1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle,
16 TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle, WindowAppearance,
17 WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations, WindowOptions,
18 WindowParams, WindowTextSystem, point, prelude::*, px, rems, size, transparent_black,
19};
20use anyhow::{Context as _, Result, anyhow};
21use collections::{FxHashMap, FxHashSet};
22#[cfg(target_os = "macos")]
23use core_video::pixel_buffer::CVPixelBuffer;
24use derive_more::{Deref, DerefMut};
25use futures::FutureExt;
26use futures::channel::oneshot;
27use itertools::FoldWhile::{Continue, Done};
28use itertools::Itertools;
29use parking_lot::RwLock;
30use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
31use refineable::Refineable;
32use slotmap::SlotMap;
33use smallvec::SmallVec;
34use std::{
35 any::{Any, TypeId},
36 borrow::Cow,
37 cell::{Cell, RefCell},
38 cmp,
39 fmt::{Debug, Display},
40 hash::{Hash, Hasher},
41 marker::PhantomData,
42 mem,
43 ops::{DerefMut, Range},
44 rc::Rc,
45 sync::{
46 Arc, Weak,
47 atomic::{AtomicUsize, Ordering::SeqCst},
48 },
49 time::{Duration, Instant},
50};
51use util::post_inc;
52use util::{ResultExt, measure};
53use uuid::Uuid;
54
55mod prompts;
56
57use crate::util::atomic_incr_if_not_zero;
58pub use prompts::*;
59
60pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
61
62/// Represents the two different phases when dispatching events.
63#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
64pub enum DispatchPhase {
65 /// After the capture phase comes the bubble phase, in which mouse event listeners are
66 /// invoked front to back and keyboard event listeners are invoked from the focused element
67 /// to the root of the element tree. This is the phase you'll most commonly want to use when
68 /// registering event listeners.
69 #[default]
70 Bubble,
71 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
72 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
73 /// is used for special purposes such as clearing the "pressed" state for click events. If
74 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
75 /// outside of the immediate region may rely on detecting non-local events during this phase.
76 Capture,
77}
78
79impl DispatchPhase {
80 /// Returns true if this represents the "bubble" phase.
81 pub fn bubble(self) -> bool {
82 self == DispatchPhase::Bubble
83 }
84
85 /// Returns true if this represents the "capture" phase.
86 pub fn capture(self) -> bool {
87 self == DispatchPhase::Capture
88 }
89}
90
91struct WindowInvalidatorInner {
92 pub dirty: bool,
93 pub draw_phase: DrawPhase,
94 pub dirty_views: FxHashSet<EntityId>,
95}
96
97#[derive(Clone)]
98pub(crate) struct WindowInvalidator {
99 inner: Rc<RefCell<WindowInvalidatorInner>>,
100}
101
102impl WindowInvalidator {
103 pub fn new() -> Self {
104 WindowInvalidator {
105 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
106 dirty: true,
107 draw_phase: DrawPhase::None,
108 dirty_views: FxHashSet::default(),
109 })),
110 }
111 }
112
113 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
114 let mut inner = self.inner.borrow_mut();
115 inner.dirty_views.insert(entity);
116 if inner.draw_phase == DrawPhase::None {
117 inner.dirty = true;
118 cx.push_effect(Effect::Notify { emitter: entity });
119 true
120 } else {
121 false
122 }
123 }
124
125 pub fn is_dirty(&self) -> bool {
126 self.inner.borrow().dirty
127 }
128
129 pub fn set_dirty(&self, dirty: bool) {
130 self.inner.borrow_mut().dirty = dirty
131 }
132
133 pub fn set_phase(&self, phase: DrawPhase) {
134 self.inner.borrow_mut().draw_phase = phase
135 }
136
137 pub fn take_views(&self) -> FxHashSet<EntityId> {
138 mem::take(&mut self.inner.borrow_mut().dirty_views)
139 }
140
141 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
142 self.inner.borrow_mut().dirty_views = views;
143 }
144
145 pub fn not_drawing(&self) -> bool {
146 self.inner.borrow().draw_phase == DrawPhase::None
147 }
148
149 #[track_caller]
150 pub fn debug_assert_paint(&self) {
151 debug_assert!(
152 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
153 "this method can only be called during paint"
154 );
155 }
156
157 #[track_caller]
158 pub fn debug_assert_prepaint(&self) {
159 debug_assert!(
160 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
161 "this method can only be called during request_layout, or prepaint"
162 );
163 }
164
165 #[track_caller]
166 pub fn debug_assert_paint_or_prepaint(&self) {
167 debug_assert!(
168 matches!(
169 self.inner.borrow().draw_phase,
170 DrawPhase::Paint | DrawPhase::Prepaint
171 ),
172 "this method can only be called during request_layout, prepaint, or paint"
173 );
174 }
175}
176
177type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
178
179pub(crate) type AnyWindowFocusListener =
180 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) struct WindowFocusEvent {
183 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
184 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
185}
186
187impl WindowFocusEvent {
188 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
189 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
190 }
191
192 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
193 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
194 }
195}
196
197/// This is provided when subscribing for `Context::on_focus_out` events.
198pub struct FocusOutEvent {
199 /// A weak focus handle representing what was blurred.
200 pub blurred: WeakFocusHandle,
201}
202
203slotmap::new_key_type! {
204 /// A globally unique identifier for a focusable element.
205 pub struct FocusId;
206}
207
208thread_local! {
209 /// 8MB wasn't quite enough...
210 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
211}
212
213pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
214
215impl FocusId {
216 /// Obtains whether the element associated with this handle is currently focused.
217 pub fn is_focused(&self, window: &Window) -> bool {
218 window.focus == Some(*self)
219 }
220
221 /// Obtains whether the element associated with this handle contains the focused
222 /// element or is itself focused.
223 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
224 window
225 .focused(cx)
226 .map_or(false, |focused| self.contains(focused.id, window))
227 }
228
229 /// Obtains whether the element associated with this handle is contained within the
230 /// focused element or is itself focused.
231 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
232 let focused = window.focused(cx);
233 focused.map_or(false, |focused| focused.id.contains(*self, window))
234 }
235
236 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
237 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
238 window
239 .rendered_frame
240 .dispatch_tree
241 .focus_contains(*self, other)
242 }
243}
244
245/// A handle which can be used to track and manipulate the focused element in a window.
246pub struct FocusHandle {
247 pub(crate) id: FocusId,
248 handles: Arc<FocusMap>,
249}
250
251impl std::fmt::Debug for FocusHandle {
252 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
253 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
254 }
255}
256
257impl FocusHandle {
258 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
259 let id = handles.write().insert(AtomicUsize::new(1));
260 Self {
261 id,
262 handles: handles.clone(),
263 }
264 }
265
266 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
267 let lock = handles.read();
268 let ref_count = lock.get(id)?;
269 if atomic_incr_if_not_zero(ref_count) == 0 {
270 return None;
271 }
272 Some(Self {
273 id,
274 handles: handles.clone(),
275 })
276 }
277
278 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
279 pub fn downgrade(&self) -> WeakFocusHandle {
280 WeakFocusHandle {
281 id: self.id,
282 handles: Arc::downgrade(&self.handles),
283 }
284 }
285
286 /// Moves the focus to the element associated with this handle.
287 pub fn focus(&self, window: &mut Window) {
288 window.focus(self)
289 }
290
291 /// Obtains whether the element associated with this handle is currently focused.
292 pub fn is_focused(&self, window: &Window) -> bool {
293 self.id.is_focused(window)
294 }
295
296 /// Obtains whether the element associated with this handle contains the focused
297 /// element or is itself focused.
298 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
299 self.id.contains_focused(window, cx)
300 }
301
302 /// Obtains whether the element associated with this handle is contained within the
303 /// focused element or is itself focused.
304 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
305 self.id.within_focused(window, cx)
306 }
307
308 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
309 pub fn contains(&self, other: &Self, window: &Window) -> bool {
310 self.id.contains(other.id, window)
311 }
312
313 /// Dispatch an action on the element that rendered this focus handle
314 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
315 if let Some(node_id) = window
316 .rendered_frame
317 .dispatch_tree
318 .focusable_node_id(self.id)
319 {
320 window.dispatch_action_on_node(node_id, action, cx)
321 }
322 }
323}
324
325impl Clone for FocusHandle {
326 fn clone(&self) -> Self {
327 Self::for_id(self.id, &self.handles).unwrap()
328 }
329}
330
331impl PartialEq for FocusHandle {
332 fn eq(&self, other: &Self) -> bool {
333 self.id == other.id
334 }
335}
336
337impl Eq for FocusHandle {}
338
339impl Drop for FocusHandle {
340 fn drop(&mut self) {
341 self.handles
342 .read()
343 .get(self.id)
344 .unwrap()
345 .fetch_sub(1, SeqCst);
346 }
347}
348
349/// A weak reference to a focus handle.
350#[derive(Clone, Debug)]
351pub struct WeakFocusHandle {
352 pub(crate) id: FocusId,
353 pub(crate) handles: Weak<FocusMap>,
354}
355
356impl WeakFocusHandle {
357 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
358 pub fn upgrade(&self) -> Option<FocusHandle> {
359 let handles = self.handles.upgrade()?;
360 FocusHandle::for_id(self.id, &handles)
361 }
362}
363
364impl PartialEq for WeakFocusHandle {
365 fn eq(&self, other: &WeakFocusHandle) -> bool {
366 self.id == other.id
367 }
368}
369
370impl Eq for WeakFocusHandle {}
371
372impl PartialEq<FocusHandle> for WeakFocusHandle {
373 fn eq(&self, other: &FocusHandle) -> bool {
374 self.id == other.id
375 }
376}
377
378impl PartialEq<WeakFocusHandle> for FocusHandle {
379 fn eq(&self, other: &WeakFocusHandle) -> bool {
380 self.id == other.id
381 }
382}
383
384/// Focusable allows users of your view to easily
385/// focus it (using window.focus_view(cx, view))
386pub trait Focusable: 'static {
387 /// Returns the focus handle associated with this view.
388 fn focus_handle(&self, cx: &App) -> FocusHandle;
389}
390
391impl<V: Focusable> Focusable for Entity<V> {
392 fn focus_handle(&self, cx: &App) -> FocusHandle {
393 self.read(cx).focus_handle(cx)
394 }
395}
396
397/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
398/// where the lifecycle of the view is handled by another view.
399pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
400
401impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
402
403/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
404pub struct DismissEvent;
405
406type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
407
408pub(crate) type AnyMouseListener =
409 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
410
411#[derive(Clone)]
412pub(crate) struct CursorStyleRequest {
413 pub(crate) hitbox_id: Option<HitboxId>,
414 pub(crate) style: CursorStyle,
415}
416
417#[derive(Default, Eq, PartialEq)]
418pub(crate) struct HitTest {
419 pub(crate) ids: SmallVec<[HitboxId; 8]>,
420 pub(crate) hover_hitbox_count: usize,
421}
422
423/// A type of window control area that corresponds to the platform window.
424#[derive(Clone, Copy, Debug, Eq, PartialEq)]
425pub enum WindowControlArea {
426 /// An area that allows dragging of the platform window.
427 Drag,
428 /// An area that allows closing of the platform window.
429 Close,
430 /// An area that allows maximizing of the platform window.
431 Max,
432 /// An area that allows minimizing of the platform window.
433 Min,
434}
435
436/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
437#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
438pub struct HitboxId(u64);
439
440impl HitboxId {
441 /// Checks if the hitbox with this ID is currently hovered. Except when handling
442 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
443 /// events or paint hover styles.
444 ///
445 /// See [`Hitbox::is_hovered`] for details.
446 pub fn is_hovered(self, window: &Window) -> bool {
447 let hit_test = &window.mouse_hit_test;
448 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
449 if self == *id {
450 return true;
451 }
452 }
453 return false;
454 }
455
456 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
457 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
458 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
459 /// this distinction.
460 pub fn should_handle_scroll(self, window: &Window) -> bool {
461 window.mouse_hit_test.ids.contains(&self)
462 }
463
464 fn next(mut self) -> HitboxId {
465 HitboxId(self.0.wrapping_add(1))
466 }
467}
468
469/// A rectangular region that potentially blocks hitboxes inserted prior.
470/// See [Window::insert_hitbox] for more details.
471#[derive(Clone, Debug, Deref)]
472pub struct Hitbox {
473 /// A unique identifier for the hitbox.
474 pub id: HitboxId,
475 /// The bounds of the hitbox.
476 #[deref]
477 pub bounds: Bounds<Pixels>,
478 /// The content mask when the hitbox was inserted.
479 pub content_mask: ContentMask<Pixels>,
480 /// Flags that specify hitbox behavior.
481 pub behavior: HitboxBehavior,
482}
483
484impl Hitbox {
485 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
486 /// typically what you want when determining whether to handle mouse events or paint hover
487 /// styles.
488 ///
489 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
490 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
491 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
492 ///
493 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
494 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
495 /// non-interactive while still allowing scrolling. More abstractly, this is because
496 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
497 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
498 /// container.
499 pub fn is_hovered(&self, window: &Window) -> bool {
500 self.id.is_hovered(window)
501 }
502
503 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
504 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
505 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
506 ///
507 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
508 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
509 pub fn should_handle_scroll(&self, window: &Window) -> bool {
510 self.id.should_handle_scroll(window)
511 }
512}
513
514/// How the hitbox affects mouse behavior.
515#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
516pub enum HitboxBehavior {
517 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
518 #[default]
519 Normal,
520
521 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
522 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
523 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
524 /// [`InteractiveElement::occlude`].
525 ///
526 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
527 /// bubble-phase handler for every mouse event type:
528 ///
529 /// ```
530 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
531 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
532 /// cx.stop_propagation();
533 /// }
534 /// }
535 /// ```
536 ///
537 /// This has effects beyond event handling - any use of hitbox checking, such as hover
538 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
539 /// alternative might be to not affect mouse event handling - but this would allow
540 /// inconsistent UI where clicks and moves interact with elements that are not considered to
541 /// be hovered.
542 BlockMouse,
543
544 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
545 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
546 /// interaction except scroll events to be ignored - see the documentation of
547 /// [`Hitbox::is_hovered`] for details. This flag is set by
548 /// [`InteractiveElement::block_mouse_except_scroll`].
549 ///
550 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
551 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
552 ///
553 /// ```
554 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
555 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
556 /// cx.stop_propagation();
557 /// }
558 /// }
559 /// ```
560 ///
561 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
562 /// handled differently than other mouse events. If also blocking these scroll events is
563 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
564 ///
565 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
566 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
567 /// An alternative might be to not affect mouse event handling - but this would allow
568 /// inconsistent UI where clicks and moves interact with elements that are not considered to
569 /// be hovered.
570 BlockMouseExceptScroll,
571}
572
573/// An identifier for a tooltip.
574#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
575pub struct TooltipId(usize);
576
577impl TooltipId {
578 /// Checks if the tooltip is currently hovered.
579 pub fn is_hovered(&self, window: &Window) -> bool {
580 window
581 .tooltip_bounds
582 .as_ref()
583 .map_or(false, |tooltip_bounds| {
584 tooltip_bounds.id == *self
585 && tooltip_bounds.bounds.contains(&window.mouse_position())
586 })
587 }
588}
589
590pub(crate) struct TooltipBounds {
591 id: TooltipId,
592 bounds: Bounds<Pixels>,
593}
594
595#[derive(Clone)]
596pub(crate) struct TooltipRequest {
597 id: TooltipId,
598 tooltip: AnyTooltip,
599}
600
601pub(crate) struct DeferredDraw {
602 current_view: EntityId,
603 priority: usize,
604 parent_node: DispatchNodeId,
605 element_id_stack: SmallVec<[ElementId; 32]>,
606 text_style_stack: Vec<TextStyleRefinement>,
607 element: Option<AnyElement>,
608 absolute_offset: Point<Pixels>,
609 prepaint_range: Range<PrepaintStateIndex>,
610 paint_range: Range<PaintIndex>,
611}
612
613pub(crate) struct Frame {
614 pub(crate) focus: Option<FocusId>,
615 pub(crate) window_active: bool,
616 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
617 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
618 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
619 pub(crate) dispatch_tree: DispatchTree,
620 pub(crate) scene: Scene,
621 pub(crate) hitboxes: Vec<Hitbox>,
622 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
623 pub(crate) deferred_draws: Vec<DeferredDraw>,
624 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
625 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
626 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
627 #[cfg(any(test, feature = "test-support"))]
628 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
629 #[cfg(any(feature = "inspector", debug_assertions))]
630 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
631 #[cfg(any(feature = "inspector", debug_assertions))]
632 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
633}
634
635#[derive(Clone, Default)]
636pub(crate) struct PrepaintStateIndex {
637 hitboxes_index: usize,
638 tooltips_index: usize,
639 deferred_draws_index: usize,
640 dispatch_tree_index: usize,
641 accessed_element_states_index: usize,
642 line_layout_index: LineLayoutIndex,
643}
644
645#[derive(Clone, Default)]
646pub(crate) struct PaintIndex {
647 scene_index: usize,
648 mouse_listeners_index: usize,
649 input_handlers_index: usize,
650 cursor_styles_index: usize,
651 accessed_element_states_index: usize,
652 line_layout_index: LineLayoutIndex,
653}
654
655impl Frame {
656 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
657 Frame {
658 focus: None,
659 window_active: false,
660 element_states: FxHashMap::default(),
661 accessed_element_states: Vec::new(),
662 mouse_listeners: Vec::new(),
663 dispatch_tree,
664 scene: Scene::default(),
665 hitboxes: Vec::new(),
666 window_control_hitboxes: Vec::new(),
667 deferred_draws: Vec::new(),
668 input_handlers: Vec::new(),
669 tooltip_requests: Vec::new(),
670 cursor_styles: Vec::new(),
671
672 #[cfg(any(test, feature = "test-support"))]
673 debug_bounds: FxHashMap::default(),
674
675 #[cfg(any(feature = "inspector", debug_assertions))]
676 next_inspector_instance_ids: FxHashMap::default(),
677
678 #[cfg(any(feature = "inspector", debug_assertions))]
679 inspector_hitboxes: FxHashMap::default(),
680 }
681 }
682
683 pub(crate) fn clear(&mut self) {
684 self.element_states.clear();
685 self.accessed_element_states.clear();
686 self.mouse_listeners.clear();
687 self.dispatch_tree.clear();
688 self.scene.clear();
689 self.input_handlers.clear();
690 self.tooltip_requests.clear();
691 self.cursor_styles.clear();
692 self.hitboxes.clear();
693 self.window_control_hitboxes.clear();
694 self.deferred_draws.clear();
695 self.focus = None;
696
697 #[cfg(any(feature = "inspector", debug_assertions))]
698 {
699 self.next_inspector_instance_ids.clear();
700 self.inspector_hitboxes.clear();
701 }
702 }
703
704 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
705 self.cursor_styles
706 .iter()
707 .rev()
708 .fold_while(None, |style, request| match request.hitbox_id {
709 None => Done(Some(request.style)),
710 Some(hitbox_id) => Continue(
711 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
712 ),
713 })
714 .into_inner()
715 }
716
717 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
718 let mut set_hover_hitbox_count = false;
719 let mut hit_test = HitTest::default();
720 for hitbox in self.hitboxes.iter().rev() {
721 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
722 if bounds.contains(&position) {
723 hit_test.ids.push(hitbox.id);
724 if !set_hover_hitbox_count
725 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
726 {
727 hit_test.hover_hitbox_count = hit_test.ids.len();
728 set_hover_hitbox_count = true;
729 }
730 if hitbox.behavior == HitboxBehavior::BlockMouse {
731 break;
732 }
733 }
734 }
735 if !set_hover_hitbox_count {
736 hit_test.hover_hitbox_count = hit_test.ids.len();
737 }
738 hit_test
739 }
740
741 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
742 self.focus
743 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
744 .unwrap_or_default()
745 }
746
747 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
748 for element_state_key in &self.accessed_element_states {
749 if let Some((element_state_key, element_state)) =
750 prev_frame.element_states.remove_entry(element_state_key)
751 {
752 self.element_states.insert(element_state_key, element_state);
753 }
754 }
755
756 self.scene.finish();
757 }
758}
759
760/// Holds the state for a specific window.
761pub struct Window {
762 pub(crate) handle: AnyWindowHandle,
763 pub(crate) invalidator: WindowInvalidator,
764 pub(crate) removed: bool,
765 pub(crate) platform_window: Box<dyn PlatformWindow>,
766 display_id: Option<DisplayId>,
767 sprite_atlas: Arc<dyn PlatformAtlas>,
768 text_system: Arc<WindowTextSystem>,
769 rem_size: Pixels,
770 /// The stack of override values for the window's rem size.
771 ///
772 /// This is used by `with_rem_size` to allow rendering an element tree with
773 /// a given rem size.
774 rem_size_override_stack: SmallVec<[Pixels; 8]>,
775 pub(crate) viewport_size: Size<Pixels>,
776 layout_engine: Option<TaffyLayoutEngine>,
777 pub(crate) root: Option<AnyView>,
778 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
779 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
780 pub(crate) rendered_entity_stack: Vec<EntityId>,
781 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
782 pub(crate) element_opacity: Option<f32>,
783 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
784 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
785 pub(crate) image_cache_stack: Vec<AnyImageCache>,
786 pub(crate) rendered_frame: Frame,
787 pub(crate) next_frame: Frame,
788 next_hitbox_id: HitboxId,
789 pub(crate) next_tooltip_id: TooltipId,
790 pub(crate) tooltip_bounds: Option<TooltipBounds>,
791 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
792 pub(crate) dirty_views: FxHashSet<EntityId>,
793 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
794 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
795 default_prevented: bool,
796 mouse_position: Point<Pixels>,
797 mouse_hit_test: HitTest,
798 modifiers: Modifiers,
799 capslock: Capslock,
800 scale_factor: f32,
801 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
802 appearance: WindowAppearance,
803 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
804 active: Rc<Cell<bool>>,
805 hovered: Rc<Cell<bool>>,
806 pub(crate) needs_present: Rc<Cell<bool>>,
807 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
808 pub(crate) refreshing: bool,
809 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
810 pub(crate) focus: Option<FocusId>,
811 focus_enabled: bool,
812 pending_input: Option<PendingInput>,
813 pending_modifier: ModifierState,
814 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
815 prompt: Option<RenderablePromptHandle>,
816 pub(crate) client_inset: Option<Pixels>,
817 #[cfg(any(feature = "inspector", debug_assertions))]
818 inspector: Option<Entity<Inspector>>,
819}
820
821#[derive(Clone, Debug, Default)]
822struct ModifierState {
823 modifiers: Modifiers,
824 saw_keystroke: bool,
825}
826
827#[derive(Clone, Copy, Debug, Eq, PartialEq)]
828pub(crate) enum DrawPhase {
829 None,
830 Prepaint,
831 Paint,
832 Focus,
833}
834
835#[derive(Default, Debug)]
836struct PendingInput {
837 keystrokes: SmallVec<[Keystroke; 1]>,
838 focus: Option<FocusId>,
839 timer: Option<Task<()>>,
840}
841
842pub(crate) struct ElementStateBox {
843 pub(crate) inner: Box<dyn Any>,
844 #[cfg(debug_assertions)]
845 pub(crate) type_name: &'static str,
846}
847
848fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
849 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
850
851 // TODO, BUG: if you open a window with the currently active window
852 // on the stack, this will erroneously select the 'unwrap_or_else'
853 // code path
854 cx.active_window()
855 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
856 .map(|mut bounds| {
857 bounds.origin += DEFAULT_WINDOW_OFFSET;
858 bounds
859 })
860 .unwrap_or_else(|| {
861 let display = display_id
862 .map(|id| cx.find_display(id))
863 .unwrap_or_else(|| cx.primary_display());
864
865 display
866 .map(|display| display.default_bounds())
867 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
868 })
869}
870
871impl Window {
872 pub(crate) fn new(
873 handle: AnyWindowHandle,
874 options: WindowOptions,
875 cx: &mut App,
876 ) -> Result<Self> {
877 let WindowOptions {
878 window_bounds,
879 titlebar,
880 focus,
881 show,
882 kind,
883 is_movable,
884 display_id,
885 window_background,
886 app_id,
887 window_min_size,
888 window_decorations,
889 } = options;
890
891 let bounds = window_bounds
892 .map(|bounds| bounds.get_bounds())
893 .unwrap_or_else(|| default_bounds(display_id, cx));
894 let mut platform_window = cx.platform.open_window(
895 handle,
896 WindowParams {
897 bounds,
898 titlebar,
899 kind,
900 is_movable,
901 focus,
902 show,
903 display_id,
904 window_min_size,
905 },
906 )?;
907 let display_id = platform_window.display().map(|display| display.id());
908 let sprite_atlas = platform_window.sprite_atlas();
909 let mouse_position = platform_window.mouse_position();
910 let modifiers = platform_window.modifiers();
911 let capslock = platform_window.capslock();
912 let content_size = platform_window.content_size();
913 let scale_factor = platform_window.scale_factor();
914 let appearance = platform_window.appearance();
915 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
916 let invalidator = WindowInvalidator::new();
917 let active = Rc::new(Cell::new(platform_window.is_active()));
918 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
919 let needs_present = Rc::new(Cell::new(false));
920 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
921 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
922
923 platform_window
924 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
925 platform_window.set_background_appearance(window_background);
926
927 if let Some(ref window_open_state) = window_bounds {
928 match window_open_state {
929 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
930 WindowBounds::Maximized(_) => platform_window.zoom(),
931 WindowBounds::Windowed(_) => {}
932 }
933 }
934
935 platform_window.on_close(Box::new({
936 let mut cx = cx.to_async();
937 move || {
938 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
939 }
940 }));
941 platform_window.on_request_frame(Box::new({
942 let mut cx = cx.to_async();
943 let invalidator = invalidator.clone();
944 let active = active.clone();
945 let needs_present = needs_present.clone();
946 let next_frame_callbacks = next_frame_callbacks.clone();
947 let last_input_timestamp = last_input_timestamp.clone();
948 move |request_frame_options| {
949 let next_frame_callbacks = next_frame_callbacks.take();
950 if !next_frame_callbacks.is_empty() {
951 handle
952 .update(&mut cx, |_, window, cx| {
953 for callback in next_frame_callbacks {
954 callback(window, cx);
955 }
956 })
957 .log_err();
958 }
959
960 // Keep presenting the current scene for 1 extra second since the
961 // last input to prevent the display from underclocking the refresh rate.
962 let needs_present = request_frame_options.require_presentation
963 || needs_present.get()
964 || (active.get()
965 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
966
967 if invalidator.is_dirty() {
968 measure("frame duration", || {
969 handle
970 .update(&mut cx, |_, window, cx| {
971 window.draw(cx);
972 window.present();
973 })
974 .log_err();
975 })
976 } else if needs_present {
977 handle
978 .update(&mut cx, |_, window, _| window.present())
979 .log_err();
980 }
981
982 handle
983 .update(&mut cx, |_, window, _| {
984 window.complete_frame();
985 })
986 .log_err();
987 }
988 }));
989 platform_window.on_resize(Box::new({
990 let mut cx = cx.to_async();
991 move |_, _| {
992 handle
993 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
994 .log_err();
995 }
996 }));
997 platform_window.on_moved(Box::new({
998 let mut cx = cx.to_async();
999 move || {
1000 handle
1001 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1002 .log_err();
1003 }
1004 }));
1005 platform_window.on_appearance_changed(Box::new({
1006 let mut cx = cx.to_async();
1007 move || {
1008 handle
1009 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1010 .log_err();
1011 }
1012 }));
1013 platform_window.on_active_status_change(Box::new({
1014 let mut cx = cx.to_async();
1015 move |active| {
1016 handle
1017 .update(&mut cx, |_, window, cx| {
1018 window.active.set(active);
1019 window.modifiers = window.platform_window.modifiers();
1020 window.capslock = window.platform_window.capslock();
1021 window
1022 .activation_observers
1023 .clone()
1024 .retain(&(), |callback| callback(window, cx));
1025 window.refresh();
1026 })
1027 .log_err();
1028 }
1029 }));
1030 platform_window.on_hover_status_change(Box::new({
1031 let mut cx = cx.to_async();
1032 move |active| {
1033 handle
1034 .update(&mut cx, |_, window, _| {
1035 window.hovered.set(active);
1036 window.refresh();
1037 })
1038 .log_err();
1039 }
1040 }));
1041 platform_window.on_input({
1042 let mut cx = cx.to_async();
1043 Box::new(move |event| {
1044 handle
1045 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1046 .log_err()
1047 .unwrap_or(DispatchEventResult::default())
1048 })
1049 });
1050 platform_window.on_hit_test_window_control({
1051 let mut cx = cx.to_async();
1052 Box::new(move || {
1053 handle
1054 .update(&mut cx, |_, window, _cx| {
1055 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1056 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1057 return Some(*area);
1058 }
1059 }
1060 None
1061 })
1062 .log_err()
1063 .unwrap_or(None)
1064 })
1065 });
1066
1067 if let Some(app_id) = app_id {
1068 platform_window.set_app_id(&app_id);
1069 }
1070
1071 platform_window.map_window().unwrap();
1072
1073 Ok(Window {
1074 handle,
1075 invalidator,
1076 removed: false,
1077 platform_window,
1078 display_id,
1079 sprite_atlas,
1080 text_system,
1081 rem_size: px(16.),
1082 rem_size_override_stack: SmallVec::new(),
1083 viewport_size: content_size,
1084 layout_engine: Some(TaffyLayoutEngine::new()),
1085 root: None,
1086 element_id_stack: SmallVec::default(),
1087 text_style_stack: Vec::new(),
1088 rendered_entity_stack: Vec::new(),
1089 element_offset_stack: Vec::new(),
1090 content_mask_stack: Vec::new(),
1091 element_opacity: None,
1092 requested_autoscroll: None,
1093 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1094 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1095 next_frame_callbacks,
1096 next_hitbox_id: HitboxId(0),
1097 next_tooltip_id: TooltipId::default(),
1098 tooltip_bounds: None,
1099 dirty_views: FxHashSet::default(),
1100 focus_listeners: SubscriberSet::new(),
1101 focus_lost_listeners: SubscriberSet::new(),
1102 default_prevented: true,
1103 mouse_position,
1104 mouse_hit_test: HitTest::default(),
1105 modifiers,
1106 capslock,
1107 scale_factor,
1108 bounds_observers: SubscriberSet::new(),
1109 appearance,
1110 appearance_observers: SubscriberSet::new(),
1111 active,
1112 hovered,
1113 needs_present,
1114 last_input_timestamp,
1115 refreshing: false,
1116 activation_observers: SubscriberSet::new(),
1117 focus: None,
1118 focus_enabled: true,
1119 pending_input: None,
1120 pending_modifier: ModifierState::default(),
1121 pending_input_observers: SubscriberSet::new(),
1122 prompt: None,
1123 client_inset: None,
1124 image_cache_stack: Vec::new(),
1125 #[cfg(any(feature = "inspector", debug_assertions))]
1126 inspector: None,
1127 })
1128 }
1129
1130 pub(crate) fn new_focus_listener(
1131 &self,
1132 value: AnyWindowFocusListener,
1133 ) -> (Subscription, impl FnOnce() + use<>) {
1134 self.focus_listeners.insert((), value)
1135 }
1136}
1137
1138#[derive(Clone, Debug, Default, PartialEq, Eq)]
1139pub(crate) struct DispatchEventResult {
1140 pub propagate: bool,
1141 pub default_prevented: bool,
1142}
1143
1144/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1145/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1146/// to leave room to support more complex shapes in the future.
1147#[derive(Clone, Debug, Default, PartialEq, Eq)]
1148#[repr(C)]
1149pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1150 /// The bounds
1151 pub bounds: Bounds<P>,
1152}
1153
1154impl ContentMask<Pixels> {
1155 /// Scale the content mask's pixel units by the given scaling factor.
1156 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1157 ContentMask {
1158 bounds: self.bounds.scale(factor),
1159 }
1160 }
1161
1162 /// Intersect the content mask with the given content mask.
1163 pub fn intersect(&self, other: &Self) -> Self {
1164 let bounds = self.bounds.intersect(&other.bounds);
1165 ContentMask { bounds }
1166 }
1167}
1168
1169impl Window {
1170 fn mark_view_dirty(&mut self, view_id: EntityId) {
1171 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1172 // should already be dirty.
1173 for view_id in self
1174 .rendered_frame
1175 .dispatch_tree
1176 .view_path(view_id)
1177 .into_iter()
1178 .rev()
1179 {
1180 if !self.dirty_views.insert(view_id) {
1181 break;
1182 }
1183 }
1184 }
1185
1186 /// Registers a callback to be invoked when the window appearance changes.
1187 pub fn observe_window_appearance(
1188 &self,
1189 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1190 ) -> Subscription {
1191 let (subscription, activate) = self.appearance_observers.insert(
1192 (),
1193 Box::new(move |window, cx| {
1194 callback(window, cx);
1195 true
1196 }),
1197 );
1198 activate();
1199 subscription
1200 }
1201
1202 /// Replaces the root entity of the window with a new one.
1203 pub fn replace_root<E>(
1204 &mut self,
1205 cx: &mut App,
1206 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1207 ) -> Entity<E>
1208 where
1209 E: 'static + Render,
1210 {
1211 let view = cx.new(|cx| build_view(self, cx));
1212 self.root = Some(view.clone().into());
1213 self.refresh();
1214 view
1215 }
1216
1217 /// Returns the root entity of the window, if it has one.
1218 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1219 where
1220 E: 'static + Render,
1221 {
1222 self.root
1223 .as_ref()
1224 .map(|view| view.clone().downcast::<E>().ok())
1225 }
1226
1227 /// Obtain a handle to the window that belongs to this context.
1228 pub fn window_handle(&self) -> AnyWindowHandle {
1229 self.handle
1230 }
1231
1232 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1233 pub fn refresh(&mut self) {
1234 if self.invalidator.not_drawing() {
1235 self.refreshing = true;
1236 self.invalidator.set_dirty(true);
1237 }
1238 }
1239
1240 /// Close this window.
1241 pub fn remove_window(&mut self) {
1242 self.removed = true;
1243 }
1244
1245 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1246 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1247 self.focus
1248 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1249 }
1250
1251 /// Move focus to the element associated with the given [`FocusHandle`].
1252 pub fn focus(&mut self, handle: &FocusHandle) {
1253 if !self.focus_enabled || self.focus == Some(handle.id) {
1254 return;
1255 }
1256
1257 self.focus = Some(handle.id);
1258 self.clear_pending_keystrokes();
1259 self.refresh();
1260 }
1261
1262 /// Remove focus from all elements within this context's window.
1263 pub fn blur(&mut self) {
1264 if !self.focus_enabled {
1265 return;
1266 }
1267
1268 self.focus = None;
1269 self.refresh();
1270 }
1271
1272 /// Blur the window and don't allow anything in it to be focused again.
1273 pub fn disable_focus(&mut self) {
1274 self.blur();
1275 self.focus_enabled = false;
1276 }
1277
1278 /// Accessor for the text system.
1279 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1280 &self.text_system
1281 }
1282
1283 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1284 pub fn text_style(&self) -> TextStyle {
1285 let mut style = TextStyle::default();
1286 for refinement in &self.text_style_stack {
1287 style.refine(refinement);
1288 }
1289 style
1290 }
1291
1292 /// Check if the platform window is maximized
1293 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1294 pub fn is_maximized(&self) -> bool {
1295 self.platform_window.is_maximized()
1296 }
1297
1298 /// request a certain window decoration (Wayland)
1299 pub fn request_decorations(&self, decorations: WindowDecorations) {
1300 self.platform_window.request_decorations(decorations);
1301 }
1302
1303 /// Start a window resize operation (Wayland)
1304 pub fn start_window_resize(&self, edge: ResizeEdge) {
1305 self.platform_window.start_window_resize(edge);
1306 }
1307
1308 /// Return the `WindowBounds` to indicate that how a window should be opened
1309 /// after it has been closed
1310 pub fn window_bounds(&self) -> WindowBounds {
1311 self.platform_window.window_bounds()
1312 }
1313
1314 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1315 pub fn inner_window_bounds(&self) -> WindowBounds {
1316 self.platform_window.inner_window_bounds()
1317 }
1318
1319 /// Dispatch the given action on the currently focused element.
1320 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1321 let focus_handle = self.focused(cx);
1322
1323 let window = self.handle;
1324 cx.defer(move |cx| {
1325 window
1326 .update(cx, |_, window, cx| {
1327 let node_id = focus_handle
1328 .and_then(|handle| {
1329 window
1330 .rendered_frame
1331 .dispatch_tree
1332 .focusable_node_id(handle.id)
1333 })
1334 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1335
1336 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1337 })
1338 .log_err();
1339 })
1340 }
1341
1342 pub(crate) fn dispatch_keystroke_observers(
1343 &mut self,
1344 event: &dyn Any,
1345 action: Option<Box<dyn Action>>,
1346 context_stack: Vec<KeyContext>,
1347 cx: &mut App,
1348 ) {
1349 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1350 return;
1351 };
1352
1353 cx.keystroke_observers.clone().retain(&(), move |callback| {
1354 (callback)(
1355 &KeystrokeEvent {
1356 keystroke: key_down_event.keystroke.clone(),
1357 action: action.as_ref().map(|action| action.boxed_clone()),
1358 context_stack: context_stack.clone(),
1359 },
1360 self,
1361 cx,
1362 )
1363 });
1364 }
1365
1366 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1367 /// that are currently on the stack to be returned to the app.
1368 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1369 let handle = self.handle;
1370 cx.defer(move |cx| {
1371 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1372 });
1373 }
1374
1375 /// Subscribe to events emitted by a entity.
1376 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1377 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1378 pub fn observe<T: 'static>(
1379 &mut self,
1380 observed: &Entity<T>,
1381 cx: &mut App,
1382 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1383 ) -> Subscription {
1384 let entity_id = observed.entity_id();
1385 let observed = observed.downgrade();
1386 let window_handle = self.handle;
1387 cx.new_observer(
1388 entity_id,
1389 Box::new(move |cx| {
1390 window_handle
1391 .update(cx, |_, window, cx| {
1392 if let Some(handle) = observed.upgrade() {
1393 on_notify(handle, window, cx);
1394 true
1395 } else {
1396 false
1397 }
1398 })
1399 .unwrap_or(false)
1400 }),
1401 )
1402 }
1403
1404 /// Subscribe to events emitted by a entity.
1405 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1406 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1407 pub fn subscribe<Emitter, Evt>(
1408 &mut self,
1409 entity: &Entity<Emitter>,
1410 cx: &mut App,
1411 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1412 ) -> Subscription
1413 where
1414 Emitter: EventEmitter<Evt>,
1415 Evt: 'static,
1416 {
1417 let entity_id = entity.entity_id();
1418 let handle = entity.downgrade();
1419 let window_handle = self.handle;
1420 cx.new_subscription(
1421 entity_id,
1422 (
1423 TypeId::of::<Evt>(),
1424 Box::new(move |event, cx| {
1425 window_handle
1426 .update(cx, |_, window, cx| {
1427 if let Some(entity) = handle.upgrade() {
1428 let event = event.downcast_ref().expect("invalid event type");
1429 on_event(entity, event, window, cx);
1430 true
1431 } else {
1432 false
1433 }
1434 })
1435 .unwrap_or(false)
1436 }),
1437 ),
1438 )
1439 }
1440
1441 /// Register a callback to be invoked when the given `Entity` is released.
1442 pub fn observe_release<T>(
1443 &self,
1444 entity: &Entity<T>,
1445 cx: &mut App,
1446 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1447 ) -> Subscription
1448 where
1449 T: 'static,
1450 {
1451 let entity_id = entity.entity_id();
1452 let window_handle = self.handle;
1453 let (subscription, activate) = cx.release_listeners.insert(
1454 entity_id,
1455 Box::new(move |entity, cx| {
1456 let entity = entity.downcast_mut().expect("invalid entity type");
1457 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1458 }),
1459 );
1460 activate();
1461 subscription
1462 }
1463
1464 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1465 /// await points in async code.
1466 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1467 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1468 }
1469
1470 /// Schedule the given closure to be run directly after the current frame is rendered.
1471 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1472 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1473 }
1474
1475 /// Schedule a frame to be drawn on the next animation frame.
1476 ///
1477 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1478 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1479 ///
1480 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1481 pub fn request_animation_frame(&self) {
1482 let entity = self.current_view();
1483 self.on_next_frame(move |_, cx| cx.notify(entity));
1484 }
1485
1486 /// Spawn the future returned by the given closure on the application thread pool.
1487 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1488 /// use within your future.
1489 #[track_caller]
1490 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1491 where
1492 R: 'static,
1493 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1494 {
1495 let handle = self.handle;
1496 cx.spawn(async move |app| {
1497 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1498 f(&mut async_window_cx).await
1499 })
1500 }
1501
1502 fn bounds_changed(&mut self, cx: &mut App) {
1503 self.scale_factor = self.platform_window.scale_factor();
1504 self.viewport_size = self.platform_window.content_size();
1505 self.display_id = self.platform_window.display().map(|display| display.id());
1506
1507 self.refresh();
1508
1509 self.bounds_observers
1510 .clone()
1511 .retain(&(), |callback| callback(self, cx));
1512 }
1513
1514 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1515 pub fn bounds(&self) -> Bounds<Pixels> {
1516 self.platform_window.bounds()
1517 }
1518
1519 /// Set the content size of the window.
1520 pub fn resize(&mut self, size: Size<Pixels>) {
1521 self.platform_window.resize(size);
1522 }
1523
1524 /// Returns whether or not the window is currently fullscreen
1525 pub fn is_fullscreen(&self) -> bool {
1526 self.platform_window.is_fullscreen()
1527 }
1528
1529 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1530 self.appearance = self.platform_window.appearance();
1531
1532 self.appearance_observers
1533 .clone()
1534 .retain(&(), |callback| callback(self, cx));
1535 }
1536
1537 /// Returns the appearance of the current window.
1538 pub fn appearance(&self) -> WindowAppearance {
1539 self.appearance
1540 }
1541
1542 /// Returns the size of the drawable area within the window.
1543 pub fn viewport_size(&self) -> Size<Pixels> {
1544 self.viewport_size
1545 }
1546
1547 /// Returns whether this window is focused by the operating system (receiving key events).
1548 pub fn is_window_active(&self) -> bool {
1549 self.active.get()
1550 }
1551
1552 /// Returns whether this window is considered to be the window
1553 /// that currently owns the mouse cursor.
1554 /// On mac, this is equivalent to `is_window_active`.
1555 pub fn is_window_hovered(&self) -> bool {
1556 if cfg!(any(
1557 target_os = "windows",
1558 target_os = "linux",
1559 target_os = "freebsd"
1560 )) {
1561 self.hovered.get()
1562 } else {
1563 self.is_window_active()
1564 }
1565 }
1566
1567 /// Toggle zoom on the window.
1568 pub fn zoom_window(&self) {
1569 self.platform_window.zoom();
1570 }
1571
1572 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1573 pub fn show_window_menu(&self, position: Point<Pixels>) {
1574 self.platform_window.show_window_menu(position)
1575 }
1576
1577 /// Tells the compositor to take control of window movement (Wayland and X11)
1578 ///
1579 /// Events may not be received during a move operation.
1580 pub fn start_window_move(&self) {
1581 self.platform_window.start_window_move()
1582 }
1583
1584 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1585 pub fn set_client_inset(&mut self, inset: Pixels) {
1586 self.client_inset = Some(inset);
1587 self.platform_window.set_client_inset(inset);
1588 }
1589
1590 /// Returns the client_inset value by [`Self::set_client_inset`].
1591 pub fn client_inset(&self) -> Option<Pixels> {
1592 self.client_inset
1593 }
1594
1595 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1596 pub fn window_decorations(&self) -> Decorations {
1597 self.platform_window.window_decorations()
1598 }
1599
1600 /// Returns which window controls are currently visible (Wayland)
1601 pub fn window_controls(&self) -> WindowControls {
1602 self.platform_window.window_controls()
1603 }
1604
1605 /// Updates the window's title at the platform level.
1606 pub fn set_window_title(&mut self, title: &str) {
1607 self.platform_window.set_title(title);
1608 }
1609
1610 /// Sets the application identifier.
1611 pub fn set_app_id(&mut self, app_id: &str) {
1612 self.platform_window.set_app_id(app_id);
1613 }
1614
1615 /// Sets the window background appearance.
1616 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1617 self.platform_window
1618 .set_background_appearance(background_appearance);
1619 }
1620
1621 /// Mark the window as dirty at the platform level.
1622 pub fn set_window_edited(&mut self, edited: bool) {
1623 self.platform_window.set_edited(edited);
1624 }
1625
1626 /// Determine the display on which the window is visible.
1627 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1628 cx.platform
1629 .displays()
1630 .into_iter()
1631 .find(|display| Some(display.id()) == self.display_id)
1632 }
1633
1634 /// Show the platform character palette.
1635 pub fn show_character_palette(&self) {
1636 self.platform_window.show_character_palette();
1637 }
1638
1639 /// The scale factor of the display associated with the window. For example, it could
1640 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1641 /// be rendered as two pixels on screen.
1642 pub fn scale_factor(&self) -> f32 {
1643 self.scale_factor
1644 }
1645
1646 /// The size of an em for the base font of the application. Adjusting this value allows the
1647 /// UI to scale, just like zooming a web page.
1648 pub fn rem_size(&self) -> Pixels {
1649 self.rem_size_override_stack
1650 .last()
1651 .copied()
1652 .unwrap_or(self.rem_size)
1653 }
1654
1655 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1656 /// UI to scale, just like zooming a web page.
1657 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1658 self.rem_size = rem_size.into();
1659 }
1660
1661 /// Acquire a globally unique identifier for the given ElementId.
1662 /// Only valid for the duration of the provided closure.
1663 pub fn with_global_id<R>(
1664 &mut self,
1665 element_id: ElementId,
1666 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1667 ) -> R {
1668 self.element_id_stack.push(element_id);
1669 let global_id = GlobalElementId(self.element_id_stack.clone());
1670 let result = f(&global_id, self);
1671 self.element_id_stack.pop();
1672 result
1673 }
1674
1675 /// Executes the provided function with the specified rem size.
1676 ///
1677 /// This method must only be called as part of element drawing.
1678 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1679 where
1680 F: FnOnce(&mut Self) -> R,
1681 {
1682 self.invalidator.debug_assert_paint_or_prepaint();
1683
1684 if let Some(rem_size) = rem_size {
1685 self.rem_size_override_stack.push(rem_size.into());
1686 let result = f(self);
1687 self.rem_size_override_stack.pop();
1688 result
1689 } else {
1690 f(self)
1691 }
1692 }
1693
1694 /// The line height associated with the current text style.
1695 pub fn line_height(&self) -> Pixels {
1696 self.text_style().line_height_in_pixels(self.rem_size())
1697 }
1698
1699 /// Call to prevent the default action of an event. Currently only used to prevent
1700 /// parent elements from becoming focused on mouse down.
1701 pub fn prevent_default(&mut self) {
1702 self.default_prevented = true;
1703 }
1704
1705 /// Obtain whether default has been prevented for the event currently being dispatched.
1706 pub fn default_prevented(&self) -> bool {
1707 self.default_prevented
1708 }
1709
1710 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1711 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1712 let target = self
1713 .focused(cx)
1714 .and_then(|focused_handle| {
1715 self.rendered_frame
1716 .dispatch_tree
1717 .focusable_node_id(focused_handle.id)
1718 })
1719 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1720 self.rendered_frame
1721 .dispatch_tree
1722 .is_action_available(action, target)
1723 }
1724
1725 /// The position of the mouse relative to the window.
1726 pub fn mouse_position(&self) -> Point<Pixels> {
1727 self.mouse_position
1728 }
1729
1730 /// The current state of the keyboard's modifiers
1731 pub fn modifiers(&self) -> Modifiers {
1732 self.modifiers
1733 }
1734
1735 /// The current state of the keyboard's capslock
1736 pub fn capslock(&self) -> Capslock {
1737 self.capslock
1738 }
1739
1740 fn complete_frame(&self) {
1741 self.platform_window.completed_frame();
1742 }
1743
1744 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1745 /// the contents of the new [Scene], use [present].
1746 #[profiling::function]
1747 pub fn draw(&mut self, cx: &mut App) {
1748 self.invalidate_entities();
1749 cx.entities.clear_accessed();
1750 debug_assert!(self.rendered_entity_stack.is_empty());
1751 self.invalidator.set_dirty(false);
1752 self.requested_autoscroll = None;
1753
1754 // Restore the previously-used input handler.
1755 if let Some(input_handler) = self.platform_window.take_input_handler() {
1756 self.rendered_frame.input_handlers.push(Some(input_handler));
1757 }
1758 self.draw_roots(cx);
1759 self.dirty_views.clear();
1760 self.next_frame.window_active = self.active.get();
1761
1762 // Register requested input handler with the platform window.
1763 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1764 self.platform_window
1765 .set_input_handler(input_handler.unwrap());
1766 }
1767
1768 self.layout_engine.as_mut().unwrap().clear();
1769 self.text_system().finish_frame();
1770 self.next_frame.finish(&mut self.rendered_frame);
1771 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1772 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1773 if percentage >= 80. {
1774 log::warn!("elevated element arena occupation: {}.", percentage);
1775 }
1776 element_arena.clear();
1777 });
1778
1779 self.invalidator.set_phase(DrawPhase::Focus);
1780 let previous_focus_path = self.rendered_frame.focus_path();
1781 let previous_window_active = self.rendered_frame.window_active;
1782 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1783 self.next_frame.clear();
1784 let current_focus_path = self.rendered_frame.focus_path();
1785 let current_window_active = self.rendered_frame.window_active;
1786
1787 if previous_focus_path != current_focus_path
1788 || previous_window_active != current_window_active
1789 {
1790 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1791 self.focus_lost_listeners
1792 .clone()
1793 .retain(&(), |listener| listener(self, cx));
1794 }
1795
1796 let event = WindowFocusEvent {
1797 previous_focus_path: if previous_window_active {
1798 previous_focus_path
1799 } else {
1800 Default::default()
1801 },
1802 current_focus_path: if current_window_active {
1803 current_focus_path
1804 } else {
1805 Default::default()
1806 },
1807 };
1808 self.focus_listeners
1809 .clone()
1810 .retain(&(), |listener| listener(&event, self, cx));
1811 }
1812
1813 debug_assert!(self.rendered_entity_stack.is_empty());
1814 self.record_entities_accessed(cx);
1815 self.reset_cursor_style(cx);
1816 self.refreshing = false;
1817 self.invalidator.set_phase(DrawPhase::None);
1818 self.needs_present.set(true);
1819 }
1820
1821 fn record_entities_accessed(&mut self, cx: &mut App) {
1822 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1823 let mut entities = mem::take(entities_ref.deref_mut());
1824 drop(entities_ref);
1825 let handle = self.handle;
1826 cx.record_entities_accessed(
1827 handle,
1828 // Try moving window invalidator into the Window
1829 self.invalidator.clone(),
1830 &entities,
1831 );
1832 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1833 mem::swap(&mut entities, entities_ref.deref_mut());
1834 }
1835
1836 fn invalidate_entities(&mut self) {
1837 let mut views = self.invalidator.take_views();
1838 for entity in views.drain() {
1839 self.mark_view_dirty(entity);
1840 }
1841 self.invalidator.replace_views(views);
1842 }
1843
1844 #[profiling::function]
1845 fn present(&self) {
1846 self.platform_window.draw(&self.rendered_frame.scene);
1847 self.needs_present.set(false);
1848 profiling::finish_frame!();
1849 }
1850
1851 fn draw_roots(&mut self, cx: &mut App) {
1852 self.invalidator.set_phase(DrawPhase::Prepaint);
1853 self.tooltip_bounds.take();
1854
1855 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1856 let root_size = {
1857 #[cfg(any(feature = "inspector", debug_assertions))]
1858 {
1859 if self.inspector.is_some() {
1860 let mut size = self.viewport_size;
1861 size.width = (size.width - _inspector_width).max(px(0.0));
1862 size
1863 } else {
1864 self.viewport_size
1865 }
1866 }
1867 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1868 {
1869 self.viewport_size
1870 }
1871 };
1872
1873 // Layout all root elements.
1874 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1875 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1876
1877 #[cfg(any(feature = "inspector", debug_assertions))]
1878 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1879
1880 let mut sorted_deferred_draws =
1881 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1882 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1883 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1884
1885 let mut prompt_element = None;
1886 let mut active_drag_element = None;
1887 let mut tooltip_element = None;
1888 if let Some(prompt) = self.prompt.take() {
1889 let mut element = prompt.view.any_view().into_any();
1890 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1891 prompt_element = Some(element);
1892 self.prompt = Some(prompt);
1893 } else if let Some(active_drag) = cx.active_drag.take() {
1894 let mut element = active_drag.view.clone().into_any();
1895 let offset = self.mouse_position() - active_drag.cursor_offset;
1896 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1897 active_drag_element = Some(element);
1898 cx.active_drag = Some(active_drag);
1899 } else {
1900 tooltip_element = self.prepaint_tooltip(cx);
1901 }
1902
1903 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1904
1905 // Now actually paint the elements.
1906 self.invalidator.set_phase(DrawPhase::Paint);
1907 root_element.paint(self, cx);
1908
1909 #[cfg(any(feature = "inspector", debug_assertions))]
1910 self.paint_inspector(inspector_element, cx);
1911
1912 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1913
1914 if let Some(mut prompt_element) = prompt_element {
1915 prompt_element.paint(self, cx);
1916 } else if let Some(mut drag_element) = active_drag_element {
1917 drag_element.paint(self, cx);
1918 } else if let Some(mut tooltip_element) = tooltip_element {
1919 tooltip_element.paint(self, cx);
1920 }
1921
1922 #[cfg(any(feature = "inspector", debug_assertions))]
1923 self.paint_inspector_hitbox(cx);
1924 }
1925
1926 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1927 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1928 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1929 let Some(Some(tooltip_request)) = self
1930 .next_frame
1931 .tooltip_requests
1932 .get(tooltip_request_index)
1933 .cloned()
1934 else {
1935 log::error!("Unexpectedly absent TooltipRequest");
1936 continue;
1937 };
1938 let mut element = tooltip_request.tooltip.view.clone().into_any();
1939 let mouse_position = tooltip_request.tooltip.mouse_position;
1940 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1941
1942 let mut tooltip_bounds =
1943 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1944 let window_bounds = Bounds {
1945 origin: Point::default(),
1946 size: self.viewport_size(),
1947 };
1948
1949 if tooltip_bounds.right() > window_bounds.right() {
1950 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1951 if new_x >= Pixels::ZERO {
1952 tooltip_bounds.origin.x = new_x;
1953 } else {
1954 tooltip_bounds.origin.x = cmp::max(
1955 Pixels::ZERO,
1956 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1957 );
1958 }
1959 }
1960
1961 if tooltip_bounds.bottom() > window_bounds.bottom() {
1962 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1963 if new_y >= Pixels::ZERO {
1964 tooltip_bounds.origin.y = new_y;
1965 } else {
1966 tooltip_bounds.origin.y = cmp::max(
1967 Pixels::ZERO,
1968 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1969 );
1970 }
1971 }
1972
1973 // It's possible for an element to have an active tooltip while not being painted (e.g.
1974 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1975 // case, instead update the tooltip's visibility here.
1976 let is_visible =
1977 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1978 if !is_visible {
1979 continue;
1980 }
1981
1982 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1983 element.prepaint(window, cx)
1984 });
1985
1986 self.tooltip_bounds = Some(TooltipBounds {
1987 id: tooltip_request.id,
1988 bounds: tooltip_bounds,
1989 });
1990 return Some(element);
1991 }
1992 None
1993 }
1994
1995 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1996 assert_eq!(self.element_id_stack.len(), 0);
1997
1998 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1999 for deferred_draw_ix in deferred_draw_indices {
2000 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2001 self.element_id_stack
2002 .clone_from(&deferred_draw.element_id_stack);
2003 self.text_style_stack
2004 .clone_from(&deferred_draw.text_style_stack);
2005 self.next_frame
2006 .dispatch_tree
2007 .set_active_node(deferred_draw.parent_node);
2008
2009 let prepaint_start = self.prepaint_index();
2010 if let Some(element) = deferred_draw.element.as_mut() {
2011 self.with_rendered_view(deferred_draw.current_view, |window| {
2012 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2013 element.prepaint(window, cx)
2014 });
2015 })
2016 } else {
2017 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2018 }
2019 let prepaint_end = self.prepaint_index();
2020 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2021 }
2022 assert_eq!(
2023 self.next_frame.deferred_draws.len(),
2024 0,
2025 "cannot call defer_draw during deferred drawing"
2026 );
2027 self.next_frame.deferred_draws = deferred_draws;
2028 self.element_id_stack.clear();
2029 self.text_style_stack.clear();
2030 }
2031
2032 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2033 assert_eq!(self.element_id_stack.len(), 0);
2034
2035 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2036 for deferred_draw_ix in deferred_draw_indices {
2037 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2038 self.element_id_stack
2039 .clone_from(&deferred_draw.element_id_stack);
2040 self.next_frame
2041 .dispatch_tree
2042 .set_active_node(deferred_draw.parent_node);
2043
2044 let paint_start = self.paint_index();
2045 if let Some(element) = deferred_draw.element.as_mut() {
2046 self.with_rendered_view(deferred_draw.current_view, |window| {
2047 element.paint(window, cx);
2048 })
2049 } else {
2050 self.reuse_paint(deferred_draw.paint_range.clone());
2051 }
2052 let paint_end = self.paint_index();
2053 deferred_draw.paint_range = paint_start..paint_end;
2054 }
2055 self.next_frame.deferred_draws = deferred_draws;
2056 self.element_id_stack.clear();
2057 }
2058
2059 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2060 PrepaintStateIndex {
2061 hitboxes_index: self.next_frame.hitboxes.len(),
2062 tooltips_index: self.next_frame.tooltip_requests.len(),
2063 deferred_draws_index: self.next_frame.deferred_draws.len(),
2064 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2065 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2066 line_layout_index: self.text_system.layout_index(),
2067 }
2068 }
2069
2070 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2071 self.next_frame.hitboxes.extend(
2072 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2073 .iter()
2074 .cloned(),
2075 );
2076 self.next_frame.tooltip_requests.extend(
2077 self.rendered_frame.tooltip_requests
2078 [range.start.tooltips_index..range.end.tooltips_index]
2079 .iter_mut()
2080 .map(|request| request.take()),
2081 );
2082 self.next_frame.accessed_element_states.extend(
2083 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2084 ..range.end.accessed_element_states_index]
2085 .iter()
2086 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2087 );
2088 self.text_system
2089 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2090
2091 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2092 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2093 &mut self.rendered_frame.dispatch_tree,
2094 self.focus,
2095 );
2096
2097 if reused_subtree.contains_focus() {
2098 self.next_frame.focus = self.focus;
2099 }
2100
2101 self.next_frame.deferred_draws.extend(
2102 self.rendered_frame.deferred_draws
2103 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2104 .iter()
2105 .map(|deferred_draw| DeferredDraw {
2106 current_view: deferred_draw.current_view,
2107 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2108 element_id_stack: deferred_draw.element_id_stack.clone(),
2109 text_style_stack: deferred_draw.text_style_stack.clone(),
2110 priority: deferred_draw.priority,
2111 element: None,
2112 absolute_offset: deferred_draw.absolute_offset,
2113 prepaint_range: deferred_draw.prepaint_range.clone(),
2114 paint_range: deferred_draw.paint_range.clone(),
2115 }),
2116 );
2117 }
2118
2119 pub(crate) fn paint_index(&self) -> PaintIndex {
2120 PaintIndex {
2121 scene_index: self.next_frame.scene.len(),
2122 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2123 input_handlers_index: self.next_frame.input_handlers.len(),
2124 cursor_styles_index: self.next_frame.cursor_styles.len(),
2125 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2126 line_layout_index: self.text_system.layout_index(),
2127 }
2128 }
2129
2130 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2131 self.next_frame.cursor_styles.extend(
2132 self.rendered_frame.cursor_styles
2133 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2134 .iter()
2135 .cloned(),
2136 );
2137 self.next_frame.input_handlers.extend(
2138 self.rendered_frame.input_handlers
2139 [range.start.input_handlers_index..range.end.input_handlers_index]
2140 .iter_mut()
2141 .map(|handler| handler.take()),
2142 );
2143 self.next_frame.mouse_listeners.extend(
2144 self.rendered_frame.mouse_listeners
2145 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2146 .iter_mut()
2147 .map(|listener| listener.take()),
2148 );
2149 self.next_frame.accessed_element_states.extend(
2150 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2151 ..range.end.accessed_element_states_index]
2152 .iter()
2153 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2154 );
2155
2156 self.text_system
2157 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2158 self.next_frame.scene.replay(
2159 range.start.scene_index..range.end.scene_index,
2160 &self.rendered_frame.scene,
2161 );
2162 }
2163
2164 /// Push a text style onto the stack, and call a function with that style active.
2165 /// Use [`Window::text_style`] to get the current, combined text style. This method
2166 /// should only be called as part of element drawing.
2167 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2168 where
2169 F: FnOnce(&mut Self) -> R,
2170 {
2171 self.invalidator.debug_assert_paint_or_prepaint();
2172 if let Some(style) = style {
2173 self.text_style_stack.push(style);
2174 let result = f(self);
2175 self.text_style_stack.pop();
2176 result
2177 } else {
2178 f(self)
2179 }
2180 }
2181
2182 /// Updates the cursor style at the platform level. This method should only be called
2183 /// during the prepaint phase of element drawing.
2184 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2185 self.invalidator.debug_assert_paint();
2186 self.next_frame.cursor_styles.push(CursorStyleRequest {
2187 hitbox_id: Some(hitbox.id),
2188 style,
2189 });
2190 }
2191
2192 /// Updates the cursor style for the entire window at the platform level. A cursor
2193 /// style using this method will have precedence over any cursor style set using
2194 /// `set_cursor_style`. This method should only be called during the prepaint
2195 /// phase of element drawing.
2196 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2197 self.invalidator.debug_assert_paint();
2198 self.next_frame.cursor_styles.push(CursorStyleRequest {
2199 hitbox_id: None,
2200 style,
2201 })
2202 }
2203
2204 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2205 /// during the paint phase of element drawing.
2206 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2207 self.invalidator.debug_assert_prepaint();
2208 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2209 self.next_frame
2210 .tooltip_requests
2211 .push(Some(TooltipRequest { id, tooltip }));
2212 id
2213 }
2214
2215 /// Invoke the given function with the given content mask after intersecting it
2216 /// with the current mask. This method should only be called during element drawing.
2217 pub fn with_content_mask<R>(
2218 &mut self,
2219 mask: Option<ContentMask<Pixels>>,
2220 f: impl FnOnce(&mut Self) -> R,
2221 ) -> R {
2222 self.invalidator.debug_assert_paint_or_prepaint();
2223 if let Some(mask) = mask {
2224 let mask = mask.intersect(&self.content_mask());
2225 self.content_mask_stack.push(mask);
2226 let result = f(self);
2227 self.content_mask_stack.pop();
2228 result
2229 } else {
2230 f(self)
2231 }
2232 }
2233
2234 /// Updates the global element offset relative to the current offset. This is used to implement
2235 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2236 pub fn with_element_offset<R>(
2237 &mut self,
2238 offset: Point<Pixels>,
2239 f: impl FnOnce(&mut Self) -> R,
2240 ) -> R {
2241 self.invalidator.debug_assert_prepaint();
2242
2243 if offset.is_zero() {
2244 return f(self);
2245 };
2246
2247 let abs_offset = self.element_offset() + offset;
2248 self.with_absolute_element_offset(abs_offset, f)
2249 }
2250
2251 /// Updates the global element offset based on the given offset. This is used to implement
2252 /// drag handles and other manual painting of elements. This method should only be called during
2253 /// the prepaint phase of element drawing.
2254 pub fn with_absolute_element_offset<R>(
2255 &mut self,
2256 offset: Point<Pixels>,
2257 f: impl FnOnce(&mut Self) -> R,
2258 ) -> R {
2259 self.invalidator.debug_assert_prepaint();
2260 self.element_offset_stack.push(offset);
2261 let result = f(self);
2262 self.element_offset_stack.pop();
2263 result
2264 }
2265
2266 pub(crate) fn with_element_opacity<R>(
2267 &mut self,
2268 opacity: Option<f32>,
2269 f: impl FnOnce(&mut Self) -> R,
2270 ) -> R {
2271 if opacity.is_none() {
2272 return f(self);
2273 }
2274
2275 self.invalidator.debug_assert_paint_or_prepaint();
2276 self.element_opacity = opacity;
2277 let result = f(self);
2278 self.element_opacity = None;
2279 result
2280 }
2281
2282 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2283 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2284 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2285 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2286 /// called during the prepaint phase of element drawing.
2287 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2288 self.invalidator.debug_assert_prepaint();
2289 let index = self.prepaint_index();
2290 let result = f(self);
2291 if result.is_err() {
2292 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2293 self.next_frame
2294 .tooltip_requests
2295 .truncate(index.tooltips_index);
2296 self.next_frame
2297 .deferred_draws
2298 .truncate(index.deferred_draws_index);
2299 self.next_frame
2300 .dispatch_tree
2301 .truncate(index.dispatch_tree_index);
2302 self.next_frame
2303 .accessed_element_states
2304 .truncate(index.accessed_element_states_index);
2305 self.text_system.truncate_layouts(index.line_layout_index);
2306 }
2307 result
2308 }
2309
2310 /// When you call this method during [`prepaint`], containing elements will attempt to
2311 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2312 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2313 /// that supports this method being called on the elements it contains. This method should only be
2314 /// called during the prepaint phase of element drawing.
2315 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2316 self.invalidator.debug_assert_prepaint();
2317 self.requested_autoscroll = Some(bounds);
2318 }
2319
2320 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2321 /// described in [`request_autoscroll`].
2322 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2323 self.invalidator.debug_assert_prepaint();
2324 self.requested_autoscroll.take()
2325 }
2326
2327 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2328 /// Your view will be re-drawn once the asset has finished loading.
2329 ///
2330 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2331 /// time.
2332 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2333 let (task, is_first) = cx.fetch_asset::<A>(source);
2334 task.clone().now_or_never().or_else(|| {
2335 if is_first {
2336 let entity_id = self.current_view();
2337 self.spawn(cx, {
2338 let task = task.clone();
2339 async move |cx| {
2340 task.await;
2341
2342 cx.on_next_frame(move |_, cx| {
2343 cx.notify(entity_id);
2344 });
2345 }
2346 })
2347 .detach();
2348 }
2349
2350 None
2351 })
2352 }
2353
2354 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2355 /// Your view will not be re-drawn once the asset has finished loading.
2356 ///
2357 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2358 /// time.
2359 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2360 let (task, _) = cx.fetch_asset::<A>(source);
2361 task.clone().now_or_never()
2362 }
2363 /// Obtain the current element offset. This method should only be called during the
2364 /// prepaint phase of element drawing.
2365 pub fn element_offset(&self) -> Point<Pixels> {
2366 self.invalidator.debug_assert_prepaint();
2367 self.element_offset_stack
2368 .last()
2369 .copied()
2370 .unwrap_or_default()
2371 }
2372
2373 /// Obtain the current element opacity. This method should only be called during the
2374 /// prepaint phase of element drawing.
2375 pub(crate) fn element_opacity(&self) -> f32 {
2376 self.invalidator.debug_assert_paint_or_prepaint();
2377 self.element_opacity.unwrap_or(1.0)
2378 }
2379
2380 /// Obtain the current content mask. This method should only be called during element drawing.
2381 pub fn content_mask(&self) -> ContentMask<Pixels> {
2382 self.invalidator.debug_assert_paint_or_prepaint();
2383 self.content_mask_stack
2384 .last()
2385 .cloned()
2386 .unwrap_or_else(|| ContentMask {
2387 bounds: Bounds {
2388 origin: Point::default(),
2389 size: self.viewport_size,
2390 },
2391 })
2392 }
2393
2394 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2395 /// This can be used within a custom element to distinguish multiple sets of child elements.
2396 pub fn with_element_namespace<R>(
2397 &mut self,
2398 element_id: impl Into<ElementId>,
2399 f: impl FnOnce(&mut Self) -> R,
2400 ) -> R {
2401 self.element_id_stack.push(element_id.into());
2402 let result = f(self);
2403 self.element_id_stack.pop();
2404 result
2405 }
2406
2407 /// Updates or initializes state for an element with the given id that lives across multiple
2408 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2409 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2410 /// when drawing the next frame. This method should only be called as part of element drawing.
2411 pub fn with_element_state<S, R>(
2412 &mut self,
2413 global_id: &GlobalElementId,
2414 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2415 ) -> R
2416 where
2417 S: 'static,
2418 {
2419 self.invalidator.debug_assert_paint_or_prepaint();
2420
2421 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2422 self.next_frame
2423 .accessed_element_states
2424 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2425
2426 if let Some(any) = self
2427 .next_frame
2428 .element_states
2429 .remove(&key)
2430 .or_else(|| self.rendered_frame.element_states.remove(&key))
2431 {
2432 let ElementStateBox {
2433 inner,
2434 #[cfg(debug_assertions)]
2435 type_name,
2436 } = any;
2437 // Using the extra inner option to avoid needing to reallocate a new box.
2438 let mut state_box = inner
2439 .downcast::<Option<S>>()
2440 .map_err(|_| {
2441 #[cfg(debug_assertions)]
2442 {
2443 anyhow::anyhow!(
2444 "invalid element state type for id, requested {:?}, actual: {:?}",
2445 std::any::type_name::<S>(),
2446 type_name
2447 )
2448 }
2449
2450 #[cfg(not(debug_assertions))]
2451 {
2452 anyhow::anyhow!(
2453 "invalid element state type for id, requested {:?}",
2454 std::any::type_name::<S>(),
2455 )
2456 }
2457 })
2458 .unwrap();
2459
2460 let state = state_box.take().expect(
2461 "reentrant call to with_element_state for the same state type and element id",
2462 );
2463 let (result, state) = f(Some(state), self);
2464 state_box.replace(state);
2465 self.next_frame.element_states.insert(
2466 key,
2467 ElementStateBox {
2468 inner: state_box,
2469 #[cfg(debug_assertions)]
2470 type_name,
2471 },
2472 );
2473 result
2474 } else {
2475 let (result, state) = f(None, self);
2476 self.next_frame.element_states.insert(
2477 key,
2478 ElementStateBox {
2479 inner: Box::new(Some(state)),
2480 #[cfg(debug_assertions)]
2481 type_name: std::any::type_name::<S>(),
2482 },
2483 );
2484 result
2485 }
2486 }
2487
2488 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2489 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2490 /// when the element is guaranteed to have an id.
2491 ///
2492 /// The first option means 'no ID provided'
2493 /// The second option means 'not yet initialized'
2494 pub fn with_optional_element_state<S, R>(
2495 &mut self,
2496 global_id: Option<&GlobalElementId>,
2497 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2498 ) -> R
2499 where
2500 S: 'static,
2501 {
2502 self.invalidator.debug_assert_paint_or_prepaint();
2503
2504 if let Some(global_id) = global_id {
2505 self.with_element_state(global_id, |state, cx| {
2506 let (result, state) = f(Some(state), cx);
2507 let state =
2508 state.expect("you must return some state when you pass some element id");
2509 (result, state)
2510 })
2511 } else {
2512 let (result, state) = f(None, self);
2513 debug_assert!(
2514 state.is_none(),
2515 "you must not return an element state when passing None for the global id"
2516 );
2517 result
2518 }
2519 }
2520
2521 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2522 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2523 /// with higher values being drawn on top.
2524 ///
2525 /// This method should only be called as part of the prepaint phase of element drawing.
2526 pub fn defer_draw(
2527 &mut self,
2528 element: AnyElement,
2529 absolute_offset: Point<Pixels>,
2530 priority: usize,
2531 ) {
2532 self.invalidator.debug_assert_prepaint();
2533 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2534 self.next_frame.deferred_draws.push(DeferredDraw {
2535 current_view: self.current_view(),
2536 parent_node,
2537 element_id_stack: self.element_id_stack.clone(),
2538 text_style_stack: self.text_style_stack.clone(),
2539 priority,
2540 element: Some(element),
2541 absolute_offset,
2542 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2543 paint_range: PaintIndex::default()..PaintIndex::default(),
2544 });
2545 }
2546
2547 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2548 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2549 /// for performance reasons.
2550 ///
2551 /// This method should only be called as part of the paint phase of element drawing.
2552 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2553 self.invalidator.debug_assert_paint();
2554
2555 let scale_factor = self.scale_factor();
2556 let content_mask = self.content_mask();
2557 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2558 if !clipped_bounds.is_empty() {
2559 self.next_frame
2560 .scene
2561 .push_layer(clipped_bounds.scale(scale_factor));
2562 }
2563
2564 let result = f(self);
2565
2566 if !clipped_bounds.is_empty() {
2567 self.next_frame.scene.pop_layer();
2568 }
2569
2570 result
2571 }
2572
2573 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2574 ///
2575 /// This method should only be called as part of the paint phase of element drawing.
2576 pub fn paint_shadows(
2577 &mut self,
2578 bounds: Bounds<Pixels>,
2579 corner_radii: Corners<Pixels>,
2580 shadows: &[BoxShadow],
2581 ) {
2582 self.invalidator.debug_assert_paint();
2583
2584 let scale_factor = self.scale_factor();
2585 let content_mask = self.content_mask();
2586 let opacity = self.element_opacity();
2587 for shadow in shadows {
2588 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2589 self.next_frame.scene.insert_primitive(Shadow {
2590 order: 0,
2591 blur_radius: shadow.blur_radius.scale(scale_factor),
2592 bounds: shadow_bounds.scale(scale_factor),
2593 content_mask: content_mask.scale(scale_factor),
2594 corner_radii: corner_radii.scale(scale_factor),
2595 color: shadow.color.opacity(opacity),
2596 });
2597 }
2598 }
2599
2600 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2601 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2602 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2603 ///
2604 /// This method should only be called as part of the paint phase of element drawing.
2605 ///
2606 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2607 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2608 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2609 pub fn paint_quad(&mut self, quad: PaintQuad) {
2610 self.invalidator.debug_assert_paint();
2611
2612 let scale_factor = self.scale_factor();
2613 let content_mask = self.content_mask();
2614 let opacity = self.element_opacity();
2615 self.next_frame.scene.insert_primitive(Quad {
2616 order: 0,
2617 bounds: quad.bounds.scale(scale_factor),
2618 content_mask: content_mask.scale(scale_factor),
2619 background: quad.background.opacity(opacity),
2620 border_color: quad.border_color.opacity(opacity),
2621 corner_radii: quad.corner_radii.scale(scale_factor),
2622 border_widths: quad.border_widths.scale(scale_factor),
2623 border_style: quad.border_style,
2624 });
2625 }
2626
2627 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2628 ///
2629 /// This method should only be called as part of the paint phase of element drawing.
2630 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2631 self.invalidator.debug_assert_paint();
2632
2633 let scale_factor = self.scale_factor();
2634 let content_mask = self.content_mask();
2635 let opacity = self.element_opacity();
2636 path.content_mask = content_mask;
2637 let color: Background = color.into();
2638 path.color = color.opacity(opacity);
2639 self.next_frame
2640 .scene
2641 .insert_primitive(path.scale(scale_factor));
2642 }
2643
2644 /// Paint an underline into the scene for the next frame at the current z-index.
2645 ///
2646 /// This method should only be called as part of the paint phase of element drawing.
2647 pub fn paint_underline(
2648 &mut self,
2649 origin: Point<Pixels>,
2650 width: Pixels,
2651 style: &UnderlineStyle,
2652 ) {
2653 self.invalidator.debug_assert_paint();
2654
2655 let scale_factor = self.scale_factor();
2656 let height = if style.wavy {
2657 style.thickness * 3.
2658 } else {
2659 style.thickness
2660 };
2661 let bounds = Bounds {
2662 origin,
2663 size: size(width, height),
2664 };
2665 let content_mask = self.content_mask();
2666 let element_opacity = self.element_opacity();
2667
2668 self.next_frame.scene.insert_primitive(Underline {
2669 order: 0,
2670 pad: 0,
2671 bounds: bounds.scale(scale_factor),
2672 content_mask: content_mask.scale(scale_factor),
2673 color: style.color.unwrap_or_default().opacity(element_opacity),
2674 thickness: style.thickness.scale(scale_factor),
2675 wavy: style.wavy,
2676 });
2677 }
2678
2679 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2680 ///
2681 /// This method should only be called as part of the paint phase of element drawing.
2682 pub fn paint_strikethrough(
2683 &mut self,
2684 origin: Point<Pixels>,
2685 width: Pixels,
2686 style: &StrikethroughStyle,
2687 ) {
2688 self.invalidator.debug_assert_paint();
2689
2690 let scale_factor = self.scale_factor();
2691 let height = style.thickness;
2692 let bounds = Bounds {
2693 origin,
2694 size: size(width, height),
2695 };
2696 let content_mask = self.content_mask();
2697 let opacity = self.element_opacity();
2698
2699 self.next_frame.scene.insert_primitive(Underline {
2700 order: 0,
2701 pad: 0,
2702 bounds: bounds.scale(scale_factor),
2703 content_mask: content_mask.scale(scale_factor),
2704 thickness: style.thickness.scale(scale_factor),
2705 color: style.color.unwrap_or_default().opacity(opacity),
2706 wavy: false,
2707 });
2708 }
2709
2710 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2711 ///
2712 /// The y component of the origin is the baseline of the glyph.
2713 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2714 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2715 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2716 ///
2717 /// This method should only be called as part of the paint phase of element drawing.
2718 pub fn paint_glyph(
2719 &mut self,
2720 origin: Point<Pixels>,
2721 font_id: FontId,
2722 glyph_id: GlyphId,
2723 font_size: Pixels,
2724 color: Hsla,
2725 ) -> Result<()> {
2726 self.invalidator.debug_assert_paint();
2727
2728 let element_opacity = self.element_opacity();
2729 let scale_factor = self.scale_factor();
2730 let glyph_origin = origin.scale(scale_factor);
2731 let subpixel_variant = Point {
2732 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2733 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2734 };
2735 let params = RenderGlyphParams {
2736 font_id,
2737 glyph_id,
2738 font_size,
2739 subpixel_variant,
2740 scale_factor,
2741 is_emoji: false,
2742 };
2743
2744 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2745 if !raster_bounds.is_zero() {
2746 let tile = self
2747 .sprite_atlas
2748 .get_or_insert_with(¶ms.clone().into(), &mut || {
2749 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2750 Ok(Some((size, Cow::Owned(bytes))))
2751 })?
2752 .expect("Callback above only errors or returns Some");
2753 let bounds = Bounds {
2754 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2755 size: tile.bounds.size.map(Into::into),
2756 };
2757 let content_mask = self.content_mask().scale(scale_factor);
2758 self.next_frame.scene.insert_primitive(MonochromeSprite {
2759 order: 0,
2760 pad: 0,
2761 bounds,
2762 content_mask,
2763 color: color.opacity(element_opacity),
2764 tile,
2765 transformation: TransformationMatrix::unit(),
2766 });
2767 }
2768 Ok(())
2769 }
2770
2771 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2772 ///
2773 /// The y component of the origin is the baseline of the glyph.
2774 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2775 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2776 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2777 ///
2778 /// This method should only be called as part of the paint phase of element drawing.
2779 pub fn paint_emoji(
2780 &mut self,
2781 origin: Point<Pixels>,
2782 font_id: FontId,
2783 glyph_id: GlyphId,
2784 font_size: Pixels,
2785 ) -> Result<()> {
2786 self.invalidator.debug_assert_paint();
2787
2788 let scale_factor = self.scale_factor();
2789 let glyph_origin = origin.scale(scale_factor);
2790 let params = RenderGlyphParams {
2791 font_id,
2792 glyph_id,
2793 font_size,
2794 // We don't render emojis with subpixel variants.
2795 subpixel_variant: Default::default(),
2796 scale_factor,
2797 is_emoji: true,
2798 };
2799
2800 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2801 if !raster_bounds.is_zero() {
2802 let tile = self
2803 .sprite_atlas
2804 .get_or_insert_with(¶ms.clone().into(), &mut || {
2805 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2806 Ok(Some((size, Cow::Owned(bytes))))
2807 })?
2808 .expect("Callback above only errors or returns Some");
2809
2810 let bounds = Bounds {
2811 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2812 size: tile.bounds.size.map(Into::into),
2813 };
2814 let content_mask = self.content_mask().scale(scale_factor);
2815 let opacity = self.element_opacity();
2816
2817 self.next_frame.scene.insert_primitive(PolychromeSprite {
2818 order: 0,
2819 pad: 0,
2820 grayscale: false,
2821 bounds,
2822 corner_radii: Default::default(),
2823 content_mask,
2824 tile,
2825 opacity,
2826 });
2827 }
2828 Ok(())
2829 }
2830
2831 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2832 ///
2833 /// This method should only be called as part of the paint phase of element drawing.
2834 pub fn paint_svg(
2835 &mut self,
2836 bounds: Bounds<Pixels>,
2837 path: SharedString,
2838 transformation: TransformationMatrix,
2839 color: Hsla,
2840 cx: &App,
2841 ) -> Result<()> {
2842 self.invalidator.debug_assert_paint();
2843
2844 let element_opacity = self.element_opacity();
2845 let scale_factor = self.scale_factor();
2846 let bounds = bounds.scale(scale_factor);
2847 let params = RenderSvgParams {
2848 path,
2849 size: bounds.size.map(|pixels| {
2850 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2851 }),
2852 };
2853
2854 let Some(tile) =
2855 self.sprite_atlas
2856 .get_or_insert_with(¶ms.clone().into(), &mut || {
2857 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2858 return Ok(None);
2859 };
2860 Ok(Some((params.size, Cow::Owned(bytes))))
2861 })?
2862 else {
2863 return Ok(());
2864 };
2865 let content_mask = self.content_mask().scale(scale_factor);
2866
2867 self.next_frame.scene.insert_primitive(MonochromeSprite {
2868 order: 0,
2869 pad: 0,
2870 bounds: bounds
2871 .map_origin(|origin| origin.floor())
2872 .map_size(|size| size.ceil()),
2873 content_mask,
2874 color: color.opacity(element_opacity),
2875 tile,
2876 transformation,
2877 });
2878
2879 Ok(())
2880 }
2881
2882 /// Paint an image into the scene for the next frame at the current z-index.
2883 /// This method will panic if the frame_index is not valid
2884 ///
2885 /// This method should only be called as part of the paint phase of element drawing.
2886 pub fn paint_image(
2887 &mut self,
2888 bounds: Bounds<Pixels>,
2889 corner_radii: Corners<Pixels>,
2890 data: Arc<RenderImage>,
2891 frame_index: usize,
2892 grayscale: bool,
2893 ) -> Result<()> {
2894 self.invalidator.debug_assert_paint();
2895
2896 let scale_factor = self.scale_factor();
2897 let bounds = bounds.scale(scale_factor);
2898 let params = RenderImageParams {
2899 image_id: data.id,
2900 frame_index,
2901 };
2902
2903 let tile = self
2904 .sprite_atlas
2905 .get_or_insert_with(¶ms.clone().into(), &mut || {
2906 Ok(Some((
2907 data.size(frame_index),
2908 Cow::Borrowed(
2909 data.as_bytes(frame_index)
2910 .expect("It's the caller's job to pass a valid frame index"),
2911 ),
2912 )))
2913 })?
2914 .expect("Callback above only returns Some");
2915 let content_mask = self.content_mask().scale(scale_factor);
2916 let corner_radii = corner_radii.scale(scale_factor);
2917 let opacity = self.element_opacity();
2918
2919 self.next_frame.scene.insert_primitive(PolychromeSprite {
2920 order: 0,
2921 pad: 0,
2922 grayscale,
2923 bounds: bounds
2924 .map_origin(|origin| origin.floor())
2925 .map_size(|size| size.ceil()),
2926 content_mask,
2927 corner_radii,
2928 tile,
2929 opacity,
2930 });
2931 Ok(())
2932 }
2933
2934 /// Paint a surface into the scene for the next frame at the current z-index.
2935 ///
2936 /// This method should only be called as part of the paint phase of element drawing.
2937 #[cfg(target_os = "macos")]
2938 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2939 use crate::PaintSurface;
2940
2941 self.invalidator.debug_assert_paint();
2942
2943 let scale_factor = self.scale_factor();
2944 let bounds = bounds.scale(scale_factor);
2945 let content_mask = self.content_mask().scale(scale_factor);
2946 self.next_frame.scene.insert_primitive(PaintSurface {
2947 order: 0,
2948 bounds,
2949 content_mask,
2950 image_buffer,
2951 });
2952 }
2953
2954 /// Removes an image from the sprite atlas.
2955 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2956 for frame_index in 0..data.frame_count() {
2957 let params = RenderImageParams {
2958 image_id: data.id,
2959 frame_index,
2960 };
2961
2962 self.sprite_atlas.remove(¶ms.clone().into());
2963 }
2964
2965 Ok(())
2966 }
2967
2968 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2969 /// layout is being requested, along with the layout ids of any children. This method is called during
2970 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2971 ///
2972 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2973 #[must_use]
2974 pub fn request_layout(
2975 &mut self,
2976 style: Style,
2977 children: impl IntoIterator<Item = LayoutId>,
2978 cx: &mut App,
2979 ) -> LayoutId {
2980 self.invalidator.debug_assert_prepaint();
2981
2982 cx.layout_id_buffer.clear();
2983 cx.layout_id_buffer.extend(children);
2984 let rem_size = self.rem_size();
2985
2986 self.layout_engine
2987 .as_mut()
2988 .unwrap()
2989 .request_layout(style, rem_size, &cx.layout_id_buffer)
2990 }
2991
2992 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2993 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2994 /// determine the element's size. One place this is used internally is when measuring text.
2995 ///
2996 /// The given closure is invoked at layout time with the known dimensions and available space and
2997 /// returns a `Size`.
2998 ///
2999 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3000 pub fn request_measured_layout<
3001 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3002 + 'static,
3003 >(
3004 &mut self,
3005 style: Style,
3006 measure: F,
3007 ) -> LayoutId {
3008 self.invalidator.debug_assert_prepaint();
3009
3010 let rem_size = self.rem_size();
3011 self.layout_engine
3012 .as_mut()
3013 .unwrap()
3014 .request_measured_layout(style, rem_size, measure)
3015 }
3016
3017 /// Compute the layout for the given id within the given available space.
3018 /// This method is called for its side effect, typically by the framework prior to painting.
3019 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3020 ///
3021 /// This method should only be called as part of the prepaint phase of element drawing.
3022 pub fn compute_layout(
3023 &mut self,
3024 layout_id: LayoutId,
3025 available_space: Size<AvailableSpace>,
3026 cx: &mut App,
3027 ) {
3028 self.invalidator.debug_assert_prepaint();
3029
3030 let mut layout_engine = self.layout_engine.take().unwrap();
3031 layout_engine.compute_layout(layout_id, available_space, self, cx);
3032 self.layout_engine = Some(layout_engine);
3033 }
3034
3035 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3036 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3037 ///
3038 /// This method should only be called as part of element drawing.
3039 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3040 self.invalidator.debug_assert_prepaint();
3041
3042 let mut bounds = self
3043 .layout_engine
3044 .as_mut()
3045 .unwrap()
3046 .layout_bounds(layout_id)
3047 .map(Into::into);
3048 bounds.origin += self.element_offset();
3049 bounds
3050 }
3051
3052 /// This method should be called during `prepaint`. You can use
3053 /// the returned [Hitbox] during `paint` or in an event handler
3054 /// to determine whether the inserted hitbox was the topmost.
3055 ///
3056 /// This method should only be called as part of the prepaint phase of element drawing.
3057 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3058 self.invalidator.debug_assert_prepaint();
3059
3060 let content_mask = self.content_mask();
3061 let mut id = self.next_hitbox_id;
3062 self.next_hitbox_id = self.next_hitbox_id.next();
3063 let hitbox = Hitbox {
3064 id,
3065 bounds,
3066 content_mask,
3067 behavior,
3068 };
3069 self.next_frame.hitboxes.push(hitbox.clone());
3070 hitbox
3071 }
3072
3073 /// Set a hitbox which will act as a control area of the platform window.
3074 ///
3075 /// This method should only be called as part of the paint phase of element drawing.
3076 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3077 self.invalidator.debug_assert_paint();
3078 self.next_frame.window_control_hitboxes.push((area, hitbox));
3079 }
3080
3081 /// Sets the key context for the current element. This context will be used to translate
3082 /// keybindings into actions.
3083 ///
3084 /// This method should only be called as part of the paint phase of element drawing.
3085 pub fn set_key_context(&mut self, context: KeyContext) {
3086 self.invalidator.debug_assert_paint();
3087 self.next_frame.dispatch_tree.set_key_context(context);
3088 }
3089
3090 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3091 /// and keyboard event dispatch for the element.
3092 ///
3093 /// This method should only be called as part of the prepaint phase of element drawing.
3094 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3095 self.invalidator.debug_assert_prepaint();
3096 if focus_handle.is_focused(self) {
3097 self.next_frame.focus = Some(focus_handle.id);
3098 }
3099 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3100 }
3101
3102 /// Sets the view id for the current element, which will be used to manage view caching.
3103 ///
3104 /// This method should only be called as part of element prepaint. We plan on removing this
3105 /// method eventually when we solve some issues that require us to construct editor elements
3106 /// directly instead of always using editors via views.
3107 pub fn set_view_id(&mut self, view_id: EntityId) {
3108 self.invalidator.debug_assert_prepaint();
3109 self.next_frame.dispatch_tree.set_view_id(view_id);
3110 }
3111
3112 /// Get the entity ID for the currently rendering view
3113 pub fn current_view(&self) -> EntityId {
3114 self.invalidator.debug_assert_paint_or_prepaint();
3115 self.rendered_entity_stack.last().copied().unwrap()
3116 }
3117
3118 pub(crate) fn with_rendered_view<R>(
3119 &mut self,
3120 id: EntityId,
3121 f: impl FnOnce(&mut Self) -> R,
3122 ) -> R {
3123 self.rendered_entity_stack.push(id);
3124 let result = f(self);
3125 self.rendered_entity_stack.pop();
3126 result
3127 }
3128
3129 /// Executes the provided function with the specified image cache.
3130 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3131 where
3132 F: FnOnce(&mut Self) -> R,
3133 {
3134 if let Some(image_cache) = image_cache {
3135 self.image_cache_stack.push(image_cache);
3136 let result = f(self);
3137 self.image_cache_stack.pop();
3138 result
3139 } else {
3140 f(self)
3141 }
3142 }
3143
3144 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3145 /// platform to receive textual input with proper integration with concerns such
3146 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3147 /// rendered.
3148 ///
3149 /// This method should only be called as part of the paint phase of element drawing.
3150 ///
3151 /// [element_input_handler]: crate::ElementInputHandler
3152 pub fn handle_input(
3153 &mut self,
3154 focus_handle: &FocusHandle,
3155 input_handler: impl InputHandler,
3156 cx: &App,
3157 ) {
3158 self.invalidator.debug_assert_paint();
3159
3160 if focus_handle.is_focused(self) {
3161 let cx = self.to_async(cx);
3162 self.next_frame
3163 .input_handlers
3164 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3165 }
3166 }
3167
3168 /// Register a mouse event listener on the window for the next frame. The type of event
3169 /// is determined by the first parameter of the given listener. When the next frame is rendered
3170 /// the listener will be cleared.
3171 ///
3172 /// This method should only be called as part of the paint phase of element drawing.
3173 pub fn on_mouse_event<Event: MouseEvent>(
3174 &mut self,
3175 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3176 ) {
3177 self.invalidator.debug_assert_paint();
3178
3179 self.next_frame.mouse_listeners.push(Some(Box::new(
3180 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3181 if let Some(event) = event.downcast_ref() {
3182 handler(event, phase, window, cx)
3183 }
3184 },
3185 )));
3186 }
3187
3188 /// Register a key event listener on the window for the next frame. The type of event
3189 /// is determined by the first parameter of the given listener. When the next frame is rendered
3190 /// the listener will be cleared.
3191 ///
3192 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3193 /// a specific need to register a global listener.
3194 ///
3195 /// This method should only be called as part of the paint phase of element drawing.
3196 pub fn on_key_event<Event: KeyEvent>(
3197 &mut self,
3198 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3199 ) {
3200 self.invalidator.debug_assert_paint();
3201
3202 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3203 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3204 if let Some(event) = event.downcast_ref::<Event>() {
3205 listener(event, phase, window, cx)
3206 }
3207 },
3208 ));
3209 }
3210
3211 /// Register a modifiers changed event listener on the window for the next frame.
3212 ///
3213 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3214 /// a specific need to register a global listener.
3215 ///
3216 /// This method should only be called as part of the paint phase of element drawing.
3217 pub fn on_modifiers_changed(
3218 &mut self,
3219 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3220 ) {
3221 self.invalidator.debug_assert_paint();
3222
3223 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3224 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3225 listener(event, window, cx)
3226 },
3227 ));
3228 }
3229
3230 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3231 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3232 /// Returns a subscription and persists until the subscription is dropped.
3233 pub fn on_focus_in(
3234 &mut self,
3235 handle: &FocusHandle,
3236 cx: &mut App,
3237 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3238 ) -> Subscription {
3239 let focus_id = handle.id;
3240 let (subscription, activate) =
3241 self.new_focus_listener(Box::new(move |event, window, cx| {
3242 if event.is_focus_in(focus_id) {
3243 listener(window, cx);
3244 }
3245 true
3246 }));
3247 cx.defer(move |_| activate());
3248 subscription
3249 }
3250
3251 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3252 /// Returns a subscription and persists until the subscription is dropped.
3253 pub fn on_focus_out(
3254 &mut self,
3255 handle: &FocusHandle,
3256 cx: &mut App,
3257 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3258 ) -> Subscription {
3259 let focus_id = handle.id;
3260 let (subscription, activate) =
3261 self.new_focus_listener(Box::new(move |event, window, cx| {
3262 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
3263 if event.is_focus_out(focus_id) {
3264 let event = FocusOutEvent {
3265 blurred: WeakFocusHandle {
3266 id: blurred_id,
3267 handles: Arc::downgrade(&cx.focus_handles),
3268 },
3269 };
3270 listener(event, window, cx)
3271 }
3272 }
3273 true
3274 }));
3275 cx.defer(move |_| activate());
3276 subscription
3277 }
3278
3279 fn reset_cursor_style(&self, cx: &mut App) {
3280 // Set the cursor only if we're the active window.
3281 if self.is_window_hovered() {
3282 let style = self
3283 .rendered_frame
3284 .cursor_style(self)
3285 .unwrap_or(CursorStyle::Arrow);
3286 cx.platform.set_cursor_style(style);
3287 }
3288 }
3289
3290 /// Dispatch a given keystroke as though the user had typed it.
3291 /// You can create a keystroke with Keystroke::parse("").
3292 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3293 let keystroke = keystroke.with_simulated_ime();
3294 let result = self.dispatch_event(
3295 PlatformInput::KeyDown(KeyDownEvent {
3296 keystroke: keystroke.clone(),
3297 is_held: false,
3298 }),
3299 cx,
3300 );
3301 if !result.propagate {
3302 return true;
3303 }
3304
3305 if let Some(input) = keystroke.key_char {
3306 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3307 input_handler.dispatch_input(&input, self, cx);
3308 self.platform_window.set_input_handler(input_handler);
3309 return true;
3310 }
3311 }
3312
3313 false
3314 }
3315
3316 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3317 /// binding for the action (last binding added to the keymap).
3318 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3319 self.highest_precedence_binding_for_action(action)
3320 .map(|binding| {
3321 binding
3322 .keystrokes()
3323 .iter()
3324 .map(ToString::to_string)
3325 .collect::<Vec<_>>()
3326 .join(" ")
3327 })
3328 .unwrap_or_else(|| action.name().to_string())
3329 }
3330
3331 /// Dispatch a mouse or keyboard event on the window.
3332 #[profiling::function]
3333 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3334 self.last_input_timestamp.set(Instant::now());
3335 // Handlers may set this to false by calling `stop_propagation`.
3336 cx.propagate_event = true;
3337 // Handlers may set this to true by calling `prevent_default`.
3338 self.default_prevented = false;
3339
3340 let event = match event {
3341 // Track the mouse position with our own state, since accessing the platform
3342 // API for the mouse position can only occur on the main thread.
3343 PlatformInput::MouseMove(mouse_move) => {
3344 self.mouse_position = mouse_move.position;
3345 self.modifiers = mouse_move.modifiers;
3346 PlatformInput::MouseMove(mouse_move)
3347 }
3348 PlatformInput::MouseDown(mouse_down) => {
3349 self.mouse_position = mouse_down.position;
3350 self.modifiers = mouse_down.modifiers;
3351 PlatformInput::MouseDown(mouse_down)
3352 }
3353 PlatformInput::MouseUp(mouse_up) => {
3354 self.mouse_position = mouse_up.position;
3355 self.modifiers = mouse_up.modifiers;
3356 PlatformInput::MouseUp(mouse_up)
3357 }
3358 PlatformInput::MouseExited(mouse_exited) => {
3359 self.modifiers = mouse_exited.modifiers;
3360 PlatformInput::MouseExited(mouse_exited)
3361 }
3362 PlatformInput::ModifiersChanged(modifiers_changed) => {
3363 self.modifiers = modifiers_changed.modifiers;
3364 self.capslock = modifiers_changed.capslock;
3365 PlatformInput::ModifiersChanged(modifiers_changed)
3366 }
3367 PlatformInput::ScrollWheel(scroll_wheel) => {
3368 self.mouse_position = scroll_wheel.position;
3369 self.modifiers = scroll_wheel.modifiers;
3370 PlatformInput::ScrollWheel(scroll_wheel)
3371 }
3372 // Translate dragging and dropping of external files from the operating system
3373 // to internal drag and drop events.
3374 PlatformInput::FileDrop(file_drop) => match file_drop {
3375 FileDropEvent::Entered { position, paths } => {
3376 self.mouse_position = position;
3377 if cx.active_drag.is_none() {
3378 cx.active_drag = Some(AnyDrag {
3379 value: Arc::new(paths.clone()),
3380 view: cx.new(|_| paths).into(),
3381 cursor_offset: position,
3382 cursor_style: None,
3383 });
3384 }
3385 PlatformInput::MouseMove(MouseMoveEvent {
3386 position,
3387 pressed_button: Some(MouseButton::Left),
3388 modifiers: Modifiers::default(),
3389 })
3390 }
3391 FileDropEvent::Pending { position } => {
3392 self.mouse_position = position;
3393 PlatformInput::MouseMove(MouseMoveEvent {
3394 position,
3395 pressed_button: Some(MouseButton::Left),
3396 modifiers: Modifiers::default(),
3397 })
3398 }
3399 FileDropEvent::Submit { position } => {
3400 cx.activate(true);
3401 self.mouse_position = position;
3402 PlatformInput::MouseUp(MouseUpEvent {
3403 button: MouseButton::Left,
3404 position,
3405 modifiers: Modifiers::default(),
3406 click_count: 1,
3407 })
3408 }
3409 FileDropEvent::Exited => {
3410 cx.active_drag.take();
3411 PlatformInput::FileDrop(FileDropEvent::Exited)
3412 }
3413 },
3414 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3415 };
3416
3417 if let Some(any_mouse_event) = event.mouse_event() {
3418 self.dispatch_mouse_event(any_mouse_event, cx);
3419 } else if let Some(any_key_event) = event.keyboard_event() {
3420 self.dispatch_key_event(any_key_event, cx);
3421 }
3422
3423 DispatchEventResult {
3424 propagate: cx.propagate_event,
3425 default_prevented: self.default_prevented,
3426 }
3427 }
3428
3429 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3430 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3431 if hit_test != self.mouse_hit_test {
3432 self.mouse_hit_test = hit_test;
3433 self.reset_cursor_style(cx);
3434 }
3435
3436 #[cfg(any(feature = "inspector", debug_assertions))]
3437 if self.is_inspector_picking(cx) {
3438 self.handle_inspector_mouse_event(event, cx);
3439 // When inspector is picking, all other mouse handling is skipped.
3440 return;
3441 }
3442
3443 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3444
3445 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3446 // special purposes, such as detecting events outside of a given Bounds.
3447 for listener in &mut mouse_listeners {
3448 let listener = listener.as_mut().unwrap();
3449 listener(event, DispatchPhase::Capture, self, cx);
3450 if !cx.propagate_event {
3451 break;
3452 }
3453 }
3454
3455 // Bubble phase, where most normal handlers do their work.
3456 if cx.propagate_event {
3457 for listener in mouse_listeners.iter_mut().rev() {
3458 let listener = listener.as_mut().unwrap();
3459 listener(event, DispatchPhase::Bubble, self, cx);
3460 if !cx.propagate_event {
3461 break;
3462 }
3463 }
3464 }
3465
3466 self.rendered_frame.mouse_listeners = mouse_listeners;
3467
3468 if cx.has_active_drag() {
3469 if event.is::<MouseMoveEvent>() {
3470 // If this was a mouse move event, redraw the window so that the
3471 // active drag can follow the mouse cursor.
3472 self.refresh();
3473 } else if event.is::<MouseUpEvent>() {
3474 // If this was a mouse up event, cancel the active drag and redraw
3475 // the window.
3476 cx.active_drag = None;
3477 self.refresh();
3478 }
3479 }
3480 }
3481
3482 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3483 if self.invalidator.is_dirty() {
3484 self.draw(cx);
3485 }
3486
3487 let node_id = self
3488 .focus
3489 .and_then(|focus_id| {
3490 self.rendered_frame
3491 .dispatch_tree
3492 .focusable_node_id(focus_id)
3493 })
3494 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3495
3496 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3497
3498 let mut keystroke: Option<Keystroke> = None;
3499
3500 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3501 if event.modifiers.number_of_modifiers() == 0
3502 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3503 && !self.pending_modifier.saw_keystroke
3504 {
3505 let key = match self.pending_modifier.modifiers {
3506 modifiers if modifiers.shift => Some("shift"),
3507 modifiers if modifiers.control => Some("control"),
3508 modifiers if modifiers.alt => Some("alt"),
3509 modifiers if modifiers.platform => Some("platform"),
3510 modifiers if modifiers.function => Some("function"),
3511 _ => None,
3512 };
3513 if let Some(key) = key {
3514 keystroke = Some(Keystroke {
3515 key: key.to_string(),
3516 key_char: None,
3517 modifiers: Modifiers::default(),
3518 });
3519 }
3520 }
3521
3522 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3523 && event.modifiers.number_of_modifiers() == 1
3524 {
3525 self.pending_modifier.saw_keystroke = false
3526 }
3527 self.pending_modifier.modifiers = event.modifiers
3528 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3529 self.pending_modifier.saw_keystroke = true;
3530 keystroke = Some(key_down_event.keystroke.clone());
3531 }
3532
3533 let Some(keystroke) = keystroke else {
3534 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3535 return;
3536 };
3537
3538 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3539 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3540 currently_pending = PendingInput::default();
3541 }
3542
3543 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3544 currently_pending.keystrokes,
3545 keystroke,
3546 &dispatch_path,
3547 );
3548
3549 if !match_result.to_replay.is_empty() {
3550 self.replay_pending_input(match_result.to_replay, cx)
3551 }
3552
3553 if !match_result.pending.is_empty() {
3554 currently_pending.keystrokes = match_result.pending;
3555 currently_pending.focus = self.focus;
3556 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3557 cx.background_executor.timer(Duration::from_secs(1)).await;
3558 cx.update(move |window, cx| {
3559 let Some(currently_pending) = window
3560 .pending_input
3561 .take()
3562 .filter(|pending| pending.focus == window.focus)
3563 else {
3564 return;
3565 };
3566
3567 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3568
3569 let to_replay = window
3570 .rendered_frame
3571 .dispatch_tree
3572 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3573
3574 window.pending_input_changed(cx);
3575 window.replay_pending_input(to_replay, cx)
3576 })
3577 .log_err();
3578 }));
3579 self.pending_input = Some(currently_pending);
3580 self.pending_input_changed(cx);
3581 cx.propagate_event = false;
3582 return;
3583 }
3584
3585 cx.propagate_event = true;
3586 for binding in match_result.bindings {
3587 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3588 if !cx.propagate_event {
3589 self.dispatch_keystroke_observers(
3590 event,
3591 Some(binding.action),
3592 match_result.context_stack.clone(),
3593 cx,
3594 );
3595 self.pending_input_changed(cx);
3596 return;
3597 }
3598 }
3599
3600 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3601 self.pending_input_changed(cx);
3602 }
3603
3604 fn finish_dispatch_key_event(
3605 &mut self,
3606 event: &dyn Any,
3607 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3608 context_stack: Vec<KeyContext>,
3609 cx: &mut App,
3610 ) {
3611 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3612 if !cx.propagate_event {
3613 return;
3614 }
3615
3616 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3617 if !cx.propagate_event {
3618 return;
3619 }
3620
3621 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3622 }
3623
3624 fn pending_input_changed(&mut self, cx: &mut App) {
3625 self.pending_input_observers
3626 .clone()
3627 .retain(&(), |callback| callback(self, cx));
3628 }
3629
3630 fn dispatch_key_down_up_event(
3631 &mut self,
3632 event: &dyn Any,
3633 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3634 cx: &mut App,
3635 ) {
3636 // Capture phase
3637 for node_id in dispatch_path {
3638 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3639
3640 for key_listener in node.key_listeners.clone() {
3641 key_listener(event, DispatchPhase::Capture, self, cx);
3642 if !cx.propagate_event {
3643 return;
3644 }
3645 }
3646 }
3647
3648 // Bubble phase
3649 for node_id in dispatch_path.iter().rev() {
3650 // Handle low level key events
3651 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3652 for key_listener in node.key_listeners.clone() {
3653 key_listener(event, DispatchPhase::Bubble, self, cx);
3654 if !cx.propagate_event {
3655 return;
3656 }
3657 }
3658 }
3659 }
3660
3661 fn dispatch_modifiers_changed_event(
3662 &mut self,
3663 event: &dyn Any,
3664 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3665 cx: &mut App,
3666 ) {
3667 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3668 return;
3669 };
3670 for node_id in dispatch_path.iter().rev() {
3671 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3672 for listener in node.modifiers_changed_listeners.clone() {
3673 listener(event, self, cx);
3674 if !cx.propagate_event {
3675 return;
3676 }
3677 }
3678 }
3679 }
3680
3681 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3682 pub fn has_pending_keystrokes(&self) -> bool {
3683 self.pending_input.is_some()
3684 }
3685
3686 pub(crate) fn clear_pending_keystrokes(&mut self) {
3687 self.pending_input.take();
3688 }
3689
3690 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3691 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3692 self.pending_input
3693 .as_ref()
3694 .map(|pending_input| pending_input.keystrokes.as_slice())
3695 }
3696
3697 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3698 let node_id = self
3699 .focus
3700 .and_then(|focus_id| {
3701 self.rendered_frame
3702 .dispatch_tree
3703 .focusable_node_id(focus_id)
3704 })
3705 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3706
3707 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3708
3709 'replay: for replay in replays {
3710 let event = KeyDownEvent {
3711 keystroke: replay.keystroke.clone(),
3712 is_held: false,
3713 };
3714
3715 cx.propagate_event = true;
3716 for binding in replay.bindings {
3717 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3718 if !cx.propagate_event {
3719 self.dispatch_keystroke_observers(
3720 &event,
3721 Some(binding.action),
3722 Vec::default(),
3723 cx,
3724 );
3725 continue 'replay;
3726 }
3727 }
3728
3729 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3730 if !cx.propagate_event {
3731 continue 'replay;
3732 }
3733 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3734 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3735 input_handler.dispatch_input(&input, self, cx);
3736 self.platform_window.set_input_handler(input_handler)
3737 }
3738 }
3739 }
3740 }
3741
3742 fn dispatch_action_on_node(
3743 &mut self,
3744 node_id: DispatchNodeId,
3745 action: &dyn Action,
3746 cx: &mut App,
3747 ) {
3748 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3749
3750 // Capture phase for global actions.
3751 cx.propagate_event = true;
3752 if let Some(mut global_listeners) = cx
3753 .global_action_listeners
3754 .remove(&action.as_any().type_id())
3755 {
3756 for listener in &global_listeners {
3757 listener(action.as_any(), DispatchPhase::Capture, cx);
3758 if !cx.propagate_event {
3759 break;
3760 }
3761 }
3762
3763 global_listeners.extend(
3764 cx.global_action_listeners
3765 .remove(&action.as_any().type_id())
3766 .unwrap_or_default(),
3767 );
3768
3769 cx.global_action_listeners
3770 .insert(action.as_any().type_id(), global_listeners);
3771 }
3772
3773 if !cx.propagate_event {
3774 return;
3775 }
3776
3777 // Capture phase for window actions.
3778 for node_id in &dispatch_path {
3779 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3780 for DispatchActionListener {
3781 action_type,
3782 listener,
3783 } in node.action_listeners.clone()
3784 {
3785 let any_action = action.as_any();
3786 if action_type == any_action.type_id() {
3787 listener(any_action, DispatchPhase::Capture, self, cx);
3788
3789 if !cx.propagate_event {
3790 return;
3791 }
3792 }
3793 }
3794 }
3795
3796 // Bubble phase for window actions.
3797 for node_id in dispatch_path.iter().rev() {
3798 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3799 for DispatchActionListener {
3800 action_type,
3801 listener,
3802 } in node.action_listeners.clone()
3803 {
3804 let any_action = action.as_any();
3805 if action_type == any_action.type_id() {
3806 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3807 listener(any_action, DispatchPhase::Bubble, self, cx);
3808
3809 if !cx.propagate_event {
3810 return;
3811 }
3812 }
3813 }
3814 }
3815
3816 // Bubble phase for global actions.
3817 if let Some(mut global_listeners) = cx
3818 .global_action_listeners
3819 .remove(&action.as_any().type_id())
3820 {
3821 for listener in global_listeners.iter().rev() {
3822 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3823
3824 listener(action.as_any(), DispatchPhase::Bubble, cx);
3825 if !cx.propagate_event {
3826 break;
3827 }
3828 }
3829
3830 global_listeners.extend(
3831 cx.global_action_listeners
3832 .remove(&action.as_any().type_id())
3833 .unwrap_or_default(),
3834 );
3835
3836 cx.global_action_listeners
3837 .insert(action.as_any().type_id(), global_listeners);
3838 }
3839 }
3840
3841 /// Register the given handler to be invoked whenever the global of the given type
3842 /// is updated.
3843 pub fn observe_global<G: Global>(
3844 &mut self,
3845 cx: &mut App,
3846 f: impl Fn(&mut Window, &mut App) + 'static,
3847 ) -> Subscription {
3848 let window_handle = self.handle;
3849 let (subscription, activate) = cx.global_observers.insert(
3850 TypeId::of::<G>(),
3851 Box::new(move |cx| {
3852 window_handle
3853 .update(cx, |_, window, cx| f(window, cx))
3854 .is_ok()
3855 }),
3856 );
3857 cx.defer(move |_| activate());
3858 subscription
3859 }
3860
3861 /// Focus the current window and bring it to the foreground at the platform level.
3862 pub fn activate_window(&self) {
3863 self.platform_window.activate();
3864 }
3865
3866 /// Minimize the current window at the platform level.
3867 pub fn minimize_window(&self) {
3868 self.platform_window.minimize();
3869 }
3870
3871 /// Toggle full screen status on the current window at the platform level.
3872 pub fn toggle_fullscreen(&self) {
3873 self.platform_window.toggle_fullscreen();
3874 }
3875
3876 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3877 pub fn invalidate_character_coordinates(&self) {
3878 self.on_next_frame(|window, cx| {
3879 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3880 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3881 window
3882 .platform_window
3883 .update_ime_position(bounds.scale(window.scale_factor()));
3884 }
3885 window.platform_window.set_input_handler(input_handler);
3886 }
3887 });
3888 }
3889
3890 /// Present a platform dialog.
3891 /// The provided message will be presented, along with buttons for each answer.
3892 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3893 pub fn prompt<T>(
3894 &mut self,
3895 level: PromptLevel,
3896 message: &str,
3897 detail: Option<&str>,
3898 answers: &[T],
3899 cx: &mut App,
3900 ) -> oneshot::Receiver<usize>
3901 where
3902 T: Clone + Into<PromptButton>,
3903 {
3904 let prompt_builder = cx.prompt_builder.take();
3905 let Some(prompt_builder) = prompt_builder else {
3906 unreachable!("Re-entrant window prompting is not supported by GPUI");
3907 };
3908
3909 let answers = answers
3910 .iter()
3911 .map(|answer| answer.clone().into())
3912 .collect::<Vec<_>>();
3913
3914 let receiver = match &prompt_builder {
3915 PromptBuilder::Default => self
3916 .platform_window
3917 .prompt(level, message, detail, &answers)
3918 .unwrap_or_else(|| {
3919 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3920 }),
3921 PromptBuilder::Custom(_) => {
3922 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
3923 }
3924 };
3925
3926 cx.prompt_builder = Some(prompt_builder);
3927
3928 receiver
3929 }
3930
3931 fn build_custom_prompt(
3932 &mut self,
3933 prompt_builder: &PromptBuilder,
3934 level: PromptLevel,
3935 message: &str,
3936 detail: Option<&str>,
3937 answers: &[PromptButton],
3938 cx: &mut App,
3939 ) -> oneshot::Receiver<usize> {
3940 let (sender, receiver) = oneshot::channel();
3941 let handle = PromptHandle::new(sender);
3942 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3943 self.prompt = Some(handle);
3944 receiver
3945 }
3946
3947 /// Returns the current context stack.
3948 pub fn context_stack(&self) -> Vec<KeyContext> {
3949 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3950 let node_id = self
3951 .focus
3952 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3953 .unwrap_or_else(|| dispatch_tree.root_node_id());
3954
3955 dispatch_tree
3956 .dispatch_path(node_id)
3957 .iter()
3958 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3959 .collect()
3960 }
3961
3962 /// Returns all available actions for the focused element.
3963 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3964 let node_id = self
3965 .focus
3966 .and_then(|focus_id| {
3967 self.rendered_frame
3968 .dispatch_tree
3969 .focusable_node_id(focus_id)
3970 })
3971 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3972
3973 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3974 for action_type in cx.global_action_listeners.keys() {
3975 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3976 let action = cx.actions.build_action_type(action_type).ok();
3977 if let Some(action) = action {
3978 actions.insert(ix, action);
3979 }
3980 }
3981 }
3982 actions
3983 }
3984
3985 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3986 /// returned in the order they were added. For display, the last binding should take precedence.
3987 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3988 self.rendered_frame
3989 .dispatch_tree
3990 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3991 }
3992
3993 /// Returns the highest precedence key binding that invokes an action on the currently focused
3994 /// element. This is more efficient than getting the last result of `bindings_for_action`.
3995 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
3996 self.rendered_frame
3997 .dispatch_tree
3998 .highest_precedence_binding_for_action(
3999 action,
4000 &self.rendered_frame.dispatch_tree.context_stack,
4001 )
4002 }
4003
4004 /// Returns the key bindings for an action in a context.
4005 pub fn bindings_for_action_in_context(
4006 &self,
4007 action: &dyn Action,
4008 context: KeyContext,
4009 ) -> Vec<KeyBinding> {
4010 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4011 dispatch_tree.bindings_for_action(action, &[context])
4012 }
4013
4014 /// Returns the highest precedence key binding for an action in a context. This is more
4015 /// efficient than getting the last result of `bindings_for_action_in_context`.
4016 pub fn highest_precedence_binding_for_action_in_context(
4017 &self,
4018 action: &dyn Action,
4019 context: KeyContext,
4020 ) -> Option<KeyBinding> {
4021 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4022 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4023 }
4024
4025 /// Returns any bindings that would invoke an action on the given focus handle if it were
4026 /// focused. Bindings are returned in the order they were added. For display, the last binding
4027 /// should take precedence.
4028 pub fn bindings_for_action_in(
4029 &self,
4030 action: &dyn Action,
4031 focus_handle: &FocusHandle,
4032 ) -> Vec<KeyBinding> {
4033 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4034 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4035 return vec![];
4036 };
4037 dispatch_tree.bindings_for_action(action, &context_stack)
4038 }
4039
4040 /// Returns the highest precedence key binding that would invoke an action on the given focus
4041 /// handle if it were focused. This is more efficient than getting the last result of
4042 /// `bindings_for_action_in`.
4043 pub fn highest_precedence_binding_for_action_in(
4044 &self,
4045 action: &dyn Action,
4046 focus_handle: &FocusHandle,
4047 ) -> Option<KeyBinding> {
4048 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4049 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4050 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4051 }
4052
4053 fn context_stack_for_focus_handle(
4054 &self,
4055 focus_handle: &FocusHandle,
4056 ) -> Option<Vec<KeyContext>> {
4057 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4058 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4059 let context_stack: Vec<_> = dispatch_tree
4060 .dispatch_path(node_id)
4061 .into_iter()
4062 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4063 .collect();
4064 Some(context_stack)
4065 }
4066
4067 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4068 pub fn listener_for<V: Render, E>(
4069 &self,
4070 view: &Entity<V>,
4071 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4072 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4073 let view = view.downgrade();
4074 move |e: &E, window: &mut Window, cx: &mut App| {
4075 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4076 }
4077 }
4078
4079 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4080 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4081 &self,
4082 view: &Entity<V>,
4083 f: Callback,
4084 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4085 let view = view.downgrade();
4086 move |window: &mut Window, cx: &mut App| {
4087 view.update(cx, |view, cx| f(view, window, cx)).ok();
4088 }
4089 }
4090
4091 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4092 /// If the callback returns false, the window won't be closed.
4093 pub fn on_window_should_close(
4094 &self,
4095 cx: &App,
4096 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4097 ) {
4098 let mut cx = self.to_async(cx);
4099 self.platform_window.on_should_close(Box::new(move || {
4100 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4101 }))
4102 }
4103
4104 /// Register an action listener on the window for the next frame. The type of action
4105 /// is determined by the first parameter of the given listener. When the next frame is rendered
4106 /// the listener will be cleared.
4107 ///
4108 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4109 /// a specific need to register a global listener.
4110 pub fn on_action(
4111 &mut self,
4112 action_type: TypeId,
4113 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4114 ) {
4115 self.next_frame
4116 .dispatch_tree
4117 .on_action(action_type, Rc::new(listener));
4118 }
4119
4120 /// Read information about the GPU backing this window.
4121 /// Currently returns None on Mac and Windows.
4122 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4123 self.platform_window.gpu_specs()
4124 }
4125
4126 /// Perform titlebar double-click action.
4127 /// This is MacOS specific.
4128 pub fn titlebar_double_click(&self) {
4129 self.platform_window.titlebar_double_click();
4130 }
4131
4132 /// Toggles the inspector mode on this window.
4133 #[cfg(any(feature = "inspector", debug_assertions))]
4134 pub fn toggle_inspector(&mut self, cx: &mut App) {
4135 self.inspector = match self.inspector {
4136 None => Some(cx.new(|_| Inspector::new())),
4137 Some(_) => None,
4138 };
4139 self.refresh();
4140 }
4141
4142 /// Returns true if the window is in inspector mode.
4143 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4144 #[cfg(any(feature = "inspector", debug_assertions))]
4145 {
4146 if let Some(inspector) = &self.inspector {
4147 return inspector.read(_cx).is_picking();
4148 }
4149 }
4150 false
4151 }
4152
4153 /// Executes the provided function with mutable access to an inspector state.
4154 #[cfg(any(feature = "inspector", debug_assertions))]
4155 pub fn with_inspector_state<T: 'static, R>(
4156 &mut self,
4157 _inspector_id: Option<&crate::InspectorElementId>,
4158 cx: &mut App,
4159 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4160 ) -> R {
4161 if let Some(inspector_id) = _inspector_id {
4162 if let Some(inspector) = &self.inspector {
4163 let inspector = inspector.clone();
4164 let active_element_id = inspector.read(cx).active_element_id();
4165 if Some(inspector_id) == active_element_id {
4166 return inspector.update(cx, |inspector, _cx| {
4167 inspector.with_active_element_state(self, f)
4168 });
4169 }
4170 }
4171 }
4172 f(&mut None, self)
4173 }
4174
4175 #[cfg(any(feature = "inspector", debug_assertions))]
4176 pub(crate) fn build_inspector_element_id(
4177 &mut self,
4178 path: crate::InspectorElementPath,
4179 ) -> crate::InspectorElementId {
4180 self.invalidator.debug_assert_paint_or_prepaint();
4181 let path = Rc::new(path);
4182 let next_instance_id = self
4183 .next_frame
4184 .next_inspector_instance_ids
4185 .entry(path.clone())
4186 .or_insert(0);
4187 let instance_id = *next_instance_id;
4188 *next_instance_id += 1;
4189 crate::InspectorElementId { path, instance_id }
4190 }
4191
4192 #[cfg(any(feature = "inspector", debug_assertions))]
4193 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4194 if let Some(inspector) = self.inspector.take() {
4195 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4196 inspector_element.prepaint_as_root(
4197 point(self.viewport_size.width - inspector_width, px(0.0)),
4198 size(inspector_width, self.viewport_size.height).into(),
4199 self,
4200 cx,
4201 );
4202 self.inspector = Some(inspector);
4203 Some(inspector_element)
4204 } else {
4205 None
4206 }
4207 }
4208
4209 #[cfg(any(feature = "inspector", debug_assertions))]
4210 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4211 if let Some(mut inspector_element) = inspector_element {
4212 inspector_element.paint(self, cx);
4213 };
4214 }
4215
4216 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4217 /// inspect UI elements by clicking on them.
4218 #[cfg(any(feature = "inspector", debug_assertions))]
4219 pub fn insert_inspector_hitbox(
4220 &mut self,
4221 hitbox_id: HitboxId,
4222 inspector_id: Option<&crate::InspectorElementId>,
4223 cx: &App,
4224 ) {
4225 self.invalidator.debug_assert_paint_or_prepaint();
4226 if !self.is_inspector_picking(cx) {
4227 return;
4228 }
4229 if let Some(inspector_id) = inspector_id {
4230 self.next_frame
4231 .inspector_hitboxes
4232 .insert(hitbox_id, inspector_id.clone());
4233 }
4234 }
4235
4236 #[cfg(any(feature = "inspector", debug_assertions))]
4237 fn paint_inspector_hitbox(&mut self, cx: &App) {
4238 if let Some(inspector) = self.inspector.as_ref() {
4239 let inspector = inspector.read(cx);
4240 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4241 {
4242 if let Some(hitbox) = self
4243 .next_frame
4244 .hitboxes
4245 .iter()
4246 .find(|hitbox| hitbox.id == hitbox_id)
4247 {
4248 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4249 }
4250 }
4251 }
4252 }
4253
4254 #[cfg(any(feature = "inspector", debug_assertions))]
4255 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4256 let Some(inspector) = self.inspector.clone() else {
4257 return;
4258 };
4259 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4260 inspector.update(cx, |inspector, _cx| {
4261 if let Some((_, inspector_id)) =
4262 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4263 {
4264 inspector.hover(inspector_id, self);
4265 }
4266 });
4267 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4268 inspector.update(cx, |inspector, _cx| {
4269 if let Some((_, inspector_id)) =
4270 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4271 {
4272 inspector.select(inspector_id, self);
4273 }
4274 });
4275 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4276 // This should be kept in sync with SCROLL_LINES in x11 platform.
4277 const SCROLL_LINES: f32 = 3.0;
4278 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4279 let delta_y = event
4280 .delta
4281 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4282 .y;
4283 if let Some(inspector) = self.inspector.clone() {
4284 inspector.update(cx, |inspector, _cx| {
4285 if let Some(depth) = inspector.pick_depth.as_mut() {
4286 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4287 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4288 if *depth < 0.0 {
4289 *depth = 0.0;
4290 } else if *depth > max_depth {
4291 *depth = max_depth;
4292 }
4293 if let Some((_, inspector_id)) =
4294 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4295 {
4296 inspector.set_active_element_id(inspector_id.clone(), self);
4297 }
4298 }
4299 });
4300 }
4301 }
4302 }
4303
4304 #[cfg(any(feature = "inspector", debug_assertions))]
4305 fn hovered_inspector_hitbox(
4306 &self,
4307 inspector: &Inspector,
4308 frame: &Frame,
4309 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4310 if let Some(pick_depth) = inspector.pick_depth {
4311 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4312 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4313 let skip_count = (depth as usize).min(max_skipped);
4314 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4315 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4316 return Some((*hitbox_id, inspector_id.clone()));
4317 }
4318 }
4319 }
4320 return None;
4321 }
4322}
4323
4324// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4325slotmap::new_key_type! {
4326 /// A unique identifier for a window.
4327 pub struct WindowId;
4328}
4329
4330impl WindowId {
4331 /// Converts this window ID to a `u64`.
4332 pub fn as_u64(&self) -> u64 {
4333 self.0.as_ffi()
4334 }
4335}
4336
4337impl From<u64> for WindowId {
4338 fn from(value: u64) -> Self {
4339 WindowId(slotmap::KeyData::from_ffi(value))
4340 }
4341}
4342
4343/// A handle to a window with a specific root view type.
4344/// Note that this does not keep the window alive on its own.
4345#[derive(Deref, DerefMut)]
4346pub struct WindowHandle<V> {
4347 #[deref]
4348 #[deref_mut]
4349 pub(crate) any_handle: AnyWindowHandle,
4350 state_type: PhantomData<V>,
4351}
4352
4353impl<V: 'static + Render> WindowHandle<V> {
4354 /// Creates a new handle from a window ID.
4355 /// This does not check if the root type of the window is `V`.
4356 pub fn new(id: WindowId) -> Self {
4357 WindowHandle {
4358 any_handle: AnyWindowHandle {
4359 id,
4360 state_type: TypeId::of::<V>(),
4361 },
4362 state_type: PhantomData,
4363 }
4364 }
4365
4366 /// Get the root view out of this window.
4367 ///
4368 /// This will fail if the window is closed or if the root view's type does not match `V`.
4369 #[cfg(any(test, feature = "test-support"))]
4370 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4371 where
4372 C: AppContext,
4373 {
4374 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4375 root_view
4376 .downcast::<V>()
4377 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4378 }))
4379 }
4380
4381 /// Updates the root view of this window.
4382 ///
4383 /// This will fail if the window has been closed or if the root view's type does not match
4384 pub fn update<C, R>(
4385 &self,
4386 cx: &mut C,
4387 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4388 ) -> Result<R>
4389 where
4390 C: AppContext,
4391 {
4392 cx.update_window(self.any_handle, |root_view, window, cx| {
4393 let view = root_view
4394 .downcast::<V>()
4395 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4396
4397 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4398 })?
4399 }
4400
4401 /// Read the root view out of this window.
4402 ///
4403 /// This will fail if the window is closed or if the root view's type does not match `V`.
4404 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4405 let x = cx
4406 .windows
4407 .get(self.id)
4408 .and_then(|window| {
4409 window
4410 .as_ref()
4411 .and_then(|window| window.root.clone())
4412 .map(|root_view| root_view.downcast::<V>())
4413 })
4414 .context("window not found")?
4415 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4416
4417 Ok(x.read(cx))
4418 }
4419
4420 /// Read the root view out of this window, with a callback
4421 ///
4422 /// This will fail if the window is closed or if the root view's type does not match `V`.
4423 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4424 where
4425 C: AppContext,
4426 {
4427 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4428 }
4429
4430 /// Read the root view pointer off of this window.
4431 ///
4432 /// This will fail if the window is closed or if the root view's type does not match `V`.
4433 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4434 where
4435 C: AppContext,
4436 {
4437 cx.read_window(self, |root_view, _cx| root_view.clone())
4438 }
4439
4440 /// Check if this window is 'active'.
4441 ///
4442 /// Will return `None` if the window is closed or currently
4443 /// borrowed.
4444 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4445 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4446 .ok()
4447 }
4448}
4449
4450impl<V> Copy for WindowHandle<V> {}
4451
4452impl<V> Clone for WindowHandle<V> {
4453 fn clone(&self) -> Self {
4454 *self
4455 }
4456}
4457
4458impl<V> PartialEq for WindowHandle<V> {
4459 fn eq(&self, other: &Self) -> bool {
4460 self.any_handle == other.any_handle
4461 }
4462}
4463
4464impl<V> Eq for WindowHandle<V> {}
4465
4466impl<V> Hash for WindowHandle<V> {
4467 fn hash<H: Hasher>(&self, state: &mut H) {
4468 self.any_handle.hash(state);
4469 }
4470}
4471
4472impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4473 fn from(val: WindowHandle<V>) -> Self {
4474 val.any_handle
4475 }
4476}
4477
4478unsafe impl<V> Send for WindowHandle<V> {}
4479unsafe impl<V> Sync for WindowHandle<V> {}
4480
4481/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4482#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4483pub struct AnyWindowHandle {
4484 pub(crate) id: WindowId,
4485 state_type: TypeId,
4486}
4487
4488impl AnyWindowHandle {
4489 /// Get the ID of this window.
4490 pub fn window_id(&self) -> WindowId {
4491 self.id
4492 }
4493
4494 /// Attempt to convert this handle to a window handle with a specific root view type.
4495 /// If the types do not match, this will return `None`.
4496 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4497 if TypeId::of::<T>() == self.state_type {
4498 Some(WindowHandle {
4499 any_handle: *self,
4500 state_type: PhantomData,
4501 })
4502 } else {
4503 None
4504 }
4505 }
4506
4507 /// Updates the state of the root view of this window.
4508 ///
4509 /// This will fail if the window has been closed.
4510 pub fn update<C, R>(
4511 self,
4512 cx: &mut C,
4513 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4514 ) -> Result<R>
4515 where
4516 C: AppContext,
4517 {
4518 cx.update_window(self, update)
4519 }
4520
4521 /// Read the state of the root view of this window.
4522 ///
4523 /// This will fail if the window has been closed.
4524 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4525 where
4526 C: AppContext,
4527 T: 'static,
4528 {
4529 let view = self
4530 .downcast::<T>()
4531 .context("the type of the window's root view has changed")?;
4532
4533 cx.read_window(&view, read)
4534 }
4535}
4536
4537impl HasWindowHandle for Window {
4538 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4539 self.platform_window.window_handle()
4540 }
4541}
4542
4543impl HasDisplayHandle for Window {
4544 fn display_handle(
4545 &self,
4546 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4547 self.platform_window.display_handle()
4548 }
4549}
4550
4551/// An identifier for an [`Element`](crate::Element).
4552///
4553/// Can be constructed with a string, a number, or both, as well
4554/// as other internal representations.
4555#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4556pub enum ElementId {
4557 /// The ID of a View element
4558 View(EntityId),
4559 /// An integer ID.
4560 Integer(u64),
4561 /// A string based ID.
4562 Name(SharedString),
4563 /// A UUID.
4564 Uuid(Uuid),
4565 /// An ID that's equated with a focus handle.
4566 FocusHandle(FocusId),
4567 /// A combination of a name and an integer.
4568 NamedInteger(SharedString, u64),
4569 /// A path.
4570 Path(Arc<std::path::Path>),
4571}
4572
4573impl ElementId {
4574 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4575 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4576 Self::NamedInteger(name.into(), integer as u64)
4577 }
4578}
4579
4580impl Display for ElementId {
4581 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4582 match self {
4583 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4584 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4585 ElementId::Name(name) => write!(f, "{}", name)?,
4586 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4587 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4588 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4589 ElementId::Path(path) => write!(f, "{}", path.display())?,
4590 }
4591
4592 Ok(())
4593 }
4594}
4595
4596impl TryInto<SharedString> for ElementId {
4597 type Error = anyhow::Error;
4598
4599 fn try_into(self) -> anyhow::Result<SharedString> {
4600 if let ElementId::Name(name) = self {
4601 Ok(name)
4602 } else {
4603 anyhow::bail!("element id is not string")
4604 }
4605 }
4606}
4607
4608impl From<usize> for ElementId {
4609 fn from(id: usize) -> Self {
4610 ElementId::Integer(id as u64)
4611 }
4612}
4613
4614impl From<i32> for ElementId {
4615 fn from(id: i32) -> Self {
4616 Self::Integer(id as u64)
4617 }
4618}
4619
4620impl From<SharedString> for ElementId {
4621 fn from(name: SharedString) -> Self {
4622 ElementId::Name(name)
4623 }
4624}
4625
4626impl From<Arc<std::path::Path>> for ElementId {
4627 fn from(path: Arc<std::path::Path>) -> Self {
4628 ElementId::Path(path)
4629 }
4630}
4631
4632impl From<&'static str> for ElementId {
4633 fn from(name: &'static str) -> Self {
4634 ElementId::Name(name.into())
4635 }
4636}
4637
4638impl<'a> From<&'a FocusHandle> for ElementId {
4639 fn from(handle: &'a FocusHandle) -> Self {
4640 ElementId::FocusHandle(handle.id)
4641 }
4642}
4643
4644impl From<(&'static str, EntityId)> for ElementId {
4645 fn from((name, id): (&'static str, EntityId)) -> Self {
4646 ElementId::NamedInteger(name.into(), id.as_u64())
4647 }
4648}
4649
4650impl From<(&'static str, usize)> for ElementId {
4651 fn from((name, id): (&'static str, usize)) -> Self {
4652 ElementId::NamedInteger(name.into(), id as u64)
4653 }
4654}
4655
4656impl From<(SharedString, usize)> for ElementId {
4657 fn from((name, id): (SharedString, usize)) -> Self {
4658 ElementId::NamedInteger(name, id as u64)
4659 }
4660}
4661
4662impl From<(&'static str, u64)> for ElementId {
4663 fn from((name, id): (&'static str, u64)) -> Self {
4664 ElementId::NamedInteger(name.into(), id)
4665 }
4666}
4667
4668impl From<Uuid> for ElementId {
4669 fn from(value: Uuid) -> Self {
4670 Self::Uuid(value)
4671 }
4672}
4673
4674impl From<(&'static str, u32)> for ElementId {
4675 fn from((name, id): (&'static str, u32)) -> Self {
4676 ElementId::NamedInteger(name.into(), id.into())
4677 }
4678}
4679
4680/// A rectangle to be rendered in the window at the given position and size.
4681/// Passed as an argument [`Window::paint_quad`].
4682#[derive(Clone)]
4683pub struct PaintQuad {
4684 /// The bounds of the quad within the window.
4685 pub bounds: Bounds<Pixels>,
4686 /// The radii of the quad's corners.
4687 pub corner_radii: Corners<Pixels>,
4688 /// The background color of the quad.
4689 pub background: Background,
4690 /// The widths of the quad's borders.
4691 pub border_widths: Edges<Pixels>,
4692 /// The color of the quad's borders.
4693 pub border_color: Hsla,
4694 /// The style of the quad's borders.
4695 pub border_style: BorderStyle,
4696}
4697
4698impl PaintQuad {
4699 /// Sets the corner radii of the quad.
4700 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4701 PaintQuad {
4702 corner_radii: corner_radii.into(),
4703 ..self
4704 }
4705 }
4706
4707 /// Sets the border widths of the quad.
4708 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4709 PaintQuad {
4710 border_widths: border_widths.into(),
4711 ..self
4712 }
4713 }
4714
4715 /// Sets the border color of the quad.
4716 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4717 PaintQuad {
4718 border_color: border_color.into(),
4719 ..self
4720 }
4721 }
4722
4723 /// Sets the background color of the quad.
4724 pub fn background(self, background: impl Into<Background>) -> Self {
4725 PaintQuad {
4726 background: background.into(),
4727 ..self
4728 }
4729 }
4730}
4731
4732/// Creates a quad with the given parameters.
4733pub fn quad(
4734 bounds: Bounds<Pixels>,
4735 corner_radii: impl Into<Corners<Pixels>>,
4736 background: impl Into<Background>,
4737 border_widths: impl Into<Edges<Pixels>>,
4738 border_color: impl Into<Hsla>,
4739 border_style: BorderStyle,
4740) -> PaintQuad {
4741 PaintQuad {
4742 bounds,
4743 corner_radii: corner_radii.into(),
4744 background: background.into(),
4745 border_widths: border_widths.into(),
4746 border_color: border_color.into(),
4747 border_style,
4748 }
4749}
4750
4751/// Creates a filled quad with the given bounds and background color.
4752pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4753 PaintQuad {
4754 bounds: bounds.into(),
4755 corner_radii: (0.).into(),
4756 background: background.into(),
4757 border_widths: (0.).into(),
4758 border_color: transparent_black(),
4759 border_style: BorderStyle::default(),
4760 }
4761}
4762
4763/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4764pub fn outline(
4765 bounds: impl Into<Bounds<Pixels>>,
4766 border_color: impl Into<Hsla>,
4767 border_style: BorderStyle,
4768) -> PaintQuad {
4769 PaintQuad {
4770 bounds: bounds.into(),
4771 corner_radii: (0.).into(),
4772 background: transparent_black().into(),
4773 border_widths: (1.).into(),
4774 border_color: border_color.into(),
4775 border_style,
4776 }
4777}