_state(self, f)
4492                });
4493            }
4494        }
4495        f(&mut None, self)
4496    }
4497
4498    #[cfg(any(feature = "inspector", debug_assertions))]
4499    pub(crate) fn build_inspector_element_id(
4500        &mut self,
4501        path: crate::InspectorElementPath,
4502    ) -> crate::InspectorElementId {
4503        self.invalidator.debug_assert_paint_or_prepaint();
4504        let path = Rc::new(path);
4505        let next_instance_id = self
4506            .next_frame
4507            .next_inspector_instance_ids
4508            .entry(path.clone())
4509            .or_insert(0);
4510        let instance_id = *next_instance_id;
4511        *next_instance_id += 1;
4512        crate::InspectorElementId { path, instance_id }
4513    }
4514
4515    #[cfg(any(feature = "inspector", debug_assertions))]
4516    fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4517        if let Some(inspector) = self.inspector.take() {
4518            let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4519            inspector_element.prepaint_as_root(
4520                point(self.viewport_size.width - inspector_width, px(0.0)),
4521                size(inspector_width, self.viewport_size.height).into(),
4522                self,
4523                cx,
4524            );
4525            self.inspector = Some(inspector);
4526            Some(inspector_element)
4527        } else {
4528            None
4529        }
4530    }
4531
4532    #[cfg(any(feature = "inspector", debug_assertions))]
4533    fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4534        if let Some(mut inspector_element) = inspector_element {
4535            inspector_element.paint(self, cx);
4536        };
4537    }
4538
4539    /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4540    /// inspect UI elements by clicking on them.
4541    #[cfg(any(feature = "inspector", debug_assertions))]
4542    pub fn insert_inspector_hitbox(
4543        &mut self,
4544        hitbox_id: HitboxId,
4545        inspector_id: Option<&crate::InspectorElementId>,
4546        cx: &App,
4547    ) {
4548        self.invalidator.debug_assert_paint_or_prepaint();
4549        if !self.is_inspector_picking(cx) {
4550            return;
4551        }
4552        if let Some(inspector_id) = inspector_id {
4553            self.next_frame
4554                .inspector_hitboxes
4555                .insert(hitbox_id, inspector_id.clone());
4556        }
4557    }
4558
4559    #[cfg(any(feature = "inspector", debug_assertions))]
4560    fn paint_inspector_hitbox(&mut self, cx: &App) {
4561        if let Some(inspector) = self.inspector.as_ref() {
4562            let inspector = inspector.read(cx);
4563            if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4564                && let Some(hitbox) = self
4565                    .next_frame
4566                    .hitboxes
4567                    .iter()
4568                    .find(|hitbox| hitbox.id == hitbox_id)
4569            {
4570                self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4571            }
4572        }
4573    }
4574
4575    #[cfg(any(feature = "inspector", debug_assertions))]
4576    fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4577        let Some(inspector) = self.inspector.clone() else {
4578            return;
4579        };
4580        if event.downcast_ref::<MouseMoveEvent>().is_some() {
4581            inspector.update(cx, |inspector, _cx| {
4582                if let Some((_, inspector_id)) =
4583                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4584                {
4585                    inspector.hover(inspector_id, self);
4586                }
4587            });
4588        } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4589            inspector.update(cx, |inspector, _cx| {
4590                if let Some((_, inspector_id)) =
4591                    self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4592                {
4593                    inspector.select(inspector_id, self);
4594                }
4595            });
4596        } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4597            // This should be kept in sync with SCROLL_LINES in x11 platform.
4598            const SCROLL_LINES: f32 = 3.0;
4599            const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4600            let delta_y = event
4601                .delta
4602                .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4603                .y;
4604            if let Some(inspector) = self.inspector.clone() {
4605                inspector.update(cx, |inspector, _cx| {
4606                    if let Some(depth) = inspector.pick_depth.as_mut() {
4607                        *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4608                        let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4609                        if *depth < 0.0 {
4610                            *depth = 0.0;
4611                        } else if *depth > max_depth {
4612                            *depth = max_depth;
4613                        }
4614                        if let Some((_, inspector_id)) =
4615                            self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4616                        {
4617                            inspector.set_active_element_id(inspector_id, self);
4618                        }
4619                    }
4620                });
4621            }
4622        }
4623    }
4624
4625    #[cfg(any(feature = "inspector", debug_assertions))]
4626    fn hovered_inspector_hitbox(
4627        &self,
4628        inspector: &Inspector,
4629        frame: &Frame,
4630    ) -> Option<(HitboxId, crate::InspectorElementId)> {
4631        if let Some(pick_depth) = inspector.pick_depth {
4632            let depth = (pick_depth as i64).try_into().unwrap_or(0);
4633            let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4634            let skip_count = (depth as usize).min(max_skipped);
4635            for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4636                if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4637                    return Some((*hitbox_id, inspector_id.clone()));
4638                }
4639            }
4640        }
4641        None
4642    }
4643
4644    /// For testing: set the current modifier keys state.
4645    /// This does not generate any events.
4646    #[cfg(any(test, feature = "test-support"))]
4647    pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4648        self.modifiers = modifiers;
4649    }
4650}
4651
4652// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4653slotmap::new_key_type! {
4654    /// A unique identifier for a window.
4655    pub struct WindowId;
4656}
4657
4658impl WindowId {
4659    /// Converts this window ID to a `u64`.
4660    pub fn as_u64(&self) -> u64 {
4661        self.0.as_ffi()
4662    }
4663}
4664
4665impl From<u64> for WindowId {
4666    fn from(value: u64) -> Self {
4667        WindowId(slotmap::KeyData::from_ffi(value))
4668    }
4669}
4670
4671/// A handle to a window with a specific root view type.
4672/// Note that this does not keep the window alive on its own.
4673#[derive(Deref, DerefMut)]
4674pub struct WindowHandle<V> {
4675    #[deref]
4676    #[deref_mut]
4677    pub(crate) any_handle: AnyWindowHandle,
4678    state_type: PhantomData<fn(V) -> V>,
4679}
4680
4681impl<V> Debug for WindowHandle<V> {
4682    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4683        f.debug_struct("WindowHandle")
4684            .field("any_handle", &self.any_handle.id.as_u64())
4685            .finish()
4686    }
4687}
4688
4689impl<V: 'static + Render> WindowHandle<V> {
4690    /// Creates a new handle from a window ID.
4691    /// This does not check if the root type of the window is `V`.
4692    pub fn new(id: WindowId) -> Self {
4693        WindowHandle {
4694            any_handle: AnyWindowHandle {
4695                id,
4696                state_type: TypeId::of::<V>(),
4697            },
4698            state_type: PhantomData,
4699        }
4700    }
4701
4702    /// Get the root view out of this window.
4703    ///
4704    /// This will fail if the window is closed or if the root view's type does not match `V`.
4705    #[cfg(any(test, feature = "test-support"))]
4706    pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4707    where
4708        C: AppContext,
4709    {
4710        crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4711            root_view
4712                .downcast::<V>()
4713                .map_err(|_| anyhow!("the type of the window's root view has changed"))
4714        }))
4715    }
4716
4717    /// Updates the root view of this window.
4718    ///
4719    /// This will fail if the window has been closed or if the root view's type does not match
4720    pub fn update<C, R>(
4721        &self,
4722        cx: &mut C,
4723        update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4724    ) -> Result<R>
4725    where
4726        C: AppContext,
4727    {
4728        cx.update_window(self.any_handle, |root_view, window, cx| {
4729            let view = root_view
4730                .downcast::<V>()
4731                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4732
4733            Ok(view.update(cx, |view, cx| update(view, window, cx)))
4734        })?
4735    }
4736
4737    /// Read the root view out of this window.
4738    ///
4739    /// This will fail if the window is closed or if the root view's type does not match `V`.
4740    pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4741        let x = cx
4742            .windows
4743            .get(self.id)
4744            .and_then(|window| {
4745                window
4746                    .as_deref()
4747                    .and_then(|window| window.root.clone())
4748                    .map(|root_view| root_view.downcast::<V>())
4749            })
4750            .context("window not found")?
4751            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4752
4753        Ok(x.read(cx))
4754    }
4755
4756    /// Read the root view out of this window, with a callback
4757    ///
4758    /// This will fail if the window is closed or if the root view's type does not match `V`.
4759    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4760    where
4761        C: AppContext,
4762    {
4763        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4764    }
4765
4766    /// Read the root view pointer off of this window.
4767    ///
4768    /// This will fail if the window is closed or if the root view's type does not match `V`.
4769    pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4770    where
4771        C: AppContext,
4772    {
4773        cx.read_window(self, |root_view, _cx| root_view)
4774    }
4775
4776    /// Check if this window is 'active'.
4777    ///
4778    /// Will return `None` if the window is closed or currently
4779    /// borrowed.
4780    pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4781        cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4782            .ok()
4783    }
4784}
4785
4786impl<V> Copy for WindowHandle<V> {}
4787
4788impl<V> Clone for WindowHandle<V> {
4789    fn clone(&self) -> Self {
4790        *self
4791    }
4792}
4793
4794impl<V> PartialEq for WindowHandle<V> {
4795    fn eq(&self, other: &Self) -> bool {
4796        self.any_handle == other.any_handle
4797    }
4798}
4799
4800impl<V> Eq for WindowHandle<V> {}
4801
4802impl<V> Hash for WindowHandle<V> {
4803    fn hash<H: Hasher>(&self, state: &mut H) {
4804        self.any_handle.hash(state);
4805    }
4806}
4807
4808impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4809    fn from(val: WindowHandle<V>) -> Self {
4810        val.any_handle
4811    }
4812}
4813
4814/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4815#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4816pub struct AnyWindowHandle {
4817    pub(crate) id: WindowId,
4818    state_type: TypeId,
4819}
4820
4821impl AnyWindowHandle {
4822    /// Get the ID of this window.
4823    pub fn window_id(&self) -> WindowId {
4824        self.id
4825    }
4826
4827    /// Attempt to convert this handle to a window handle with a specific root view type.
4828    /// If the types do not match, this will return `None`.
4829    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4830        if TypeId::of::<T>() == self.state_type {
4831            Some(WindowHandle {
4832                any_handle: *self,
4833                state_type: PhantomData,
4834            })
4835        } else {
4836            None
4837        }
4838    }
4839
4840    /// Updates the state of the root view of this window.
4841    ///
4842    /// This will fail if the window has been closed.
4843    pub fn update<C, R>(
4844        self,
4845        cx: &mut C,
4846        update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4847    ) -> Result<R>
4848    where
4849        C: AppContext,
4850    {
4851        cx.update_window(self, update)
4852    }
4853
4854    /// Read the state of the root view of this window.
4855    ///
4856    /// This will fail if the window has been closed.
4857    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4858    where
4859        C: AppContext,
4860        T: 'static,
4861    {
4862        let view = self
4863            .downcast::<T>()
4864            .context("the type of the window's root view has changed")?;
4865
4866        cx.read_window(&view, read)
4867    }
4868}
4869
4870impl HasWindowHandle for Window {
4871    fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4872        self.platform_window.window_handle()
4873    }
4874}
4875
4876impl HasDisplayHandle for Window {
4877    fn display_handle(
4878        &self,
4879    ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4880        self.platform_window.display_handle()
4881    }
4882}
4883
4884/// An identifier for an [`Element`].
4885///
4886/// Can be constructed with a string, a number, or both, as well
4887/// as other internal representations.
4888#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4889pub enum ElementId {
4890    /// The ID of a View element
4891    View(EntityId),
4892    /// An integer ID.
4893    Integer(u64),
4894    /// A string based ID.
4895    Name(SharedString),
4896    /// A UUID.
4897    Uuid(Uuid),
4898    /// An ID that's equated with a focus handle.
4899    FocusHandle(FocusId),
4900    /// A combination of a name and an integer.
4901    NamedInteger(SharedString, u64),
4902    /// A path.
4903    Path(Arc<std::path::Path>),
4904    /// A code location.
4905    CodeLocation(core::panic::Location<'static>),
4906    /// A labeled child of an element.
4907    NamedChild(Arc<ElementId>, SharedString),
4908}
4909
4910impl ElementId {
4911    /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4912    pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4913        Self::NamedInteger(name.into(), integer as u64)
4914    }
4915}
4916
4917impl Display for ElementId {
4918    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4919        match self {
4920            ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4921            ElementId::Integer(ix) => write!(f, "{}", ix)?,
4922            ElementId::Name(name) => write!(f, "{}", name)?,
4923            ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4924            ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4925            ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4926            ElementId::Path(path) => write!(f, "{}", path.display())?,
4927            ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4928            ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4929        }
4930
4931        Ok(())
4932    }
4933}
4934
4935impl TryInto<SharedString> for ElementId {
4936    type Error = anyhow::Error;
4937
4938    fn try_into(self) -> anyhow::Result<SharedString> {
4939        if let ElementId::Name(name) = self {
4940            Ok(name)
4941        } else {
4942            anyhow::bail!("element id is not string")
4943        }
4944    }
4945}
4946
4947impl From<usize> for ElementId {
4948    fn from(id: usize) -> Self {
4949        ElementId::Integer(id as u64)
4950    }
4951}
4952
4953impl From<i32> for ElementId {
4954    fn from(id: i32) -> Self {
4955        Self::Integer(id as u64)
4956    }
4957}
4958
4959impl From<SharedString> for ElementId {
4960    fn from(name: SharedString) -> Self {
4961        ElementId::Name(name)
4962    }
4963}
4964
4965impl From<Arc<std::path::Path>> for ElementId {
4966    fn from(path: Arc<std::path::Path>) -> Self {
4967        ElementId::Path(path)
4968    }
4969}
4970
4971impl From<&'static str> for ElementId {
4972    fn from(name: &'static str) -> Self {
4973        ElementId::Name(name.into())
4974    }
4975}
4976
4977impl<'a> From<&'a FocusHandle> for ElementId {
4978    fn from(handle: &'a FocusHandle) -> Self {
4979        ElementId::FocusHandle(handle.id)
4980    }
4981}
4982
4983impl From<(&'static str, EntityId)> for ElementId {
4984    fn from((name, id): (&'static str, EntityId)) -> Self {
4985        ElementId::NamedInteger(name.into(), id.as_u64())
4986    }
4987}
4988
4989impl From<(&'static str, usize)> for ElementId {
4990    fn from((name, id): (&'static str, usize)) -> Self {
4991        ElementId::NamedInteger(name.into(), id as u64)
4992    }
4993}
4994
4995impl From<(SharedString, usize)> for ElementId {
4996    fn from((name, id): (SharedString, usize)) -> Self {
4997        ElementId::NamedInteger(name, id as u64)
4998    }
4999}
5000
5001impl From<(&'static str, u64)> for ElementId {
5002    fn from((name, id): (&'static str, u64)) -> Self {
5003        ElementId::NamedInteger(name.into(), id)
5004    }
5005}
5006
5007impl From<Uuid> for ElementId {
5008    fn from(value: Uuid) -> Self {
5009        Self::Uuid(value)
5010    }
5011}
5012
5013impl From<(&'static str, u32)> for ElementId {
5014    fn from((name, id): (&'static str, u32)) -> Self {
5015        ElementId::NamedInteger(name.into(), id.into())
5016    }
5017}
5018
5019impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5020    fn from((id, name): (ElementId, T)) -> Self {
5021        ElementId::NamedChild(Arc::new(id), name.into())
5022    }
5023}
5024
5025impl From<&'static core::panic::Location<'static>> for ElementId {
5026    fn from(location: &'static core::panic::Location<'static>) -> Self {
5027        ElementId::CodeLocation(*location)
5028    }
5029}
5030
5031/// A rectangle to be rendered in the window at the given position and size.
5032/// Passed as an argument [`Window::paint_quad`].
5033#[derive(Clone)]
5034pub struct PaintQuad {
5035    /// The bounds of the quad within the window.
5036    pub bounds: Bounds<Pixels>,
5037    /// The radii of the quad's corners.
5038    pub corner_radii: Corners<Pixels>,
5039    /// The background color of the quad.
5040    pub background: Background,
5041    /// The widths of the quad's borders.
5042    pub border_widths: Edges<Pixels>,
5043    /// The color of the quad's borders.
5044    pub border_color: Hsla,
5045    /// The style of the quad's borders.
5046    pub border_style: BorderStyle,
5047}
5048
5049impl PaintQuad {
5050    /// Sets the corner radii of the quad.
5051    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5052        PaintQuad {
5053            corner_radii: corner_radii.into(),
5054            ..self
5055        }
5056    }
5057
5058    /// Sets the border widths of the quad.
5059    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5060        PaintQuad {
5061            border_widths: border_widths.into(),
5062            ..self
5063        }
5064    }
5065
5066    /// Sets the border color of the quad.
5067    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5068        PaintQuad {
5069            border_color: border_color.into(),
5070            ..self
5071        }
5072    }
5073
5074    /// Sets the background color of the quad.
5075    pub fn background(self, background: impl Into<Background>) -> Self {
5076        PaintQuad {
5077            background: background.into(),
5078            ..self
5079        }
5080    }
5081}
5082
5083/// Creates a quad with the given parameters.
5084pub fn quad(
5085    bounds: Bounds<Pixels>,
5086    corner_radii: impl Into<Corners<Pixels>>,
5087    background: impl Into<Background>,
5088    border_widths: impl Into<Edges<Pixels>>,
5089    border_color: impl Into<Hsla>,
5090    border_style: BorderStyle,
5091) -> PaintQuad {
5092    PaintQuad {
5093        bounds,
5094        corner_radii: corner_radii.into(),
5095        background: background.into(),
5096        border_widths: border_widths.into(),
5097        border_color: border_color.into(),
5098        border_style,
5099    }
5100}
5101
5102/// Creates a filled quad with the given bounds and background color.
5103pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5104    PaintQuad {
5105        bounds: bounds.into(),
5106        corner_radii: (0.).into(),
5107        background: background.into(),
5108        border_widths: (0.).into(),
5109        border_color: transparent_black(),
5110        border_style: BorderStyle::default(),
5111    }
5112}
5113
5114/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5115pub fn outline(
5116    bounds: impl Into<Bounds<Pixels>>,
5117    border_color: impl Into<Hsla>,
5118    border_style: BorderStyle,
5119) -> PaintQuad {
5120    PaintQuad {
5121        bounds: bounds.into(),
5122        corner_radii: (0.).into(),
5123        background: transparent_black().into(),
5124        border_widths: (1.).into(),
5125        border_color: border_color.into(),
5126        border_style,
5127    }
5128}