cloud.rs

  1use anthropic::{AnthropicError, AnthropicModelMode};
  2use anyhow::{anyhow, Result};
  3use client::{
  4    zed_urls, Client, PerformCompletionParams, UserStore, EXPIRED_LLM_TOKEN_HEADER_NAME,
  5    MAX_LLM_MONTHLY_SPEND_REACHED_HEADER_NAME,
  6};
  7use collections::BTreeMap;
  8use feature_flags::{FeatureFlagAppExt, LlmClosedBeta, ZedPro};
  9use futures::{
 10    future::BoxFuture, stream::BoxStream, AsyncBufReadExt, FutureExt, Stream, StreamExt,
 11    TryStreamExt as _,
 12};
 13use gpui::{AnyElement, AnyView, App, AsyncApp, Context, Entity, Subscription, Task};
 14use http_client::{AsyncBody, HttpClient, Method, Response, StatusCode};
 15use language_model::{
 16    AuthenticateError, CloudModel, LanguageModel, LanguageModelCacheConfiguration, LanguageModelId,
 17    LanguageModelName, LanguageModelProviderId, LanguageModelProviderName,
 18    LanguageModelProviderState, LanguageModelProviderTosView, LanguageModelRequest, RateLimiter,
 19    ZED_CLOUD_PROVIDER_ID,
 20};
 21use language_model::{
 22    LanguageModelAvailability, LanguageModelCompletionEvent, LanguageModelProvider, LlmApiToken,
 23    MaxMonthlySpendReachedError, PaymentRequiredError, RefreshLlmTokenListener,
 24};
 25use schemars::JsonSchema;
 26use serde::{de::DeserializeOwned, Deserialize, Serialize};
 27use serde_json::value::RawValue;
 28use settings::{Settings, SettingsStore};
 29use smol::io::{AsyncReadExt, BufReader};
 30use std::{
 31    future,
 32    sync::{Arc, LazyLock},
 33};
 34use strum::IntoEnumIterator;
 35use ui::{prelude::*, TintColor};
 36
 37use crate::provider::anthropic::{
 38    count_anthropic_tokens, into_anthropic, map_to_language_model_completion_events,
 39};
 40use crate::provider::google::into_google;
 41use crate::provider::open_ai::{count_open_ai_tokens, into_open_ai};
 42use crate::AllLanguageModelSettings;
 43
 44pub const PROVIDER_NAME: &str = "Zed";
 45
 46const ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON: Option<&str> =
 47    option_env!("ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON");
 48
 49fn zed_cloud_provider_additional_models() -> &'static [AvailableModel] {
 50    static ADDITIONAL_MODELS: LazyLock<Vec<AvailableModel>> = LazyLock::new(|| {
 51        ZED_CLOUD_PROVIDER_ADDITIONAL_MODELS_JSON
 52            .map(|json| serde_json::from_str(json).unwrap())
 53            .unwrap_or_default()
 54    });
 55    ADDITIONAL_MODELS.as_slice()
 56}
 57
 58#[derive(Default, Clone, Debug, PartialEq)]
 59pub struct ZedDotDevSettings {
 60    pub available_models: Vec<AvailableModel>,
 61}
 62
 63#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 64#[serde(rename_all = "lowercase")]
 65pub enum AvailableProvider {
 66    Anthropic,
 67    OpenAi,
 68    Google,
 69}
 70
 71#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 72pub struct AvailableModel {
 73    /// The provider of the language model.
 74    pub provider: AvailableProvider,
 75    /// The model's name in the provider's API. e.g. claude-3-5-sonnet-20240620
 76    pub name: String,
 77    /// The name displayed in the UI, such as in the assistant panel model dropdown menu.
 78    pub display_name: Option<String>,
 79    /// The size of the context window, indicating the maximum number of tokens the model can process.
 80    pub max_tokens: usize,
 81    /// The maximum number of output tokens allowed by the model.
 82    pub max_output_tokens: Option<u32>,
 83    /// The maximum number of completion tokens allowed by the model (o1-* only)
 84    pub max_completion_tokens: Option<u32>,
 85    /// Override this model with a different Anthropic model for tool calls.
 86    pub tool_override: Option<String>,
 87    /// Indicates whether this custom model supports caching.
 88    pub cache_configuration: Option<LanguageModelCacheConfiguration>,
 89    /// The default temperature to use for this model.
 90    pub default_temperature: Option<f32>,
 91    /// Any extra beta headers to provide when using the model.
 92    #[serde(default)]
 93    pub extra_beta_headers: Vec<String>,
 94    /// The model's mode (e.g. thinking)
 95    pub mode: Option<ModelMode>,
 96}
 97
 98#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 99#[serde(tag = "type", rename_all = "lowercase")]
100pub enum ModelMode {
101    #[default]
102    Default,
103    Thinking {
104        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
105        budget_tokens: Option<u32>,
106    },
107}
108
109impl From<ModelMode> for AnthropicModelMode {
110    fn from(value: ModelMode) -> Self {
111        match value {
112            ModelMode::Default => AnthropicModelMode::Default,
113            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
114        }
115    }
116}
117
118pub struct CloudLanguageModelProvider {
119    client: Arc<Client>,
120    state: gpui::Entity<State>,
121    _maintain_client_status: Task<()>,
122}
123
124pub struct State {
125    client: Arc<Client>,
126    llm_api_token: LlmApiToken,
127    user_store: Entity<UserStore>,
128    status: client::Status,
129    accept_terms: Option<Task<Result<()>>>,
130    _settings_subscription: Subscription,
131    _llm_token_subscription: Subscription,
132}
133
134impl State {
135    fn new(
136        client: Arc<Client>,
137        user_store: Entity<UserStore>,
138        status: client::Status,
139        cx: &mut Context<Self>,
140    ) -> Self {
141        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
142
143        Self {
144            client: client.clone(),
145            llm_api_token: LlmApiToken::default(),
146            user_store,
147            status,
148            accept_terms: None,
149            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
150                cx.notify();
151            }),
152            _llm_token_subscription: cx.subscribe(
153                &refresh_llm_token_listener,
154                |this, _listener, _event, cx| {
155                    let client = this.client.clone();
156                    let llm_api_token = this.llm_api_token.clone();
157                    cx.spawn(async move |_this, _cx| {
158                        llm_api_token.refresh(&client).await?;
159                        anyhow::Ok(())
160                    })
161                    .detach_and_log_err(cx);
162                },
163            ),
164        }
165    }
166
167    fn is_signed_out(&self) -> bool {
168        self.status.is_signed_out()
169    }
170
171    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
172        let client = self.client.clone();
173        cx.spawn(async move |this, cx| {
174            client.authenticate_and_connect(true, &cx).await?;
175            this.update(cx, |_, cx| cx.notify())
176        })
177    }
178
179    fn has_accepted_terms_of_service(&self, cx: &App) -> bool {
180        self.user_store
181            .read(cx)
182            .current_user_has_accepted_terms()
183            .unwrap_or(false)
184    }
185
186    fn accept_terms_of_service(&mut self, cx: &mut Context<Self>) {
187        let user_store = self.user_store.clone();
188        self.accept_terms = Some(cx.spawn(async move |this, cx| {
189            let _ = user_store
190                .update(cx, |store, cx| store.accept_terms_of_service(cx))?
191                .await;
192            this.update(cx, |this, cx| {
193                this.accept_terms = None;
194                cx.notify()
195            })
196        }));
197    }
198}
199
200impl CloudLanguageModelProvider {
201    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
202        let mut status_rx = client.status();
203        let status = *status_rx.borrow();
204
205        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
206
207        let state_ref = state.downgrade();
208        let maintain_client_status = cx.spawn(async move |cx| {
209            while let Some(status) = status_rx.next().await {
210                if let Some(this) = state_ref.upgrade() {
211                    _ = this.update(cx, |this, cx| {
212                        if this.status != status {
213                            this.status = status;
214                            cx.notify();
215                        }
216                    });
217                } else {
218                    break;
219                }
220            }
221        });
222
223        Self {
224            client,
225            state: state.clone(),
226            _maintain_client_status: maintain_client_status,
227        }
228    }
229}
230
231impl LanguageModelProviderState for CloudLanguageModelProvider {
232    type ObservableEntity = State;
233
234    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
235        Some(self.state.clone())
236    }
237}
238
239impl LanguageModelProvider for CloudLanguageModelProvider {
240    fn id(&self) -> LanguageModelProviderId {
241        LanguageModelProviderId(ZED_CLOUD_PROVIDER_ID.into())
242    }
243
244    fn name(&self) -> LanguageModelProviderName {
245        LanguageModelProviderName(PROVIDER_NAME.into())
246    }
247
248    fn icon(&self) -> IconName {
249        IconName::AiZed
250    }
251
252    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
253        let llm_api_token = self.state.read(cx).llm_api_token.clone();
254        let model = CloudModel::Anthropic(anthropic::Model::default());
255        Some(Arc::new(CloudLanguageModel {
256            id: LanguageModelId::from(model.id().to_string()),
257            model,
258            llm_api_token: llm_api_token.clone(),
259            client: self.client.clone(),
260            request_limiter: RateLimiter::new(4),
261        }))
262    }
263
264    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
265        let mut models = BTreeMap::default();
266
267        if cx.is_staff() {
268            for model in anthropic::Model::iter() {
269                if !matches!(model, anthropic::Model::Custom { .. }) {
270                    models.insert(model.id().to_string(), CloudModel::Anthropic(model));
271                }
272            }
273            for model in open_ai::Model::iter() {
274                if !matches!(model, open_ai::Model::Custom { .. }) {
275                    models.insert(model.id().to_string(), CloudModel::OpenAi(model));
276                }
277            }
278            for model in google_ai::Model::iter() {
279                if !matches!(model, google_ai::Model::Custom { .. }) {
280                    models.insert(model.id().to_string(), CloudModel::Google(model));
281                }
282            }
283        } else {
284            models.insert(
285                anthropic::Model::Claude3_5Sonnet.id().to_string(),
286                CloudModel::Anthropic(anthropic::Model::Claude3_5Sonnet),
287            );
288            models.insert(
289                anthropic::Model::Claude3_7Sonnet.id().to_string(),
290                CloudModel::Anthropic(anthropic::Model::Claude3_7Sonnet),
291            );
292        }
293
294        let llm_closed_beta_models = if cx.has_flag::<LlmClosedBeta>() {
295            zed_cloud_provider_additional_models()
296        } else {
297            &[]
298        };
299
300        // Override with available models from settings
301        for model in AllLanguageModelSettings::get_global(cx)
302            .zed_dot_dev
303            .available_models
304            .iter()
305            .chain(llm_closed_beta_models)
306            .cloned()
307        {
308            let model = match model.provider {
309                AvailableProvider::Anthropic => CloudModel::Anthropic(anthropic::Model::Custom {
310                    name: model.name.clone(),
311                    display_name: model.display_name.clone(),
312                    max_tokens: model.max_tokens,
313                    tool_override: model.tool_override.clone(),
314                    cache_configuration: model.cache_configuration.as_ref().map(|config| {
315                        anthropic::AnthropicModelCacheConfiguration {
316                            max_cache_anchors: config.max_cache_anchors,
317                            should_speculate: config.should_speculate,
318                            min_total_token: config.min_total_token,
319                        }
320                    }),
321                    default_temperature: model.default_temperature,
322                    max_output_tokens: model.max_output_tokens,
323                    extra_beta_headers: model.extra_beta_headers.clone(),
324                    mode: model.mode.unwrap_or_default().into(),
325                }),
326                AvailableProvider::OpenAi => CloudModel::OpenAi(open_ai::Model::Custom {
327                    name: model.name.clone(),
328                    display_name: model.display_name.clone(),
329                    max_tokens: model.max_tokens,
330                    max_output_tokens: model.max_output_tokens,
331                    max_completion_tokens: model.max_completion_tokens,
332                }),
333                AvailableProvider::Google => CloudModel::Google(google_ai::Model::Custom {
334                    name: model.name.clone(),
335                    display_name: model.display_name.clone(),
336                    max_tokens: model.max_tokens,
337                }),
338            };
339            models.insert(model.id().to_string(), model.clone());
340        }
341
342        let llm_api_token = self.state.read(cx).llm_api_token.clone();
343        models
344            .into_values()
345            .map(|model| {
346                Arc::new(CloudLanguageModel {
347                    id: LanguageModelId::from(model.id().to_string()),
348                    model,
349                    llm_api_token: llm_api_token.clone(),
350                    client: self.client.clone(),
351                    request_limiter: RateLimiter::new(4),
352                }) as Arc<dyn LanguageModel>
353            })
354            .collect()
355    }
356
357    fn is_authenticated(&self, cx: &App) -> bool {
358        !self.state.read(cx).is_signed_out()
359    }
360
361    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
362        Task::ready(Ok(()))
363    }
364
365    fn configuration_view(&self, _: &mut Window, cx: &mut App) -> AnyView {
366        cx.new(|_| ConfigurationView {
367            state: self.state.clone(),
368        })
369        .into()
370    }
371
372    fn must_accept_terms(&self, cx: &App) -> bool {
373        !self.state.read(cx).has_accepted_terms_of_service(cx)
374    }
375
376    fn render_accept_terms(
377        &self,
378        view: LanguageModelProviderTosView,
379        cx: &mut App,
380    ) -> Option<AnyElement> {
381        render_accept_terms(self.state.clone(), view, cx)
382    }
383
384    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
385        Task::ready(Ok(()))
386    }
387}
388
389fn render_accept_terms(
390    state: Entity<State>,
391    view_kind: LanguageModelProviderTosView,
392    cx: &mut App,
393) -> Option<AnyElement> {
394    if state.read(cx).has_accepted_terms_of_service(cx) {
395        return None;
396    }
397
398    let accept_terms_disabled = state.read(cx).accept_terms.is_some();
399
400    let terms_button = Button::new("terms_of_service", "Terms of Service")
401        .style(ButtonStyle::Subtle)
402        .icon(IconName::ArrowUpRight)
403        .icon_color(Color::Muted)
404        .icon_size(IconSize::XSmall)
405        .on_click(move |_, _window, cx| cx.open_url("https://zed.dev/terms-of-service"));
406
407    let text = "To start using Zed AI, please read and accept the";
408
409    let form = v_flex()
410        .w_full()
411        .gap_2()
412        .child(
413            h_flex()
414                .flex_wrap()
415                .items_start()
416                .child(Label::new(text))
417                .child(terms_button),
418        )
419        .child({
420            let button_container = h_flex().w_full().child(
421                Button::new("accept_terms", "I accept the Terms of Service")
422                    .style(ButtonStyle::Tinted(TintColor::Accent))
423                    .disabled(accept_terms_disabled)
424                    .on_click({
425                        let state = state.downgrade();
426                        move |_, _window, cx| {
427                            state
428                                .update(cx, |state, cx| state.accept_terms_of_service(cx))
429                                .ok();
430                        }
431                    }),
432            );
433
434            match view_kind {
435                LanguageModelProviderTosView::PromptEditorPopup => button_container.justify_end(),
436                LanguageModelProviderTosView::Configuration
437                | LanguageModelProviderTosView::ThreadEmptyState => {
438                    button_container.justify_start()
439                }
440            }
441        });
442
443    Some(form.into_any())
444}
445
446pub struct CloudLanguageModel {
447    id: LanguageModelId,
448    model: CloudModel,
449    llm_api_token: LlmApiToken,
450    client: Arc<Client>,
451    request_limiter: RateLimiter,
452}
453
454impl CloudLanguageModel {
455    async fn perform_llm_completion(
456        client: Arc<Client>,
457        llm_api_token: LlmApiToken,
458        body: PerformCompletionParams,
459    ) -> Result<Response<AsyncBody>> {
460        let http_client = &client.http_client();
461
462        let mut token = llm_api_token.acquire(&client).await?;
463        let mut did_retry = false;
464
465        let response = loop {
466            let request_builder = http_client::Request::builder();
467            let request = request_builder
468                .method(Method::POST)
469                .uri(http_client.build_zed_llm_url("/completion", &[])?.as_ref())
470                .header("Content-Type", "application/json")
471                .header("Authorization", format!("Bearer {token}"))
472                .body(serde_json::to_string(&body)?.into())?;
473            let mut response = http_client.send(request).await?;
474            if response.status().is_success() {
475                break response;
476            } else if !did_retry
477                && response
478                    .headers()
479                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
480                    .is_some()
481            {
482                did_retry = true;
483                token = llm_api_token.refresh(&client).await?;
484            } else if response.status() == StatusCode::FORBIDDEN
485                && response
486                    .headers()
487                    .get(MAX_LLM_MONTHLY_SPEND_REACHED_HEADER_NAME)
488                    .is_some()
489            {
490                break Err(anyhow!(MaxMonthlySpendReachedError))?;
491            } else if response.status() == StatusCode::PAYMENT_REQUIRED {
492                break Err(anyhow!(PaymentRequiredError))?;
493            } else {
494                let mut body = String::new();
495                response.body_mut().read_to_string(&mut body).await?;
496                break Err(anyhow!(
497                    "cloud language model completion failed with status {}: {body}",
498                    response.status()
499                ))?;
500            }
501        };
502
503        Ok(response)
504    }
505}
506
507impl LanguageModel for CloudLanguageModel {
508    fn id(&self) -> LanguageModelId {
509        self.id.clone()
510    }
511
512    fn name(&self) -> LanguageModelName {
513        LanguageModelName::from(self.model.display_name().to_string())
514    }
515
516    fn icon(&self) -> Option<IconName> {
517        self.model.icon()
518    }
519
520    fn provider_id(&self) -> LanguageModelProviderId {
521        LanguageModelProviderId(ZED_CLOUD_PROVIDER_ID.into())
522    }
523
524    fn provider_name(&self) -> LanguageModelProviderName {
525        LanguageModelProviderName(PROVIDER_NAME.into())
526    }
527
528    fn telemetry_id(&self) -> String {
529        format!("zed.dev/{}", self.model.id())
530    }
531
532    fn availability(&self) -> LanguageModelAvailability {
533        self.model.availability()
534    }
535
536    fn max_token_count(&self) -> usize {
537        self.model.max_token_count()
538    }
539
540    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
541        match &self.model {
542            CloudModel::Anthropic(model) => {
543                model
544                    .cache_configuration()
545                    .map(|cache| LanguageModelCacheConfiguration {
546                        max_cache_anchors: cache.max_cache_anchors,
547                        should_speculate: cache.should_speculate,
548                        min_total_token: cache.min_total_token,
549                    })
550            }
551            CloudModel::OpenAi(_) | CloudModel::Google(_) => None,
552        }
553    }
554
555    fn count_tokens(
556        &self,
557        request: LanguageModelRequest,
558        cx: &App,
559    ) -> BoxFuture<'static, Result<usize>> {
560        match self.model.clone() {
561            CloudModel::Anthropic(_) => count_anthropic_tokens(request, cx),
562            CloudModel::OpenAi(model) => count_open_ai_tokens(request, model, cx),
563            CloudModel::Google(model) => {
564                let client = self.client.clone();
565                let request = into_google(request, model.id().into());
566                let request = google_ai::CountTokensRequest {
567                    contents: request.contents,
568                };
569                async move {
570                    let request = serde_json::to_string(&request)?;
571                    let response = client
572                        .request(proto::CountLanguageModelTokens {
573                            provider: proto::LanguageModelProvider::Google as i32,
574                            request,
575                        })
576                        .await?;
577                    Ok(response.token_count as usize)
578                }
579                .boxed()
580            }
581        }
582    }
583
584    fn stream_completion(
585        &self,
586        request: LanguageModelRequest,
587        _cx: &AsyncApp,
588    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<LanguageModelCompletionEvent>>>> {
589        match &self.model {
590            CloudModel::Anthropic(model) => {
591                let request = into_anthropic(
592                    request,
593                    model.request_id().into(),
594                    model.default_temperature(),
595                    model.max_output_tokens(),
596                    model.mode(),
597                );
598                let client = self.client.clone();
599                let llm_api_token = self.llm_api_token.clone();
600                let future = self.request_limiter.stream(async move {
601                    let response = Self::perform_llm_completion(
602                        client.clone(),
603                        llm_api_token,
604                        PerformCompletionParams {
605                            provider: client::LanguageModelProvider::Anthropic,
606                            model: request.model.clone(),
607                            provider_request: RawValue::from_string(serde_json::to_string(
608                                &request,
609                            )?)?,
610                        },
611                    )
612                    .await?;
613                    Ok(map_to_language_model_completion_events(Box::pin(
614                        response_lines(response).map_err(AnthropicError::Other),
615                    )))
616                });
617                async move { Ok(future.await?.boxed()) }.boxed()
618            }
619            CloudModel::OpenAi(model) => {
620                let client = self.client.clone();
621                let request = into_open_ai(request, model.id().into(), model.max_output_tokens());
622                let llm_api_token = self.llm_api_token.clone();
623                let future = self.request_limiter.stream(async move {
624                    let response = Self::perform_llm_completion(
625                        client.clone(),
626                        llm_api_token,
627                        PerformCompletionParams {
628                            provider: client::LanguageModelProvider::OpenAi,
629                            model: request.model.clone(),
630                            provider_request: RawValue::from_string(serde_json::to_string(
631                                &request,
632                            )?)?,
633                        },
634                    )
635                    .await?;
636                    Ok(open_ai::extract_text_from_events(response_lines(response)))
637                });
638                async move {
639                    Ok(future
640                        .await?
641                        .map(|result| result.map(LanguageModelCompletionEvent::Text))
642                        .boxed())
643                }
644                .boxed()
645            }
646            CloudModel::Google(model) => {
647                let client = self.client.clone();
648                let request = into_google(request, model.id().into());
649                let llm_api_token = self.llm_api_token.clone();
650                let future = self.request_limiter.stream(async move {
651                    let response = Self::perform_llm_completion(
652                        client.clone(),
653                        llm_api_token,
654                        PerformCompletionParams {
655                            provider: client::LanguageModelProvider::Google,
656                            model: request.model.clone(),
657                            provider_request: RawValue::from_string(serde_json::to_string(
658                                &request,
659                            )?)?,
660                        },
661                    )
662                    .await?;
663                    Ok(google_ai::extract_text_from_events(response_lines(
664                        response,
665                    )))
666                });
667                async move {
668                    Ok(future
669                        .await?
670                        .map(|result| result.map(LanguageModelCompletionEvent::Text))
671                        .boxed())
672                }
673                .boxed()
674            }
675        }
676    }
677
678    fn use_any_tool(
679        &self,
680        request: LanguageModelRequest,
681        tool_name: String,
682        tool_description: String,
683        input_schema: serde_json::Value,
684        _cx: &AsyncApp,
685    ) -> BoxFuture<'static, Result<BoxStream<'static, Result<String>>>> {
686        let client = self.client.clone();
687        let llm_api_token = self.llm_api_token.clone();
688
689        match &self.model {
690            CloudModel::Anthropic(model) => {
691                let mut request = into_anthropic(
692                    request,
693                    model.tool_model_id().into(),
694                    model.default_temperature(),
695                    model.max_output_tokens(),
696                    model.mode(),
697                );
698                request.tool_choice = Some(anthropic::ToolChoice::Tool {
699                    name: tool_name.clone(),
700                });
701                request.tools = vec![anthropic::Tool {
702                    name: tool_name.clone(),
703                    description: tool_description,
704                    input_schema,
705                }];
706
707                self.request_limiter
708                    .run(async move {
709                        let response = Self::perform_llm_completion(
710                            client.clone(),
711                            llm_api_token,
712                            PerformCompletionParams {
713                                provider: client::LanguageModelProvider::Anthropic,
714                                model: request.model.clone(),
715                                provider_request: RawValue::from_string(serde_json::to_string(
716                                    &request,
717                                )?)?,
718                            },
719                        )
720                        .await?;
721
722                        Ok(anthropic::extract_tool_args_from_events(
723                            tool_name,
724                            Box::pin(response_lines(response)),
725                        )
726                        .await?
727                        .boxed())
728                    })
729                    .boxed()
730            }
731            CloudModel::OpenAi(model) => {
732                let mut request =
733                    into_open_ai(request, model.id().into(), model.max_output_tokens());
734                request.tool_choice = Some(open_ai::ToolChoice::Other(
735                    open_ai::ToolDefinition::Function {
736                        function: open_ai::FunctionDefinition {
737                            name: tool_name.clone(),
738                            description: None,
739                            parameters: None,
740                        },
741                    },
742                ));
743                request.tools = vec![open_ai::ToolDefinition::Function {
744                    function: open_ai::FunctionDefinition {
745                        name: tool_name.clone(),
746                        description: Some(tool_description),
747                        parameters: Some(input_schema),
748                    },
749                }];
750
751                self.request_limiter
752                    .run(async move {
753                        let response = Self::perform_llm_completion(
754                            client.clone(),
755                            llm_api_token,
756                            PerformCompletionParams {
757                                provider: client::LanguageModelProvider::OpenAi,
758                                model: request.model.clone(),
759                                provider_request: RawValue::from_string(serde_json::to_string(
760                                    &request,
761                                )?)?,
762                            },
763                        )
764                        .await?;
765
766                        Ok(open_ai::extract_tool_args_from_events(
767                            tool_name,
768                            Box::pin(response_lines(response)),
769                        )
770                        .await?
771                        .boxed())
772                    })
773                    .boxed()
774            }
775            CloudModel::Google(_) => {
776                future::ready(Err(anyhow!("tool use not implemented for Google AI"))).boxed()
777            }
778        }
779    }
780}
781
782fn response_lines<T: DeserializeOwned>(
783    response: Response<AsyncBody>,
784) -> impl Stream<Item = Result<T>> {
785    futures::stream::try_unfold(
786        (String::new(), BufReader::new(response.into_body())),
787        move |(mut line, mut body)| async {
788            match body.read_line(&mut line).await {
789                Ok(0) => Ok(None),
790                Ok(_) => {
791                    let event: T = serde_json::from_str(&line)?;
792                    line.clear();
793                    Ok(Some((event, (line, body))))
794                }
795                Err(e) => Err(e.into()),
796            }
797        },
798    )
799}
800
801struct ConfigurationView {
802    state: gpui::Entity<State>,
803}
804
805impl ConfigurationView {
806    fn authenticate(&mut self, cx: &mut Context<Self>) {
807        self.state.update(cx, |state, cx| {
808            state.authenticate(cx).detach_and_log_err(cx);
809        });
810        cx.notify();
811    }
812}
813
814impl Render for ConfigurationView {
815    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
816        const ZED_AI_URL: &str = "https://zed.dev/ai";
817
818        let is_connected = !self.state.read(cx).is_signed_out();
819        let plan = self.state.read(cx).user_store.read(cx).current_plan();
820        let has_accepted_terms = self.state.read(cx).has_accepted_terms_of_service(cx);
821
822        let is_pro = plan == Some(proto::Plan::ZedPro);
823        let subscription_text = Label::new(if is_pro {
824            "You have full access to Zed's hosted LLMs, which include models from Anthropic, OpenAI, and Google. They come with faster speeds and higher limits through Zed Pro."
825        } else {
826            "You have basic access to models from Anthropic through the Zed AI Free plan."
827        });
828        let manage_subscription_button = if is_pro {
829            Some(
830                h_flex().child(
831                    Button::new("manage_settings", "Manage Subscription")
832                        .style(ButtonStyle::Tinted(TintColor::Accent))
833                        .on_click(
834                            cx.listener(|_, _, _, cx| cx.open_url(&zed_urls::account_url(cx))),
835                        ),
836                ),
837            )
838        } else if cx.has_flag::<ZedPro>() {
839            Some(
840                h_flex()
841                    .gap_2()
842                    .child(
843                        Button::new("learn_more", "Learn more")
844                            .style(ButtonStyle::Subtle)
845                            .on_click(cx.listener(|_, _, _, cx| cx.open_url(ZED_AI_URL))),
846                    )
847                    .child(
848                        Button::new("upgrade", "Upgrade")
849                            .style(ButtonStyle::Subtle)
850                            .color(Color::Accent)
851                            .on_click(
852                                cx.listener(|_, _, _, cx| cx.open_url(&zed_urls::account_url(cx))),
853                            ),
854                    ),
855            )
856        } else {
857            None
858        };
859
860        if is_connected {
861            v_flex()
862                .gap_3()
863                .w_full()
864                .children(render_accept_terms(
865                    self.state.clone(),
866                    LanguageModelProviderTosView::Configuration,
867                    cx,
868                ))
869                .when(has_accepted_terms, |this| {
870                    this.child(subscription_text)
871                        .children(manage_subscription_button)
872                })
873        } else {
874            v_flex()
875                .gap_2()
876                .child(Label::new("Use Zed AI to access hosted language models."))
877                .child(
878                    Button::new("sign_in", "Sign In")
879                        .icon_color(Color::Muted)
880                        .icon(IconName::Github)
881                        .icon_position(IconPosition::Start)
882                        .on_click(cx.listener(move |this, _, _, cx| this.authenticate(cx))),
883                )
884        }
885    }
886}