predict.rs

  1use crate::{
  2    PredictionProvider, PromptFormat,
  3    anthropic_client::AnthropicClient,
  4    example::{Example, ExamplePrediction},
  5    format_prompt::{TeacherPrompt, run_format_prompt},
  6    headless::EpAppState,
  7    load_project::run_load_project,
  8    paths::{LATEST_EXAMPLE_RUN_DIR, RUN_DIR},
  9    progress::{InfoStyle, Progress, Step},
 10    retrieve_context::run_context_retrieval,
 11};
 12use anyhow::Context as _;
 13use edit_prediction::{DebugEvent, EditPredictionStore};
 14use futures::{FutureExt as _, StreamExt as _, future::Shared};
 15use gpui::{AppContext as _, AsyncApp, Task};
 16use std::{
 17    fs,
 18    sync::{
 19        Arc, Mutex, OnceLock,
 20        atomic::{AtomicUsize, Ordering::SeqCst},
 21    },
 22};
 23
 24pub async fn run_prediction(
 25    example: &mut Example,
 26    provider: Option<PredictionProvider>,
 27    repetition_count: usize,
 28    app_state: Arc<EpAppState>,
 29    mut cx: AsyncApp,
 30) -> anyhow::Result<()> {
 31    let provider = provider.context("provider is required")?;
 32
 33    if let Some(existing_prediction) = example.predictions.first() {
 34        if existing_prediction.provider == provider {
 35            return Ok(());
 36        } else {
 37            example.predictions.clear();
 38        }
 39    }
 40
 41    run_context_retrieval(example, app_state.clone(), cx.clone()).await?;
 42
 43    if matches!(
 44        provider,
 45        PredictionProvider::Teacher | PredictionProvider::TeacherNonBatching
 46    ) {
 47        let _step_progress = Progress::global().start(Step::Predict, &example.spec.name);
 48
 49        if example.prompt.is_none() {
 50            run_format_prompt(example, PromptFormat::Teacher, app_state.clone(), cx).await?;
 51        }
 52
 53        let batched = matches!(provider, PredictionProvider::Teacher);
 54        return predict_anthropic(example, repetition_count, batched).await;
 55    }
 56
 57    run_load_project(example, app_state.clone(), cx.clone()).await?;
 58
 59    let step_progress = Progress::global().start(Step::Predict, &example.spec.name);
 60
 61    if matches!(
 62        provider,
 63        PredictionProvider::Zeta1 | PredictionProvider::Zeta2
 64    ) {
 65        step_progress.set_substatus("authenticating");
 66        static AUTHENTICATED: OnceLock<Shared<Task<()>>> = OnceLock::new();
 67        AUTHENTICATED
 68            .get_or_init(|| {
 69                let client = app_state.client.clone();
 70                cx.spawn(async move |cx| {
 71                    if let Err(e) = client.sign_in_with_optional_connect(true, cx).await {
 72                        eprintln!("Authentication failed: {}", e);
 73                    }
 74                })
 75                .shared()
 76            })
 77            .clone()
 78            .await;
 79    }
 80
 81    let ep_store = cx.update(|cx| {
 82        EditPredictionStore::try_global(cx).context("EditPredictionStore not initialized")
 83    })??;
 84
 85    ep_store.update(&mut cx, |store, _cx| {
 86        let model = match provider {
 87            PredictionProvider::Zeta1 => edit_prediction::EditPredictionModel::Zeta1,
 88            PredictionProvider::Zeta2 => edit_prediction::EditPredictionModel::Zeta2,
 89            PredictionProvider::Sweep => edit_prediction::EditPredictionModel::Sweep,
 90            PredictionProvider::Mercury => edit_prediction::EditPredictionModel::Mercury,
 91            PredictionProvider::Teacher | PredictionProvider::TeacherNonBatching => {
 92                unreachable!()
 93            }
 94        };
 95        store.set_edit_prediction_model(model);
 96    })?;
 97    step_progress.set_substatus("configuring model");
 98    let state = example.state.as_ref().context("state must be set")?;
 99    let run_dir = RUN_DIR.join(&example.spec.name);
100
101    let updated_example = Arc::new(Mutex::new(example.clone()));
102    let current_run_ix = Arc::new(AtomicUsize::new(0));
103
104    let mut debug_rx =
105        ep_store.update(&mut cx, |store, cx| store.debug_info(&state.project, cx))?;
106    let debug_task = cx.background_spawn({
107        let updated_example = updated_example.clone();
108        let current_run_ix = current_run_ix.clone();
109        let run_dir = run_dir.clone();
110        async move {
111            while let Some(event) = debug_rx.next().await {
112                let run_ix = current_run_ix.load(SeqCst);
113                let mut updated_example = updated_example.lock().unwrap();
114
115                let run_dir = if repetition_count > 1 {
116                    run_dir.join(format!("{:03}", run_ix))
117                } else {
118                    run_dir.clone()
119                };
120
121                match event {
122                    DebugEvent::EditPredictionStarted(request) => {
123                        assert_eq!(updated_example.predictions.len(), run_ix + 1);
124
125                        if let Some(prompt) = request.prompt {
126                            fs::write(run_dir.join("prediction_prompt.md"), &prompt)?;
127                        }
128                    }
129                    DebugEvent::EditPredictionFinished(request) => {
130                        assert_eq!(updated_example.predictions.len(), run_ix + 1);
131
132                        if let Some(output) = request.model_output {
133                            fs::write(run_dir.join("prediction_response.md"), &output)?;
134                            updated_example
135                                .predictions
136                                .last_mut()
137                                .unwrap()
138                                .actual_output = output;
139                        }
140                        if run_ix >= repetition_count {
141                            break;
142                        }
143                    }
144                    _ => {}
145                }
146            }
147            anyhow::Ok(())
148        }
149    });
150
151    for ix in 0..repetition_count {
152        current_run_ix.store(ix, SeqCst);
153        let run_dir = if repetition_count > 1 {
154            run_dir.join(format!("{:03}", ix))
155        } else {
156            run_dir.clone()
157        };
158
159        fs::create_dir_all(&run_dir)?;
160        if LATEST_EXAMPLE_RUN_DIR.is_symlink() {
161            fs::remove_file(&*LATEST_EXAMPLE_RUN_DIR)?;
162        }
163        #[cfg(unix)]
164        std::os::unix::fs::symlink(&run_dir, &*LATEST_EXAMPLE_RUN_DIR)?;
165        #[cfg(windows)]
166        std::os::windows::fs::symlink_dir(&run_dir, &*LATEST_EXAMPLE_RUN_DIR)?;
167
168        updated_example
169            .lock()
170            .unwrap()
171            .predictions
172            .push(ExamplePrediction {
173                actual_patch: String::new(),
174                actual_output: String::new(),
175                provider,
176            });
177
178        step_progress.set_substatus("requesting prediction");
179        let prediction = ep_store
180            .update(&mut cx, |store, cx| {
181                store.request_prediction(
182                    &state.project,
183                    &state.buffer,
184                    state.cursor_position,
185                    cloud_llm_client::PredictEditsRequestTrigger::Cli,
186                    cx,
187                )
188            })?
189            .await?;
190
191        let actual_patch = prediction
192            .and_then(|prediction| {
193                let prediction = prediction.prediction.ok()?;
194                prediction
195                    .edit_preview
196                    .as_unified_diff(prediction.snapshot.file(), &prediction.edits)
197            })
198            .unwrap_or_default();
199
200        let has_prediction = !actual_patch.is_empty();
201
202        updated_example
203            .lock()
204            .unwrap()
205            .predictions
206            .last_mut()
207            .unwrap()
208            .actual_patch = actual_patch;
209
210        if ix == repetition_count - 1 {
211            let (info, style) = if has_prediction {
212                ("predicted", InfoStyle::Normal)
213            } else {
214                ("no prediction", InfoStyle::Warning)
215            };
216            step_progress.set_info(info, style);
217        }
218    }
219
220    ep_store.update(&mut cx, |store, _| {
221        store.remove_project(&state.project);
222    })?;
223    debug_task.await?;
224
225    *example = Arc::into_inner(updated_example)
226        .ok_or_else(|| anyhow::anyhow!("Failed to unwrap Arc"))?
227        .into_inner()
228        .map_err(|_| anyhow::anyhow!("Failed to unwrap Mutex"))?;
229    Ok(())
230}
231
232async fn predict_anthropic(
233    example: &mut Example,
234    _repetition_count: usize,
235    batched: bool,
236) -> anyhow::Result<()> {
237    let llm_model_name = "claude-sonnet-4-5";
238    let max_tokens = 16384;
239    let llm_client = if batched {
240        AnthropicClient::batch(&crate::paths::LLM_CACHE_DB.as_ref())
241    } else {
242        AnthropicClient::plain()
243    };
244    let llm_client = llm_client.context("Failed to create LLM client")?;
245
246    let prompt = example.prompt.as_ref().context("Prompt is required")?;
247
248    let messages = vec![anthropic::Message {
249        role: anthropic::Role::User,
250        content: vec![anthropic::RequestContent::Text {
251            text: prompt.input.clone(),
252            cache_control: None,
253        }],
254    }];
255
256    let Some(response) = llm_client
257        .generate(llm_model_name, max_tokens, messages)
258        .await?
259    else {
260        // Request stashed for batched processing
261        return Ok(());
262    };
263
264    let actual_output = response
265        .content
266        .into_iter()
267        .filter_map(|content| match content {
268            anthropic::ResponseContent::Text { text } => Some(text),
269            _ => None,
270        })
271        .collect::<Vec<String>>()
272        .join("\n");
273
274    let actual_patch = TeacherPrompt::parse(example, &actual_output)?;
275
276    let prediction = ExamplePrediction {
277        actual_patch,
278        actual_output,
279        provider: PredictionProvider::Teacher,
280    };
281
282    example.predictions.push(prediction);
283    Ok(())
284}
285
286pub async fn sync_batches(provider: &PredictionProvider) -> anyhow::Result<()> {
287    match provider {
288        PredictionProvider::Teacher => {
289            let cache_path = crate::paths::LLM_CACHE_DB.as_ref();
290            let llm_client =
291                AnthropicClient::batch(cache_path).context("Failed to create LLM client")?;
292            llm_client
293                .sync_batches()
294                .await
295                .context("Failed to sync batches")?;
296        }
297        _ => (),
298    };
299    Ok(())
300}