1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, Priority, PromptButton,
13 PromptLevel, Quad, Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams,
14 Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS_X, SUBPIXEL_VARIANTS_Y,
15 ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style, SubscriberSet,
16 Subscription, SystemWindowTab, SystemWindowTabController, TabStopMap, TaffyLayoutEngine, Task,
17 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
18 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
19 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
20 transparent_black,
21};
22use anyhow::{Context as _, Result, anyhow};
23use collections::{FxHashMap, FxHashSet};
24#[cfg(target_os = "macos")]
25use core_video::pixel_buffer::CVPixelBuffer;
26use derive_more::{Deref, DerefMut};
27use futures::FutureExt;
28use futures::channel::oneshot;
29use itertools::FoldWhile::{Continue, Done};
30use itertools::Itertools;
31use parking_lot::RwLock;
32use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
33use refineable::Refineable;
34use slotmap::SlotMap;
35use smallvec::SmallVec;
36use std::{
37 any::{Any, TypeId},
38 borrow::Cow,
39 cell::{Cell, RefCell},
40 cmp,
41 fmt::{Debug, Display},
42 hash::{Hash, Hasher},
43 marker::PhantomData,
44 mem,
45 ops::{DerefMut, Range},
46 rc::Rc,
47 sync::{
48 Arc, Weak,
49 atomic::{AtomicUsize, Ordering::SeqCst},
50 },
51 time::{Duration, Instant},
52};
53use util::post_inc;
54use util::{ResultExt, measure};
55use uuid::Uuid;
56
57mod prompts;
58
59use crate::util::atomic_incr_if_not_zero;
60pub use prompts::*;
61
62pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1536.), px(864.));
63
64/// A 6:5 aspect ratio minimum window size to be used for functional,
65/// additional-to-main-Zed windows, like the settings and rules library windows.
66pub const DEFAULT_ADDITIONAL_WINDOW_SIZE: Size<Pixels> = Size {
67 width: Pixels(900.),
68 height: Pixels(750.),
69};
70
71/// Represents the two different phases when dispatching events.
72#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
73pub enum DispatchPhase {
74 /// After the capture phase comes the bubble phase, in which mouse event listeners are
75 /// invoked front to back and keyboard event listeners are invoked from the focused element
76 /// to the root of the element tree. This is the phase you'll most commonly want to use when
77 /// registering event listeners.
78 #[default]
79 Bubble,
80 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
81 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
82 /// is used for special purposes such as clearing the "pressed" state for click events. If
83 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
84 /// outside of the immediate region may rely on detecting non-local events during this phase.
85 Capture,
86}
87
88impl DispatchPhase {
89 /// Returns true if this represents the "bubble" phase.
90 #[inline]
91 pub fn bubble(self) -> bool {
92 self == DispatchPhase::Bubble
93 }
94
95 /// Returns true if this represents the "capture" phase.
96 #[inline]
97 pub fn capture(self) -> bool {
98 self == DispatchPhase::Capture
99 }
100}
101
102struct WindowInvalidatorInner {
103 pub dirty: bool,
104 pub draw_phase: DrawPhase,
105 pub dirty_views: FxHashSet<EntityId>,
106}
107
108#[derive(Clone)]
109pub(crate) struct WindowInvalidator {
110 inner: Rc<RefCell<WindowInvalidatorInner>>,
111}
112
113impl WindowInvalidator {
114 pub fn new() -> Self {
115 WindowInvalidator {
116 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
117 dirty: true,
118 draw_phase: DrawPhase::None,
119 dirty_views: FxHashSet::default(),
120 })),
121 }
122 }
123
124 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
125 let mut inner = self.inner.borrow_mut();
126 inner.dirty_views.insert(entity);
127 if inner.draw_phase == DrawPhase::None {
128 inner.dirty = true;
129 cx.push_effect(Effect::Notify { emitter: entity });
130 true
131 } else {
132 false
133 }
134 }
135
136 pub fn is_dirty(&self) -> bool {
137 self.inner.borrow().dirty
138 }
139
140 pub fn set_dirty(&self, dirty: bool) {
141 self.inner.borrow_mut().dirty = dirty
142 }
143
144 pub fn set_phase(&self, phase: DrawPhase) {
145 self.inner.borrow_mut().draw_phase = phase
146 }
147
148 pub fn take_views(&self) -> FxHashSet<EntityId> {
149 mem::take(&mut self.inner.borrow_mut().dirty_views)
150 }
151
152 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
153 self.inner.borrow_mut().dirty_views = views;
154 }
155
156 pub fn not_drawing(&self) -> bool {
157 self.inner.borrow().draw_phase == DrawPhase::None
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
164 "this method can only be called during paint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_prepaint(&self) {
170 debug_assert!(
171 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
172 "this method can only be called during request_layout, or prepaint"
173 );
174 }
175
176 #[track_caller]
177 pub fn debug_assert_paint_or_prepaint(&self) {
178 debug_assert!(
179 matches!(
180 self.inner.borrow().draw_phase,
181 DrawPhase::Paint | DrawPhase::Prepaint
182 ),
183 "this method can only be called during request_layout, prepaint, or paint"
184 );
185 }
186}
187
188type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
189
190pub(crate) type AnyWindowFocusListener =
191 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
192
193pub(crate) struct WindowFocusEvent {
194 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
195 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
196}
197
198impl WindowFocusEvent {
199 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
200 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
201 }
202
203 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
204 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
205 }
206}
207
208/// This is provided when subscribing for `Context::on_focus_out` events.
209pub struct FocusOutEvent {
210 /// A weak focus handle representing what was blurred.
211 pub blurred: WeakFocusHandle,
212}
213
214slotmap::new_key_type! {
215 /// A globally unique identifier for a focusable element.
216 pub struct FocusId;
217}
218
219thread_local! {
220 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
221}
222
223/// Returned when the element arena has been used and so must be cleared before the next draw.
224#[must_use]
225pub struct ArenaClearNeeded;
226
227impl ArenaClearNeeded {
228 /// Clear the element arena.
229 pub fn clear(self) {
230 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
231 element_arena.clear();
232 });
233 }
234}
235
236pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
237pub(crate) struct FocusRef {
238 pub(crate) ref_count: AtomicUsize,
239 pub(crate) tab_index: isize,
240 pub(crate) tab_stop: bool,
241}
242
243impl FocusId {
244 /// Obtains whether the element associated with this handle is currently focused.
245 pub fn is_focused(&self, window: &Window) -> bool {
246 window.focus == Some(*self)
247 }
248
249 /// Obtains whether the element associated with this handle contains the focused
250 /// element or is itself focused.
251 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
252 window
253 .focused(cx)
254 .is_some_and(|focused| self.contains(focused.id, window))
255 }
256
257 /// Obtains whether the element associated with this handle is contained within the
258 /// focused element or is itself focused.
259 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
260 let focused = window.focused(cx);
261 focused.is_some_and(|focused| focused.id.contains(*self, window))
262 }
263
264 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
265 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
266 window
267 .rendered_frame
268 .dispatch_tree
269 .focus_contains(*self, other)
270 }
271}
272
273/// A handle which can be used to track and manipulate the focused element in a window.
274pub struct FocusHandle {
275 pub(crate) id: FocusId,
276 handles: Arc<FocusMap>,
277 /// The index of this element in the tab order.
278 pub tab_index: isize,
279 /// Whether this element can be focused by tab navigation.
280 pub tab_stop: bool,
281}
282
283impl std::fmt::Debug for FocusHandle {
284 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
285 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
286 }
287}
288
289impl FocusHandle {
290 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
291 let id = handles.write().insert(FocusRef {
292 ref_count: AtomicUsize::new(1),
293 tab_index: 0,
294 tab_stop: false,
295 });
296
297 Self {
298 id,
299 tab_index: 0,
300 tab_stop: false,
301 handles: handles.clone(),
302 }
303 }
304
305 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
306 let lock = handles.read();
307 let focus = lock.get(id)?;
308 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
309 return None;
310 }
311 Some(Self {
312 id,
313 tab_index: focus.tab_index,
314 tab_stop: focus.tab_stop,
315 handles: handles.clone(),
316 })
317 }
318
319 /// Sets the tab index of the element associated with this handle.
320 pub fn tab_index(mut self, index: isize) -> Self {
321 self.tab_index = index;
322 if let Some(focus) = self.handles.write().get_mut(self.id) {
323 focus.tab_index = index;
324 }
325 self
326 }
327
328 /// Sets whether the element associated with this handle is a tab stop.
329 ///
330 /// When `false`, the element will not be included in the tab order.
331 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
332 self.tab_stop = tab_stop;
333 if let Some(focus) = self.handles.write().get_mut(self.id) {
334 focus.tab_stop = tab_stop;
335 }
336 self
337 }
338
339 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
340 pub fn downgrade(&self) -> WeakFocusHandle {
341 WeakFocusHandle {
342 id: self.id,
343 handles: Arc::downgrade(&self.handles),
344 }
345 }
346
347 /// Moves the focus to the element associated with this handle.
348 pub fn focus(&self, window: &mut Window) {
349 window.focus(self)
350 }
351
352 /// Obtains whether the element associated with this handle is currently focused.
353 pub fn is_focused(&self, window: &Window) -> bool {
354 self.id.is_focused(window)
355 }
356
357 /// Obtains whether the element associated with this handle contains the focused
358 /// element or is itself focused.
359 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
360 self.id.contains_focused(window, cx)
361 }
362
363 /// Obtains whether the element associated with this handle is contained within the
364 /// focused element or is itself focused.
365 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
366 self.id.within_focused(window, cx)
367 }
368
369 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
370 pub fn contains(&self, other: &Self, window: &Window) -> bool {
371 self.id.contains(other.id, window)
372 }
373
374 /// Dispatch an action on the element that rendered this focus handle
375 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
376 if let Some(node_id) = window
377 .rendered_frame
378 .dispatch_tree
379 .focusable_node_id(self.id)
380 {
381 window.dispatch_action_on_node(node_id, action, cx)
382 }
383 }
384}
385
386impl Clone for FocusHandle {
387 fn clone(&self) -> Self {
388 Self::for_id(self.id, &self.handles).unwrap()
389 }
390}
391
392impl PartialEq for FocusHandle {
393 fn eq(&self, other: &Self) -> bool {
394 self.id == other.id
395 }
396}
397
398impl Eq for FocusHandle {}
399
400impl Drop for FocusHandle {
401 fn drop(&mut self) {
402 self.handles
403 .read()
404 .get(self.id)
405 .unwrap()
406 .ref_count
407 .fetch_sub(1, SeqCst);
408 }
409}
410
411/// A weak reference to a focus handle.
412#[derive(Clone, Debug)]
413pub struct WeakFocusHandle {
414 pub(crate) id: FocusId,
415 pub(crate) handles: Weak<FocusMap>,
416}
417
418impl WeakFocusHandle {
419 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
420 pub fn upgrade(&self) -> Option<FocusHandle> {
421 let handles = self.handles.upgrade()?;
422 FocusHandle::for_id(self.id, &handles)
423 }
424}
425
426impl PartialEq for WeakFocusHandle {
427 fn eq(&self, other: &WeakFocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl Eq for WeakFocusHandle {}
433
434impl PartialEq<FocusHandle> for WeakFocusHandle {
435 fn eq(&self, other: &FocusHandle) -> bool {
436 self.id == other.id
437 }
438}
439
440impl PartialEq<WeakFocusHandle> for FocusHandle {
441 fn eq(&self, other: &WeakFocusHandle) -> bool {
442 self.id == other.id
443 }
444}
445
446/// Focusable allows users of your view to easily
447/// focus it (using window.focus_view(cx, view))
448pub trait Focusable: 'static {
449 /// Returns the focus handle associated with this view.
450 fn focus_handle(&self, cx: &App) -> FocusHandle;
451}
452
453impl<V: Focusable> Focusable for Entity<V> {
454 fn focus_handle(&self, cx: &App) -> FocusHandle {
455 self.read(cx).focus_handle(cx)
456 }
457}
458
459/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
460/// where the lifecycle of the view is handled by another view.
461pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
462
463impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
464
465/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
466pub struct DismissEvent;
467
468type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
469
470pub(crate) type AnyMouseListener =
471 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
472
473#[derive(Clone)]
474pub(crate) struct CursorStyleRequest {
475 pub(crate) hitbox_id: Option<HitboxId>,
476 pub(crate) style: CursorStyle,
477}
478
479#[derive(Default, Eq, PartialEq)]
480pub(crate) struct HitTest {
481 pub(crate) ids: SmallVec<[HitboxId; 8]>,
482 pub(crate) hover_hitbox_count: usize,
483}
484
485/// A type of window control area that corresponds to the platform window.
486#[derive(Clone, Copy, Debug, Eq, PartialEq)]
487pub enum WindowControlArea {
488 /// An area that allows dragging of the platform window.
489 Drag,
490 /// An area that allows closing of the platform window.
491 Close,
492 /// An area that allows maximizing of the platform window.
493 Max,
494 /// An area that allows minimizing of the platform window.
495 Min,
496}
497
498/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
499#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
500pub struct HitboxId(u64);
501
502impl HitboxId {
503 /// Checks if the hitbox with this ID is currently hovered. Except when handling
504 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
505 /// events or paint hover styles.
506 ///
507 /// See [`Hitbox::is_hovered`] for details.
508 pub fn is_hovered(self, window: &Window) -> bool {
509 let hit_test = &window.mouse_hit_test;
510 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
511 if self == *id {
512 return true;
513 }
514 }
515 false
516 }
517
518 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
519 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
520 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
521 /// this distinction.
522 pub fn should_handle_scroll(self, window: &Window) -> bool {
523 window.mouse_hit_test.ids.contains(&self)
524 }
525
526 fn next(mut self) -> HitboxId {
527 HitboxId(self.0.wrapping_add(1))
528 }
529}
530
531/// A rectangular region that potentially blocks hitboxes inserted prior.
532/// See [Window::insert_hitbox] for more details.
533#[derive(Clone, Debug, Deref)]
534pub struct Hitbox {
535 /// A unique identifier for the hitbox.
536 pub id: HitboxId,
537 /// The bounds of the hitbox.
538 #[deref]
539 pub bounds: Bounds<Pixels>,
540 /// The content mask when the hitbox was inserted.
541 pub content_mask: ContentMask<Pixels>,
542 /// Flags that specify hitbox behavior.
543 pub behavior: HitboxBehavior,
544}
545
546impl Hitbox {
547 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
548 /// typically what you want when determining whether to handle mouse events or paint hover
549 /// styles.
550 ///
551 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
552 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
553 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
554 ///
555 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
556 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
557 /// non-interactive while still allowing scrolling. More abstractly, this is because
558 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
559 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
560 /// container.
561 pub fn is_hovered(&self, window: &Window) -> bool {
562 self.id.is_hovered(window)
563 }
564
565 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
566 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
567 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
568 ///
569 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
570 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
571 pub fn should_handle_scroll(&self, window: &Window) -> bool {
572 self.id.should_handle_scroll(window)
573 }
574}
575
576/// How the hitbox affects mouse behavior.
577#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
578pub enum HitboxBehavior {
579 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
580 #[default]
581 Normal,
582
583 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
584 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
585 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
586 /// [`InteractiveElement::occlude`].
587 ///
588 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
589 /// bubble-phase handler for every mouse event type:
590 ///
591 /// ```ignore
592 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
593 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
594 /// cx.stop_propagation();
595 /// }
596 /// })
597 /// ```
598 ///
599 /// This has effects beyond event handling - any use of hitbox checking, such as hover
600 /// styles and tooltips. These other behaviors are the main point of this mechanism. An
601 /// alternative might be to not affect mouse event handling - but this would allow
602 /// inconsistent UI where clicks and moves interact with elements that are not considered to
603 /// be hovered.
604 BlockMouse,
605
606 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
607 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
608 /// interaction except scroll events to be ignored - see the documentation of
609 /// [`Hitbox::is_hovered`] for details. This flag is set by
610 /// [`InteractiveElement::block_mouse_except_scroll`].
611 ///
612 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
613 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
614 ///
615 /// ```ignore
616 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, cx| {
617 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
618 /// cx.stop_propagation();
619 /// }
620 /// })
621 /// ```
622 ///
623 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
624 /// handled differently than other mouse events. If also blocking these scroll events is
625 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
626 ///
627 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
628 /// hover styles and tooltips. These other behaviors are the main point of this mechanism.
629 /// An alternative might be to not affect mouse event handling - but this would allow
630 /// inconsistent UI where clicks and moves interact with elements that are not considered to
631 /// be hovered.
632 BlockMouseExceptScroll,
633}
634
635/// An identifier for a tooltip.
636#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
637pub struct TooltipId(usize);
638
639impl TooltipId {
640 /// Checks if the tooltip is currently hovered.
641 pub fn is_hovered(&self, window: &Window) -> bool {
642 window
643 .tooltip_bounds
644 .as_ref()
645 .is_some_and(|tooltip_bounds| {
646 tooltip_bounds.id == *self
647 && tooltip_bounds.bounds.contains(&window.mouse_position())
648 })
649 }
650}
651
652pub(crate) struct TooltipBounds {
653 id: TooltipId,
654 bounds: Bounds<Pixels>,
655}
656
657#[derive(Clone)]
658pub(crate) struct TooltipRequest {
659 id: TooltipId,
660 tooltip: AnyTooltip,
661}
662
663pub(crate) struct DeferredDraw {
664 current_view: EntityId,
665 priority: usize,
666 parent_node: DispatchNodeId,
667 element_id_stack: SmallVec<[ElementId; 32]>,
668 text_style_stack: Vec<TextStyleRefinement>,
669 element: Option<AnyElement>,
670 absolute_offset: Point<Pixels>,
671 prepaint_range: Range<PrepaintStateIndex>,
672 paint_range: Range<PaintIndex>,
673}
674
675pub(crate) struct Frame {
676 pub(crate) focus: Option<FocusId>,
677 pub(crate) window_active: bool,
678 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
679 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
680 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
681 pub(crate) dispatch_tree: DispatchTree,
682 pub(crate) scene: Scene,
683 pub(crate) hitboxes: Vec<Hitbox>,
684 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
685 pub(crate) deferred_draws: Vec<DeferredDraw>,
686 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
687 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
688 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
689 #[cfg(any(test, feature = "test-support"))]
690 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
691 #[cfg(any(feature = "inspector", debug_assertions))]
692 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
693 #[cfg(any(feature = "inspector", debug_assertions))]
694 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
695 pub(crate) tab_stops: TabStopMap,
696}
697
698#[derive(Clone, Default)]
699pub(crate) struct PrepaintStateIndex {
700 hitboxes_index: usize,
701 tooltips_index: usize,
702 deferred_draws_index: usize,
703 dispatch_tree_index: usize,
704 accessed_element_states_index: usize,
705 line_layout_index: LineLayoutIndex,
706}
707
708#[derive(Clone, Default)]
709pub(crate) struct PaintIndex {
710 scene_index: usize,
711 mouse_listeners_index: usize,
712 input_handlers_index: usize,
713 cursor_styles_index: usize,
714 accessed_element_states_index: usize,
715 tab_handle_index: usize,
716 line_layout_index: LineLayoutIndex,
717}
718
719impl Frame {
720 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
721 Frame {
722 focus: None,
723 window_active: false,
724 element_states: FxHashMap::default(),
725 accessed_element_states: Vec::new(),
726 mouse_listeners: Vec::new(),
727 dispatch_tree,
728 scene: Scene::default(),
729 hitboxes: Vec::new(),
730 window_control_hitboxes: Vec::new(),
731 deferred_draws: Vec::new(),
732 input_handlers: Vec::new(),
733 tooltip_requests: Vec::new(),
734 cursor_styles: Vec::new(),
735
736 #[cfg(any(test, feature = "test-support"))]
737 debug_bounds: FxHashMap::default(),
738
739 #[cfg(any(feature = "inspector", debug_assertions))]
740 next_inspector_instance_ids: FxHashMap::default(),
741
742 #[cfg(any(feature = "inspector", debug_assertions))]
743 inspector_hitboxes: FxHashMap::default(),
744 tab_stops: TabStopMap::default(),
745 }
746 }
747
748 pub(crate) fn clear(&mut self) {
749 self.element_states.clear();
750 self.accessed_element_states.clear();
751 self.mouse_listeners.clear();
752 self.dispatch_tree.clear();
753 self.scene.clear();
754 self.input_handlers.clear();
755 self.tooltip_requests.clear();
756 self.cursor_styles.clear();
757 self.hitboxes.clear();
758 self.window_control_hitboxes.clear();
759 self.deferred_draws.clear();
760 self.tab_stops.clear();
761 self.focus = None;
762
763 #[cfg(any(feature = "inspector", debug_assertions))]
764 {
765 self.next_inspector_instance_ids.clear();
766 self.inspector_hitboxes.clear();
767 }
768 }
769
770 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
771 self.cursor_styles
772 .iter()
773 .rev()
774 .fold_while(None, |style, request| match request.hitbox_id {
775 None => Done(Some(request.style)),
776 Some(hitbox_id) => Continue(
777 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
778 ),
779 })
780 .into_inner()
781 }
782
783 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
784 let mut set_hover_hitbox_count = false;
785 let mut hit_test = HitTest::default();
786 for hitbox in self.hitboxes.iter().rev() {
787 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
788 if bounds.contains(&position) {
789 hit_test.ids.push(hitbox.id);
790 if !set_hover_hitbox_count
791 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
792 {
793 hit_test.hover_hitbox_count = hit_test.ids.len();
794 set_hover_hitbox_count = true;
795 }
796 if hitbox.behavior == HitboxBehavior::BlockMouse {
797 break;
798 }
799 }
800 }
801 if !set_hover_hitbox_count {
802 hit_test.hover_hitbox_count = hit_test.ids.len();
803 }
804 hit_test
805 }
806
807 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
808 self.focus
809 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
810 .unwrap_or_default()
811 }
812
813 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
814 for element_state_key in &self.accessed_element_states {
815 if let Some((element_state_key, element_state)) =
816 prev_frame.element_states.remove_entry(element_state_key)
817 {
818 self.element_states.insert(element_state_key, element_state);
819 }
820 }
821
822 self.scene.finish();
823 }
824}
825
826#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Ord, PartialOrd)]
827enum InputModality {
828 Mouse,
829 Keyboard,
830}
831
832/// Holds the state for a specific window.
833pub struct Window {
834 pub(crate) handle: AnyWindowHandle,
835 pub(crate) invalidator: WindowInvalidator,
836 pub(crate) removed: bool,
837 pub(crate) platform_window: Box<dyn PlatformWindow>,
838 display_id: Option<DisplayId>,
839 sprite_atlas: Arc<dyn PlatformAtlas>,
840 text_system: Arc<WindowTextSystem>,
841 rem_size: Pixels,
842 /// The stack of override values for the window's rem size.
843 ///
844 /// This is used by `with_rem_size` to allow rendering an element tree with
845 /// a given rem size.
846 rem_size_override_stack: SmallVec<[Pixels; 8]>,
847 pub(crate) viewport_size: Size<Pixels>,
848 layout_engine: Option<TaffyLayoutEngine>,
849 pub(crate) root: Option<AnyView>,
850 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
851 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
852 pub(crate) rendered_entity_stack: Vec<EntityId>,
853 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
854 pub(crate) element_opacity: f32,
855 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
856 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
857 pub(crate) image_cache_stack: Vec<AnyImageCache>,
858 pub(crate) rendered_frame: Frame,
859 pub(crate) next_frame: Frame,
860 next_hitbox_id: HitboxId,
861 pub(crate) next_tooltip_id: TooltipId,
862 pub(crate) tooltip_bounds: Option<TooltipBounds>,
863 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
864 pub(crate) dirty_views: FxHashSet<EntityId>,
865 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
866 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
867 default_prevented: bool,
868 mouse_position: Point<Pixels>,
869 mouse_hit_test: HitTest,
870 modifiers: Modifiers,
871 capslock: Capslock,
872 scale_factor: f32,
873 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
874 appearance: WindowAppearance,
875 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
876 active: Rc<Cell<bool>>,
877 hovered: Rc<Cell<bool>>,
878 pub(crate) needs_present: Rc<Cell<bool>>,
879 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
880 last_input_modality: InputModality,
881 pub(crate) refreshing: bool,
882 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
883 pub(crate) focus: Option<FocusId>,
884 focus_enabled: bool,
885 pending_input: Option<PendingInput>,
886 pending_modifier: ModifierState,
887 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
888 prompt: Option<RenderablePromptHandle>,
889 pub(crate) client_inset: Option<Pixels>,
890 #[cfg(any(feature = "inspector", debug_assertions))]
891 inspector: Option<Entity<Inspector>>,
892}
893
894#[derive(Clone, Debug, Default)]
895struct ModifierState {
896 modifiers: Modifiers,
897 saw_keystroke: bool,
898}
899
900#[derive(Clone, Copy, Debug, Eq, PartialEq)]
901pub(crate) enum DrawPhase {
902 None,
903 Prepaint,
904 Paint,
905 Focus,
906}
907
908#[derive(Default, Debug)]
909struct PendingInput {
910 keystrokes: SmallVec<[Keystroke; 1]>,
911 focus: Option<FocusId>,
912 timer: Option<Task<()>>,
913 needs_timeout: bool,
914}
915
916pub(crate) struct ElementStateBox {
917 pub(crate) inner: Box<dyn Any>,
918 #[cfg(debug_assertions)]
919 pub(crate) type_name: &'static str,
920}
921
922fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> WindowBounds {
923 // TODO, BUG: if you open a window with the currently active window
924 // on the stack, this will erroneously fallback to `None`
925 //
926 // TODO these should be the initial window bounds not considering maximized/fullscreen
927 let active_window_bounds = cx
928 .active_window()
929 .and_then(|w| w.update(cx, |_, window, _| window.window_bounds()).ok());
930
931 const CASCADE_OFFSET: f32 = 25.0;
932
933 let display = display_id
934 .map(|id| cx.find_display(id))
935 .unwrap_or_else(|| cx.primary_display());
936
937 let default_placement = || Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE);
938
939 // Use visible_bounds to exclude taskbar/dock areas
940 let display_bounds = display
941 .as_ref()
942 .map(|d| d.visible_bounds())
943 .unwrap_or_else(default_placement);
944
945 let (
946 Bounds {
947 origin: base_origin,
948 size: base_size,
949 },
950 window_bounds_ctor,
951 ): (_, fn(Bounds<Pixels>) -> WindowBounds) = match active_window_bounds {
952 Some(bounds) => match bounds {
953 WindowBounds::Windowed(bounds) => (bounds, WindowBounds::Windowed),
954 WindowBounds::Maximized(bounds) => (bounds, WindowBounds::Maximized),
955 WindowBounds::Fullscreen(bounds) => (bounds, WindowBounds::Fullscreen),
956 },
957 None => (
958 display
959 .as_ref()
960 .map(|d| d.default_bounds())
961 .unwrap_or_else(default_placement),
962 WindowBounds::Windowed,
963 ),
964 };
965
966 let cascade_offset = point(px(CASCADE_OFFSET), px(CASCADE_OFFSET));
967 let proposed_origin = base_origin + cascade_offset;
968 let proposed_bounds = Bounds::new(proposed_origin, base_size);
969
970 let display_right = display_bounds.origin.x + display_bounds.size.width;
971 let display_bottom = display_bounds.origin.y + display_bounds.size.height;
972 let window_right = proposed_bounds.origin.x + proposed_bounds.size.width;
973 let window_bottom = proposed_bounds.origin.y + proposed_bounds.size.height;
974
975 let fits_horizontally = window_right <= display_right;
976 let fits_vertically = window_bottom <= display_bottom;
977
978 let final_origin = match (fits_horizontally, fits_vertically) {
979 (true, true) => proposed_origin,
980 (false, true) => point(display_bounds.origin.x, base_origin.y),
981 (true, false) => point(base_origin.x, display_bounds.origin.y),
982 (false, false) => display_bounds.origin,
983 };
984 window_bounds_ctor(Bounds::new(final_origin, base_size))
985}
986
987impl Window {
988 pub(crate) fn new(
989 handle: AnyWindowHandle,
990 options: WindowOptions,
991 cx: &mut App,
992 ) -> Result<Self> {
993 let WindowOptions {
994 window_bounds,
995 titlebar,
996 focus,
997 show,
998 kind,
999 is_movable,
1000 is_resizable,
1001 is_minimizable,
1002 display_id,
1003 window_background,
1004 app_id,
1005 window_min_size,
1006 window_decorations,
1007 #[cfg_attr(not(target_os = "macos"), allow(unused_variables))]
1008 tabbing_identifier,
1009 } = options;
1010
1011 let window_bounds = window_bounds.unwrap_or_else(|| default_bounds(display_id, cx));
1012 let mut platform_window = cx.platform.open_window(
1013 handle,
1014 WindowParams {
1015 bounds: window_bounds.get_bounds(),
1016 titlebar,
1017 kind,
1018 is_movable,
1019 is_resizable,
1020 is_minimizable,
1021 focus,
1022 show,
1023 display_id,
1024 window_min_size,
1025 #[cfg(target_os = "macos")]
1026 tabbing_identifier,
1027 },
1028 )?;
1029
1030 let tab_bar_visible = platform_window.tab_bar_visible();
1031 SystemWindowTabController::init_visible(cx, tab_bar_visible);
1032 if let Some(tabs) = platform_window.tabbed_windows() {
1033 SystemWindowTabController::add_tab(cx, handle.window_id(), tabs);
1034 }
1035
1036 let display_id = platform_window.display().map(|display| display.id());
1037 let sprite_atlas = platform_window.sprite_atlas();
1038 let mouse_position = platform_window.mouse_position();
1039 let modifiers = platform_window.modifiers();
1040 let capslock = platform_window.capslock();
1041 let content_size = platform_window.content_size();
1042 let scale_factor = platform_window.scale_factor();
1043 let appearance = platform_window.appearance();
1044 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
1045 let invalidator = WindowInvalidator::new();
1046 let active = Rc::new(Cell::new(platform_window.is_active()));
1047 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
1048 let needs_present = Rc::new(Cell::new(false));
1049 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
1050 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
1051
1052 platform_window
1053 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
1054 platform_window.set_background_appearance(window_background);
1055
1056 match window_bounds {
1057 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
1058 WindowBounds::Maximized(_) => platform_window.zoom(),
1059 WindowBounds::Windowed(_) => {}
1060 }
1061
1062 platform_window.on_close(Box::new({
1063 let window_id = handle.window_id();
1064 let mut cx = cx.to_async();
1065 move || {
1066 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
1067 let _ = cx.update(|cx| {
1068 SystemWindowTabController::remove_tab(cx, window_id);
1069 });
1070 }
1071 }));
1072 platform_window.on_request_frame(Box::new({
1073 let mut cx = cx.to_async();
1074 let invalidator = invalidator.clone();
1075 let active = active.clone();
1076 let needs_present = needs_present.clone();
1077 let next_frame_callbacks = next_frame_callbacks.clone();
1078 let last_input_timestamp = last_input_timestamp.clone();
1079 move |request_frame_options| {
1080 let next_frame_callbacks = next_frame_callbacks.take();
1081 if !next_frame_callbacks.is_empty() {
1082 handle
1083 .update(&mut cx, |_, window, cx| {
1084 for callback in next_frame_callbacks {
1085 callback(window, cx);
1086 }
1087 })
1088 .log_err();
1089 }
1090
1091 // Keep presenting the current scene for 1 extra second since the
1092 // last input to prevent the display from underclocking the refresh rate.
1093 let needs_present = request_frame_options.require_presentation
1094 || needs_present.get()
1095 || (active.get()
1096 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1097
1098 if invalidator.is_dirty() || request_frame_options.force_render {
1099 measure("frame duration", || {
1100 handle
1101 .update(&mut cx, |_, window, cx| {
1102 let arena_clear_needed = window.draw(cx);
1103 window.present();
1104 // drop the arena elements after present to reduce latency
1105 arena_clear_needed.clear();
1106 })
1107 .log_err();
1108 })
1109 } else if needs_present {
1110 handle
1111 .update(&mut cx, |_, window, _| window.present())
1112 .log_err();
1113 }
1114
1115 handle
1116 .update(&mut cx, |_, window, _| {
1117 window.complete_frame();
1118 })
1119 .log_err();
1120 }
1121 }));
1122 platform_window.on_resize(Box::new({
1123 let mut cx = cx.to_async();
1124 move |_, _| {
1125 handle
1126 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1127 .log_err();
1128 }
1129 }));
1130 platform_window.on_moved(Box::new({
1131 let mut cx = cx.to_async();
1132 move || {
1133 handle
1134 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1135 .log_err();
1136 }
1137 }));
1138 platform_window.on_appearance_changed(Box::new({
1139 let mut cx = cx.to_async();
1140 move || {
1141 handle
1142 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1143 .log_err();
1144 }
1145 }));
1146 platform_window.on_active_status_change(Box::new({
1147 let mut cx = cx.to_async();
1148 move |active| {
1149 handle
1150 .update(&mut cx, |_, window, cx| {
1151 window.active.set(active);
1152 window.modifiers = window.platform_window.modifiers();
1153 window.capslock = window.platform_window.capslock();
1154 window
1155 .activation_observers
1156 .clone()
1157 .retain(&(), |callback| callback(window, cx));
1158
1159 window.bounds_changed(cx);
1160 window.refresh();
1161
1162 SystemWindowTabController::update_last_active(cx, window.handle.id);
1163 })
1164 .log_err();
1165 }
1166 }));
1167 platform_window.on_hover_status_change(Box::new({
1168 let mut cx = cx.to_async();
1169 move |active| {
1170 handle
1171 .update(&mut cx, |_, window, _| {
1172 window.hovered.set(active);
1173 window.refresh();
1174 })
1175 .log_err();
1176 }
1177 }));
1178 platform_window.on_input({
1179 let mut cx = cx.to_async();
1180 Box::new(move |event| {
1181 handle
1182 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1183 .log_err()
1184 .unwrap_or(DispatchEventResult::default())
1185 })
1186 });
1187 platform_window.on_hit_test_window_control({
1188 let mut cx = cx.to_async();
1189 Box::new(move || {
1190 handle
1191 .update(&mut cx, |_, window, _cx| {
1192 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1193 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1194 return Some(*area);
1195 }
1196 }
1197 None
1198 })
1199 .log_err()
1200 .unwrap_or(None)
1201 })
1202 });
1203 platform_window.on_move_tab_to_new_window({
1204 let mut cx = cx.to_async();
1205 Box::new(move || {
1206 handle
1207 .update(&mut cx, |_, _window, cx| {
1208 SystemWindowTabController::move_tab_to_new_window(cx, handle.window_id());
1209 })
1210 .log_err();
1211 })
1212 });
1213 platform_window.on_merge_all_windows({
1214 let mut cx = cx.to_async();
1215 Box::new(move || {
1216 handle
1217 .update(&mut cx, |_, _window, cx| {
1218 SystemWindowTabController::merge_all_windows(cx, handle.window_id());
1219 })
1220 .log_err();
1221 })
1222 });
1223 platform_window.on_select_next_tab({
1224 let mut cx = cx.to_async();
1225 Box::new(move || {
1226 handle
1227 .update(&mut cx, |_, _window, cx| {
1228 SystemWindowTabController::select_next_tab(cx, handle.window_id());
1229 })
1230 .log_err();
1231 })
1232 });
1233 platform_window.on_select_previous_tab({
1234 let mut cx = cx.to_async();
1235 Box::new(move || {
1236 handle
1237 .update(&mut cx, |_, _window, cx| {
1238 SystemWindowTabController::select_previous_tab(cx, handle.window_id())
1239 })
1240 .log_err();
1241 })
1242 });
1243 platform_window.on_toggle_tab_bar({
1244 let mut cx = cx.to_async();
1245 Box::new(move || {
1246 handle
1247 .update(&mut cx, |_, window, cx| {
1248 let tab_bar_visible = window.platform_window.tab_bar_visible();
1249 SystemWindowTabController::set_visible(cx, tab_bar_visible);
1250 })
1251 .log_err();
1252 })
1253 });
1254
1255 if let Some(app_id) = app_id {
1256 platform_window.set_app_id(&app_id);
1257 }
1258
1259 platform_window.map_window().unwrap();
1260
1261 Ok(Window {
1262 handle,
1263 invalidator,
1264 removed: false,
1265 platform_window,
1266 display_id,
1267 sprite_atlas,
1268 text_system,
1269 rem_size: px(16.),
1270 rem_size_override_stack: SmallVec::new(),
1271 viewport_size: content_size,
1272 layout_engine: Some(TaffyLayoutEngine::new()),
1273 root: None,
1274 element_id_stack: SmallVec::default(),
1275 text_style_stack: Vec::new(),
1276 rendered_entity_stack: Vec::new(),
1277 element_offset_stack: Vec::new(),
1278 content_mask_stack: Vec::new(),
1279 element_opacity: 1.0,
1280 requested_autoscroll: None,
1281 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1282 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1283 next_frame_callbacks,
1284 next_hitbox_id: HitboxId(0),
1285 next_tooltip_id: TooltipId::default(),
1286 tooltip_bounds: None,
1287 dirty_views: FxHashSet::default(),
1288 focus_listeners: SubscriberSet::new(),
1289 focus_lost_listeners: SubscriberSet::new(),
1290 default_prevented: true,
1291 mouse_position,
1292 mouse_hit_test: HitTest::default(),
1293 modifiers,
1294 capslock,
1295 scale_factor,
1296 bounds_observers: SubscriberSet::new(),
1297 appearance,
1298 appearance_observers: SubscriberSet::new(),
1299 active,
1300 hovered,
1301 needs_present,
1302 last_input_timestamp,
1303 last_input_modality: InputModality::Mouse,
1304 refreshing: false,
1305 activation_observers: SubscriberSet::new(),
1306 focus: None,
1307 focus_enabled: true,
1308 pending_input: None,
1309 pending_modifier: ModifierState::default(),
1310 pending_input_observers: SubscriberSet::new(),
1311 prompt: None,
1312 client_inset: None,
1313 image_cache_stack: Vec::new(),
1314 #[cfg(any(feature = "inspector", debug_assertions))]
1315 inspector: None,
1316 })
1317 }
1318
1319 pub(crate) fn new_focus_listener(
1320 &self,
1321 value: AnyWindowFocusListener,
1322 ) -> (Subscription, impl FnOnce() + use<>) {
1323 self.focus_listeners.insert((), value)
1324 }
1325}
1326
1327#[derive(Clone, Debug, Default, PartialEq, Eq)]
1328pub(crate) struct DispatchEventResult {
1329 pub propagate: bool,
1330 pub default_prevented: bool,
1331}
1332
1333/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1334/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1335/// to leave room to support more complex shapes in the future.
1336#[derive(Clone, Debug, Default, PartialEq, Eq)]
1337#[repr(C)]
1338pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1339 /// The bounds
1340 pub bounds: Bounds<P>,
1341}
1342
1343impl ContentMask<Pixels> {
1344 /// Scale the content mask's pixel units by the given scaling factor.
1345 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1346 ContentMask {
1347 bounds: self.bounds.scale(factor),
1348 }
1349 }
1350
1351 /// Intersect the content mask with the given content mask.
1352 pub fn intersect(&self, other: &Self) -> Self {
1353 let bounds = self.bounds.intersect(&other.bounds);
1354 ContentMask { bounds }
1355 }
1356}
1357
1358impl Window {
1359 fn mark_view_dirty(&mut self, view_id: EntityId) {
1360 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1361 // should already be dirty.
1362 for view_id in self
1363 .rendered_frame
1364 .dispatch_tree
1365 .view_path_reversed(view_id)
1366 {
1367 if !self.dirty_views.insert(view_id) {
1368 break;
1369 }
1370 }
1371 }
1372
1373 /// Registers a callback to be invoked when the window appearance changes.
1374 pub fn observe_window_appearance(
1375 &self,
1376 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1377 ) -> Subscription {
1378 let (subscription, activate) = self.appearance_observers.insert(
1379 (),
1380 Box::new(move |window, cx| {
1381 callback(window, cx);
1382 true
1383 }),
1384 );
1385 activate();
1386 subscription
1387 }
1388
1389 /// Replaces the root entity of the window with a new one.
1390 pub fn replace_root<E>(
1391 &mut self,
1392 cx: &mut App,
1393 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1394 ) -> Entity<E>
1395 where
1396 E: 'static + Render,
1397 {
1398 let view = cx.new(|cx| build_view(self, cx));
1399 self.root = Some(view.clone().into());
1400 self.refresh();
1401 view
1402 }
1403
1404 /// Returns the root entity of the window, if it has one.
1405 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1406 where
1407 E: 'static + Render,
1408 {
1409 self.root
1410 .as_ref()
1411 .map(|view| view.clone().downcast::<E>().ok())
1412 }
1413
1414 /// Obtain a handle to the window that belongs to this context.
1415 pub fn window_handle(&self) -> AnyWindowHandle {
1416 self.handle
1417 }
1418
1419 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1420 pub fn refresh(&mut self) {
1421 if self.invalidator.not_drawing() {
1422 self.refreshing = true;
1423 self.invalidator.set_dirty(true);
1424 }
1425 }
1426
1427 /// Close this window.
1428 pub fn remove_window(&mut self) {
1429 self.removed = true;
1430 }
1431
1432 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1433 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1434 self.focus
1435 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1436 }
1437
1438 /// Move focus to the element associated with the given [`FocusHandle`].
1439 pub fn focus(&mut self, handle: &FocusHandle) {
1440 if !self.focus_enabled || self.focus == Some(handle.id) {
1441 return;
1442 }
1443
1444 self.focus = Some(handle.id);
1445 self.clear_pending_keystrokes();
1446 self.refresh();
1447 }
1448
1449 /// Remove focus from all elements within this context's window.
1450 pub fn blur(&mut self) {
1451 if !self.focus_enabled {
1452 return;
1453 }
1454
1455 self.focus = None;
1456 self.refresh();
1457 }
1458
1459 /// Blur the window and don't allow anything in it to be focused again.
1460 pub fn disable_focus(&mut self) {
1461 self.blur();
1462 self.focus_enabled = false;
1463 }
1464
1465 /// Move focus to next tab stop.
1466 pub fn focus_next(&mut self) {
1467 if !self.focus_enabled {
1468 return;
1469 }
1470
1471 if let Some(handle) = self.rendered_frame.tab_stops.next(self.focus.as_ref()) {
1472 self.focus(&handle)
1473 }
1474 }
1475
1476 /// Move focus to previous tab stop.
1477 pub fn focus_prev(&mut self) {
1478 if !self.focus_enabled {
1479 return;
1480 }
1481
1482 if let Some(handle) = self.rendered_frame.tab_stops.prev(self.focus.as_ref()) {
1483 self.focus(&handle)
1484 }
1485 }
1486
1487 /// Accessor for the text system.
1488 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1489 &self.text_system
1490 }
1491
1492 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1493 pub fn text_style(&self) -> TextStyle {
1494 let mut style = TextStyle::default();
1495 for refinement in &self.text_style_stack {
1496 style.refine(refinement);
1497 }
1498 style
1499 }
1500
1501 /// Check if the platform window is maximized.
1502 ///
1503 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1504 pub fn is_maximized(&self) -> bool {
1505 self.platform_window.is_maximized()
1506 }
1507
1508 /// request a certain window decoration (Wayland)
1509 pub fn request_decorations(&self, decorations: WindowDecorations) {
1510 self.platform_window.request_decorations(decorations);
1511 }
1512
1513 /// Start a window resize operation (Wayland)
1514 pub fn start_window_resize(&self, edge: ResizeEdge) {
1515 self.platform_window.start_window_resize(edge);
1516 }
1517
1518 /// Return the `WindowBounds` to indicate that how a window should be opened
1519 /// after it has been closed
1520 pub fn window_bounds(&self) -> WindowBounds {
1521 self.platform_window.window_bounds()
1522 }
1523
1524 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1525 pub fn inner_window_bounds(&self) -> WindowBounds {
1526 self.platform_window.inner_window_bounds()
1527 }
1528
1529 /// Dispatch the given action on the currently focused element.
1530 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1531 let focus_id = self.focused(cx).map(|handle| handle.id);
1532
1533 let window = self.handle;
1534 cx.defer(move |cx| {
1535 window
1536 .update(cx, |_, window, cx| {
1537 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1538 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1539 })
1540 .log_err();
1541 })
1542 }
1543
1544 pub(crate) fn dispatch_keystroke_observers(
1545 &mut self,
1546 event: &dyn Any,
1547 action: Option<Box<dyn Action>>,
1548 context_stack: Vec<KeyContext>,
1549 cx: &mut App,
1550 ) {
1551 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1552 return;
1553 };
1554
1555 cx.keystroke_observers.clone().retain(&(), move |callback| {
1556 (callback)(
1557 &KeystrokeEvent {
1558 keystroke: key_down_event.keystroke.clone(),
1559 action: action.as_ref().map(|action| action.boxed_clone()),
1560 context_stack: context_stack.clone(),
1561 },
1562 self,
1563 cx,
1564 )
1565 });
1566 }
1567
1568 pub(crate) fn dispatch_keystroke_interceptors(
1569 &mut self,
1570 event: &dyn Any,
1571 context_stack: Vec<KeyContext>,
1572 cx: &mut App,
1573 ) {
1574 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1575 return;
1576 };
1577
1578 cx.keystroke_interceptors
1579 .clone()
1580 .retain(&(), move |callback| {
1581 (callback)(
1582 &KeystrokeEvent {
1583 keystroke: key_down_event.keystroke.clone(),
1584 action: None,
1585 context_stack: context_stack.clone(),
1586 },
1587 self,
1588 cx,
1589 )
1590 });
1591 }
1592
1593 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1594 /// that are currently on the stack to be returned to the app.
1595 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1596 let handle = self.handle;
1597 cx.defer(move |cx| {
1598 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1599 });
1600 }
1601
1602 /// Subscribe to events emitted by a entity.
1603 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1604 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1605 pub fn observe<T: 'static>(
1606 &mut self,
1607 observed: &Entity<T>,
1608 cx: &mut App,
1609 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1610 ) -> Subscription {
1611 let entity_id = observed.entity_id();
1612 let observed = observed.downgrade();
1613 let window_handle = self.handle;
1614 cx.new_observer(
1615 entity_id,
1616 Box::new(move |cx| {
1617 window_handle
1618 .update(cx, |_, window, cx| {
1619 if let Some(handle) = observed.upgrade() {
1620 on_notify(handle, window, cx);
1621 true
1622 } else {
1623 false
1624 }
1625 })
1626 .unwrap_or(false)
1627 }),
1628 )
1629 }
1630
1631 /// Subscribe to events emitted by a entity.
1632 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1633 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1634 pub fn subscribe<Emitter, Evt>(
1635 &mut self,
1636 entity: &Entity<Emitter>,
1637 cx: &mut App,
1638 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1639 ) -> Subscription
1640 where
1641 Emitter: EventEmitter<Evt>,
1642 Evt: 'static,
1643 {
1644 let entity_id = entity.entity_id();
1645 let handle = entity.downgrade();
1646 let window_handle = self.handle;
1647 cx.new_subscription(
1648 entity_id,
1649 (
1650 TypeId::of::<Evt>(),
1651 Box::new(move |event, cx| {
1652 window_handle
1653 .update(cx, |_, window, cx| {
1654 if let Some(entity) = handle.upgrade() {
1655 let event = event.downcast_ref().expect("invalid event type");
1656 on_event(entity, event, window, cx);
1657 true
1658 } else {
1659 false
1660 }
1661 })
1662 .unwrap_or(false)
1663 }),
1664 ),
1665 )
1666 }
1667
1668 /// Register a callback to be invoked when the given `Entity` is released.
1669 pub fn observe_release<T>(
1670 &self,
1671 entity: &Entity<T>,
1672 cx: &mut App,
1673 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1674 ) -> Subscription
1675 where
1676 T: 'static,
1677 {
1678 let entity_id = entity.entity_id();
1679 let window_handle = self.handle;
1680 let (subscription, activate) = cx.release_listeners.insert(
1681 entity_id,
1682 Box::new(move |entity, cx| {
1683 let entity = entity.downcast_mut().expect("invalid entity type");
1684 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1685 }),
1686 );
1687 activate();
1688 subscription
1689 }
1690
1691 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1692 /// await points in async code.
1693 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1694 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1695 }
1696
1697 /// Schedule the given closure to be run directly after the current frame is rendered.
1698 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1699 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1700 }
1701
1702 /// Schedule a frame to be drawn on the next animation frame.
1703 ///
1704 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1705 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1706 ///
1707 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1708 pub fn request_animation_frame(&self) {
1709 let entity = self.current_view();
1710 self.on_next_frame(move |_, cx| cx.notify(entity));
1711 }
1712
1713 /// Spawn the future returned by the given closure on the application thread pool.
1714 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1715 /// use within your future.
1716 #[track_caller]
1717 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1718 where
1719 R: 'static,
1720 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1721 {
1722 let handle = self.handle;
1723 cx.spawn(async move |app| {
1724 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1725 f(&mut async_window_cx).await
1726 })
1727 }
1728
1729 /// Spawn the future returned by the given closure on the application thread
1730 /// pool, with the given priority. The closure is provided a handle to the
1731 /// current window and an `AsyncWindowContext` for use within your future.
1732 #[track_caller]
1733 pub fn spawn_with_priority<AsyncFn, R>(
1734 &self,
1735 priority: Priority,
1736 cx: &App,
1737 f: AsyncFn,
1738 ) -> Task<R>
1739 where
1740 R: 'static,
1741 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1742 {
1743 let handle = self.handle;
1744 cx.spawn_with_priority(priority, async move |app| {
1745 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1746 f(&mut async_window_cx).await
1747 })
1748 }
1749
1750 fn bounds_changed(&mut self, cx: &mut App) {
1751 self.scale_factor = self.platform_window.scale_factor();
1752 self.viewport_size = self.platform_window.content_size();
1753 self.display_id = self.platform_window.display().map(|display| display.id());
1754
1755 self.refresh();
1756
1757 self.bounds_observers
1758 .clone()
1759 .retain(&(), |callback| callback(self, cx));
1760 }
1761
1762 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1763 pub fn bounds(&self) -> Bounds<Pixels> {
1764 self.platform_window.bounds()
1765 }
1766
1767 /// Set the content size of the window.
1768 pub fn resize(&mut self, size: Size<Pixels>) {
1769 self.platform_window.resize(size);
1770 }
1771
1772 /// Returns whether or not the window is currently fullscreen
1773 pub fn is_fullscreen(&self) -> bool {
1774 self.platform_window.is_fullscreen()
1775 }
1776
1777 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1778 self.appearance = self.platform_window.appearance();
1779
1780 self.appearance_observers
1781 .clone()
1782 .retain(&(), |callback| callback(self, cx));
1783 }
1784
1785 /// Returns the appearance of the current window.
1786 pub fn appearance(&self) -> WindowAppearance {
1787 self.appearance
1788 }
1789
1790 /// Returns the size of the drawable area within the window.
1791 pub fn viewport_size(&self) -> Size<Pixels> {
1792 self.viewport_size
1793 }
1794
1795 /// Returns whether this window is focused by the operating system (receiving key events).
1796 pub fn is_window_active(&self) -> bool {
1797 self.active.get()
1798 }
1799
1800 /// Returns whether this window is considered to be the window
1801 /// that currently owns the mouse cursor.
1802 /// On mac, this is equivalent to `is_window_active`.
1803 pub fn is_window_hovered(&self) -> bool {
1804 if cfg!(any(
1805 target_os = "windows",
1806 target_os = "linux",
1807 target_os = "freebsd"
1808 )) {
1809 self.hovered.get()
1810 } else {
1811 self.is_window_active()
1812 }
1813 }
1814
1815 /// Toggle zoom on the window.
1816 pub fn zoom_window(&self) {
1817 self.platform_window.zoom();
1818 }
1819
1820 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1821 pub fn show_window_menu(&self, position: Point<Pixels>) {
1822 self.platform_window.show_window_menu(position)
1823 }
1824
1825 /// Handle window movement for Linux and macOS.
1826 /// Tells the compositor to take control of window movement (Wayland and X11)
1827 ///
1828 /// Events may not be received during a move operation.
1829 pub fn start_window_move(&self) {
1830 self.platform_window.start_window_move()
1831 }
1832
1833 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1834 pub fn set_client_inset(&mut self, inset: Pixels) {
1835 self.client_inset = Some(inset);
1836 self.platform_window.set_client_inset(inset);
1837 }
1838
1839 /// Returns the client_inset value by [`Self::set_client_inset`].
1840 pub fn client_inset(&self) -> Option<Pixels> {
1841 self.client_inset
1842 }
1843
1844 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1845 pub fn window_decorations(&self) -> Decorations {
1846 self.platform_window.window_decorations()
1847 }
1848
1849 /// Returns which window controls are currently visible (Wayland)
1850 pub fn window_controls(&self) -> WindowControls {
1851 self.platform_window.window_controls()
1852 }
1853
1854 /// Updates the window's title at the platform level.
1855 pub fn set_window_title(&mut self, title: &str) {
1856 self.platform_window.set_title(title);
1857 }
1858
1859 /// Sets the application identifier.
1860 pub fn set_app_id(&mut self, app_id: &str) {
1861 self.platform_window.set_app_id(app_id);
1862 }
1863
1864 /// Sets the window background appearance.
1865 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1866 self.platform_window
1867 .set_background_appearance(background_appearance);
1868 }
1869
1870 /// Mark the window as dirty at the platform level.
1871 pub fn set_window_edited(&mut self, edited: bool) {
1872 self.platform_window.set_edited(edited);
1873 }
1874
1875 /// Determine the display on which the window is visible.
1876 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1877 cx.platform
1878 .displays()
1879 .into_iter()
1880 .find(|display| Some(display.id()) == self.display_id)
1881 }
1882
1883 /// Show the platform character palette.
1884 pub fn show_character_palette(&self) {
1885 self.platform_window.show_character_palette();
1886 }
1887
1888 /// The scale factor of the display associated with the window. For example, it could
1889 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1890 /// be rendered as two pixels on screen.
1891 pub fn scale_factor(&self) -> f32 {
1892 self.scale_factor
1893 }
1894
1895 /// The size of an em for the base font of the application. Adjusting this value allows the
1896 /// UI to scale, just like zooming a web page.
1897 pub fn rem_size(&self) -> Pixels {
1898 self.rem_size_override_stack
1899 .last()
1900 .copied()
1901 .unwrap_or(self.rem_size)
1902 }
1903
1904 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1905 /// UI to scale, just like zooming a web page.
1906 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1907 self.rem_size = rem_size.into();
1908 }
1909
1910 /// Acquire a globally unique identifier for the given ElementId.
1911 /// Only valid for the duration of the provided closure.
1912 pub fn with_global_id<R>(
1913 &mut self,
1914 element_id: ElementId,
1915 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1916 ) -> R {
1917 self.element_id_stack.push(element_id);
1918 let global_id = GlobalElementId(Arc::from(&*self.element_id_stack));
1919
1920 let result = f(&global_id, self);
1921 self.element_id_stack.pop();
1922 result
1923 }
1924
1925 /// Executes the provided function with the specified rem size.
1926 ///
1927 /// This method must only be called as part of element drawing.
1928 // This function is called in a highly recursive manner in editor
1929 // prepainting, make sure its inlined to reduce the stack burden
1930 #[inline]
1931 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1932 where
1933 F: FnOnce(&mut Self) -> R,
1934 {
1935 self.invalidator.debug_assert_paint_or_prepaint();
1936
1937 if let Some(rem_size) = rem_size {
1938 self.rem_size_override_stack.push(rem_size.into());
1939 let result = f(self);
1940 self.rem_size_override_stack.pop();
1941 result
1942 } else {
1943 f(self)
1944 }
1945 }
1946
1947 /// The line height associated with the current text style.
1948 pub fn line_height(&self) -> Pixels {
1949 self.text_style().line_height_in_pixels(self.rem_size())
1950 }
1951
1952 /// Call to prevent the default action of an event. Currently only used to prevent
1953 /// parent elements from becoming focused on mouse down.
1954 pub fn prevent_default(&mut self) {
1955 self.default_prevented = true;
1956 }
1957
1958 /// Obtain whether default has been prevented for the event currently being dispatched.
1959 pub fn default_prevented(&self) -> bool {
1960 self.default_prevented
1961 }
1962
1963 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1964 pub fn is_action_available(&self, action: &dyn Action, cx: &App) -> bool {
1965 let node_id =
1966 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1967 self.rendered_frame
1968 .dispatch_tree
1969 .is_action_available(action, node_id)
1970 }
1971
1972 /// Determine whether the given action is available along the dispatch path to the given focus_handle.
1973 pub fn is_action_available_in(&self, action: &dyn Action, focus_handle: &FocusHandle) -> bool {
1974 let node_id = self.focus_node_id_in_rendered_frame(Some(focus_handle.id));
1975 self.rendered_frame
1976 .dispatch_tree
1977 .is_action_available(action, node_id)
1978 }
1979
1980 /// The position of the mouse relative to the window.
1981 pub fn mouse_position(&self) -> Point<Pixels> {
1982 self.mouse_position
1983 }
1984
1985 /// The current state of the keyboard's modifiers
1986 pub fn modifiers(&self) -> Modifiers {
1987 self.modifiers
1988 }
1989
1990 /// Returns true if the last input event was keyboard-based (key press, tab navigation, etc.)
1991 /// This is used for focus-visible styling to show focus indicators only for keyboard navigation.
1992 pub fn last_input_was_keyboard(&self) -> bool {
1993 self.last_input_modality == InputModality::Keyboard
1994 }
1995
1996 /// The current state of the keyboard's capslock
1997 pub fn capslock(&self) -> Capslock {
1998 self.capslock
1999 }
2000
2001 fn complete_frame(&self) {
2002 self.platform_window.completed_frame();
2003 }
2004
2005 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
2006 /// the contents of the new [`Scene`], use [`Self::present`].
2007 #[profiling::function]
2008 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
2009 self.invalidate_entities();
2010 cx.entities.clear_accessed();
2011 debug_assert!(self.rendered_entity_stack.is_empty());
2012 self.invalidator.set_dirty(false);
2013 self.requested_autoscroll = None;
2014
2015 // Restore the previously-used input handler.
2016 if let Some(input_handler) = self.platform_window.take_input_handler() {
2017 self.rendered_frame.input_handlers.push(Some(input_handler));
2018 }
2019 if !cx.mode.skip_drawing() {
2020 self.draw_roots(cx);
2021 }
2022 self.dirty_views.clear();
2023 self.next_frame.window_active = self.active.get();
2024
2025 // Register requested input handler with the platform window.
2026 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
2027 self.platform_window
2028 .set_input_handler(input_handler.unwrap());
2029 }
2030
2031 self.layout_engine.as_mut().unwrap().clear();
2032 self.text_system().finish_frame();
2033 self.next_frame.finish(&mut self.rendered_frame);
2034
2035 self.invalidator.set_phase(DrawPhase::Focus);
2036 let previous_focus_path = self.rendered_frame.focus_path();
2037 let previous_window_active = self.rendered_frame.window_active;
2038 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
2039 self.next_frame.clear();
2040 let current_focus_path = self.rendered_frame.focus_path();
2041 let current_window_active = self.rendered_frame.window_active;
2042
2043 if previous_focus_path != current_focus_path
2044 || previous_window_active != current_window_active
2045 {
2046 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
2047 self.focus_lost_listeners
2048 .clone()
2049 .retain(&(), |listener| listener(self, cx));
2050 }
2051
2052 let event = WindowFocusEvent {
2053 previous_focus_path: if previous_window_active {
2054 previous_focus_path
2055 } else {
2056 Default::default()
2057 },
2058 current_focus_path: if current_window_active {
2059 current_focus_path
2060 } else {
2061 Default::default()
2062 },
2063 };
2064 self.focus_listeners
2065 .clone()
2066 .retain(&(), |listener| listener(&event, self, cx));
2067 }
2068
2069 debug_assert!(self.rendered_entity_stack.is_empty());
2070 self.record_entities_accessed(cx);
2071 self.reset_cursor_style(cx);
2072 self.refreshing = false;
2073 self.invalidator.set_phase(DrawPhase::None);
2074 self.needs_present.set(true);
2075
2076 ArenaClearNeeded
2077 }
2078
2079 fn record_entities_accessed(&mut self, cx: &mut App) {
2080 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2081 let mut entities = mem::take(entities_ref.deref_mut());
2082 drop(entities_ref);
2083 let handle = self.handle;
2084 cx.record_entities_accessed(
2085 handle,
2086 // Try moving window invalidator into the Window
2087 self.invalidator.clone(),
2088 &entities,
2089 );
2090 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
2091 mem::swap(&mut entities, entities_ref.deref_mut());
2092 }
2093
2094 fn invalidate_entities(&mut self) {
2095 let mut views = self.invalidator.take_views();
2096 for entity in views.drain() {
2097 self.mark_view_dirty(entity);
2098 }
2099 self.invalidator.replace_views(views);
2100 }
2101
2102 #[profiling::function]
2103 fn present(&self) {
2104 self.platform_window.draw(&self.rendered_frame.scene);
2105 self.needs_present.set(false);
2106 profiling::finish_frame!();
2107 }
2108
2109 fn draw_roots(&mut self, cx: &mut App) {
2110 self.invalidator.set_phase(DrawPhase::Prepaint);
2111 self.tooltip_bounds.take();
2112
2113 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
2114 let root_size = {
2115 #[cfg(any(feature = "inspector", debug_assertions))]
2116 {
2117 if self.inspector.is_some() {
2118 let mut size = self.viewport_size;
2119 size.width = (size.width - _inspector_width).max(px(0.0));
2120 size
2121 } else {
2122 self.viewport_size
2123 }
2124 }
2125 #[cfg(not(any(feature = "inspector", debug_assertions)))]
2126 {
2127 self.viewport_size
2128 }
2129 };
2130
2131 // Layout all root elements.
2132 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
2133 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2134
2135 #[cfg(any(feature = "inspector", debug_assertions))]
2136 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
2137
2138 let mut sorted_deferred_draws =
2139 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
2140 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
2141 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
2142
2143 let mut prompt_element = None;
2144 let mut active_drag_element = None;
2145 let mut tooltip_element = None;
2146 if let Some(prompt) = self.prompt.take() {
2147 let mut element = prompt.view.any_view().into_any();
2148 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
2149 prompt_element = Some(element);
2150 self.prompt = Some(prompt);
2151 } else if let Some(active_drag) = cx.active_drag.take() {
2152 let mut element = active_drag.view.clone().into_any();
2153 let offset = self.mouse_position() - active_drag.cursor_offset;
2154 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
2155 active_drag_element = Some(element);
2156 cx.active_drag = Some(active_drag);
2157 } else {
2158 tooltip_element = self.prepaint_tooltip(cx);
2159 }
2160
2161 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
2162
2163 // Now actually paint the elements.
2164 self.invalidator.set_phase(DrawPhase::Paint);
2165 root_element.paint(self, cx);
2166
2167 #[cfg(any(feature = "inspector", debug_assertions))]
2168 self.paint_inspector(inspector_element, cx);
2169
2170 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2171
2172 if let Some(mut prompt_element) = prompt_element {
2173 prompt_element.paint(self, cx);
2174 } else if let Some(mut drag_element) = active_drag_element {
2175 drag_element.paint(self, cx);
2176 } else if let Some(mut tooltip_element) = tooltip_element {
2177 tooltip_element.paint(self, cx);
2178 }
2179
2180 #[cfg(any(feature = "inspector", debug_assertions))]
2181 self.paint_inspector_hitbox(cx);
2182 }
2183
2184 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2185 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2186 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2187 let Some(Some(tooltip_request)) = self
2188 .next_frame
2189 .tooltip_requests
2190 .get(tooltip_request_index)
2191 .cloned()
2192 else {
2193 log::error!("Unexpectedly absent TooltipRequest");
2194 continue;
2195 };
2196 let mut element = tooltip_request.tooltip.view.clone().into_any();
2197 let mouse_position = tooltip_request.tooltip.mouse_position;
2198 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2199
2200 let mut tooltip_bounds =
2201 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2202 let window_bounds = Bounds {
2203 origin: Point::default(),
2204 size: self.viewport_size(),
2205 };
2206
2207 if tooltip_bounds.right() > window_bounds.right() {
2208 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2209 if new_x >= Pixels::ZERO {
2210 tooltip_bounds.origin.x = new_x;
2211 } else {
2212 tooltip_bounds.origin.x = cmp::max(
2213 Pixels::ZERO,
2214 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2215 );
2216 }
2217 }
2218
2219 if tooltip_bounds.bottom() > window_bounds.bottom() {
2220 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2221 if new_y >= Pixels::ZERO {
2222 tooltip_bounds.origin.y = new_y;
2223 } else {
2224 tooltip_bounds.origin.y = cmp::max(
2225 Pixels::ZERO,
2226 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2227 );
2228 }
2229 }
2230
2231 // It's possible for an element to have an active tooltip while not being painted (e.g.
2232 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2233 // case, instead update the tooltip's visibility here.
2234 let is_visible =
2235 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2236 if !is_visible {
2237 continue;
2238 }
2239
2240 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2241 element.prepaint(window, cx)
2242 });
2243
2244 self.tooltip_bounds = Some(TooltipBounds {
2245 id: tooltip_request.id,
2246 bounds: tooltip_bounds,
2247 });
2248 return Some(element);
2249 }
2250 None
2251 }
2252
2253 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2254 assert_eq!(self.element_id_stack.len(), 0);
2255
2256 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2257 for deferred_draw_ix in deferred_draw_indices {
2258 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2259 self.element_id_stack
2260 .clone_from(&deferred_draw.element_id_stack);
2261 self.text_style_stack
2262 .clone_from(&deferred_draw.text_style_stack);
2263 self.next_frame
2264 .dispatch_tree
2265 .set_active_node(deferred_draw.parent_node);
2266
2267 let prepaint_start = self.prepaint_index();
2268 if let Some(element) = deferred_draw.element.as_mut() {
2269 self.with_rendered_view(deferred_draw.current_view, |window| {
2270 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2271 element.prepaint(window, cx)
2272 });
2273 })
2274 } else {
2275 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2276 }
2277 let prepaint_end = self.prepaint_index();
2278 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2279 }
2280 assert_eq!(
2281 self.next_frame.deferred_draws.len(),
2282 0,
2283 "cannot call defer_draw during deferred drawing"
2284 );
2285 self.next_frame.deferred_draws = deferred_draws;
2286 self.element_id_stack.clear();
2287 self.text_style_stack.clear();
2288 }
2289
2290 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2291 assert_eq!(self.element_id_stack.len(), 0);
2292
2293 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2294 for deferred_draw_ix in deferred_draw_indices {
2295 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2296 self.element_id_stack
2297 .clone_from(&deferred_draw.element_id_stack);
2298 self.next_frame
2299 .dispatch_tree
2300 .set_active_node(deferred_draw.parent_node);
2301
2302 let paint_start = self.paint_index();
2303 if let Some(element) = deferred_draw.element.as_mut() {
2304 self.with_rendered_view(deferred_draw.current_view, |window| {
2305 element.paint(window, cx);
2306 })
2307 } else {
2308 self.reuse_paint(deferred_draw.paint_range.clone());
2309 }
2310 let paint_end = self.paint_index();
2311 deferred_draw.paint_range = paint_start..paint_end;
2312 }
2313 self.next_frame.deferred_draws = deferred_draws;
2314 self.element_id_stack.clear();
2315 }
2316
2317 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2318 PrepaintStateIndex {
2319 hitboxes_index: self.next_frame.hitboxes.len(),
2320 tooltips_index: self.next_frame.tooltip_requests.len(),
2321 deferred_draws_index: self.next_frame.deferred_draws.len(),
2322 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2323 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2324 line_layout_index: self.text_system.layout_index(),
2325 }
2326 }
2327
2328 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2329 self.next_frame.hitboxes.extend(
2330 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2331 .iter()
2332 .cloned(),
2333 );
2334 self.next_frame.tooltip_requests.extend(
2335 self.rendered_frame.tooltip_requests
2336 [range.start.tooltips_index..range.end.tooltips_index]
2337 .iter_mut()
2338 .map(|request| request.take()),
2339 );
2340 self.next_frame.accessed_element_states.extend(
2341 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2342 ..range.end.accessed_element_states_index]
2343 .iter()
2344 .map(|(id, type_id)| (id.clone(), *type_id)),
2345 );
2346 self.text_system
2347 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2348
2349 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2350 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2351 &mut self.rendered_frame.dispatch_tree,
2352 self.focus,
2353 );
2354
2355 if reused_subtree.contains_focus() {
2356 self.next_frame.focus = self.focus;
2357 }
2358
2359 self.next_frame.deferred_draws.extend(
2360 self.rendered_frame.deferred_draws
2361 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2362 .iter()
2363 .map(|deferred_draw| DeferredDraw {
2364 current_view: deferred_draw.current_view,
2365 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2366 element_id_stack: deferred_draw.element_id_stack.clone(),
2367 text_style_stack: deferred_draw.text_style_stack.clone(),
2368 priority: deferred_draw.priority,
2369 element: None,
2370 absolute_offset: deferred_draw.absolute_offset,
2371 prepaint_range: deferred_draw.prepaint_range.clone(),
2372 paint_range: deferred_draw.paint_range.clone(),
2373 }),
2374 );
2375 }
2376
2377 pub(crate) fn paint_index(&self) -> PaintIndex {
2378 PaintIndex {
2379 scene_index: self.next_frame.scene.len(),
2380 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2381 input_handlers_index: self.next_frame.input_handlers.len(),
2382 cursor_styles_index: self.next_frame.cursor_styles.len(),
2383 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2384 tab_handle_index: self.next_frame.tab_stops.paint_index(),
2385 line_layout_index: self.text_system.layout_index(),
2386 }
2387 }
2388
2389 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2390 self.next_frame.cursor_styles.extend(
2391 self.rendered_frame.cursor_styles
2392 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2393 .iter()
2394 .cloned(),
2395 );
2396 self.next_frame.input_handlers.extend(
2397 self.rendered_frame.input_handlers
2398 [range.start.input_handlers_index..range.end.input_handlers_index]
2399 .iter_mut()
2400 .map(|handler| handler.take()),
2401 );
2402 self.next_frame.mouse_listeners.extend(
2403 self.rendered_frame.mouse_listeners
2404 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2405 .iter_mut()
2406 .map(|listener| listener.take()),
2407 );
2408 self.next_frame.accessed_element_states.extend(
2409 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2410 ..range.end.accessed_element_states_index]
2411 .iter()
2412 .map(|(id, type_id)| (id.clone(), *type_id)),
2413 );
2414 self.next_frame.tab_stops.replay(
2415 &self.rendered_frame.tab_stops.insertion_history
2416 [range.start.tab_handle_index..range.end.tab_handle_index],
2417 );
2418
2419 self.text_system
2420 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2421 self.next_frame.scene.replay(
2422 range.start.scene_index..range.end.scene_index,
2423 &self.rendered_frame.scene,
2424 );
2425 }
2426
2427 /// Push a text style onto the stack, and call a function with that style active.
2428 /// Use [`Window::text_style`] to get the current, combined text style. This method
2429 /// should only be called as part of element drawing.
2430 // This function is called in a highly recursive manner in editor
2431 // prepainting, make sure its inlined to reduce the stack burden
2432 #[inline]
2433 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2434 where
2435 F: FnOnce(&mut Self) -> R,
2436 {
2437 self.invalidator.debug_assert_paint_or_prepaint();
2438 if let Some(style) = style {
2439 self.text_style_stack.push(style);
2440 let result = f(self);
2441 self.text_style_stack.pop();
2442 result
2443 } else {
2444 f(self)
2445 }
2446 }
2447
2448 /// Updates the cursor style at the platform level. This method should only be called
2449 /// during the paint phase of element drawing.
2450 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2451 self.invalidator.debug_assert_paint();
2452 self.next_frame.cursor_styles.push(CursorStyleRequest {
2453 hitbox_id: Some(hitbox.id),
2454 style,
2455 });
2456 }
2457
2458 /// Updates the cursor style for the entire window at the platform level. A cursor
2459 /// style using this method will have precedence over any cursor style set using
2460 /// `set_cursor_style`. This method should only be called during the paint
2461 /// phase of element drawing.
2462 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2463 self.invalidator.debug_assert_paint();
2464 self.next_frame.cursor_styles.push(CursorStyleRequest {
2465 hitbox_id: None,
2466 style,
2467 })
2468 }
2469
2470 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2471 /// during the paint phase of element drawing.
2472 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2473 self.invalidator.debug_assert_prepaint();
2474 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2475 self.next_frame
2476 .tooltip_requests
2477 .push(Some(TooltipRequest { id, tooltip }));
2478 id
2479 }
2480
2481 /// Invoke the given function with the given content mask after intersecting it
2482 /// with the current mask. This method should only be called during element drawing.
2483 // This function is called in a highly recursive manner in editor
2484 // prepainting, make sure its inlined to reduce the stack burden
2485 #[inline]
2486 pub fn with_content_mask<R>(
2487 &mut self,
2488 mask: Option<ContentMask<Pixels>>,
2489 f: impl FnOnce(&mut Self) -> R,
2490 ) -> R {
2491 self.invalidator.debug_assert_paint_or_prepaint();
2492 if let Some(mask) = mask {
2493 let mask = mask.intersect(&self.content_mask());
2494 self.content_mask_stack.push(mask);
2495 let result = f(self);
2496 self.content_mask_stack.pop();
2497 result
2498 } else {
2499 f(self)
2500 }
2501 }
2502
2503 /// Updates the global element offset relative to the current offset. This is used to implement
2504 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2505 pub fn with_element_offset<R>(
2506 &mut self,
2507 offset: Point<Pixels>,
2508 f: impl FnOnce(&mut Self) -> R,
2509 ) -> R {
2510 self.invalidator.debug_assert_prepaint();
2511
2512 if offset.is_zero() {
2513 return f(self);
2514 };
2515
2516 let abs_offset = self.element_offset() + offset;
2517 self.with_absolute_element_offset(abs_offset, f)
2518 }
2519
2520 /// Updates the global element offset based on the given offset. This is used to implement
2521 /// drag handles and other manual painting of elements. This method should only be called during
2522 /// the prepaint phase of element drawing.
2523 pub fn with_absolute_element_offset<R>(
2524 &mut self,
2525 offset: Point<Pixels>,
2526 f: impl FnOnce(&mut Self) -> R,
2527 ) -> R {
2528 self.invalidator.debug_assert_prepaint();
2529 self.element_offset_stack.push(offset);
2530 let result = f(self);
2531 self.element_offset_stack.pop();
2532 result
2533 }
2534
2535 pub(crate) fn with_element_opacity<R>(
2536 &mut self,
2537 opacity: Option<f32>,
2538 f: impl FnOnce(&mut Self) -> R,
2539 ) -> R {
2540 self.invalidator.debug_assert_paint_or_prepaint();
2541
2542 let Some(opacity) = opacity else {
2543 return f(self);
2544 };
2545
2546 let previous_opacity = self.element_opacity;
2547 self.element_opacity = previous_opacity * opacity;
2548 let result = f(self);
2549 self.element_opacity = previous_opacity;
2550 result
2551 }
2552
2553 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2554 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2555 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2556 /// element offset and prepaint again. See [`crate::List`] for an example. This method should only be
2557 /// called during the prepaint phase of element drawing.
2558 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2559 self.invalidator.debug_assert_prepaint();
2560 let index = self.prepaint_index();
2561 let result = f(self);
2562 if result.is_err() {
2563 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2564 self.next_frame
2565 .tooltip_requests
2566 .truncate(index.tooltips_index);
2567 self.next_frame
2568 .deferred_draws
2569 .truncate(index.deferred_draws_index);
2570 self.next_frame
2571 .dispatch_tree
2572 .truncate(index.dispatch_tree_index);
2573 self.next_frame
2574 .accessed_element_states
2575 .truncate(index.accessed_element_states_index);
2576 self.text_system.truncate_layouts(index.line_layout_index);
2577 }
2578 result
2579 }
2580
2581 /// When you call this method during [`Element::prepaint`], containing elements will attempt to
2582 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2583 /// [`Element::prepaint`] again with a new set of bounds. See [`crate::List`] for an example of an element
2584 /// that supports this method being called on the elements it contains. This method should only be
2585 /// called during the prepaint phase of element drawing.
2586 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2587 self.invalidator.debug_assert_prepaint();
2588 self.requested_autoscroll = Some(bounds);
2589 }
2590
2591 /// This method can be called from a containing element such as [`crate::List`] to support the autoscroll behavior
2592 /// described in [`Self::request_autoscroll`].
2593 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2594 self.invalidator.debug_assert_prepaint();
2595 self.requested_autoscroll.take()
2596 }
2597
2598 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2599 /// Your view will be re-drawn once the asset has finished loading.
2600 ///
2601 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2602 /// time.
2603 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2604 let (task, is_first) = cx.fetch_asset::<A>(source);
2605 task.clone().now_or_never().or_else(|| {
2606 if is_first {
2607 let entity_id = self.current_view();
2608 self.spawn(cx, {
2609 let task = task.clone();
2610 async move |cx| {
2611 task.await;
2612
2613 cx.on_next_frame(move |_, cx| {
2614 cx.notify(entity_id);
2615 });
2616 }
2617 })
2618 .detach();
2619 }
2620
2621 None
2622 })
2623 }
2624
2625 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2626 /// Your view will not be re-drawn once the asset has finished loading.
2627 ///
2628 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2629 /// time.
2630 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2631 let (task, _) = cx.fetch_asset::<A>(source);
2632 task.now_or_never()
2633 }
2634 /// Obtain the current element offset. This method should only be called during the
2635 /// prepaint phase of element drawing.
2636 pub fn element_offset(&self) -> Point<Pixels> {
2637 self.invalidator.debug_assert_prepaint();
2638 self.element_offset_stack
2639 .last()
2640 .copied()
2641 .unwrap_or_default()
2642 }
2643
2644 /// Obtain the current element opacity. This method should only be called during the
2645 /// prepaint phase of element drawing.
2646 #[inline]
2647 pub(crate) fn element_opacity(&self) -> f32 {
2648 self.invalidator.debug_assert_paint_or_prepaint();
2649 self.element_opacity
2650 }
2651
2652 /// Obtain the current content mask. This method should only be called during element drawing.
2653 pub fn content_mask(&self) -> ContentMask<Pixels> {
2654 self.invalidator.debug_assert_paint_or_prepaint();
2655 self.content_mask_stack
2656 .last()
2657 .cloned()
2658 .unwrap_or_else(|| ContentMask {
2659 bounds: Bounds {
2660 origin: Point::default(),
2661 size: self.viewport_size,
2662 },
2663 })
2664 }
2665
2666 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2667 /// This can be used within a custom element to distinguish multiple sets of child elements.
2668 pub fn with_element_namespace<R>(
2669 &mut self,
2670 element_id: impl Into<ElementId>,
2671 f: impl FnOnce(&mut Self) -> R,
2672 ) -> R {
2673 self.element_id_stack.push(element_id.into());
2674 let result = f(self);
2675 self.element_id_stack.pop();
2676 result
2677 }
2678
2679 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2680 pub fn use_keyed_state<S: 'static>(
2681 &mut self,
2682 key: impl Into<ElementId>,
2683 cx: &mut App,
2684 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2685 ) -> Entity<S> {
2686 let current_view = self.current_view();
2687 self.with_global_id(key.into(), |global_id, window| {
2688 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2689 if let Some(state) = state {
2690 (state.clone(), state)
2691 } else {
2692 let new_state = cx.new(|cx| init(window, cx));
2693 cx.observe(&new_state, move |_, cx| {
2694 cx.notify(current_view);
2695 })
2696 .detach();
2697 (new_state.clone(), new_state)
2698 }
2699 })
2700 })
2701 }
2702
2703 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2704 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2705 self.with_global_id(id.into(), |_, window| f(window))
2706 }
2707
2708 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2709 ///
2710 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2711 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2712 /// you can provide a custom ElementID using the `use_keyed_state` method.
2713 #[track_caller]
2714 pub fn use_state<S: 'static>(
2715 &mut self,
2716 cx: &mut App,
2717 init: impl FnOnce(&mut Self, &mut Context<S>) -> S,
2718 ) -> Entity<S> {
2719 self.use_keyed_state(
2720 ElementId::CodeLocation(*core::panic::Location::caller()),
2721 cx,
2722 init,
2723 )
2724 }
2725
2726 /// Updates or initializes state for an element with the given id that lives across multiple
2727 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2728 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2729 /// when drawing the next frame. This method should only be called as part of element drawing.
2730 pub fn with_element_state<S, R>(
2731 &mut self,
2732 global_id: &GlobalElementId,
2733 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2734 ) -> R
2735 where
2736 S: 'static,
2737 {
2738 self.invalidator.debug_assert_paint_or_prepaint();
2739
2740 let key = (global_id.clone(), TypeId::of::<S>());
2741 self.next_frame.accessed_element_states.push(key.clone());
2742
2743 if let Some(any) = self
2744 .next_frame
2745 .element_states
2746 .remove(&key)
2747 .or_else(|| self.rendered_frame.element_states.remove(&key))
2748 {
2749 let ElementStateBox {
2750 inner,
2751 #[cfg(debug_assertions)]
2752 type_name,
2753 } = any;
2754 // Using the extra inner option to avoid needing to reallocate a new box.
2755 let mut state_box = inner
2756 .downcast::<Option<S>>()
2757 .map_err(|_| {
2758 #[cfg(debug_assertions)]
2759 {
2760 anyhow::anyhow!(
2761 "invalid element state type for id, requested {:?}, actual: {:?}",
2762 std::any::type_name::<S>(),
2763 type_name
2764 )
2765 }
2766
2767 #[cfg(not(debug_assertions))]
2768 {
2769 anyhow::anyhow!(
2770 "invalid element state type for id, requested {:?}",
2771 std::any::type_name::<S>(),
2772 )
2773 }
2774 })
2775 .unwrap();
2776
2777 let state = state_box.take().expect(
2778 "reentrant call to with_element_state for the same state type and element id",
2779 );
2780 let (result, state) = f(Some(state), self);
2781 state_box.replace(state);
2782 self.next_frame.element_states.insert(
2783 key,
2784 ElementStateBox {
2785 inner: state_box,
2786 #[cfg(debug_assertions)]
2787 type_name,
2788 },
2789 );
2790 result
2791 } else {
2792 let (result, state) = f(None, self);
2793 self.next_frame.element_states.insert(
2794 key,
2795 ElementStateBox {
2796 inner: Box::new(Some(state)),
2797 #[cfg(debug_assertions)]
2798 type_name: std::any::type_name::<S>(),
2799 },
2800 );
2801 result
2802 }
2803 }
2804
2805 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2806 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2807 /// when the element is guaranteed to have an id.
2808 ///
2809 /// The first option means 'no ID provided'
2810 /// The second option means 'not yet initialized'
2811 pub fn with_optional_element_state<S, R>(
2812 &mut self,
2813 global_id: Option<&GlobalElementId>,
2814 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2815 ) -> R
2816 where
2817 S: 'static,
2818 {
2819 self.invalidator.debug_assert_paint_or_prepaint();
2820
2821 if let Some(global_id) = global_id {
2822 self.with_element_state(global_id, |state, cx| {
2823 let (result, state) = f(Some(state), cx);
2824 let state =
2825 state.expect("you must return some state when you pass some element id");
2826 (result, state)
2827 })
2828 } else {
2829 let (result, state) = f(None, self);
2830 debug_assert!(
2831 state.is_none(),
2832 "you must not return an element state when passing None for the global id"
2833 );
2834 result
2835 }
2836 }
2837
2838 /// Executes the given closure within the context of a tab group.
2839 #[inline]
2840 pub fn with_tab_group<R>(&mut self, index: Option<isize>, f: impl FnOnce(&mut Self) -> R) -> R {
2841 if let Some(index) = index {
2842 self.next_frame.tab_stops.begin_group(index);
2843 let result = f(self);
2844 self.next_frame.tab_stops.end_group();
2845 result
2846 } else {
2847 f(self)
2848 }
2849 }
2850
2851 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2852 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2853 /// with higher values being drawn on top.
2854 ///
2855 /// This method should only be called as part of the prepaint phase of element drawing.
2856 pub fn defer_draw(
2857 &mut self,
2858 element: AnyElement,
2859 absolute_offset: Point<Pixels>,
2860 priority: usize,
2861 ) {
2862 self.invalidator.debug_assert_prepaint();
2863 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2864 self.next_frame.deferred_draws.push(DeferredDraw {
2865 current_view: self.current_view(),
2866 parent_node,
2867 element_id_stack: self.element_id_stack.clone(),
2868 text_style_stack: self.text_style_stack.clone(),
2869 priority,
2870 element: Some(element),
2871 absolute_offset,
2872 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2873 paint_range: PaintIndex::default()..PaintIndex::default(),
2874 });
2875 }
2876
2877 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2878 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2879 /// for performance reasons.
2880 ///
2881 /// This method should only be called as part of the paint phase of element drawing.
2882 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2883 self.invalidator.debug_assert_paint();
2884
2885 let scale_factor = self.scale_factor();
2886 let content_mask = self.content_mask();
2887 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2888 if !clipped_bounds.is_empty() {
2889 self.next_frame
2890 .scene
2891 .push_layer(clipped_bounds.scale(scale_factor));
2892 }
2893
2894 let result = f(self);
2895
2896 if !clipped_bounds.is_empty() {
2897 self.next_frame.scene.pop_layer();
2898 }
2899
2900 result
2901 }
2902
2903 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2904 ///
2905 /// This method should only be called as part of the paint phase of element drawing.
2906 pub fn paint_shadows(
2907 &mut self,
2908 bounds: Bounds<Pixels>,
2909 corner_radii: Corners<Pixels>,
2910 shadows: &[BoxShadow],
2911 ) {
2912 self.invalidator.debug_assert_paint();
2913
2914 let scale_factor = self.scale_factor();
2915 let content_mask = self.content_mask();
2916 let opacity = self.element_opacity();
2917 for shadow in shadows {
2918 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2919 self.next_frame.scene.insert_primitive(Shadow {
2920 order: 0,
2921 blur_radius: shadow.blur_radius.scale(scale_factor),
2922 bounds: shadow_bounds.scale(scale_factor),
2923 content_mask: content_mask.scale(scale_factor),
2924 corner_radii: corner_radii.scale(scale_factor),
2925 color: shadow.color.opacity(opacity),
2926 });
2927 }
2928 }
2929
2930 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2931 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2932 /// see [`fill`], [`outline`], and [`quad`] to construct this type.
2933 ///
2934 /// This method should only be called as part of the paint phase of element drawing.
2935 ///
2936 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2937 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2938 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2939 pub fn paint_quad(&mut self, quad: PaintQuad) {
2940 self.invalidator.debug_assert_paint();
2941
2942 let scale_factor = self.scale_factor();
2943 let content_mask = self.content_mask();
2944 let opacity = self.element_opacity();
2945 self.next_frame.scene.insert_primitive(Quad {
2946 order: 0,
2947 bounds: quad.bounds.scale(scale_factor),
2948 content_mask: content_mask.scale(scale_factor),
2949 background: quad.background.opacity(opacity),
2950 border_color: quad.border_color.opacity(opacity),
2951 corner_radii: quad.corner_radii.scale(scale_factor),
2952 border_widths: quad.border_widths.scale(scale_factor),
2953 border_style: quad.border_style,
2954 });
2955 }
2956
2957 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2958 ///
2959 /// This method should only be called as part of the paint phase of element drawing.
2960 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2961 self.invalidator.debug_assert_paint();
2962
2963 let scale_factor = self.scale_factor();
2964 let content_mask = self.content_mask();
2965 let opacity = self.element_opacity();
2966 path.content_mask = content_mask;
2967 let color: Background = color.into();
2968 path.color = color.opacity(opacity);
2969 self.next_frame
2970 .scene
2971 .insert_primitive(path.scale(scale_factor));
2972 }
2973
2974 /// Paint an underline into the scene for the next frame at the current z-index.
2975 ///
2976 /// This method should only be called as part of the paint phase of element drawing.
2977 pub fn paint_underline(
2978 &mut self,
2979 origin: Point<Pixels>,
2980 width: Pixels,
2981 style: &UnderlineStyle,
2982 ) {
2983 self.invalidator.debug_assert_paint();
2984
2985 let scale_factor = self.scale_factor();
2986 let height = if style.wavy {
2987 style.thickness * 3.
2988 } else {
2989 style.thickness
2990 };
2991 let bounds = Bounds {
2992 origin,
2993 size: size(width, height),
2994 };
2995 let content_mask = self.content_mask();
2996 let element_opacity = self.element_opacity();
2997
2998 self.next_frame.scene.insert_primitive(Underline {
2999 order: 0,
3000 pad: 0,
3001 bounds: bounds.scale(scale_factor),
3002 content_mask: content_mask.scale(scale_factor),
3003 color: style.color.unwrap_or_default().opacity(element_opacity),
3004 thickness: style.thickness.scale(scale_factor),
3005 wavy: if style.wavy { 1 } else { 0 },
3006 });
3007 }
3008
3009 /// Paint a strikethrough into the scene for the next frame at the current z-index.
3010 ///
3011 /// This method should only be called as part of the paint phase of element drawing.
3012 pub fn paint_strikethrough(
3013 &mut self,
3014 origin: Point<Pixels>,
3015 width: Pixels,
3016 style: &StrikethroughStyle,
3017 ) {
3018 self.invalidator.debug_assert_paint();
3019
3020 let scale_factor = self.scale_factor();
3021 let height = style.thickness;
3022 let bounds = Bounds {
3023 origin,
3024 size: size(width, height),
3025 };
3026 let content_mask = self.content_mask();
3027 let opacity = self.element_opacity();
3028
3029 self.next_frame.scene.insert_primitive(Underline {
3030 order: 0,
3031 pad: 0,
3032 bounds: bounds.scale(scale_factor),
3033 content_mask: content_mask.scale(scale_factor),
3034 thickness: style.thickness.scale(scale_factor),
3035 color: style.color.unwrap_or_default().opacity(opacity),
3036 wavy: 0,
3037 });
3038 }
3039
3040 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
3041 ///
3042 /// The y component of the origin is the baseline of the glyph.
3043 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3044 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3045 /// This method is only useful if you need to paint a single glyph that has already been shaped.
3046 ///
3047 /// This method should only be called as part of the paint phase of element drawing.
3048 pub fn paint_glyph(
3049 &mut self,
3050 origin: Point<Pixels>,
3051 font_id: FontId,
3052 glyph_id: GlyphId,
3053 font_size: Pixels,
3054 color: Hsla,
3055 ) -> Result<()> {
3056 self.invalidator.debug_assert_paint();
3057
3058 let element_opacity = self.element_opacity();
3059 let scale_factor = self.scale_factor();
3060 let glyph_origin = origin.scale(scale_factor);
3061
3062 let subpixel_variant = Point {
3063 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS_X as f32).floor() as u8,
3064 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS_Y as f32).floor() as u8,
3065 };
3066 let params = RenderGlyphParams {
3067 font_id,
3068 glyph_id,
3069 font_size,
3070 subpixel_variant,
3071 scale_factor,
3072 is_emoji: false,
3073 };
3074
3075 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3076 if !raster_bounds.is_zero() {
3077 let tile = self
3078 .sprite_atlas
3079 .get_or_insert_with(¶ms.clone().into(), &mut || {
3080 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3081 Ok(Some((size, Cow::Owned(bytes))))
3082 })?
3083 .expect("Callback above only errors or returns Some");
3084 let bounds = Bounds {
3085 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3086 size: tile.bounds.size.map(Into::into),
3087 };
3088 let content_mask = self.content_mask().scale(scale_factor);
3089 self.next_frame.scene.insert_primitive(MonochromeSprite {
3090 order: 0,
3091 pad: 0,
3092 bounds,
3093 content_mask,
3094 color: color.opacity(element_opacity),
3095 tile,
3096 transformation: TransformationMatrix::unit(),
3097 });
3098 }
3099 Ok(())
3100 }
3101
3102 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
3103 ///
3104 /// The y component of the origin is the baseline of the glyph.
3105 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
3106 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
3107 /// This method is only useful if you need to paint a single emoji that has already been shaped.
3108 ///
3109 /// This method should only be called as part of the paint phase of element drawing.
3110 pub fn paint_emoji(
3111 &mut self,
3112 origin: Point<Pixels>,
3113 font_id: FontId,
3114 glyph_id: GlyphId,
3115 font_size: Pixels,
3116 ) -> Result<()> {
3117 self.invalidator.debug_assert_paint();
3118
3119 let scale_factor = self.scale_factor();
3120 let glyph_origin = origin.scale(scale_factor);
3121 let params = RenderGlyphParams {
3122 font_id,
3123 glyph_id,
3124 font_size,
3125 // We don't render emojis with subpixel variants.
3126 subpixel_variant: Default::default(),
3127 scale_factor,
3128 is_emoji: true,
3129 };
3130
3131 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
3132 if !raster_bounds.is_zero() {
3133 let tile = self
3134 .sprite_atlas
3135 .get_or_insert_with(¶ms.clone().into(), &mut || {
3136 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
3137 Ok(Some((size, Cow::Owned(bytes))))
3138 })?
3139 .expect("Callback above only errors or returns Some");
3140
3141 let bounds = Bounds {
3142 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
3143 size: tile.bounds.size.map(Into::into),
3144 };
3145 let content_mask = self.content_mask().scale(scale_factor);
3146 let opacity = self.element_opacity();
3147
3148 self.next_frame.scene.insert_primitive(PolychromeSprite {
3149 order: 0,
3150 pad: 0,
3151 grayscale: false,
3152 bounds,
3153 corner_radii: Default::default(),
3154 content_mask,
3155 tile,
3156 opacity,
3157 });
3158 }
3159 Ok(())
3160 }
3161
3162 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
3163 ///
3164 /// This method should only be called as part of the paint phase of element drawing.
3165 pub fn paint_svg(
3166 &mut self,
3167 bounds: Bounds<Pixels>,
3168 path: SharedString,
3169 mut data: Option<&[u8]>,
3170 transformation: TransformationMatrix,
3171 color: Hsla,
3172 cx: &App,
3173 ) -> Result<()> {
3174 self.invalidator.debug_assert_paint();
3175
3176 let element_opacity = self.element_opacity();
3177 let scale_factor = self.scale_factor();
3178
3179 let bounds = bounds.scale(scale_factor);
3180 let params = RenderSvgParams {
3181 path,
3182 size: bounds.size.map(|pixels| {
3183 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
3184 }),
3185 };
3186
3187 let Some(tile) =
3188 self.sprite_atlas
3189 .get_or_insert_with(¶ms.clone().into(), &mut || {
3190 let Some((size, bytes)) = cx.svg_renderer.render_alpha_mask(¶ms, data)?
3191 else {
3192 return Ok(None);
3193 };
3194 Ok(Some((size, Cow::Owned(bytes))))
3195 })?
3196 else {
3197 return Ok(());
3198 };
3199 let content_mask = self.content_mask().scale(scale_factor);
3200 let svg_bounds = Bounds {
3201 origin: bounds.center()
3202 - Point::new(
3203 ScaledPixels(tile.bounds.size.width.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3204 ScaledPixels(tile.bounds.size.height.0 as f32 / SMOOTH_SVG_SCALE_FACTOR / 2.),
3205 ),
3206 size: tile
3207 .bounds
3208 .size
3209 .map(|value| ScaledPixels(value.0 as f32 / SMOOTH_SVG_SCALE_FACTOR)),
3210 };
3211
3212 self.next_frame.scene.insert_primitive(MonochromeSprite {
3213 order: 0,
3214 pad: 0,
3215 bounds: svg_bounds
3216 .map_origin(|origin| origin.round())
3217 .map_size(|size| size.ceil()),
3218 content_mask,
3219 color: color.opacity(element_opacity),
3220 tile,
3221 transformation,
3222 });
3223
3224 Ok(())
3225 }
3226
3227 /// Paint an image into the scene for the next frame at the current z-index.
3228 /// This method will panic if the frame_index is not valid
3229 ///
3230 /// This method should only be called as part of the paint phase of element drawing.
3231 pub fn paint_image(
3232 &mut self,
3233 bounds: Bounds<Pixels>,
3234 corner_radii: Corners<Pixels>,
3235 data: Arc<RenderImage>,
3236 frame_index: usize,
3237 grayscale: bool,
3238 ) -> Result<()> {
3239 self.invalidator.debug_assert_paint();
3240
3241 let scale_factor = self.scale_factor();
3242 let bounds = bounds.scale(scale_factor);
3243 let params = RenderImageParams {
3244 image_id: data.id,
3245 frame_index,
3246 };
3247
3248 let tile = self
3249 .sprite_atlas
3250 .get_or_insert_with(¶ms.into(), &mut || {
3251 Ok(Some((
3252 data.size(frame_index),
3253 Cow::Borrowed(
3254 data.as_bytes(frame_index)
3255 .expect("It's the caller's job to pass a valid frame index"),
3256 ),
3257 )))
3258 })?
3259 .expect("Callback above only returns Some");
3260 let content_mask = self.content_mask().scale(scale_factor);
3261 let corner_radii = corner_radii.scale(scale_factor);
3262 let opacity = self.element_opacity();
3263
3264 self.next_frame.scene.insert_primitive(PolychromeSprite {
3265 order: 0,
3266 pad: 0,
3267 grayscale,
3268 bounds: bounds
3269 .map_origin(|origin| origin.floor())
3270 .map_size(|size| size.ceil()),
3271 content_mask,
3272 corner_radii,
3273 tile,
3274 opacity,
3275 });
3276 Ok(())
3277 }
3278
3279 /// Paint a surface into the scene for the next frame at the current z-index.
3280 ///
3281 /// This method should only be called as part of the paint phase of element drawing.
3282 #[cfg(target_os = "macos")]
3283 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3284 use crate::PaintSurface;
3285
3286 self.invalidator.debug_assert_paint();
3287
3288 let scale_factor = self.scale_factor();
3289 let bounds = bounds.scale(scale_factor);
3290 let content_mask = self.content_mask().scale(scale_factor);
3291 self.next_frame.scene.insert_primitive(PaintSurface {
3292 order: 0,
3293 bounds,
3294 content_mask,
3295 image_buffer,
3296 });
3297 }
3298
3299 /// Removes an image from the sprite atlas.
3300 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3301 for frame_index in 0..data.frame_count() {
3302 let params = RenderImageParams {
3303 image_id: data.id,
3304 frame_index,
3305 };
3306
3307 self.sprite_atlas.remove(¶ms.clone().into());
3308 }
3309
3310 Ok(())
3311 }
3312
3313 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3314 /// layout is being requested, along with the layout ids of any children. This method is called during
3315 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3316 ///
3317 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3318 #[must_use]
3319 pub fn request_layout(
3320 &mut self,
3321 style: Style,
3322 children: impl IntoIterator<Item = LayoutId>,
3323 cx: &mut App,
3324 ) -> LayoutId {
3325 self.invalidator.debug_assert_prepaint();
3326
3327 cx.layout_id_buffer.clear();
3328 cx.layout_id_buffer.extend(children);
3329 let rem_size = self.rem_size();
3330 let scale_factor = self.scale_factor();
3331
3332 self.layout_engine.as_mut().unwrap().request_layout(
3333 style,
3334 rem_size,
3335 scale_factor,
3336 &cx.layout_id_buffer,
3337 )
3338 }
3339
3340 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3341 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3342 /// determine the element's size. One place this is used internally is when measuring text.
3343 ///
3344 /// The given closure is invoked at layout time with the known dimensions and available space and
3345 /// returns a `Size`.
3346 ///
3347 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3348 pub fn request_measured_layout<F>(&mut self, style: Style, measure: F) -> LayoutId
3349 where
3350 F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3351 + 'static,
3352 {
3353 self.invalidator.debug_assert_prepaint();
3354
3355 let rem_size = self.rem_size();
3356 let scale_factor = self.scale_factor();
3357 self.layout_engine
3358 .as_mut()
3359 .unwrap()
3360 .request_measured_layout(style, rem_size, scale_factor, measure)
3361 }
3362
3363 /// Compute the layout for the given id within the given available space.
3364 /// This method is called for its side effect, typically by the framework prior to painting.
3365 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3366 ///
3367 /// This method should only be called as part of the prepaint phase of element drawing.
3368 pub fn compute_layout(
3369 &mut self,
3370 layout_id: LayoutId,
3371 available_space: Size<AvailableSpace>,
3372 cx: &mut App,
3373 ) {
3374 self.invalidator.debug_assert_prepaint();
3375
3376 let mut layout_engine = self.layout_engine.take().unwrap();
3377 layout_engine.compute_layout(layout_id, available_space, self, cx);
3378 self.layout_engine = Some(layout_engine);
3379 }
3380
3381 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3382 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3383 ///
3384 /// This method should only be called as part of element drawing.
3385 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3386 self.invalidator.debug_assert_prepaint();
3387
3388 let scale_factor = self.scale_factor();
3389 let mut bounds = self
3390 .layout_engine
3391 .as_mut()
3392 .unwrap()
3393 .layout_bounds(layout_id, scale_factor)
3394 .map(Into::into);
3395 bounds.origin += self.element_offset();
3396 bounds
3397 }
3398
3399 /// This method should be called during `prepaint`. You can use
3400 /// the returned [Hitbox] during `paint` or in an event handler
3401 /// to determine whether the inserted hitbox was the topmost.
3402 ///
3403 /// This method should only be called as part of the prepaint phase of element drawing.
3404 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3405 self.invalidator.debug_assert_prepaint();
3406
3407 let content_mask = self.content_mask();
3408 let mut id = self.next_hitbox_id;
3409 self.next_hitbox_id = self.next_hitbox_id.next();
3410 let hitbox = Hitbox {
3411 id,
3412 bounds,
3413 content_mask,
3414 behavior,
3415 };
3416 self.next_frame.hitboxes.push(hitbox.clone());
3417 hitbox
3418 }
3419
3420 /// Set a hitbox which will act as a control area of the platform window.
3421 ///
3422 /// This method should only be called as part of the paint phase of element drawing.
3423 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3424 self.invalidator.debug_assert_paint();
3425 self.next_frame.window_control_hitboxes.push((area, hitbox));
3426 }
3427
3428 /// Sets the key context for the current element. This context will be used to translate
3429 /// keybindings into actions.
3430 ///
3431 /// This method should only be called as part of the paint phase of element drawing.
3432 pub fn set_key_context(&mut self, context: KeyContext) {
3433 self.invalidator.debug_assert_paint();
3434 self.next_frame.dispatch_tree.set_key_context(context);
3435 }
3436
3437 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3438 /// and keyboard event dispatch for the element.
3439 ///
3440 /// This method should only be called as part of the prepaint phase of element drawing.
3441 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3442 self.invalidator.debug_assert_prepaint();
3443 if focus_handle.is_focused(self) {
3444 self.next_frame.focus = Some(focus_handle.id);
3445 }
3446 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3447 }
3448
3449 /// Sets the view id for the current element, which will be used to manage view caching.
3450 ///
3451 /// This method should only be called as part of element prepaint. We plan on removing this
3452 /// method eventually when we solve some issues that require us to construct editor elements
3453 /// directly instead of always using editors via views.
3454 pub fn set_view_id(&mut self, view_id: EntityId) {
3455 self.invalidator.debug_assert_prepaint();
3456 self.next_frame.dispatch_tree.set_view_id(view_id);
3457 }
3458
3459 /// Get the entity ID for the currently rendering view
3460 pub fn current_view(&self) -> EntityId {
3461 self.invalidator.debug_assert_paint_or_prepaint();
3462 self.rendered_entity_stack.last().copied().unwrap()
3463 }
3464
3465 pub(crate) fn with_rendered_view<R>(
3466 &mut self,
3467 id: EntityId,
3468 f: impl FnOnce(&mut Self) -> R,
3469 ) -> R {
3470 self.rendered_entity_stack.push(id);
3471 let result = f(self);
3472 self.rendered_entity_stack.pop();
3473 result
3474 }
3475
3476 /// Executes the provided function with the specified image cache.
3477 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3478 where
3479 F: FnOnce(&mut Self) -> R,
3480 {
3481 if let Some(image_cache) = image_cache {
3482 self.image_cache_stack.push(image_cache);
3483 let result = f(self);
3484 self.image_cache_stack.pop();
3485 result
3486 } else {
3487 f(self)
3488 }
3489 }
3490
3491 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3492 /// platform to receive textual input with proper integration with concerns such
3493 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3494 /// rendered.
3495 ///
3496 /// This method should only be called as part of the paint phase of element drawing.
3497 ///
3498 /// [element_input_handler]: crate::ElementInputHandler
3499 pub fn handle_input(
3500 &mut self,
3501 focus_handle: &FocusHandle,
3502 input_handler: impl InputHandler,
3503 cx: &App,
3504 ) {
3505 self.invalidator.debug_assert_paint();
3506
3507 if focus_handle.is_focused(self) {
3508 let cx = self.to_async(cx);
3509 self.next_frame
3510 .input_handlers
3511 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3512 }
3513 }
3514
3515 /// Register a mouse event listener on the window for the next frame. The type of event
3516 /// is determined by the first parameter of the given listener. When the next frame is rendered
3517 /// the listener will be cleared.
3518 ///
3519 /// This method should only be called as part of the paint phase of element drawing.
3520 pub fn on_mouse_event<Event: MouseEvent>(
3521 &mut self,
3522 mut listener: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3523 ) {
3524 self.invalidator.debug_assert_paint();
3525
3526 self.next_frame.mouse_listeners.push(Some(Box::new(
3527 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3528 if let Some(event) = event.downcast_ref() {
3529 listener(event, phase, window, cx)
3530 }
3531 },
3532 )));
3533 }
3534
3535 /// Register a key event listener on this node for the next frame. The type of event
3536 /// is determined by the first parameter of the given listener. When the next frame is rendered
3537 /// the listener will be cleared.
3538 ///
3539 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3540 /// a specific need to register a listener yourself.
3541 ///
3542 /// This method should only be called as part of the paint phase of element drawing.
3543 pub fn on_key_event<Event: KeyEvent>(
3544 &mut self,
3545 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3546 ) {
3547 self.invalidator.debug_assert_paint();
3548
3549 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3550 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3551 if let Some(event) = event.downcast_ref::<Event>() {
3552 listener(event, phase, window, cx)
3553 }
3554 },
3555 ));
3556 }
3557
3558 /// Register a modifiers changed event listener on the window for the next frame.
3559 ///
3560 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3561 /// a specific need to register a global listener.
3562 ///
3563 /// This method should only be called as part of the paint phase of element drawing.
3564 pub fn on_modifiers_changed(
3565 &mut self,
3566 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3567 ) {
3568 self.invalidator.debug_assert_paint();
3569
3570 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3571 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3572 listener(event, window, cx)
3573 },
3574 ));
3575 }
3576
3577 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3578 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3579 /// Returns a subscription and persists until the subscription is dropped.
3580 pub fn on_focus_in(
3581 &mut self,
3582 handle: &FocusHandle,
3583 cx: &mut App,
3584 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3585 ) -> Subscription {
3586 let focus_id = handle.id;
3587 let (subscription, activate) =
3588 self.new_focus_listener(Box::new(move |event, window, cx| {
3589 if event.is_focus_in(focus_id) {
3590 listener(window, cx);
3591 }
3592 true
3593 }));
3594 cx.defer(move |_| activate());
3595 subscription
3596 }
3597
3598 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3599 /// Returns a subscription and persists until the subscription is dropped.
3600 pub fn on_focus_out(
3601 &mut self,
3602 handle: &FocusHandle,
3603 cx: &mut App,
3604 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3605 ) -> Subscription {
3606 let focus_id = handle.id;
3607 let (subscription, activate) =
3608 self.new_focus_listener(Box::new(move |event, window, cx| {
3609 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3610 && event.is_focus_out(focus_id)
3611 {
3612 let event = FocusOutEvent {
3613 blurred: WeakFocusHandle {
3614 id: blurred_id,
3615 handles: Arc::downgrade(&cx.focus_handles),
3616 },
3617 };
3618 listener(event, window, cx)
3619 }
3620 true
3621 }));
3622 cx.defer(move |_| activate());
3623 subscription
3624 }
3625
3626 fn reset_cursor_style(&self, cx: &mut App) {
3627 // Set the cursor only if we're the active window.
3628 if self.is_window_hovered() {
3629 let style = self
3630 .rendered_frame
3631 .cursor_style(self)
3632 .unwrap_or(CursorStyle::Arrow);
3633 cx.platform.set_cursor_style(style);
3634 }
3635 }
3636
3637 /// Dispatch a given keystroke as though the user had typed it.
3638 /// You can create a keystroke with Keystroke::parse("").
3639 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3640 let keystroke = keystroke.with_simulated_ime();
3641 let result = self.dispatch_event(
3642 PlatformInput::KeyDown(KeyDownEvent {
3643 keystroke: keystroke.clone(),
3644 is_held: false,
3645 prefer_character_input: false,
3646 }),
3647 cx,
3648 );
3649 if !result.propagate {
3650 return true;
3651 }
3652
3653 if let Some(input) = keystroke.key_char
3654 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3655 {
3656 input_handler.dispatch_input(&input, self, cx);
3657 self.platform_window.set_input_handler(input_handler);
3658 return true;
3659 }
3660
3661 false
3662 }
3663
3664 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3665 /// binding for the action (last binding added to the keymap).
3666 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3667 self.highest_precedence_binding_for_action(action)
3668 .map(|binding| {
3669 binding
3670 .keystrokes()
3671 .iter()
3672 .map(ToString::to_string)
3673 .collect::<Vec<_>>()
3674 .join(" ")
3675 })
3676 .unwrap_or_else(|| action.name().to_string())
3677 }
3678
3679 /// Dispatch a mouse or keyboard event on the window.
3680 #[profiling::function]
3681 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3682 self.last_input_timestamp.set(Instant::now());
3683
3684 // Track whether this input was keyboard-based for focus-visible styling
3685 self.last_input_modality = match &event {
3686 PlatformInput::KeyDown(_) | PlatformInput::ModifiersChanged(_) => {
3687 InputModality::Keyboard
3688 }
3689 PlatformInput::MouseDown(e) if e.is_focusing() => InputModality::Mouse,
3690 _ => self.last_input_modality,
3691 };
3692
3693 // Handlers may set this to false by calling `stop_propagation`.
3694 cx.propagate_event = true;
3695 // Handlers may set this to true by calling `prevent_default`.
3696 self.default_prevented = false;
3697
3698 let event = match event {
3699 // Track the mouse position with our own state, since accessing the platform
3700 // API for the mouse position can only occur on the main thread.
3701 PlatformInput::MouseMove(mouse_move) => {
3702 self.mouse_position = mouse_move.position;
3703 self.modifiers = mouse_move.modifiers;
3704 PlatformInput::MouseMove(mouse_move)
3705 }
3706 PlatformInput::MouseDown(mouse_down) => {
3707 self.mouse_position = mouse_down.position;
3708 self.modifiers = mouse_down.modifiers;
3709 PlatformInput::MouseDown(mouse_down)
3710 }
3711 PlatformInput::MouseUp(mouse_up) => {
3712 self.mouse_position = mouse_up.position;
3713 self.modifiers = mouse_up.modifiers;
3714 PlatformInput::MouseUp(mouse_up)
3715 }
3716 PlatformInput::MousePressure(mouse_pressure) => {
3717 PlatformInput::MousePressure(mouse_pressure)
3718 }
3719 PlatformInput::MouseExited(mouse_exited) => {
3720 self.modifiers = mouse_exited.modifiers;
3721 PlatformInput::MouseExited(mouse_exited)
3722 }
3723 PlatformInput::ModifiersChanged(modifiers_changed) => {
3724 self.modifiers = modifiers_changed.modifiers;
3725 self.capslock = modifiers_changed.capslock;
3726 PlatformInput::ModifiersChanged(modifiers_changed)
3727 }
3728 PlatformInput::ScrollWheel(scroll_wheel) => {
3729 self.mouse_position = scroll_wheel.position;
3730 self.modifiers = scroll_wheel.modifiers;
3731 PlatformInput::ScrollWheel(scroll_wheel)
3732 }
3733 // Translate dragging and dropping of external files from the operating system
3734 // to internal drag and drop events.
3735 PlatformInput::FileDrop(file_drop) => match file_drop {
3736 FileDropEvent::Entered { position, paths } => {
3737 self.mouse_position = position;
3738 if cx.active_drag.is_none() {
3739 cx.active_drag = Some(AnyDrag {
3740 value: Arc::new(paths.clone()),
3741 view: cx.new(|_| paths).into(),
3742 cursor_offset: position,
3743 cursor_style: None,
3744 });
3745 }
3746 PlatformInput::MouseMove(MouseMoveEvent {
3747 position,
3748 pressed_button: Some(MouseButton::Left),
3749 modifiers: Modifiers::default(),
3750 })
3751 }
3752 FileDropEvent::Pending { position } => {
3753 self.mouse_position = position;
3754 PlatformInput::MouseMove(MouseMoveEvent {
3755 position,
3756 pressed_button: Some(MouseButton::Left),
3757 modifiers: Modifiers::default(),
3758 })
3759 }
3760 FileDropEvent::Submit { position } => {
3761 cx.activate(true);
3762 self.mouse_position = position;
3763 PlatformInput::MouseUp(MouseUpEvent {
3764 button: MouseButton::Left,
3765 position,
3766 modifiers: Modifiers::default(),
3767 click_count: 1,
3768 })
3769 }
3770 FileDropEvent::Exited => {
3771 cx.active_drag.take();
3772 PlatformInput::FileDrop(FileDropEvent::Exited)
3773 }
3774 },
3775 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3776 };
3777
3778 if let Some(any_mouse_event) = event.mouse_event() {
3779 self.dispatch_mouse_event(any_mouse_event, cx);
3780 } else if let Some(any_key_event) = event.keyboard_event() {
3781 self.dispatch_key_event(any_key_event, cx);
3782 }
3783
3784 DispatchEventResult {
3785 propagate: cx.propagate_event,
3786 default_prevented: self.default_prevented,
3787 }
3788 }
3789
3790 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3791 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3792 if hit_test != self.mouse_hit_test {
3793 self.mouse_hit_test = hit_test;
3794 self.reset_cursor_style(cx);
3795 }
3796
3797 #[cfg(any(feature = "inspector", debug_assertions))]
3798 if self.is_inspector_picking(cx) {
3799 self.handle_inspector_mouse_event(event, cx);
3800 // When inspector is picking, all other mouse handling is skipped.
3801 return;
3802 }
3803
3804 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3805
3806 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3807 // special purposes, such as detecting events outside of a given Bounds.
3808 for listener in &mut mouse_listeners {
3809 let listener = listener.as_mut().unwrap();
3810 listener(event, DispatchPhase::Capture, self, cx);
3811 if !cx.propagate_event {
3812 break;
3813 }
3814 }
3815
3816 // Bubble phase, where most normal handlers do their work.
3817 if cx.propagate_event {
3818 for listener in mouse_listeners.iter_mut().rev() {
3819 let listener = listener.as_mut().unwrap();
3820 listener(event, DispatchPhase::Bubble, self, cx);
3821 if !cx.propagate_event {
3822 break;
3823 }
3824 }
3825 }
3826
3827 self.rendered_frame.mouse_listeners = mouse_listeners;
3828
3829 if cx.has_active_drag() {
3830 if event.is::<MouseMoveEvent>() {
3831 // If this was a mouse move event, redraw the window so that the
3832 // active drag can follow the mouse cursor.
3833 self.refresh();
3834 } else if event.is::<MouseUpEvent>() {
3835 // If this was a mouse up event, cancel the active drag and redraw
3836 // the window.
3837 cx.active_drag = None;
3838 self.refresh();
3839 }
3840 }
3841 }
3842
3843 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3844 if self.invalidator.is_dirty() {
3845 self.draw(cx).clear();
3846 }
3847
3848 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3849 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3850
3851 let mut keystroke: Option<Keystroke> = None;
3852
3853 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3854 if event.modifiers.number_of_modifiers() == 0
3855 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3856 && !self.pending_modifier.saw_keystroke
3857 {
3858 let key = match self.pending_modifier.modifiers {
3859 modifiers if modifiers.shift => Some("shift"),
3860 modifiers if modifiers.control => Some("control"),
3861 modifiers if modifiers.alt => Some("alt"),
3862 modifiers if modifiers.platform => Some("platform"),
3863 modifiers if modifiers.function => Some("function"),
3864 _ => None,
3865 };
3866 if let Some(key) = key {
3867 keystroke = Some(Keystroke {
3868 key: key.to_string(),
3869 key_char: None,
3870 modifiers: Modifiers::default(),
3871 });
3872 }
3873 }
3874
3875 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3876 && event.modifiers.number_of_modifiers() == 1
3877 {
3878 self.pending_modifier.saw_keystroke = false
3879 }
3880 self.pending_modifier.modifiers = event.modifiers
3881 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3882 self.pending_modifier.saw_keystroke = true;
3883 keystroke = Some(key_down_event.keystroke.clone());
3884 }
3885
3886 let Some(keystroke) = keystroke else {
3887 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3888 return;
3889 };
3890
3891 cx.propagate_event = true;
3892 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3893 if !cx.propagate_event {
3894 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3895 return;
3896 }
3897
3898 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3899 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3900 currently_pending = PendingInput::default();
3901 }
3902
3903 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3904 currently_pending.keystrokes,
3905 keystroke,
3906 &dispatch_path,
3907 );
3908
3909 if !match_result.to_replay.is_empty() {
3910 self.replay_pending_input(match_result.to_replay, cx);
3911 cx.propagate_event = true;
3912 }
3913
3914 if !match_result.pending.is_empty() {
3915 currently_pending.timer.take();
3916 currently_pending.keystrokes = match_result.pending;
3917 currently_pending.focus = self.focus;
3918
3919 let text_input_requires_timeout = event
3920 .downcast_ref::<KeyDownEvent>()
3921 .filter(|key_down| key_down.keystroke.key_char.is_some())
3922 .and_then(|_| self.platform_window.take_input_handler())
3923 .map_or(false, |mut input_handler| {
3924 let accepts = input_handler.accepts_text_input(self, cx);
3925 self.platform_window.set_input_handler(input_handler);
3926 accepts
3927 });
3928
3929 currently_pending.needs_timeout |=
3930 match_result.pending_has_binding || text_input_requires_timeout;
3931
3932 if currently_pending.needs_timeout {
3933 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3934 cx.background_executor.timer(Duration::from_secs(1)).await;
3935 cx.update(move |window, cx| {
3936 let Some(currently_pending) = window
3937 .pending_input
3938 .take()
3939 .filter(|pending| pending.focus == window.focus)
3940 else {
3941 return;
3942 };
3943
3944 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3945 let dispatch_path =
3946 window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3947
3948 let to_replay = window
3949 .rendered_frame
3950 .dispatch_tree
3951 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3952
3953 window.pending_input_changed(cx);
3954 window.replay_pending_input(to_replay, cx)
3955 })
3956 .log_err();
3957 }));
3958 } else {
3959 currently_pending.timer = None;
3960 }
3961 self.pending_input = Some(currently_pending);
3962 self.pending_input_changed(cx);
3963 cx.propagate_event = false;
3964 return;
3965 }
3966
3967 let skip_bindings = event
3968 .downcast_ref::<KeyDownEvent>()
3969 .filter(|key_down_event| key_down_event.prefer_character_input)
3970 .map(|_| {
3971 self.platform_window
3972 .take_input_handler()
3973 .map_or(false, |mut input_handler| {
3974 let accepts = input_handler.accepts_text_input(self, cx);
3975 self.platform_window.set_input_handler(input_handler);
3976 // If modifiers are not excessive (e.g. AltGr), and the input handler is accepting text input,
3977 // we prefer the text input over bindings.
3978 accepts
3979 })
3980 })
3981 .unwrap_or(false);
3982
3983 if !skip_bindings {
3984 for binding in match_result.bindings {
3985 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3986 if !cx.propagate_event {
3987 self.dispatch_keystroke_observers(
3988 event,
3989 Some(binding.action),
3990 match_result.context_stack,
3991 cx,
3992 );
3993 self.pending_input_changed(cx);
3994 return;
3995 }
3996 }
3997 }
3998
3999 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
4000 self.pending_input_changed(cx);
4001 }
4002
4003 fn finish_dispatch_key_event(
4004 &mut self,
4005 event: &dyn Any,
4006 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
4007 context_stack: Vec<KeyContext>,
4008 cx: &mut App,
4009 ) {
4010 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
4011 if !cx.propagate_event {
4012 return;
4013 }
4014
4015 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
4016 if !cx.propagate_event {
4017 return;
4018 }
4019
4020 self.dispatch_keystroke_observers(event, None, context_stack, cx);
4021 }
4022
4023 fn pending_input_changed(&mut self, cx: &mut App) {
4024 self.pending_input_observers
4025 .clone()
4026 .retain(&(), |callback| callback(self, cx));
4027 }
4028
4029 fn dispatch_key_down_up_event(
4030 &mut self,
4031 event: &dyn Any,
4032 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4033 cx: &mut App,
4034 ) {
4035 // Capture phase
4036 for node_id in dispatch_path {
4037 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4038
4039 for key_listener in node.key_listeners.clone() {
4040 key_listener(event, DispatchPhase::Capture, self, cx);
4041 if !cx.propagate_event {
4042 return;
4043 }
4044 }
4045 }
4046
4047 // Bubble phase
4048 for node_id in dispatch_path.iter().rev() {
4049 // Handle low level key events
4050 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4051 for key_listener in node.key_listeners.clone() {
4052 key_listener(event, DispatchPhase::Bubble, self, cx);
4053 if !cx.propagate_event {
4054 return;
4055 }
4056 }
4057 }
4058 }
4059
4060 fn dispatch_modifiers_changed_event(
4061 &mut self,
4062 event: &dyn Any,
4063 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
4064 cx: &mut App,
4065 ) {
4066 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
4067 return;
4068 };
4069 for node_id in dispatch_path.iter().rev() {
4070 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4071 for listener in node.modifiers_changed_listeners.clone() {
4072 listener(event, self, cx);
4073 if !cx.propagate_event {
4074 return;
4075 }
4076 }
4077 }
4078 }
4079
4080 /// Determine whether a potential multi-stroke key binding is in progress on this window.
4081 pub fn has_pending_keystrokes(&self) -> bool {
4082 self.pending_input.is_some()
4083 }
4084
4085 pub(crate) fn clear_pending_keystrokes(&mut self) {
4086 self.pending_input.take();
4087 }
4088
4089 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
4090 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
4091 self.pending_input
4092 .as_ref()
4093 .map(|pending_input| pending_input.keystrokes.as_slice())
4094 }
4095
4096 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
4097 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4098 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4099
4100 'replay: for replay in replays {
4101 let event = KeyDownEvent {
4102 keystroke: replay.keystroke.clone(),
4103 is_held: false,
4104 prefer_character_input: true,
4105 };
4106
4107 cx.propagate_event = true;
4108 for binding in replay.bindings {
4109 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
4110 if !cx.propagate_event {
4111 self.dispatch_keystroke_observers(
4112 &event,
4113 Some(binding.action),
4114 Vec::default(),
4115 cx,
4116 );
4117 continue 'replay;
4118 }
4119 }
4120
4121 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
4122 if !cx.propagate_event {
4123 continue 'replay;
4124 }
4125 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
4126 && let Some(mut input_handler) = self.platform_window.take_input_handler()
4127 {
4128 input_handler.dispatch_input(&input, self, cx);
4129 self.platform_window.set_input_handler(input_handler)
4130 }
4131 }
4132 }
4133
4134 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
4135 focus_id
4136 .and_then(|focus_id| {
4137 self.rendered_frame
4138 .dispatch_tree
4139 .focusable_node_id(focus_id)
4140 })
4141 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
4142 }
4143
4144 fn dispatch_action_on_node(
4145 &mut self,
4146 node_id: DispatchNodeId,
4147 action: &dyn Action,
4148 cx: &mut App,
4149 ) {
4150 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
4151
4152 // Capture phase for global actions.
4153 cx.propagate_event = true;
4154 if let Some(mut global_listeners) = cx
4155 .global_action_listeners
4156 .remove(&action.as_any().type_id())
4157 {
4158 for listener in &global_listeners {
4159 listener(action.as_any(), DispatchPhase::Capture, cx);
4160 if !cx.propagate_event {
4161 break;
4162 }
4163 }
4164
4165 global_listeners.extend(
4166 cx.global_action_listeners
4167 .remove(&action.as_any().type_id())
4168 .unwrap_or_default(),
4169 );
4170
4171 cx.global_action_listeners
4172 .insert(action.as_any().type_id(), global_listeners);
4173 }
4174
4175 if !cx.propagate_event {
4176 return;
4177 }
4178
4179 // Capture phase for window actions.
4180 for node_id in &dispatch_path {
4181 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4182 for DispatchActionListener {
4183 action_type,
4184 listener,
4185 } in node.action_listeners.clone()
4186 {
4187 let any_action = action.as_any();
4188 if action_type == any_action.type_id() {
4189 listener(any_action, DispatchPhase::Capture, self, cx);
4190
4191 if !cx.propagate_event {
4192 return;
4193 }
4194 }
4195 }
4196 }
4197
4198 // Bubble phase for window actions.
4199 for node_id in dispatch_path.iter().rev() {
4200 let node = self.rendered_frame.dispatch_tree.node(*node_id);
4201 for DispatchActionListener {
4202 action_type,
4203 listener,
4204 } in node.action_listeners.clone()
4205 {
4206 let any_action = action.as_any();
4207 if action_type == any_action.type_id() {
4208 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4209 listener(any_action, DispatchPhase::Bubble, self, cx);
4210
4211 if !cx.propagate_event {
4212 return;
4213 }
4214 }
4215 }
4216 }
4217
4218 // Bubble phase for global actions.
4219 if let Some(mut global_listeners) = cx
4220 .global_action_listeners
4221 .remove(&action.as_any().type_id())
4222 {
4223 for listener in global_listeners.iter().rev() {
4224 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
4225
4226 listener(action.as_any(), DispatchPhase::Bubble, cx);
4227 if !cx.propagate_event {
4228 break;
4229 }
4230 }
4231
4232 global_listeners.extend(
4233 cx.global_action_listeners
4234 .remove(&action.as_any().type_id())
4235 .unwrap_or_default(),
4236 );
4237
4238 cx.global_action_listeners
4239 .insert(action.as_any().type_id(), global_listeners);
4240 }
4241 }
4242
4243 /// Register the given handler to be invoked whenever the global of the given type
4244 /// is updated.
4245 pub fn observe_global<G: Global>(
4246 &mut self,
4247 cx: &mut App,
4248 f: impl Fn(&mut Window, &mut App) + 'static,
4249 ) -> Subscription {
4250 let window_handle = self.handle;
4251 let (subscription, activate) = cx.global_observers.insert(
4252 TypeId::of::<G>(),
4253 Box::new(move |cx| {
4254 window_handle
4255 .update(cx, |_, window, cx| f(window, cx))
4256 .is_ok()
4257 }),
4258 );
4259 cx.defer(move |_| activate());
4260 subscription
4261 }
4262
4263 /// Focus the current window and bring it to the foreground at the platform level.
4264 pub fn activate_window(&self) {
4265 self.platform_window.activate();
4266 }
4267
4268 /// Minimize the current window at the platform level.
4269 pub fn minimize_window(&self) {
4270 self.platform_window.minimize();
4271 }
4272
4273 /// Toggle full screen status on the current window at the platform level.
4274 pub fn toggle_fullscreen(&self) {
4275 self.platform_window.toggle_fullscreen();
4276 }
4277
4278 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4279 pub fn invalidate_character_coordinates(&self) {
4280 self.on_next_frame(|window, cx| {
4281 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4282 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4283 window.platform_window.update_ime_position(bounds);
4284 }
4285 window.platform_window.set_input_handler(input_handler);
4286 }
4287 });
4288 }
4289
4290 /// Present a platform dialog.
4291 /// The provided message will be presented, along with buttons for each answer.
4292 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4293 pub fn prompt<T>(
4294 &mut self,
4295 level: PromptLevel,
4296 message: &str,
4297 detail: Option<&str>,
4298 answers: &[T],
4299 cx: &mut App,
4300 ) -> oneshot::Receiver<usize>
4301 where
4302 T: Clone + Into<PromptButton>,
4303 {
4304 let prompt_builder = cx.prompt_builder.take();
4305 let Some(prompt_builder) = prompt_builder else {
4306 unreachable!("Re-entrant window prompting is not supported by GPUI");
4307 };
4308
4309 let answers = answers
4310 .iter()
4311 .map(|answer| answer.clone().into())
4312 .collect::<Vec<_>>();
4313
4314 let receiver = match &prompt_builder {
4315 PromptBuilder::Default => self
4316 .platform_window
4317 .prompt(level, message, detail, &answers)
4318 .unwrap_or_else(|| {
4319 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4320 }),
4321 PromptBuilder::Custom(_) => {
4322 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4323 }
4324 };
4325
4326 cx.prompt_builder = Some(prompt_builder);
4327
4328 receiver
4329 }
4330
4331 fn build_custom_prompt(
4332 &mut self,
4333 prompt_builder: &PromptBuilder,
4334 level: PromptLevel,
4335 message: &str,
4336 detail: Option<&str>,
4337 answers: &[PromptButton],
4338 cx: &mut App,
4339 ) -> oneshot::Receiver<usize> {
4340 let (sender, receiver) = oneshot::channel();
4341 let handle = PromptHandle::new(sender);
4342 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4343 self.prompt = Some(handle);
4344 receiver
4345 }
4346
4347 /// Returns the current context stack.
4348 pub fn context_stack(&self) -> Vec<KeyContext> {
4349 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4350 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4351 dispatch_tree
4352 .dispatch_path(node_id)
4353 .iter()
4354 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4355 .collect()
4356 }
4357
4358 /// Returns all available actions for the focused element.
4359 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4360 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4361 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4362 for action_type in cx.global_action_listeners.keys() {
4363 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4364 let action = cx.actions.build_action_type(action_type).ok();
4365 if let Some(action) = action {
4366 actions.insert(ix, action);
4367 }
4368 }
4369 }
4370 actions
4371 }
4372
4373 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4374 /// returned in the order they were added. For display, the last binding should take precedence.
4375 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4376 self.rendered_frame
4377 .dispatch_tree
4378 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4379 }
4380
4381 /// Returns the highest precedence key binding that invokes an action on the currently focused
4382 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4383 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4384 self.rendered_frame
4385 .dispatch_tree
4386 .highest_precedence_binding_for_action(
4387 action,
4388 &self.rendered_frame.dispatch_tree.context_stack,
4389 )
4390 }
4391
4392 /// Returns the key bindings for an action in a context.
4393 pub fn bindings_for_action_in_context(
4394 &self,
4395 action: &dyn Action,
4396 context: KeyContext,
4397 ) -> Vec<KeyBinding> {
4398 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4399 dispatch_tree.bindings_for_action(action, &[context])
4400 }
4401
4402 /// Returns the highest precedence key binding for an action in a context. This is more
4403 /// efficient than getting the last result of `bindings_for_action_in_context`.
4404 pub fn highest_precedence_binding_for_action_in_context(
4405 &self,
4406 action: &dyn Action,
4407 context: KeyContext,
4408 ) -> Option<KeyBinding> {
4409 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4410 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4411 }
4412
4413 /// Returns any bindings that would invoke an action on the given focus handle if it were
4414 /// focused. Bindings are returned in the order they were added. For display, the last binding
4415 /// should take precedence.
4416 pub fn bindings_for_action_in(
4417 &self,
4418 action: &dyn Action,
4419 focus_handle: &FocusHandle,
4420 ) -> Vec<KeyBinding> {
4421 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4422 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4423 return vec![];
4424 };
4425 dispatch_tree.bindings_for_action(action, &context_stack)
4426 }
4427
4428 /// Returns the highest precedence key binding that would invoke an action on the given focus
4429 /// handle if it were focused. This is more efficient than getting the last result of
4430 /// `bindings_for_action_in`.
4431 pub fn highest_precedence_binding_for_action_in(
4432 &self,
4433 action: &dyn Action,
4434 focus_handle: &FocusHandle,
4435 ) -> Option<KeyBinding> {
4436 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4437 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4438 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4439 }
4440
4441 fn context_stack_for_focus_handle(
4442 &self,
4443 focus_handle: &FocusHandle,
4444 ) -> Option<Vec<KeyContext>> {
4445 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4446 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4447 let context_stack: Vec<_> = dispatch_tree
4448 .dispatch_path(node_id)
4449 .into_iter()
4450 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4451 .collect();
4452 Some(context_stack)
4453 }
4454
4455 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4456 pub fn listener_for<T: 'static, E>(
4457 &self,
4458 view: &Entity<T>,
4459 f: impl Fn(&mut T, &E, &mut Window, &mut Context<T>) + 'static,
4460 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4461 let view = view.downgrade();
4462 move |e: &E, window: &mut Window, cx: &mut App| {
4463 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4464 }
4465 }
4466
4467 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4468 pub fn handler_for<E: 'static, Callback: Fn(&mut E, &mut Window, &mut Context<E>) + 'static>(
4469 &self,
4470 entity: &Entity<E>,
4471 f: Callback,
4472 ) -> impl Fn(&mut Window, &mut App) + 'static {
4473 let entity = entity.downgrade();
4474 move |window: &mut Window, cx: &mut App| {
4475 entity.update(cx, |entity, cx| f(entity, window, cx)).ok();
4476 }
4477 }
4478
4479 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4480 /// If the callback returns false, the window won't be closed.
4481 pub fn on_window_should_close(
4482 &self,
4483 cx: &App,
4484 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4485 ) {
4486 let mut cx = self.to_async(cx);
4487 self.platform_window.on_should_close(Box::new(move || {
4488 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4489 }))
4490 }
4491
4492 /// Register an action listener on this node for the next frame. The type of action
4493 /// is determined by the first parameter of the given listener. When the next frame is rendered
4494 /// the listener will be cleared.
4495 ///
4496 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4497 /// a specific need to register a listener yourself.
4498 ///
4499 /// This method should only be called as part of the paint phase of element drawing.
4500 pub fn on_action(
4501 &mut self,
4502 action_type: TypeId,
4503 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4504 ) {
4505 self.invalidator.debug_assert_paint();
4506
4507 self.next_frame
4508 .dispatch_tree
4509 .on_action(action_type, Rc::new(listener));
4510 }
4511
4512 /// Register a capturing action listener on this node for the next frame if the condition is true.
4513 /// The type of action is determined by the first parameter of the given listener. When the next
4514 /// frame is rendered the listener will be cleared.
4515 ///
4516 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4517 /// a specific need to register a listener yourself.
4518 ///
4519 /// This method should only be called as part of the paint phase of element drawing.
4520 pub fn on_action_when(
4521 &mut self,
4522 condition: bool,
4523 action_type: TypeId,
4524 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4525 ) {
4526 self.invalidator.debug_assert_paint();
4527
4528 if condition {
4529 self.next_frame
4530 .dispatch_tree
4531 .on_action(action_type, Rc::new(listener));
4532 }
4533 }
4534
4535 /// Read information about the GPU backing this window.
4536 /// Currently returns None on Mac and Windows.
4537 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4538 self.platform_window.gpu_specs()
4539 }
4540
4541 /// Perform titlebar double-click action.
4542 /// This is macOS specific.
4543 pub fn titlebar_double_click(&self) {
4544 self.platform_window.titlebar_double_click();
4545 }
4546
4547 /// Gets the window's title at the platform level.
4548 /// This is macOS specific.
4549 pub fn window_title(&self) -> String {
4550 self.platform_window.get_title()
4551 }
4552
4553 /// Returns a list of all tabbed windows and their titles.
4554 /// This is macOS specific.
4555 pub fn tabbed_windows(&self) -> Option<Vec<SystemWindowTab>> {
4556 self.platform_window.tabbed_windows()
4557 }
4558
4559 /// Returns the tab bar visibility.
4560 /// This is macOS specific.
4561 pub fn tab_bar_visible(&self) -> bool {
4562 self.platform_window.tab_bar_visible()
4563 }
4564
4565 /// Merges all open windows into a single tabbed window.
4566 /// This is macOS specific.
4567 pub fn merge_all_windows(&self) {
4568 self.platform_window.merge_all_windows()
4569 }
4570
4571 /// Moves the tab to a new containing window.
4572 /// This is macOS specific.
4573 pub fn move_tab_to_new_window(&self) {
4574 self.platform_window.move_tab_to_new_window()
4575 }
4576
4577 /// Shows or hides the window tab overview.
4578 /// This is macOS specific.
4579 pub fn toggle_window_tab_overview(&self) {
4580 self.platform_window.toggle_window_tab_overview()
4581 }
4582
4583 /// Sets the tabbing identifier for the window.
4584 /// This is macOS specific.
4585 pub fn set_tabbing_identifier(&self, tabbing_identifier: Option<String>) {
4586 self.platform_window
4587 .set_tabbing_identifier(tabbing_identifier)
4588 }
4589
4590 /// Toggles the inspector mode on this window.
4591 #[cfg(any(feature = "inspector", debug_assertions))]
4592 pub fn toggle_inspector(&mut self, cx: &mut App) {
4593 self.inspector = match self.inspector {
4594 None => Some(cx.new(|_| Inspector::new())),
4595 Some(_) => None,
4596 };
4597 self.refresh();
4598 }
4599
4600 /// Returns true if the window is in inspector mode.
4601 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4602 #[cfg(any(feature = "inspector", debug_assertions))]
4603 {
4604 if let Some(inspector) = &self.inspector {
4605 return inspector.read(_cx).is_picking();
4606 }
4607 }
4608 false
4609 }
4610
4611 /// Executes the provided function with mutable access to an inspector state.
4612 #[cfg(any(feature = "inspector", debug_assertions))]
4613 pub fn with_inspector_state<T: 'static, R>(
4614 &mut self,
4615 _inspector_id: Option<&crate::InspectorElementId>,
4616 cx: &mut App,
4617 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4618 ) -> R {
4619 if let Some(inspector_id) = _inspector_id
4620 && let Some(inspector) = &self.inspector
4621 {
4622 let inspector = inspector.clone();
4623 let active_element_id = inspector.read(cx).active_element_id();
4624 if Some(inspector_id) == active_element_id {
4625 return inspector.update(cx, |inspector, _cx| {
4626 inspector.with_active_element_state(self, f)
4627 });
4628 }
4629 }
4630 f(&mut None, self)
4631 }
4632
4633 #[cfg(any(feature = "inspector", debug_assertions))]
4634 pub(crate) fn build_inspector_element_id(
4635 &mut self,
4636 path: crate::InspectorElementPath,
4637 ) -> crate::InspectorElementId {
4638 self.invalidator.debug_assert_paint_or_prepaint();
4639 let path = Rc::new(path);
4640 let next_instance_id = self
4641 .next_frame
4642 .next_inspector_instance_ids
4643 .entry(path.clone())
4644 .or_insert(0);
4645 let instance_id = *next_instance_id;
4646 *next_instance_id += 1;
4647 crate::InspectorElementId { path, instance_id }
4648 }
4649
4650 #[cfg(any(feature = "inspector", debug_assertions))]
4651 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4652 if let Some(inspector) = self.inspector.take() {
4653 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4654 inspector_element.prepaint_as_root(
4655 point(self.viewport_size.width - inspector_width, px(0.0)),
4656 size(inspector_width, self.viewport_size.height).into(),
4657 self,
4658 cx,
4659 );
4660 self.inspector = Some(inspector);
4661 Some(inspector_element)
4662 } else {
4663 None
4664 }
4665 }
4666
4667 #[cfg(any(feature = "inspector", debug_assertions))]
4668 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4669 if let Some(mut inspector_element) = inspector_element {
4670 inspector_element.paint(self, cx);
4671 };
4672 }
4673
4674 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4675 /// inspect UI elements by clicking on them.
4676 #[cfg(any(feature = "inspector", debug_assertions))]
4677 pub fn insert_inspector_hitbox(
4678 &mut self,
4679 hitbox_id: HitboxId,
4680 inspector_id: Option<&crate::InspectorElementId>,
4681 cx: &App,
4682 ) {
4683 self.invalidator.debug_assert_paint_or_prepaint();
4684 if !self.is_inspector_picking(cx) {
4685 return;
4686 }
4687 if let Some(inspector_id) = inspector_id {
4688 self.next_frame
4689 .inspector_hitboxes
4690 .insert(hitbox_id, inspector_id.clone());
4691 }
4692 }
4693
4694 #[cfg(any(feature = "inspector", debug_assertions))]
4695 fn paint_inspector_hitbox(&mut self, cx: &App) {
4696 if let Some(inspector) = self.inspector.as_ref() {
4697 let inspector = inspector.read(cx);
4698 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4699 && let Some(hitbox) = self
4700 .next_frame
4701 .hitboxes
4702 .iter()
4703 .find(|hitbox| hitbox.id == hitbox_id)
4704 {
4705 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4706 }
4707 }
4708 }
4709
4710 #[cfg(any(feature = "inspector", debug_assertions))]
4711 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4712 let Some(inspector) = self.inspector.clone() else {
4713 return;
4714 };
4715 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4716 inspector.update(cx, |inspector, _cx| {
4717 if let Some((_, inspector_id)) =
4718 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4719 {
4720 inspector.hover(inspector_id, self);
4721 }
4722 });
4723 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4724 inspector.update(cx, |inspector, _cx| {
4725 if let Some((_, inspector_id)) =
4726 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4727 {
4728 inspector.select(inspector_id, self);
4729 }
4730 });
4731 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4732 // This should be kept in sync with SCROLL_LINES in x11 platform.
4733 const SCROLL_LINES: f32 = 3.0;
4734 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4735 let delta_y = event
4736 .delta
4737 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4738 .y;
4739 if let Some(inspector) = self.inspector.clone() {
4740 inspector.update(cx, |inspector, _cx| {
4741 if let Some(depth) = inspector.pick_depth.as_mut() {
4742 *depth += f32::from(delta_y) / SCROLL_PIXELS_PER_LAYER;
4743 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4744 if *depth < 0.0 {
4745 *depth = 0.0;
4746 } else if *depth > max_depth {
4747 *depth = max_depth;
4748 }
4749 if let Some((_, inspector_id)) =
4750 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4751 {
4752 inspector.set_active_element_id(inspector_id, self);
4753 }
4754 }
4755 });
4756 }
4757 }
4758 }
4759
4760 #[cfg(any(feature = "inspector", debug_assertions))]
4761 fn hovered_inspector_hitbox(
4762 &self,
4763 inspector: &Inspector,
4764 frame: &Frame,
4765 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4766 if let Some(pick_depth) = inspector.pick_depth {
4767 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4768 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4769 let skip_count = (depth as usize).min(max_skipped);
4770 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4771 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4772 return Some((*hitbox_id, inspector_id.clone()));
4773 }
4774 }
4775 }
4776 None
4777 }
4778
4779 /// For testing: set the current modifier keys state.
4780 /// This does not generate any events.
4781 #[cfg(any(test, feature = "test-support"))]
4782 pub fn set_modifiers(&mut self, modifiers: Modifiers) {
4783 self.modifiers = modifiers;
4784 }
4785}
4786
4787// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4788slotmap::new_key_type! {
4789 /// A unique identifier for a window.
4790 pub struct WindowId;
4791}
4792
4793impl WindowId {
4794 /// Converts this window ID to a `u64`.
4795 pub fn as_u64(&self) -> u64 {
4796 self.0.as_ffi()
4797 }
4798}
4799
4800impl From<u64> for WindowId {
4801 fn from(value: u64) -> Self {
4802 WindowId(slotmap::KeyData::from_ffi(value))
4803 }
4804}
4805
4806/// A handle to a window with a specific root view type.
4807/// Note that this does not keep the window alive on its own.
4808#[derive(Deref, DerefMut)]
4809pub struct WindowHandle<V> {
4810 #[deref]
4811 #[deref_mut]
4812 pub(crate) any_handle: AnyWindowHandle,
4813 state_type: PhantomData<fn(V) -> V>,
4814}
4815
4816impl<V> Debug for WindowHandle<V> {
4817 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4818 f.debug_struct("WindowHandle")
4819 .field("any_handle", &self.any_handle.id.as_u64())
4820 .finish()
4821 }
4822}
4823
4824impl<V: 'static + Render> WindowHandle<V> {
4825 /// Creates a new handle from a window ID.
4826 /// This does not check if the root type of the window is `V`.
4827 pub fn new(id: WindowId) -> Self {
4828 WindowHandle {
4829 any_handle: AnyWindowHandle {
4830 id,
4831 state_type: TypeId::of::<V>(),
4832 },
4833 state_type: PhantomData,
4834 }
4835 }
4836
4837 /// Get the root view out of this window.
4838 ///
4839 /// This will fail if the window is closed or if the root view's type does not match `V`.
4840 #[cfg(any(test, feature = "test-support"))]
4841 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4842 where
4843 C: AppContext,
4844 {
4845 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4846 root_view
4847 .downcast::<V>()
4848 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4849 }))
4850 }
4851
4852 /// Updates the root view of this window.
4853 ///
4854 /// This will fail if the window has been closed or if the root view's type does not match
4855 pub fn update<C, R>(
4856 &self,
4857 cx: &mut C,
4858 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4859 ) -> Result<R>
4860 where
4861 C: AppContext,
4862 {
4863 cx.update_window(self.any_handle, |root_view, window, cx| {
4864 let view = root_view
4865 .downcast::<V>()
4866 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4867
4868 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4869 })?
4870 }
4871
4872 /// Read the root view out of this window.
4873 ///
4874 /// This will fail if the window is closed or if the root view's type does not match `V`.
4875 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4876 let x = cx
4877 .windows
4878 .get(self.id)
4879 .and_then(|window| {
4880 window
4881 .as_deref()
4882 .and_then(|window| window.root.clone())
4883 .map(|root_view| root_view.downcast::<V>())
4884 })
4885 .context("window not found")?
4886 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4887
4888 Ok(x.read(cx))
4889 }
4890
4891 /// Read the root view out of this window, with a callback
4892 ///
4893 /// This will fail if the window is closed or if the root view's type does not match `V`.
4894 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4895 where
4896 C: AppContext,
4897 {
4898 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4899 }
4900
4901 /// Read the root view pointer off of this window.
4902 ///
4903 /// This will fail if the window is closed or if the root view's type does not match `V`.
4904 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4905 where
4906 C: AppContext,
4907 {
4908 cx.read_window(self, |root_view, _cx| root_view)
4909 }
4910
4911 /// Check if this window is 'active'.
4912 ///
4913 /// Will return `None` if the window is closed or currently
4914 /// borrowed.
4915 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4916 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4917 .ok()
4918 }
4919}
4920
4921impl<V> Copy for WindowHandle<V> {}
4922
4923impl<V> Clone for WindowHandle<V> {
4924 fn clone(&self) -> Self {
4925 *self
4926 }
4927}
4928
4929impl<V> PartialEq for WindowHandle<V> {
4930 fn eq(&self, other: &Self) -> bool {
4931 self.any_handle == other.any_handle
4932 }
4933}
4934
4935impl<V> Eq for WindowHandle<V> {}
4936
4937impl<V> Hash for WindowHandle<V> {
4938 fn hash<H: Hasher>(&self, state: &mut H) {
4939 self.any_handle.hash(state);
4940 }
4941}
4942
4943impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4944 fn from(val: WindowHandle<V>) -> Self {
4945 val.any_handle
4946 }
4947}
4948
4949/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4950#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4951pub struct AnyWindowHandle {
4952 pub(crate) id: WindowId,
4953 state_type: TypeId,
4954}
4955
4956impl AnyWindowHandle {
4957 /// Get the ID of this window.
4958 pub fn window_id(&self) -> WindowId {
4959 self.id
4960 }
4961
4962 /// Attempt to convert this handle to a window handle with a specific root view type.
4963 /// If the types do not match, this will return `None`.
4964 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4965 if TypeId::of::<T>() == self.state_type {
4966 Some(WindowHandle {
4967 any_handle: *self,
4968 state_type: PhantomData,
4969 })
4970 } else {
4971 None
4972 }
4973 }
4974
4975 /// Updates the state of the root view of this window.
4976 ///
4977 /// This will fail if the window has been closed.
4978 pub fn update<C, R>(
4979 self,
4980 cx: &mut C,
4981 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4982 ) -> Result<R>
4983 where
4984 C: AppContext,
4985 {
4986 cx.update_window(self, update)
4987 }
4988
4989 /// Read the state of the root view of this window.
4990 ///
4991 /// This will fail if the window has been closed.
4992 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4993 where
4994 C: AppContext,
4995 T: 'static,
4996 {
4997 let view = self
4998 .downcast::<T>()
4999 .context("the type of the window's root view has changed")?;
5000
5001 cx.read_window(&view, read)
5002 }
5003}
5004
5005impl HasWindowHandle for Window {
5006 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
5007 self.platform_window.window_handle()
5008 }
5009}
5010
5011impl HasDisplayHandle for Window {
5012 fn display_handle(
5013 &self,
5014 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
5015 self.platform_window.display_handle()
5016 }
5017}
5018
5019/// An identifier for an [`Element`].
5020///
5021/// Can be constructed with a string, a number, or both, as well
5022/// as other internal representations.
5023#[derive(Clone, Debug, Eq, PartialEq, Hash)]
5024pub enum ElementId {
5025 /// The ID of a View element
5026 View(EntityId),
5027 /// An integer ID.
5028 Integer(u64),
5029 /// A string based ID.
5030 Name(SharedString),
5031 /// A UUID.
5032 Uuid(Uuid),
5033 /// An ID that's equated with a focus handle.
5034 FocusHandle(FocusId),
5035 /// A combination of a name and an integer.
5036 NamedInteger(SharedString, u64),
5037 /// A path.
5038 Path(Arc<std::path::Path>),
5039 /// A code location.
5040 CodeLocation(core::panic::Location<'static>),
5041 /// A labeled child of an element.
5042 NamedChild(Arc<ElementId>, SharedString),
5043}
5044
5045impl ElementId {
5046 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
5047 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
5048 Self::NamedInteger(name.into(), integer as u64)
5049 }
5050}
5051
5052impl Display for ElementId {
5053 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
5054 match self {
5055 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
5056 ElementId::Integer(ix) => write!(f, "{}", ix)?,
5057 ElementId::Name(name) => write!(f, "{}", name)?,
5058 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
5059 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
5060 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
5061 ElementId::Path(path) => write!(f, "{}", path.display())?,
5062 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
5063 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
5064 }
5065
5066 Ok(())
5067 }
5068}
5069
5070impl TryInto<SharedString> for ElementId {
5071 type Error = anyhow::Error;
5072
5073 fn try_into(self) -> anyhow::Result<SharedString> {
5074 if let ElementId::Name(name) = self {
5075 Ok(name)
5076 } else {
5077 anyhow::bail!("element id is not string")
5078 }
5079 }
5080}
5081
5082impl From<usize> for ElementId {
5083 fn from(id: usize) -> Self {
5084 ElementId::Integer(id as u64)
5085 }
5086}
5087
5088impl From<i32> for ElementId {
5089 fn from(id: i32) -> Self {
5090 Self::Integer(id as u64)
5091 }
5092}
5093
5094impl From<SharedString> for ElementId {
5095 fn from(name: SharedString) -> Self {
5096 ElementId::Name(name)
5097 }
5098}
5099
5100impl From<String> for ElementId {
5101 fn from(name: String) -> Self {
5102 ElementId::Name(name.into())
5103 }
5104}
5105
5106impl From<Arc<str>> for ElementId {
5107 fn from(name: Arc<str>) -> Self {
5108 ElementId::Name(name.into())
5109 }
5110}
5111
5112impl From<Arc<std::path::Path>> for ElementId {
5113 fn from(path: Arc<std::path::Path>) -> Self {
5114 ElementId::Path(path)
5115 }
5116}
5117
5118impl From<&'static str> for ElementId {
5119 fn from(name: &'static str) -> Self {
5120 ElementId::Name(name.into())
5121 }
5122}
5123
5124impl<'a> From<&'a FocusHandle> for ElementId {
5125 fn from(handle: &'a FocusHandle) -> Self {
5126 ElementId::FocusHandle(handle.id)
5127 }
5128}
5129
5130impl From<(&'static str, EntityId)> for ElementId {
5131 fn from((name, id): (&'static str, EntityId)) -> Self {
5132 ElementId::NamedInteger(name.into(), id.as_u64())
5133 }
5134}
5135
5136impl From<(&'static str, usize)> for ElementId {
5137 fn from((name, id): (&'static str, usize)) -> Self {
5138 ElementId::NamedInteger(name.into(), id as u64)
5139 }
5140}
5141
5142impl From<(SharedString, usize)> for ElementId {
5143 fn from((name, id): (SharedString, usize)) -> Self {
5144 ElementId::NamedInteger(name, id as u64)
5145 }
5146}
5147
5148impl From<(&'static str, u64)> for ElementId {
5149 fn from((name, id): (&'static str, u64)) -> Self {
5150 ElementId::NamedInteger(name.into(), id)
5151 }
5152}
5153
5154impl From<Uuid> for ElementId {
5155 fn from(value: Uuid) -> Self {
5156 Self::Uuid(value)
5157 }
5158}
5159
5160impl From<(&'static str, u32)> for ElementId {
5161 fn from((name, id): (&'static str, u32)) -> Self {
5162 ElementId::NamedInteger(name.into(), id.into())
5163 }
5164}
5165
5166impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
5167 fn from((id, name): (ElementId, T)) -> Self {
5168 ElementId::NamedChild(Arc::new(id), name.into())
5169 }
5170}
5171
5172impl From<&'static core::panic::Location<'static>> for ElementId {
5173 fn from(location: &'static core::panic::Location<'static>) -> Self {
5174 ElementId::CodeLocation(*location)
5175 }
5176}
5177
5178/// A rectangle to be rendered in the window at the given position and size.
5179/// Passed as an argument [`Window::paint_quad`].
5180#[derive(Clone)]
5181pub struct PaintQuad {
5182 /// The bounds of the quad within the window.
5183 pub bounds: Bounds<Pixels>,
5184 /// The radii of the quad's corners.
5185 pub corner_radii: Corners<Pixels>,
5186 /// The background color of the quad.
5187 pub background: Background,
5188 /// The widths of the quad's borders.
5189 pub border_widths: Edges<Pixels>,
5190 /// The color of the quad's borders.
5191 pub border_color: Hsla,
5192 /// The style of the quad's borders.
5193 pub border_style: BorderStyle,
5194}
5195
5196impl PaintQuad {
5197 /// Sets the corner radii of the quad.
5198 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
5199 PaintQuad {
5200 corner_radii: corner_radii.into(),
5201 ..self
5202 }
5203 }
5204
5205 /// Sets the border widths of the quad.
5206 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
5207 PaintQuad {
5208 border_widths: border_widths.into(),
5209 ..self
5210 }
5211 }
5212
5213 /// Sets the border color of the quad.
5214 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
5215 PaintQuad {
5216 border_color: border_color.into(),
5217 ..self
5218 }
5219 }
5220
5221 /// Sets the background color of the quad.
5222 pub fn background(self, background: impl Into<Background>) -> Self {
5223 PaintQuad {
5224 background: background.into(),
5225 ..self
5226 }
5227 }
5228}
5229
5230/// Creates a quad with the given parameters.
5231pub fn quad(
5232 bounds: Bounds<Pixels>,
5233 corner_radii: impl Into<Corners<Pixels>>,
5234 background: impl Into<Background>,
5235 border_widths: impl Into<Edges<Pixels>>,
5236 border_color: impl Into<Hsla>,
5237 border_style: BorderStyle,
5238) -> PaintQuad {
5239 PaintQuad {
5240 bounds,
5241 corner_radii: corner_radii.into(),
5242 background: background.into(),
5243 border_widths: border_widths.into(),
5244 border_color: border_color.into(),
5245 border_style,
5246 }
5247}
5248
5249/// Creates a filled quad with the given bounds and background color.
5250pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
5251 PaintQuad {
5252 bounds: bounds.into(),
5253 corner_radii: (0.).into(),
5254 background: background.into(),
5255 border_widths: (0.).into(),
5256 border_color: transparent_black(),
5257 border_style: BorderStyle::default(),
5258 }
5259}
5260
5261/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
5262pub fn outline(
5263 bounds: impl Into<Bounds<Pixels>>,
5264 border_color: impl Into<Hsla>,
5265 border_style: BorderStyle,
5266) -> PaintQuad {
5267 PaintQuad {
5268 bounds: bounds.into(),
5269 corner_radii: (0.).into(),
5270 background: transparent_black().into(),
5271 border_widths: (1.).into(),
5272 border_color: border_color.into(),
5273 border_style,
5274 }
5275}