1#[cfg(any(feature = "inspector", debug_assertions))]
2use crate::Inspector;
3use crate::{
4 Action, AnyDrag, AnyElement, AnyImageCache, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
5 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Capslock,
6 Context, Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener,
7 DispatchNodeId, DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter,
8 FileDropEvent, FontId, Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero,
9 KeyBinding, KeyContext, KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId,
10 LineLayoutIndex, Modifiers, ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent,
11 MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput,
12 PlatformInputHandler, PlatformWindow, Point, PolychromeSprite, PromptButton, PromptLevel, Quad,
13 Render, RenderGlyphParams, RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge,
14 SMOOTH_SVG_SCALE_FACTOR, SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size,
15 StrikethroughStyle, Style, SubscriberSet, Subscription, TabHandles, TaffyLayoutEngine, Task,
16 TextStyle, TextStyleRefinement, TransformationMatrix, Underline, UnderlineStyle,
17 WindowAppearance, WindowBackgroundAppearance, WindowBounds, WindowControls, WindowDecorations,
18 WindowOptions, WindowParams, WindowTextSystem, point, prelude::*, px, rems, size,
19 transparent_black,
20};
21use anyhow::{Context as _, Result, anyhow};
22use collections::{FxHashMap, FxHashSet};
23#[cfg(target_os = "macos")]
24use core_video::pixel_buffer::CVPixelBuffer;
25use derive_more::{Deref, DerefMut};
26use futures::FutureExt;
27use futures::channel::oneshot;
28use itertools::FoldWhile::{Continue, Done};
29use itertools::Itertools;
30use parking_lot::RwLock;
31use raw_window_handle::{HandleError, HasDisplayHandle, HasWindowHandle};
32use refineable::Refineable;
33use slotmap::SlotMap;
34use smallvec::SmallVec;
35use std::{
36 any::{Any, TypeId},
37 borrow::Cow,
38 cell::{Cell, RefCell},
39 cmp,
40 fmt::{Debug, Display},
41 hash::{Hash, Hasher},
42 marker::PhantomData,
43 mem,
44 ops::{DerefMut, Range},
45 rc::Rc,
46 sync::{
47 Arc, Weak,
48 atomic::{AtomicUsize, Ordering::SeqCst},
49 },
50 time::{Duration, Instant},
51};
52use util::post_inc;
53use util::{ResultExt, measure};
54use uuid::Uuid;
55
56mod prompts;
57
58use crate::util::atomic_incr_if_not_zero;
59pub use prompts::*;
60
61pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
62
63/// Represents the two different phases when dispatching events.
64#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
65pub enum DispatchPhase {
66 /// After the capture phase comes the bubble phase, in which mouse event listeners are
67 /// invoked front to back and keyboard event listeners are invoked from the focused element
68 /// to the root of the element tree. This is the phase you'll most commonly want to use when
69 /// registering event listeners.
70 #[default]
71 Bubble,
72 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
73 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
74 /// is used for special purposes such as clearing the "pressed" state for click events. If
75 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
76 /// outside of the immediate region may rely on detecting non-local events during this phase.
77 Capture,
78}
79
80impl DispatchPhase {
81 /// Returns true if this represents the "bubble" phase.
82 #[inline]
83 pub fn bubble(self) -> bool {
84 self == DispatchPhase::Bubble
85 }
86
87 /// Returns true if this represents the "capture" phase.
88 #[inline]
89 pub fn capture(self) -> bool {
90 self == DispatchPhase::Capture
91 }
92}
93
94struct WindowInvalidatorInner {
95 pub dirty: bool,
96 pub draw_phase: DrawPhase,
97 pub dirty_views: FxHashSet<EntityId>,
98}
99
100#[derive(Clone)]
101pub(crate) struct WindowInvalidator {
102 inner: Rc<RefCell<WindowInvalidatorInner>>,
103}
104
105impl WindowInvalidator {
106 pub fn new() -> Self {
107 WindowInvalidator {
108 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
109 dirty: true,
110 draw_phase: DrawPhase::None,
111 dirty_views: FxHashSet::default(),
112 })),
113 }
114 }
115
116 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
117 let mut inner = self.inner.borrow_mut();
118 inner.dirty_views.insert(entity);
119 if inner.draw_phase == DrawPhase::None {
120 inner.dirty = true;
121 cx.push_effect(Effect::Notify { emitter: entity });
122 true
123 } else {
124 false
125 }
126 }
127
128 pub fn is_dirty(&self) -> bool {
129 self.inner.borrow().dirty
130 }
131
132 pub fn set_dirty(&self, dirty: bool) {
133 self.inner.borrow_mut().dirty = dirty
134 }
135
136 pub fn set_phase(&self, phase: DrawPhase) {
137 self.inner.borrow_mut().draw_phase = phase
138 }
139
140 pub fn take_views(&self) -> FxHashSet<EntityId> {
141 mem::take(&mut self.inner.borrow_mut().dirty_views)
142 }
143
144 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
145 self.inner.borrow_mut().dirty_views = views;
146 }
147
148 pub fn not_drawing(&self) -> bool {
149 self.inner.borrow().draw_phase == DrawPhase::None
150 }
151
152 #[track_caller]
153 pub fn debug_assert_paint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
156 "this method can only be called during paint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_prepaint(&self) {
162 debug_assert!(
163 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
164 "this method can only be called during request_layout, or prepaint"
165 );
166 }
167
168 #[track_caller]
169 pub fn debug_assert_paint_or_prepaint(&self) {
170 debug_assert!(
171 matches!(
172 self.inner.borrow().draw_phase,
173 DrawPhase::Paint | DrawPhase::Prepaint
174 ),
175 "this method can only be called during request_layout, prepaint, or paint"
176 );
177 }
178}
179
180type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
181
182pub(crate) type AnyWindowFocusListener =
183 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
184
185pub(crate) struct WindowFocusEvent {
186 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
187 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
188}
189
190impl WindowFocusEvent {
191 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
192 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
193 }
194
195 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
196 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
197 }
198}
199
200/// This is provided when subscribing for `Context::on_focus_out` events.
201pub struct FocusOutEvent {
202 /// A weak focus handle representing what was blurred.
203 pub blurred: WeakFocusHandle,
204}
205
206slotmap::new_key_type! {
207 /// A globally unique identifier for a focusable element.
208 pub struct FocusId;
209}
210
211thread_local! {
212 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(1024 * 1024));
213}
214
215/// Returned when the element arena has been used and so must be cleared before the next draw.
216#[must_use]
217pub struct ArenaClearNeeded;
218
219impl ArenaClearNeeded {
220 /// Clear the element arena.
221 pub fn clear(self) {
222 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
223 element_arena.clear();
224 });
225 }
226}
227
228pub(crate) type FocusMap = RwLock<SlotMap<FocusId, FocusRef>>;
229pub(crate) struct FocusRef {
230 pub(crate) ref_count: AtomicUsize,
231 pub(crate) tab_index: isize,
232 pub(crate) tab_stop: bool,
233}
234
235impl FocusId {
236 /// Obtains whether the element associated with this handle is currently focused.
237 pub fn is_focused(&self, window: &Window) -> bool {
238 window.focus == Some(*self)
239 }
240
241 /// Obtains whether the element associated with this handle contains the focused
242 /// element or is itself focused.
243 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
244 window
245 .focused(cx)
246 .is_some_and(|focused| self.contains(focused.id, window))
247 }
248
249 /// Obtains whether the element associated with this handle is contained within the
250 /// focused element or is itself focused.
251 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
252 let focused = window.focused(cx);
253 focused.is_some_and(|focused| focused.id.contains(*self, window))
254 }
255
256 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
257 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
258 window
259 .rendered_frame
260 .dispatch_tree
261 .focus_contains(*self, other)
262 }
263}
264
265/// A handle which can be used to track and manipulate the focused element in a window.
266pub struct FocusHandle {
267 pub(crate) id: FocusId,
268 handles: Arc<FocusMap>,
269 /// The index of this element in the tab order.
270 pub tab_index: isize,
271 /// Whether this element can be focused by tab navigation.
272 pub tab_stop: bool,
273}
274
275impl std::fmt::Debug for FocusHandle {
276 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
277 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
278 }
279}
280
281impl FocusHandle {
282 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
283 let id = handles.write().insert(FocusRef {
284 ref_count: AtomicUsize::new(1),
285 tab_index: 0,
286 tab_stop: false,
287 });
288
289 Self {
290 id,
291 tab_index: 0,
292 tab_stop: false,
293 handles: handles.clone(),
294 }
295 }
296
297 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
298 let lock = handles.read();
299 let focus = lock.get(id)?;
300 if atomic_incr_if_not_zero(&focus.ref_count) == 0 {
301 return None;
302 }
303 Some(Self {
304 id,
305 tab_index: focus.tab_index,
306 tab_stop: focus.tab_stop,
307 handles: handles.clone(),
308 })
309 }
310
311 /// Sets the tab index of the element associated with this handle.
312 pub fn tab_index(mut self, index: isize) -> Self {
313 self.tab_index = index;
314 if let Some(focus) = self.handles.write().get_mut(self.id) {
315 focus.tab_index = index;
316 }
317 self
318 }
319
320 /// Sets whether the element associated with this handle is a tab stop.
321 ///
322 /// When `false`, the element will not be included in the tab order.
323 pub fn tab_stop(mut self, tab_stop: bool) -> Self {
324 self.tab_stop = tab_stop;
325 if let Some(focus) = self.handles.write().get_mut(self.id) {
326 focus.tab_stop = tab_stop;
327 }
328 self
329 }
330
331 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
332 pub fn downgrade(&self) -> WeakFocusHandle {
333 WeakFocusHandle {
334 id: self.id,
335 handles: Arc::downgrade(&self.handles),
336 }
337 }
338
339 /// Moves the focus to the element associated with this handle.
340 pub fn focus(&self, window: &mut Window) {
341 window.focus(self)
342 }
343
344 /// Obtains whether the element associated with this handle is currently focused.
345 pub fn is_focused(&self, window: &Window) -> bool {
346 self.id.is_focused(window)
347 }
348
349 /// Obtains whether the element associated with this handle contains the focused
350 /// element or is itself focused.
351 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
352 self.id.contains_focused(window, cx)
353 }
354
355 /// Obtains whether the element associated with this handle is contained within the
356 /// focused element or is itself focused.
357 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
358 self.id.within_focused(window, cx)
359 }
360
361 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
362 pub fn contains(&self, other: &Self, window: &Window) -> bool {
363 self.id.contains(other.id, window)
364 }
365
366 /// Dispatch an action on the element that rendered this focus handle
367 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
368 if let Some(node_id) = window
369 .rendered_frame
370 .dispatch_tree
371 .focusable_node_id(self.id)
372 {
373 window.dispatch_action_on_node(node_id, action, cx)
374 }
375 }
376}
377
378impl Clone for FocusHandle {
379 fn clone(&self) -> Self {
380 Self::for_id(self.id, &self.handles).unwrap()
381 }
382}
383
384impl PartialEq for FocusHandle {
385 fn eq(&self, other: &Self) -> bool {
386 self.id == other.id
387 }
388}
389
390impl Eq for FocusHandle {}
391
392impl Drop for FocusHandle {
393 fn drop(&mut self) {
394 self.handles
395 .read()
396 .get(self.id)
397 .unwrap()
398 .ref_count
399 .fetch_sub(1, SeqCst);
400 }
401}
402
403/// A weak reference to a focus handle.
404#[derive(Clone, Debug)]
405pub struct WeakFocusHandle {
406 pub(crate) id: FocusId,
407 pub(crate) handles: Weak<FocusMap>,
408}
409
410impl WeakFocusHandle {
411 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
412 pub fn upgrade(&self) -> Option<FocusHandle> {
413 let handles = self.handles.upgrade()?;
414 FocusHandle::for_id(self.id, &handles)
415 }
416}
417
418impl PartialEq for WeakFocusHandle {
419 fn eq(&self, other: &WeakFocusHandle) -> bool {
420 self.id == other.id
421 }
422}
423
424impl Eq for WeakFocusHandle {}
425
426impl PartialEq<FocusHandle> for WeakFocusHandle {
427 fn eq(&self, other: &FocusHandle) -> bool {
428 self.id == other.id
429 }
430}
431
432impl PartialEq<WeakFocusHandle> for FocusHandle {
433 fn eq(&self, other: &WeakFocusHandle) -> bool {
434 self.id == other.id
435 }
436}
437
438/// Focusable allows users of your view to easily
439/// focus it (using window.focus_view(cx, view))
440pub trait Focusable: 'static {
441 /// Returns the focus handle associated with this view.
442 fn focus_handle(&self, cx: &App) -> FocusHandle;
443}
444
445impl<V: Focusable> Focusable for Entity<V> {
446 fn focus_handle(&self, cx: &App) -> FocusHandle {
447 self.read(cx).focus_handle(cx)
448 }
449}
450
451/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
452/// where the lifecycle of the view is handled by another view.
453pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
454
455impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
456
457/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
458pub struct DismissEvent;
459
460type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
461
462pub(crate) type AnyMouseListener =
463 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
464
465#[derive(Clone)]
466pub(crate) struct CursorStyleRequest {
467 pub(crate) hitbox_id: Option<HitboxId>,
468 pub(crate) style: CursorStyle,
469}
470
471#[derive(Default, Eq, PartialEq)]
472pub(crate) struct HitTest {
473 pub(crate) ids: SmallVec<[HitboxId; 8]>,
474 pub(crate) hover_hitbox_count: usize,
475}
476
477/// A type of window control area that corresponds to the platform window.
478#[derive(Clone, Copy, Debug, Eq, PartialEq)]
479pub enum WindowControlArea {
480 /// An area that allows dragging of the platform window.
481 Drag,
482 /// An area that allows closing of the platform window.
483 Close,
484 /// An area that allows maximizing of the platform window.
485 Max,
486 /// An area that allows minimizing of the platform window.
487 Min,
488}
489
490/// An identifier for a [Hitbox] which also includes [HitboxBehavior].
491#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
492pub struct HitboxId(u64);
493
494impl HitboxId {
495 /// Checks if the hitbox with this ID is currently hovered. Except when handling
496 /// `ScrollWheelEvent`, this is typically what you want when determining whether to handle mouse
497 /// events or paint hover styles.
498 ///
499 /// See [`Hitbox::is_hovered`] for details.
500 pub fn is_hovered(self, window: &Window) -> bool {
501 let hit_test = &window.mouse_hit_test;
502 for id in hit_test.ids.iter().take(hit_test.hover_hitbox_count) {
503 if self == *id {
504 return true;
505 }
506 }
507 false
508 }
509
510 /// Checks if the hitbox with this ID contains the mouse and should handle scroll events.
511 /// Typically this should only be used when handling `ScrollWheelEvent`, and otherwise
512 /// `is_hovered` should be used. See the documentation of `Hitbox::is_hovered` for details about
513 /// this distinction.
514 pub fn should_handle_scroll(self, window: &Window) -> bool {
515 window.mouse_hit_test.ids.contains(&self)
516 }
517
518 fn next(mut self) -> HitboxId {
519 HitboxId(self.0.wrapping_add(1))
520 }
521}
522
523/// A rectangular region that potentially blocks hitboxes inserted prior.
524/// See [Window::insert_hitbox] for more details.
525#[derive(Clone, Debug, Deref)]
526pub struct Hitbox {
527 /// A unique identifier for the hitbox.
528 pub id: HitboxId,
529 /// The bounds of the hitbox.
530 #[deref]
531 pub bounds: Bounds<Pixels>,
532 /// The content mask when the hitbox was inserted.
533 pub content_mask: ContentMask<Pixels>,
534 /// Flags that specify hitbox behavior.
535 pub behavior: HitboxBehavior,
536}
537
538impl Hitbox {
539 /// Checks if the hitbox is currently hovered. Except when handling `ScrollWheelEvent`, this is
540 /// typically what you want when determining whether to handle mouse events or paint hover
541 /// styles.
542 ///
543 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
544 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`) or
545 /// `HitboxBehavior::BlockMouseExceptScroll` (`InteractiveElement::block_mouse_except_scroll`).
546 ///
547 /// Handling of `ScrollWheelEvent` should typically use `should_handle_scroll` instead.
548 /// Concretely, this is due to use-cases like overlays that cause the elements under to be
549 /// non-interactive while still allowing scrolling. More abstractly, this is because
550 /// `is_hovered` is about element interactions directly under the mouse - mouse moves, clicks,
551 /// hover styling, etc. In contrast, scrolling is about finding the current outer scrollable
552 /// container.
553 pub fn is_hovered(&self, window: &Window) -> bool {
554 self.id.is_hovered(window)
555 }
556
557 /// Checks if the hitbox contains the mouse and should handle scroll events. Typically this
558 /// should only be used when handling `ScrollWheelEvent`, and otherwise `is_hovered` should be
559 /// used. See the documentation of `Hitbox::is_hovered` for details about this distinction.
560 ///
561 /// This can return `false` even when the hitbox contains the mouse, if a hitbox in front of
562 /// this sets `HitboxBehavior::BlockMouse` (`InteractiveElement::occlude`).
563 pub fn should_handle_scroll(&self, window: &Window) -> bool {
564 self.id.should_handle_scroll(window)
565 }
566}
567
568/// How the hitbox affects mouse behavior.
569#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
570pub enum HitboxBehavior {
571 /// Normal hitbox mouse behavior, doesn't affect mouse handling for other hitboxes.
572 #[default]
573 Normal,
574
575 /// All hitboxes behind this hitbox will be ignored and so will have `hitbox.is_hovered() ==
576 /// false` and `hitbox.should_handle_scroll() == false`. Typically for elements this causes
577 /// skipping of all mouse events, hover styles, and tooltips. This flag is set by
578 /// [`InteractiveElement::occlude`].
579 ///
580 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
581 /// bubble-phase handler for every mouse event type:
582 ///
583 /// ```
584 /// window.on_mouse_event(move |_: &EveryMouseEventTypeHere, phase, window, cx| {
585 /// if phase == DispatchPhase::Capture && hitbox.is_hovered(window) {
586 /// cx.stop_propagation();
587 /// }
588 /// }
589 /// ```
590 ///
591 /// This has effects beyond event handling - any use of hitbox checking, such as hover
592 /// styles and tooltops. These other behaviors are the main point of this mechanism. An
593 /// alternative might be to not affect mouse event handling - but this would allow
594 /// inconsistent UI where clicks and moves interact with elements that are not considered to
595 /// be hovered.
596 BlockMouse,
597
598 /// All hitboxes behind this hitbox will have `hitbox.is_hovered() == false`, even when
599 /// `hitbox.should_handle_scroll() == true`. Typically for elements this causes all mouse
600 /// interaction except scroll events to be ignored - see the documentation of
601 /// [`Hitbox::is_hovered`] for details. This flag is set by
602 /// [`InteractiveElement::block_mouse_except_scroll`].
603 ///
604 /// For mouse handlers that check those hitboxes, this behaves the same as registering a
605 /// bubble-phase handler for every mouse event type **except** `ScrollWheelEvent`:
606 ///
607 /// ```
608 /// window.on_mouse_event(move |_: &EveryMouseEventTypeExceptScroll, phase, window, _cx| {
609 /// if phase == DispatchPhase::Bubble && hitbox.should_handle_scroll(window) {
610 /// cx.stop_propagation();
611 /// }
612 /// }
613 /// ```
614 ///
615 /// See the documentation of [`Hitbox::is_hovered`] for details of why `ScrollWheelEvent` is
616 /// handled differently than other mouse events. If also blocking these scroll events is
617 /// desired, then a `cx.stop_propagation()` handler like the one above can be used.
618 ///
619 /// This has effects beyond event handling - this affects any use of `is_hovered`, such as
620 /// hover styles and tooltops. These other behaviors are the main point of this mechanism.
621 /// An alternative might be to not affect mouse event handling - but this would allow
622 /// inconsistent UI where clicks and moves interact with elements that are not considered to
623 /// be hovered.
624 BlockMouseExceptScroll,
625}
626
627/// An identifier for a tooltip.
628#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
629pub struct TooltipId(usize);
630
631impl TooltipId {
632 /// Checks if the tooltip is currently hovered.
633 pub fn is_hovered(&self, window: &Window) -> bool {
634 window
635 .tooltip_bounds
636 .as_ref()
637 .is_some_and(|tooltip_bounds| {
638 tooltip_bounds.id == *self
639 && tooltip_bounds.bounds.contains(&window.mouse_position())
640 })
641 }
642}
643
644pub(crate) struct TooltipBounds {
645 id: TooltipId,
646 bounds: Bounds<Pixels>,
647}
648
649#[derive(Clone)]
650pub(crate) struct TooltipRequest {
651 id: TooltipId,
652 tooltip: AnyTooltip,
653}
654
655pub(crate) struct DeferredDraw {
656 current_view: EntityId,
657 priority: usize,
658 parent_node: DispatchNodeId,
659 element_id_stack: SmallVec<[ElementId; 32]>,
660 text_style_stack: Vec<TextStyleRefinement>,
661 element: Option<AnyElement>,
662 absolute_offset: Point<Pixels>,
663 prepaint_range: Range<PrepaintStateIndex>,
664 paint_range: Range<PaintIndex>,
665}
666
667pub(crate) struct Frame {
668 pub(crate) focus: Option<FocusId>,
669 pub(crate) window_active: bool,
670 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
671 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
672 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
673 pub(crate) dispatch_tree: DispatchTree,
674 pub(crate) scene: Scene,
675 pub(crate) hitboxes: Vec<Hitbox>,
676 pub(crate) window_control_hitboxes: Vec<(WindowControlArea, Hitbox)>,
677 pub(crate) deferred_draws: Vec<DeferredDraw>,
678 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
679 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
680 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
681 #[cfg(any(test, feature = "test-support"))]
682 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
683 #[cfg(any(feature = "inspector", debug_assertions))]
684 pub(crate) next_inspector_instance_ids: FxHashMap<Rc<crate::InspectorElementPath>, usize>,
685 #[cfg(any(feature = "inspector", debug_assertions))]
686 pub(crate) inspector_hitboxes: FxHashMap<HitboxId, crate::InspectorElementId>,
687 pub(crate) tab_handles: TabHandles,
688}
689
690#[derive(Clone, Default)]
691pub(crate) struct PrepaintStateIndex {
692 hitboxes_index: usize,
693 tooltips_index: usize,
694 deferred_draws_index: usize,
695 dispatch_tree_index: usize,
696 accessed_element_states_index: usize,
697 line_layout_index: LineLayoutIndex,
698}
699
700#[derive(Clone, Default)]
701pub(crate) struct PaintIndex {
702 scene_index: usize,
703 mouse_listeners_index: usize,
704 input_handlers_index: usize,
705 cursor_styles_index: usize,
706 accessed_element_states_index: usize,
707 tab_handle_index: usize,
708 line_layout_index: LineLayoutIndex,
709}
710
711impl Frame {
712 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
713 Frame {
714 focus: None,
715 window_active: false,
716 element_states: FxHashMap::default(),
717 accessed_element_states: Vec::new(),
718 mouse_listeners: Vec::new(),
719 dispatch_tree,
720 scene: Scene::default(),
721 hitboxes: Vec::new(),
722 window_control_hitboxes: Vec::new(),
723 deferred_draws: Vec::new(),
724 input_handlers: Vec::new(),
725 tooltip_requests: Vec::new(),
726 cursor_styles: Vec::new(),
727
728 #[cfg(any(test, feature = "test-support"))]
729 debug_bounds: FxHashMap::default(),
730
731 #[cfg(any(feature = "inspector", debug_assertions))]
732 next_inspector_instance_ids: FxHashMap::default(),
733
734 #[cfg(any(feature = "inspector", debug_assertions))]
735 inspector_hitboxes: FxHashMap::default(),
736 tab_handles: TabHandles::default(),
737 }
738 }
739
740 pub(crate) fn clear(&mut self) {
741 self.element_states.clear();
742 self.accessed_element_states.clear();
743 self.mouse_listeners.clear();
744 self.dispatch_tree.clear();
745 self.scene.clear();
746 self.input_handlers.clear();
747 self.tooltip_requests.clear();
748 self.cursor_styles.clear();
749 self.hitboxes.clear();
750 self.window_control_hitboxes.clear();
751 self.deferred_draws.clear();
752 self.tab_handles.clear();
753 self.focus = None;
754
755 #[cfg(any(feature = "inspector", debug_assertions))]
756 {
757 self.next_inspector_instance_ids.clear();
758 self.inspector_hitboxes.clear();
759 }
760 }
761
762 pub(crate) fn cursor_style(&self, window: &Window) -> Option<CursorStyle> {
763 self.cursor_styles
764 .iter()
765 .rev()
766 .fold_while(None, |style, request| match request.hitbox_id {
767 None => Done(Some(request.style)),
768 Some(hitbox_id) => Continue(
769 style.or_else(|| hitbox_id.is_hovered(window).then_some(request.style)),
770 ),
771 })
772 .into_inner()
773 }
774
775 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
776 let mut set_hover_hitbox_count = false;
777 let mut hit_test = HitTest::default();
778 for hitbox in self.hitboxes.iter().rev() {
779 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
780 if bounds.contains(&position) {
781 hit_test.ids.push(hitbox.id);
782 if !set_hover_hitbox_count
783 && hitbox.behavior == HitboxBehavior::BlockMouseExceptScroll
784 {
785 hit_test.hover_hitbox_count = hit_test.ids.len();
786 set_hover_hitbox_count = true;
787 }
788 if hitbox.behavior == HitboxBehavior::BlockMouse {
789 break;
790 }
791 }
792 }
793 if !set_hover_hitbox_count {
794 hit_test.hover_hitbox_count = hit_test.ids.len();
795 }
796 hit_test
797 }
798
799 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
800 self.focus
801 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
802 .unwrap_or_default()
803 }
804
805 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
806 for element_state_key in &self.accessed_element_states {
807 if let Some((element_state_key, element_state)) =
808 prev_frame.element_states.remove_entry(element_state_key)
809 {
810 self.element_states.insert(element_state_key, element_state);
811 }
812 }
813
814 self.scene.finish();
815 }
816}
817
818/// Holds the state for a specific window.
819pub struct Window {
820 pub(crate) handle: AnyWindowHandle,
821 pub(crate) invalidator: WindowInvalidator,
822 pub(crate) removed: bool,
823 pub(crate) platform_window: Box<dyn PlatformWindow>,
824 display_id: Option<DisplayId>,
825 sprite_atlas: Arc<dyn PlatformAtlas>,
826 text_system: Arc<WindowTextSystem>,
827 rem_size: Pixels,
828 /// The stack of override values for the window's rem size.
829 ///
830 /// This is used by `with_rem_size` to allow rendering an element tree with
831 /// a given rem size.
832 rem_size_override_stack: SmallVec<[Pixels; 8]>,
833 pub(crate) viewport_size: Size<Pixels>,
834 layout_engine: Option<TaffyLayoutEngine>,
835 pub(crate) root: Option<AnyView>,
836 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
837 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
838 pub(crate) rendered_entity_stack: Vec<EntityId>,
839 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
840 pub(crate) element_opacity: Option<f32>,
841 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
842 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
843 pub(crate) image_cache_stack: Vec<AnyImageCache>,
844 pub(crate) rendered_frame: Frame,
845 pub(crate) next_frame: Frame,
846 next_hitbox_id: HitboxId,
847 pub(crate) next_tooltip_id: TooltipId,
848 pub(crate) tooltip_bounds: Option<TooltipBounds>,
849 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
850 pub(crate) dirty_views: FxHashSet<EntityId>,
851 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
852 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
853 default_prevented: bool,
854 mouse_position: Point<Pixels>,
855 mouse_hit_test: HitTest,
856 modifiers: Modifiers,
857 capslock: Capslock,
858 scale_factor: f32,
859 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
860 appearance: WindowAppearance,
861 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
862 active: Rc<Cell<bool>>,
863 hovered: Rc<Cell<bool>>,
864 pub(crate) needs_present: Rc<Cell<bool>>,
865 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
866 pub(crate) refreshing: bool,
867 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
868 pub(crate) focus: Option<FocusId>,
869 focus_enabled: bool,
870 pending_input: Option<PendingInput>,
871 pending_modifier: ModifierState,
872 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
873 prompt: Option<RenderablePromptHandle>,
874 pub(crate) client_inset: Option<Pixels>,
875 #[cfg(any(feature = "inspector", debug_assertions))]
876 inspector: Option<Entity<Inspector>>,
877}
878
879#[derive(Clone, Debug, Default)]
880struct ModifierState {
881 modifiers: Modifiers,
882 saw_keystroke: bool,
883}
884
885#[derive(Clone, Copy, Debug, Eq, PartialEq)]
886pub(crate) enum DrawPhase {
887 None,
888 Prepaint,
889 Paint,
890 Focus,
891}
892
893#[derive(Default, Debug)]
894struct PendingInput {
895 keystrokes: SmallVec<[Keystroke; 1]>,
896 focus: Option<FocusId>,
897 timer: Option<Task<()>>,
898}
899
900pub(crate) struct ElementStateBox {
901 pub(crate) inner: Box<dyn Any>,
902 #[cfg(debug_assertions)]
903 pub(crate) type_name: &'static str,
904}
905
906fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
907 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
908
909 // TODO, BUG: if you open a window with the currently active window
910 // on the stack, this will erroneously select the 'unwrap_or_else'
911 // code path
912 cx.active_window()
913 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
914 .map(|mut bounds| {
915 bounds.origin += DEFAULT_WINDOW_OFFSET;
916 bounds
917 })
918 .unwrap_or_else(|| {
919 let display = display_id
920 .map(|id| cx.find_display(id))
921 .unwrap_or_else(|| cx.primary_display());
922
923 display
924 .map(|display| display.default_bounds())
925 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
926 })
927}
928
929impl Window {
930 pub(crate) fn new(
931 handle: AnyWindowHandle,
932 options: WindowOptions,
933 cx: &mut App,
934 ) -> Result<Self> {
935 let WindowOptions {
936 window_bounds,
937 titlebar,
938 focus,
939 show,
940 kind,
941 is_movable,
942 display_id,
943 window_background,
944 app_id,
945 window_min_size,
946 window_decorations,
947 } = options;
948
949 let bounds = window_bounds
950 .map(|bounds| bounds.get_bounds())
951 .unwrap_or_else(|| default_bounds(display_id, cx));
952 let mut platform_window = cx.platform.open_window(
953 handle,
954 WindowParams {
955 bounds,
956 titlebar,
957 kind,
958 is_movable,
959 focus,
960 show,
961 display_id,
962 window_min_size,
963 },
964 )?;
965 let display_id = platform_window.display().map(|display| display.id());
966 let sprite_atlas = platform_window.sprite_atlas();
967 let mouse_position = platform_window.mouse_position();
968 let modifiers = platform_window.modifiers();
969 let capslock = platform_window.capslock();
970 let content_size = platform_window.content_size();
971 let scale_factor = platform_window.scale_factor();
972 let appearance = platform_window.appearance();
973 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
974 let invalidator = WindowInvalidator::new();
975 let active = Rc::new(Cell::new(platform_window.is_active()));
976 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
977 let needs_present = Rc::new(Cell::new(false));
978 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
979 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
980
981 platform_window
982 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
983 platform_window.set_background_appearance(window_background);
984
985 if let Some(ref window_open_state) = window_bounds {
986 match window_open_state {
987 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
988 WindowBounds::Maximized(_) => platform_window.zoom(),
989 WindowBounds::Windowed(_) => {}
990 }
991 }
992
993 platform_window.on_close(Box::new({
994 let mut cx = cx.to_async();
995 move || {
996 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
997 }
998 }));
999 platform_window.on_request_frame(Box::new({
1000 let mut cx = cx.to_async();
1001 let invalidator = invalidator.clone();
1002 let active = active.clone();
1003 let needs_present = needs_present.clone();
1004 let next_frame_callbacks = next_frame_callbacks.clone();
1005 let last_input_timestamp = last_input_timestamp.clone();
1006 move |request_frame_options| {
1007 let next_frame_callbacks = next_frame_callbacks.take();
1008 if !next_frame_callbacks.is_empty() {
1009 handle
1010 .update(&mut cx, |_, window, cx| {
1011 for callback in next_frame_callbacks {
1012 callback(window, cx);
1013 }
1014 })
1015 .log_err();
1016 }
1017
1018 // Keep presenting the current scene for 1 extra second since the
1019 // last input to prevent the display from underclocking the refresh rate.
1020 let needs_present = request_frame_options.require_presentation
1021 || needs_present.get()
1022 || (active.get()
1023 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
1024
1025 if invalidator.is_dirty() || request_frame_options.force_render {
1026 measure("frame duration", || {
1027 handle
1028 .update(&mut cx, |_, window, cx| {
1029 let arena_clear_needed = window.draw(cx);
1030 window.present();
1031 // drop the arena elements after present to reduce latency
1032 arena_clear_needed.clear();
1033 })
1034 .log_err();
1035 })
1036 } else if needs_present {
1037 handle
1038 .update(&mut cx, |_, window, _| window.present())
1039 .log_err();
1040 }
1041
1042 handle
1043 .update(&mut cx, |_, window, _| {
1044 window.complete_frame();
1045 })
1046 .log_err();
1047 }
1048 }));
1049 platform_window.on_resize(Box::new({
1050 let mut cx = cx.to_async();
1051 move |_, _| {
1052 handle
1053 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1054 .log_err();
1055 }
1056 }));
1057 platform_window.on_moved(Box::new({
1058 let mut cx = cx.to_async();
1059 move || {
1060 handle
1061 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
1062 .log_err();
1063 }
1064 }));
1065 platform_window.on_appearance_changed(Box::new({
1066 let mut cx = cx.to_async();
1067 move || {
1068 handle
1069 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
1070 .log_err();
1071 }
1072 }));
1073 platform_window.on_active_status_change(Box::new({
1074 let mut cx = cx.to_async();
1075 move |active| {
1076 handle
1077 .update(&mut cx, |_, window, cx| {
1078 window.active.set(active);
1079 window.modifiers = window.platform_window.modifiers();
1080 window.capslock = window.platform_window.capslock();
1081 window
1082 .activation_observers
1083 .clone()
1084 .retain(&(), |callback| callback(window, cx));
1085 window.refresh();
1086 })
1087 .log_err();
1088 }
1089 }));
1090 platform_window.on_hover_status_change(Box::new({
1091 let mut cx = cx.to_async();
1092 move |active| {
1093 handle
1094 .update(&mut cx, |_, window, _| {
1095 window.hovered.set(active);
1096 window.refresh();
1097 })
1098 .log_err();
1099 }
1100 }));
1101 platform_window.on_input({
1102 let mut cx = cx.to_async();
1103 Box::new(move |event| {
1104 handle
1105 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
1106 .log_err()
1107 .unwrap_or(DispatchEventResult::default())
1108 })
1109 });
1110 platform_window.on_hit_test_window_control({
1111 let mut cx = cx.to_async();
1112 Box::new(move || {
1113 handle
1114 .update(&mut cx, |_, window, _cx| {
1115 for (area, hitbox) in &window.rendered_frame.window_control_hitboxes {
1116 if window.mouse_hit_test.ids.contains(&hitbox.id) {
1117 return Some(*area);
1118 }
1119 }
1120 None
1121 })
1122 .log_err()
1123 .unwrap_or(None)
1124 })
1125 });
1126
1127 if let Some(app_id) = app_id {
1128 platform_window.set_app_id(&app_id);
1129 }
1130
1131 platform_window.map_window().unwrap();
1132
1133 Ok(Window {
1134 handle,
1135 invalidator,
1136 removed: false,
1137 platform_window,
1138 display_id,
1139 sprite_atlas,
1140 text_system,
1141 rem_size: px(16.),
1142 rem_size_override_stack: SmallVec::new(),
1143 viewport_size: content_size,
1144 layout_engine: Some(TaffyLayoutEngine::new()),
1145 root: None,
1146 element_id_stack: SmallVec::default(),
1147 text_style_stack: Vec::new(),
1148 rendered_entity_stack: Vec::new(),
1149 element_offset_stack: Vec::new(),
1150 content_mask_stack: Vec::new(),
1151 element_opacity: None,
1152 requested_autoscroll: None,
1153 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1154 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
1155 next_frame_callbacks,
1156 next_hitbox_id: HitboxId(0),
1157 next_tooltip_id: TooltipId::default(),
1158 tooltip_bounds: None,
1159 dirty_views: FxHashSet::default(),
1160 focus_listeners: SubscriberSet::new(),
1161 focus_lost_listeners: SubscriberSet::new(),
1162 default_prevented: true,
1163 mouse_position,
1164 mouse_hit_test: HitTest::default(),
1165 modifiers,
1166 capslock,
1167 scale_factor,
1168 bounds_observers: SubscriberSet::new(),
1169 appearance,
1170 appearance_observers: SubscriberSet::new(),
1171 active,
1172 hovered,
1173 needs_present,
1174 last_input_timestamp,
1175 refreshing: false,
1176 activation_observers: SubscriberSet::new(),
1177 focus: None,
1178 focus_enabled: true,
1179 pending_input: None,
1180 pending_modifier: ModifierState::default(),
1181 pending_input_observers: SubscriberSet::new(),
1182 prompt: None,
1183 client_inset: None,
1184 image_cache_stack: Vec::new(),
1185 #[cfg(any(feature = "inspector", debug_assertions))]
1186 inspector: None,
1187 })
1188 }
1189
1190 pub(crate) fn new_focus_listener(
1191 &self,
1192 value: AnyWindowFocusListener,
1193 ) -> (Subscription, impl FnOnce() + use<>) {
1194 self.focus_listeners.insert((), value)
1195 }
1196}
1197
1198#[derive(Clone, Debug, Default, PartialEq, Eq)]
1199pub(crate) struct DispatchEventResult {
1200 pub propagate: bool,
1201 pub default_prevented: bool,
1202}
1203
1204/// Indicates which region of the window is visible. Content falling outside of this mask will not be
1205/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
1206/// to leave room to support more complex shapes in the future.
1207#[derive(Clone, Debug, Default, PartialEq, Eq)]
1208#[repr(C)]
1209pub struct ContentMask<P: Clone + Debug + Default + PartialEq> {
1210 /// The bounds
1211 pub bounds: Bounds<P>,
1212}
1213
1214impl ContentMask<Pixels> {
1215 /// Scale the content mask's pixel units by the given scaling factor.
1216 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
1217 ContentMask {
1218 bounds: self.bounds.scale(factor),
1219 }
1220 }
1221
1222 /// Intersect the content mask with the given content mask.
1223 pub fn intersect(&self, other: &Self) -> Self {
1224 let bounds = self.bounds.intersect(&other.bounds);
1225 ContentMask { bounds }
1226 }
1227}
1228
1229impl Window {
1230 fn mark_view_dirty(&mut self, view_id: EntityId) {
1231 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
1232 // should already be dirty.
1233 for view_id in self
1234 .rendered_frame
1235 .dispatch_tree
1236 .view_path(view_id)
1237 .into_iter()
1238 .rev()
1239 {
1240 if !self.dirty_views.insert(view_id) {
1241 break;
1242 }
1243 }
1244 }
1245
1246 /// Registers a callback to be invoked when the window appearance changes.
1247 pub fn observe_window_appearance(
1248 &self,
1249 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
1250 ) -> Subscription {
1251 let (subscription, activate) = self.appearance_observers.insert(
1252 (),
1253 Box::new(move |window, cx| {
1254 callback(window, cx);
1255 true
1256 }),
1257 );
1258 activate();
1259 subscription
1260 }
1261
1262 /// Replaces the root entity of the window with a new one.
1263 pub fn replace_root<E>(
1264 &mut self,
1265 cx: &mut App,
1266 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1267 ) -> Entity<E>
1268 where
1269 E: 'static + Render,
1270 {
1271 let view = cx.new(|cx| build_view(self, cx));
1272 self.root = Some(view.clone().into());
1273 self.refresh();
1274 view
1275 }
1276
1277 /// Returns the root entity of the window, if it has one.
1278 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1279 where
1280 E: 'static + Render,
1281 {
1282 self.root
1283 .as_ref()
1284 .map(|view| view.clone().downcast::<E>().ok())
1285 }
1286
1287 /// Obtain a handle to the window that belongs to this context.
1288 pub fn window_handle(&self) -> AnyWindowHandle {
1289 self.handle
1290 }
1291
1292 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1293 pub fn refresh(&mut self) {
1294 if self.invalidator.not_drawing() {
1295 self.refreshing = true;
1296 self.invalidator.set_dirty(true);
1297 }
1298 }
1299
1300 /// Close this window.
1301 pub fn remove_window(&mut self) {
1302 self.removed = true;
1303 }
1304
1305 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1306 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1307 self.focus
1308 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1309 }
1310
1311 /// Move focus to the element associated with the given [`FocusHandle`].
1312 pub fn focus(&mut self, handle: &FocusHandle) {
1313 if !self.focus_enabled || self.focus == Some(handle.id) {
1314 return;
1315 }
1316
1317 self.focus = Some(handle.id);
1318 self.clear_pending_keystrokes();
1319 self.refresh();
1320 }
1321
1322 /// Remove focus from all elements within this context's window.
1323 pub fn blur(&mut self) {
1324 if !self.focus_enabled {
1325 return;
1326 }
1327
1328 self.focus = None;
1329 self.refresh();
1330 }
1331
1332 /// Blur the window and don't allow anything in it to be focused again.
1333 pub fn disable_focus(&mut self) {
1334 self.blur();
1335 self.focus_enabled = false;
1336 }
1337
1338 /// Move focus to next tab stop.
1339 pub fn focus_next(&mut self) {
1340 if !self.focus_enabled {
1341 return;
1342 }
1343
1344 if let Some(handle) = self.rendered_frame.tab_handles.next(self.focus.as_ref()) {
1345 self.focus(&handle)
1346 }
1347 }
1348
1349 /// Move focus to previous tab stop.
1350 pub fn focus_prev(&mut self) {
1351 if !self.focus_enabled {
1352 return;
1353 }
1354
1355 if let Some(handle) = self.rendered_frame.tab_handles.prev(self.focus.as_ref()) {
1356 self.focus(&handle)
1357 }
1358 }
1359
1360 /// Accessor for the text system.
1361 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1362 &self.text_system
1363 }
1364
1365 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1366 pub fn text_style(&self) -> TextStyle {
1367 let mut style = TextStyle::default();
1368 for refinement in &self.text_style_stack {
1369 style.refine(refinement);
1370 }
1371 style
1372 }
1373
1374 /// Check if the platform window is maximized
1375 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1376 pub fn is_maximized(&self) -> bool {
1377 self.platform_window.is_maximized()
1378 }
1379
1380 /// request a certain window decoration (Wayland)
1381 pub fn request_decorations(&self, decorations: WindowDecorations) {
1382 self.platform_window.request_decorations(decorations);
1383 }
1384
1385 /// Start a window resize operation (Wayland)
1386 pub fn start_window_resize(&self, edge: ResizeEdge) {
1387 self.platform_window.start_window_resize(edge);
1388 }
1389
1390 /// Return the `WindowBounds` to indicate that how a window should be opened
1391 /// after it has been closed
1392 pub fn window_bounds(&self) -> WindowBounds {
1393 self.platform_window.window_bounds()
1394 }
1395
1396 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1397 pub fn inner_window_bounds(&self) -> WindowBounds {
1398 self.platform_window.inner_window_bounds()
1399 }
1400
1401 /// Dispatch the given action on the currently focused element.
1402 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1403 let focus_id = self.focused(cx).map(|handle| handle.id);
1404
1405 let window = self.handle;
1406 cx.defer(move |cx| {
1407 window
1408 .update(cx, |_, window, cx| {
1409 let node_id = window.focus_node_id_in_rendered_frame(focus_id);
1410 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1411 })
1412 .log_err();
1413 })
1414 }
1415
1416 pub(crate) fn dispatch_keystroke_observers(
1417 &mut self,
1418 event: &dyn Any,
1419 action: Option<Box<dyn Action>>,
1420 context_stack: Vec<KeyContext>,
1421 cx: &mut App,
1422 ) {
1423 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1424 return;
1425 };
1426
1427 cx.keystroke_observers.clone().retain(&(), move |callback| {
1428 (callback)(
1429 &KeystrokeEvent {
1430 keystroke: key_down_event.keystroke.clone(),
1431 action: action.as_ref().map(|action| action.boxed_clone()),
1432 context_stack: context_stack.clone(),
1433 },
1434 self,
1435 cx,
1436 )
1437 });
1438 }
1439
1440 pub(crate) fn dispatch_keystroke_interceptors(
1441 &mut self,
1442 event: &dyn Any,
1443 context_stack: Vec<KeyContext>,
1444 cx: &mut App,
1445 ) {
1446 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1447 return;
1448 };
1449
1450 cx.keystroke_interceptors
1451 .clone()
1452 .retain(&(), move |callback| {
1453 (callback)(
1454 &KeystrokeEvent {
1455 keystroke: key_down_event.keystroke.clone(),
1456 action: None,
1457 context_stack: context_stack.clone(),
1458 },
1459 self,
1460 cx,
1461 )
1462 });
1463 }
1464
1465 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1466 /// that are currently on the stack to be returned to the app.
1467 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1468 let handle = self.handle;
1469 cx.defer(move |cx| {
1470 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1471 });
1472 }
1473
1474 /// Subscribe to events emitted by a entity.
1475 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1476 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1477 pub fn observe<T: 'static>(
1478 &mut self,
1479 observed: &Entity<T>,
1480 cx: &mut App,
1481 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1482 ) -> Subscription {
1483 let entity_id = observed.entity_id();
1484 let observed = observed.downgrade();
1485 let window_handle = self.handle;
1486 cx.new_observer(
1487 entity_id,
1488 Box::new(move |cx| {
1489 window_handle
1490 .update(cx, |_, window, cx| {
1491 if let Some(handle) = observed.upgrade() {
1492 on_notify(handle, window, cx);
1493 true
1494 } else {
1495 false
1496 }
1497 })
1498 .unwrap_or(false)
1499 }),
1500 )
1501 }
1502
1503 /// Subscribe to events emitted by a entity.
1504 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1505 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1506 pub fn subscribe<Emitter, Evt>(
1507 &mut self,
1508 entity: &Entity<Emitter>,
1509 cx: &mut App,
1510 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1511 ) -> Subscription
1512 where
1513 Emitter: EventEmitter<Evt>,
1514 Evt: 'static,
1515 {
1516 let entity_id = entity.entity_id();
1517 let handle = entity.downgrade();
1518 let window_handle = self.handle;
1519 cx.new_subscription(
1520 entity_id,
1521 (
1522 TypeId::of::<Evt>(),
1523 Box::new(move |event, cx| {
1524 window_handle
1525 .update(cx, |_, window, cx| {
1526 if let Some(entity) = handle.upgrade() {
1527 let event = event.downcast_ref().expect("invalid event type");
1528 on_event(entity, event, window, cx);
1529 true
1530 } else {
1531 false
1532 }
1533 })
1534 .unwrap_or(false)
1535 }),
1536 ),
1537 )
1538 }
1539
1540 /// Register a callback to be invoked when the given `Entity` is released.
1541 pub fn observe_release<T>(
1542 &self,
1543 entity: &Entity<T>,
1544 cx: &mut App,
1545 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1546 ) -> Subscription
1547 where
1548 T: 'static,
1549 {
1550 let entity_id = entity.entity_id();
1551 let window_handle = self.handle;
1552 let (subscription, activate) = cx.release_listeners.insert(
1553 entity_id,
1554 Box::new(move |entity, cx| {
1555 let entity = entity.downcast_mut().expect("invalid entity type");
1556 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1557 }),
1558 );
1559 activate();
1560 subscription
1561 }
1562
1563 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1564 /// await points in async code.
1565 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1566 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1567 }
1568
1569 /// Schedule the given closure to be run directly after the current frame is rendered.
1570 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1571 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1572 }
1573
1574 /// Schedule a frame to be drawn on the next animation frame.
1575 ///
1576 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1577 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1578 ///
1579 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1580 pub fn request_animation_frame(&self) {
1581 let entity = self.current_view();
1582 self.on_next_frame(move |_, cx| cx.notify(entity));
1583 }
1584
1585 /// Spawn the future returned by the given closure on the application thread pool.
1586 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1587 /// use within your future.
1588 #[track_caller]
1589 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1590 where
1591 R: 'static,
1592 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1593 {
1594 let handle = self.handle;
1595 cx.spawn(async move |app| {
1596 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1597 f(&mut async_window_cx).await
1598 })
1599 }
1600
1601 fn bounds_changed(&mut self, cx: &mut App) {
1602 self.scale_factor = self.platform_window.scale_factor();
1603 self.viewport_size = self.platform_window.content_size();
1604 self.display_id = self.platform_window.display().map(|display| display.id());
1605
1606 self.refresh();
1607
1608 self.bounds_observers
1609 .clone()
1610 .retain(&(), |callback| callback(self, cx));
1611 }
1612
1613 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1614 pub fn bounds(&self) -> Bounds<Pixels> {
1615 self.platform_window.bounds()
1616 }
1617
1618 /// Set the content size of the window.
1619 pub fn resize(&mut self, size: Size<Pixels>) {
1620 self.platform_window.resize(size);
1621 }
1622
1623 /// Returns whether or not the window is currently fullscreen
1624 pub fn is_fullscreen(&self) -> bool {
1625 self.platform_window.is_fullscreen()
1626 }
1627
1628 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1629 self.appearance = self.platform_window.appearance();
1630
1631 self.appearance_observers
1632 .clone()
1633 .retain(&(), |callback| callback(self, cx));
1634 }
1635
1636 /// Returns the appearance of the current window.
1637 pub fn appearance(&self) -> WindowAppearance {
1638 self.appearance
1639 }
1640
1641 /// Returns the size of the drawable area within the window.
1642 pub fn viewport_size(&self) -> Size<Pixels> {
1643 self.viewport_size
1644 }
1645
1646 /// Returns whether this window is focused by the operating system (receiving key events).
1647 pub fn is_window_active(&self) -> bool {
1648 self.active.get()
1649 }
1650
1651 /// Returns whether this window is considered to be the window
1652 /// that currently owns the mouse cursor.
1653 /// On mac, this is equivalent to `is_window_active`.
1654 pub fn is_window_hovered(&self) -> bool {
1655 if cfg!(any(
1656 target_os = "windows",
1657 target_os = "linux",
1658 target_os = "freebsd"
1659 )) {
1660 self.hovered.get()
1661 } else {
1662 self.is_window_active()
1663 }
1664 }
1665
1666 /// Toggle zoom on the window.
1667 pub fn zoom_window(&self) {
1668 self.platform_window.zoom();
1669 }
1670
1671 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1672 pub fn show_window_menu(&self, position: Point<Pixels>) {
1673 self.platform_window.show_window_menu(position)
1674 }
1675
1676 /// Tells the compositor to take control of window movement (Wayland and X11)
1677 ///
1678 /// Events may not be received during a move operation.
1679 pub fn start_window_move(&self) {
1680 self.platform_window.start_window_move()
1681 }
1682
1683 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1684 pub fn set_client_inset(&mut self, inset: Pixels) {
1685 self.client_inset = Some(inset);
1686 self.platform_window.set_client_inset(inset);
1687 }
1688
1689 /// Returns the client_inset value by [`Self::set_client_inset`].
1690 pub fn client_inset(&self) -> Option<Pixels> {
1691 self.client_inset
1692 }
1693
1694 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1695 pub fn window_decorations(&self) -> Decorations {
1696 self.platform_window.window_decorations()
1697 }
1698
1699 /// Returns which window controls are currently visible (Wayland)
1700 pub fn window_controls(&self) -> WindowControls {
1701 self.platform_window.window_controls()
1702 }
1703
1704 /// Updates the window's title at the platform level.
1705 pub fn set_window_title(&mut self, title: &str) {
1706 self.platform_window.set_title(title);
1707 }
1708
1709 /// Sets the application identifier.
1710 pub fn set_app_id(&mut self, app_id: &str) {
1711 self.platform_window.set_app_id(app_id);
1712 }
1713
1714 /// Sets the window background appearance.
1715 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1716 self.platform_window
1717 .set_background_appearance(background_appearance);
1718 }
1719
1720 /// Mark the window as dirty at the platform level.
1721 pub fn set_window_edited(&mut self, edited: bool) {
1722 self.platform_window.set_edited(edited);
1723 }
1724
1725 /// Determine the display on which the window is visible.
1726 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1727 cx.platform
1728 .displays()
1729 .into_iter()
1730 .find(|display| Some(display.id()) == self.display_id)
1731 }
1732
1733 /// Show the platform character palette.
1734 pub fn show_character_palette(&self) {
1735 self.platform_window.show_character_palette();
1736 }
1737
1738 /// The scale factor of the display associated with the window. For example, it could
1739 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1740 /// be rendered as two pixels on screen.
1741 pub fn scale_factor(&self) -> f32 {
1742 self.scale_factor
1743 }
1744
1745 /// The size of an em for the base font of the application. Adjusting this value allows the
1746 /// UI to scale, just like zooming a web page.
1747 pub fn rem_size(&self) -> Pixels {
1748 self.rem_size_override_stack
1749 .last()
1750 .copied()
1751 .unwrap_or(self.rem_size)
1752 }
1753
1754 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1755 /// UI to scale, just like zooming a web page.
1756 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1757 self.rem_size = rem_size.into();
1758 }
1759
1760 /// Acquire a globally unique identifier for the given ElementId.
1761 /// Only valid for the duration of the provided closure.
1762 pub fn with_global_id<R>(
1763 &mut self,
1764 element_id: ElementId,
1765 f: impl FnOnce(&GlobalElementId, &mut Self) -> R,
1766 ) -> R {
1767 self.element_id_stack.push(element_id);
1768 let global_id = GlobalElementId(self.element_id_stack.clone());
1769 let result = f(&global_id, self);
1770 self.element_id_stack.pop();
1771 result
1772 }
1773
1774 /// Executes the provided function with the specified rem size.
1775 ///
1776 /// This method must only be called as part of element drawing.
1777 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1778 where
1779 F: FnOnce(&mut Self) -> R,
1780 {
1781 self.invalidator.debug_assert_paint_or_prepaint();
1782
1783 if let Some(rem_size) = rem_size {
1784 self.rem_size_override_stack.push(rem_size.into());
1785 let result = f(self);
1786 self.rem_size_override_stack.pop();
1787 result
1788 } else {
1789 f(self)
1790 }
1791 }
1792
1793 /// The line height associated with the current text style.
1794 pub fn line_height(&self) -> Pixels {
1795 self.text_style().line_height_in_pixels(self.rem_size())
1796 }
1797
1798 /// Call to prevent the default action of an event. Currently only used to prevent
1799 /// parent elements from becoming focused on mouse down.
1800 pub fn prevent_default(&mut self) {
1801 self.default_prevented = true;
1802 }
1803
1804 /// Obtain whether default has been prevented for the event currently being dispatched.
1805 pub fn default_prevented(&self) -> bool {
1806 self.default_prevented
1807 }
1808
1809 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1810 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1811 let node_id =
1812 self.focus_node_id_in_rendered_frame(self.focused(cx).map(|handle| handle.id));
1813 self.rendered_frame
1814 .dispatch_tree
1815 .is_action_available(action, node_id)
1816 }
1817
1818 /// The position of the mouse relative to the window.
1819 pub fn mouse_position(&self) -> Point<Pixels> {
1820 self.mouse_position
1821 }
1822
1823 /// The current state of the keyboard's modifiers
1824 pub fn modifiers(&self) -> Modifiers {
1825 self.modifiers
1826 }
1827
1828 /// The current state of the keyboard's capslock
1829 pub fn capslock(&self) -> Capslock {
1830 self.capslock
1831 }
1832
1833 fn complete_frame(&self) {
1834 self.platform_window.completed_frame();
1835 }
1836
1837 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1838 /// the contents of the new [Scene], use [present].
1839 #[profiling::function]
1840 pub fn draw(&mut self, cx: &mut App) -> ArenaClearNeeded {
1841 self.invalidate_entities();
1842 cx.entities.clear_accessed();
1843 debug_assert!(self.rendered_entity_stack.is_empty());
1844 self.invalidator.set_dirty(false);
1845 self.requested_autoscroll = None;
1846
1847 // Restore the previously-used input handler.
1848 if let Some(input_handler) = self.platform_window.take_input_handler() {
1849 self.rendered_frame.input_handlers.push(Some(input_handler));
1850 }
1851 self.draw_roots(cx);
1852 self.dirty_views.clear();
1853 self.next_frame.window_active = self.active.get();
1854
1855 // Register requested input handler with the platform window.
1856 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1857 self.platform_window
1858 .set_input_handler(input_handler.unwrap());
1859 }
1860
1861 self.layout_engine.as_mut().unwrap().clear();
1862 self.text_system().finish_frame();
1863 self.next_frame.finish(&mut self.rendered_frame);
1864
1865 self.invalidator.set_phase(DrawPhase::Focus);
1866 let previous_focus_path = self.rendered_frame.focus_path();
1867 let previous_window_active = self.rendered_frame.window_active;
1868 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1869 self.next_frame.clear();
1870 let current_focus_path = self.rendered_frame.focus_path();
1871 let current_window_active = self.rendered_frame.window_active;
1872
1873 if previous_focus_path != current_focus_path
1874 || previous_window_active != current_window_active
1875 {
1876 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1877 self.focus_lost_listeners
1878 .clone()
1879 .retain(&(), |listener| listener(self, cx));
1880 }
1881
1882 let event = WindowFocusEvent {
1883 previous_focus_path: if previous_window_active {
1884 previous_focus_path
1885 } else {
1886 Default::default()
1887 },
1888 current_focus_path: if current_window_active {
1889 current_focus_path
1890 } else {
1891 Default::default()
1892 },
1893 };
1894 self.focus_listeners
1895 .clone()
1896 .retain(&(), |listener| listener(&event, self, cx));
1897 }
1898
1899 debug_assert!(self.rendered_entity_stack.is_empty());
1900 self.record_entities_accessed(cx);
1901 self.reset_cursor_style(cx);
1902 self.refreshing = false;
1903 self.invalidator.set_phase(DrawPhase::None);
1904 self.needs_present.set(true);
1905
1906 ArenaClearNeeded
1907 }
1908
1909 fn record_entities_accessed(&mut self, cx: &mut App) {
1910 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1911 let mut entities = mem::take(entities_ref.deref_mut());
1912 drop(entities_ref);
1913 let handle = self.handle;
1914 cx.record_entities_accessed(
1915 handle,
1916 // Try moving window invalidator into the Window
1917 self.invalidator.clone(),
1918 &entities,
1919 );
1920 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1921 mem::swap(&mut entities, entities_ref.deref_mut());
1922 }
1923
1924 fn invalidate_entities(&mut self) {
1925 let mut views = self.invalidator.take_views();
1926 for entity in views.drain() {
1927 self.mark_view_dirty(entity);
1928 }
1929 self.invalidator.replace_views(views);
1930 }
1931
1932 #[profiling::function]
1933 fn present(&self) {
1934 self.platform_window.draw(&self.rendered_frame.scene);
1935 self.needs_present.set(false);
1936 profiling::finish_frame!();
1937 }
1938
1939 fn draw_roots(&mut self, cx: &mut App) {
1940 self.invalidator.set_phase(DrawPhase::Prepaint);
1941 self.tooltip_bounds.take();
1942
1943 let _inspector_width: Pixels = rems(30.0).to_pixels(self.rem_size());
1944 let root_size = {
1945 #[cfg(any(feature = "inspector", debug_assertions))]
1946 {
1947 if self.inspector.is_some() {
1948 let mut size = self.viewport_size;
1949 size.width = (size.width - _inspector_width).max(px(0.0));
1950 size
1951 } else {
1952 self.viewport_size
1953 }
1954 }
1955 #[cfg(not(any(feature = "inspector", debug_assertions)))]
1956 {
1957 self.viewport_size
1958 }
1959 };
1960
1961 // Layout all root elements.
1962 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1963 root_element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1964
1965 #[cfg(any(feature = "inspector", debug_assertions))]
1966 let inspector_element = self.prepaint_inspector(_inspector_width, cx);
1967
1968 let mut sorted_deferred_draws =
1969 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1970 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1971 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1972
1973 let mut prompt_element = None;
1974 let mut active_drag_element = None;
1975 let mut tooltip_element = None;
1976 if let Some(prompt) = self.prompt.take() {
1977 let mut element = prompt.view.any_view().into_any();
1978 element.prepaint_as_root(Point::default(), root_size.into(), self, cx);
1979 prompt_element = Some(element);
1980 self.prompt = Some(prompt);
1981 } else if let Some(active_drag) = cx.active_drag.take() {
1982 let mut element = active_drag.view.clone().into_any();
1983 let offset = self.mouse_position() - active_drag.cursor_offset;
1984 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1985 active_drag_element = Some(element);
1986 cx.active_drag = Some(active_drag);
1987 } else {
1988 tooltip_element = self.prepaint_tooltip(cx);
1989 }
1990
1991 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1992
1993 // Now actually paint the elements.
1994 self.invalidator.set_phase(DrawPhase::Paint);
1995 root_element.paint(self, cx);
1996
1997 #[cfg(any(feature = "inspector", debug_assertions))]
1998 self.paint_inspector(inspector_element, cx);
1999
2000 self.paint_deferred_draws(&sorted_deferred_draws, cx);
2001
2002 if let Some(mut prompt_element) = prompt_element {
2003 prompt_element.paint(self, cx);
2004 } else if let Some(mut drag_element) = active_drag_element {
2005 drag_element.paint(self, cx);
2006 } else if let Some(mut tooltip_element) = tooltip_element {
2007 tooltip_element.paint(self, cx);
2008 }
2009
2010 #[cfg(any(feature = "inspector", debug_assertions))]
2011 self.paint_inspector_hitbox(cx);
2012 }
2013
2014 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
2015 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
2016 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
2017 let Some(Some(tooltip_request)) = self
2018 .next_frame
2019 .tooltip_requests
2020 .get(tooltip_request_index)
2021 .cloned()
2022 else {
2023 log::error!("Unexpectedly absent TooltipRequest");
2024 continue;
2025 };
2026 let mut element = tooltip_request.tooltip.view.clone().into_any();
2027 let mouse_position = tooltip_request.tooltip.mouse_position;
2028 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
2029
2030 let mut tooltip_bounds =
2031 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
2032 let window_bounds = Bounds {
2033 origin: Point::default(),
2034 size: self.viewport_size(),
2035 };
2036
2037 if tooltip_bounds.right() > window_bounds.right() {
2038 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
2039 if new_x >= Pixels::ZERO {
2040 tooltip_bounds.origin.x = new_x;
2041 } else {
2042 tooltip_bounds.origin.x = cmp::max(
2043 Pixels::ZERO,
2044 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
2045 );
2046 }
2047 }
2048
2049 if tooltip_bounds.bottom() > window_bounds.bottom() {
2050 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
2051 if new_y >= Pixels::ZERO {
2052 tooltip_bounds.origin.y = new_y;
2053 } else {
2054 tooltip_bounds.origin.y = cmp::max(
2055 Pixels::ZERO,
2056 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
2057 );
2058 }
2059 }
2060
2061 // It's possible for an element to have an active tooltip while not being painted (e.g.
2062 // via the `visible_on_hover` method). Since mouse listeners are not active in this
2063 // case, instead update the tooltip's visibility here.
2064 let is_visible =
2065 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
2066 if !is_visible {
2067 continue;
2068 }
2069
2070 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
2071 element.prepaint(window, cx)
2072 });
2073
2074 self.tooltip_bounds = Some(TooltipBounds {
2075 id: tooltip_request.id,
2076 bounds: tooltip_bounds,
2077 });
2078 return Some(element);
2079 }
2080 None
2081 }
2082
2083 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2084 assert_eq!(self.element_id_stack.len(), 0);
2085
2086 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2087 for deferred_draw_ix in deferred_draw_indices {
2088 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2089 self.element_id_stack
2090 .clone_from(&deferred_draw.element_id_stack);
2091 self.text_style_stack
2092 .clone_from(&deferred_draw.text_style_stack);
2093 self.next_frame
2094 .dispatch_tree
2095 .set_active_node(deferred_draw.parent_node);
2096
2097 let prepaint_start = self.prepaint_index();
2098 if let Some(element) = deferred_draw.element.as_mut() {
2099 self.with_rendered_view(deferred_draw.current_view, |window| {
2100 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
2101 element.prepaint(window, cx)
2102 });
2103 })
2104 } else {
2105 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
2106 }
2107 let prepaint_end = self.prepaint_index();
2108 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
2109 }
2110 assert_eq!(
2111 self.next_frame.deferred_draws.len(),
2112 0,
2113 "cannot call defer_draw during deferred drawing"
2114 );
2115 self.next_frame.deferred_draws = deferred_draws;
2116 self.element_id_stack.clear();
2117 self.text_style_stack.clear();
2118 }
2119
2120 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
2121 assert_eq!(self.element_id_stack.len(), 0);
2122
2123 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
2124 for deferred_draw_ix in deferred_draw_indices {
2125 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
2126 self.element_id_stack
2127 .clone_from(&deferred_draw.element_id_stack);
2128 self.next_frame
2129 .dispatch_tree
2130 .set_active_node(deferred_draw.parent_node);
2131
2132 let paint_start = self.paint_index();
2133 if let Some(element) = deferred_draw.element.as_mut() {
2134 self.with_rendered_view(deferred_draw.current_view, |window| {
2135 element.paint(window, cx);
2136 })
2137 } else {
2138 self.reuse_paint(deferred_draw.paint_range.clone());
2139 }
2140 let paint_end = self.paint_index();
2141 deferred_draw.paint_range = paint_start..paint_end;
2142 }
2143 self.next_frame.deferred_draws = deferred_draws;
2144 self.element_id_stack.clear();
2145 }
2146
2147 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
2148 PrepaintStateIndex {
2149 hitboxes_index: self.next_frame.hitboxes.len(),
2150 tooltips_index: self.next_frame.tooltip_requests.len(),
2151 deferred_draws_index: self.next_frame.deferred_draws.len(),
2152 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
2153 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2154 line_layout_index: self.text_system.layout_index(),
2155 }
2156 }
2157
2158 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
2159 self.next_frame.hitboxes.extend(
2160 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
2161 .iter()
2162 .cloned(),
2163 );
2164 self.next_frame.tooltip_requests.extend(
2165 self.rendered_frame.tooltip_requests
2166 [range.start.tooltips_index..range.end.tooltips_index]
2167 .iter_mut()
2168 .map(|request| request.take()),
2169 );
2170 self.next_frame.accessed_element_states.extend(
2171 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2172 ..range.end.accessed_element_states_index]
2173 .iter()
2174 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2175 );
2176 self.text_system
2177 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2178
2179 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
2180 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
2181 &mut self.rendered_frame.dispatch_tree,
2182 self.focus,
2183 );
2184
2185 if reused_subtree.contains_focus() {
2186 self.next_frame.focus = self.focus;
2187 }
2188
2189 self.next_frame.deferred_draws.extend(
2190 self.rendered_frame.deferred_draws
2191 [range.start.deferred_draws_index..range.end.deferred_draws_index]
2192 .iter()
2193 .map(|deferred_draw| DeferredDraw {
2194 current_view: deferred_draw.current_view,
2195 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
2196 element_id_stack: deferred_draw.element_id_stack.clone(),
2197 text_style_stack: deferred_draw.text_style_stack.clone(),
2198 priority: deferred_draw.priority,
2199 element: None,
2200 absolute_offset: deferred_draw.absolute_offset,
2201 prepaint_range: deferred_draw.prepaint_range.clone(),
2202 paint_range: deferred_draw.paint_range.clone(),
2203 }),
2204 );
2205 }
2206
2207 pub(crate) fn paint_index(&self) -> PaintIndex {
2208 PaintIndex {
2209 scene_index: self.next_frame.scene.len(),
2210 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
2211 input_handlers_index: self.next_frame.input_handlers.len(),
2212 cursor_styles_index: self.next_frame.cursor_styles.len(),
2213 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
2214 tab_handle_index: self.next_frame.tab_handles.handles.len(),
2215 line_layout_index: self.text_system.layout_index(),
2216 }
2217 }
2218
2219 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
2220 self.next_frame.cursor_styles.extend(
2221 self.rendered_frame.cursor_styles
2222 [range.start.cursor_styles_index..range.end.cursor_styles_index]
2223 .iter()
2224 .cloned(),
2225 );
2226 self.next_frame.input_handlers.extend(
2227 self.rendered_frame.input_handlers
2228 [range.start.input_handlers_index..range.end.input_handlers_index]
2229 .iter_mut()
2230 .map(|handler| handler.take()),
2231 );
2232 self.next_frame.mouse_listeners.extend(
2233 self.rendered_frame.mouse_listeners
2234 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
2235 .iter_mut()
2236 .map(|listener| listener.take()),
2237 );
2238 self.next_frame.accessed_element_states.extend(
2239 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
2240 ..range.end.accessed_element_states_index]
2241 .iter()
2242 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
2243 );
2244 self.next_frame.tab_handles.handles.extend(
2245 self.rendered_frame.tab_handles.handles
2246 [range.start.tab_handle_index..range.end.tab_handle_index]
2247 .iter()
2248 .cloned(),
2249 );
2250
2251 self.text_system
2252 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
2253 self.next_frame.scene.replay(
2254 range.start.scene_index..range.end.scene_index,
2255 &self.rendered_frame.scene,
2256 );
2257 }
2258
2259 /// Push a text style onto the stack, and call a function with that style active.
2260 /// Use [`Window::text_style`] to get the current, combined text style. This method
2261 /// should only be called as part of element drawing.
2262 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
2263 where
2264 F: FnOnce(&mut Self) -> R,
2265 {
2266 self.invalidator.debug_assert_paint_or_prepaint();
2267 if let Some(style) = style {
2268 self.text_style_stack.push(style);
2269 let result = f(self);
2270 self.text_style_stack.pop();
2271 result
2272 } else {
2273 f(self)
2274 }
2275 }
2276
2277 /// Updates the cursor style at the platform level. This method should only be called
2278 /// during the prepaint phase of element drawing.
2279 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: &Hitbox) {
2280 self.invalidator.debug_assert_paint();
2281 self.next_frame.cursor_styles.push(CursorStyleRequest {
2282 hitbox_id: Some(hitbox.id),
2283 style,
2284 });
2285 }
2286
2287 /// Updates the cursor style for the entire window at the platform level. A cursor
2288 /// style using this method will have precedence over any cursor style set using
2289 /// `set_cursor_style`. This method should only be called during the prepaint
2290 /// phase of element drawing.
2291 pub fn set_window_cursor_style(&mut self, style: CursorStyle) {
2292 self.invalidator.debug_assert_paint();
2293 self.next_frame.cursor_styles.push(CursorStyleRequest {
2294 hitbox_id: None,
2295 style,
2296 })
2297 }
2298
2299 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
2300 /// during the paint phase of element drawing.
2301 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
2302 self.invalidator.debug_assert_prepaint();
2303 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
2304 self.next_frame
2305 .tooltip_requests
2306 .push(Some(TooltipRequest { id, tooltip }));
2307 id
2308 }
2309
2310 /// Invoke the given function with the given content mask after intersecting it
2311 /// with the current mask. This method should only be called during element drawing.
2312 pub fn with_content_mask<R>(
2313 &mut self,
2314 mask: Option<ContentMask<Pixels>>,
2315 f: impl FnOnce(&mut Self) -> R,
2316 ) -> R {
2317 self.invalidator.debug_assert_paint_or_prepaint();
2318 if let Some(mask) = mask {
2319 let mask = mask.intersect(&self.content_mask());
2320 self.content_mask_stack.push(mask);
2321 let result = f(self);
2322 self.content_mask_stack.pop();
2323 result
2324 } else {
2325 f(self)
2326 }
2327 }
2328
2329 /// Updates the global element offset relative to the current offset. This is used to implement
2330 /// scrolling. This method should only be called during the prepaint phase of element drawing.
2331 pub fn with_element_offset<R>(
2332 &mut self,
2333 offset: Point<Pixels>,
2334 f: impl FnOnce(&mut Self) -> R,
2335 ) -> R {
2336 self.invalidator.debug_assert_prepaint();
2337
2338 if offset.is_zero() {
2339 return f(self);
2340 };
2341
2342 let abs_offset = self.element_offset() + offset;
2343 self.with_absolute_element_offset(abs_offset, f)
2344 }
2345
2346 /// Updates the global element offset based on the given offset. This is used to implement
2347 /// drag handles and other manual painting of elements. This method should only be called during
2348 /// the prepaint phase of element drawing.
2349 pub fn with_absolute_element_offset<R>(
2350 &mut self,
2351 offset: Point<Pixels>,
2352 f: impl FnOnce(&mut Self) -> R,
2353 ) -> R {
2354 self.invalidator.debug_assert_prepaint();
2355 self.element_offset_stack.push(offset);
2356 let result = f(self);
2357 self.element_offset_stack.pop();
2358 result
2359 }
2360
2361 pub(crate) fn with_element_opacity<R>(
2362 &mut self,
2363 opacity: Option<f32>,
2364 f: impl FnOnce(&mut Self) -> R,
2365 ) -> R {
2366 if opacity.is_none() {
2367 return f(self);
2368 }
2369
2370 self.invalidator.debug_assert_paint_or_prepaint();
2371 self.element_opacity = opacity;
2372 let result = f(self);
2373 self.element_opacity = None;
2374 result
2375 }
2376
2377 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2378 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2379 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2380 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2381 /// called during the prepaint phase of element drawing.
2382 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2383 self.invalidator.debug_assert_prepaint();
2384 let index = self.prepaint_index();
2385 let result = f(self);
2386 if result.is_err() {
2387 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2388 self.next_frame
2389 .tooltip_requests
2390 .truncate(index.tooltips_index);
2391 self.next_frame
2392 .deferred_draws
2393 .truncate(index.deferred_draws_index);
2394 self.next_frame
2395 .dispatch_tree
2396 .truncate(index.dispatch_tree_index);
2397 self.next_frame
2398 .accessed_element_states
2399 .truncate(index.accessed_element_states_index);
2400 self.text_system.truncate_layouts(index.line_layout_index);
2401 }
2402 result
2403 }
2404
2405 /// When you call this method during [`prepaint`], containing elements will attempt to
2406 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2407 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2408 /// that supports this method being called on the elements it contains. This method should only be
2409 /// called during the prepaint phase of element drawing.
2410 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2411 self.invalidator.debug_assert_prepaint();
2412 self.requested_autoscroll = Some(bounds);
2413 }
2414
2415 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2416 /// described in [`request_autoscroll`].
2417 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2418 self.invalidator.debug_assert_prepaint();
2419 self.requested_autoscroll.take()
2420 }
2421
2422 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2423 /// Your view will be re-drawn once the asset has finished loading.
2424 ///
2425 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2426 /// time.
2427 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2428 let (task, is_first) = cx.fetch_asset::<A>(source);
2429 task.clone().now_or_never().or_else(|| {
2430 if is_first {
2431 let entity_id = self.current_view();
2432 self.spawn(cx, {
2433 let task = task.clone();
2434 async move |cx| {
2435 task.await;
2436
2437 cx.on_next_frame(move |_, cx| {
2438 cx.notify(entity_id);
2439 });
2440 }
2441 })
2442 .detach();
2443 }
2444
2445 None
2446 })
2447 }
2448
2449 /// Asynchronously load an asset, if the asset hasn't finished loading or doesn't exist this will return None.
2450 /// Your view will not be re-drawn once the asset has finished loading.
2451 ///
2452 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2453 /// time.
2454 pub fn get_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2455 let (task, _) = cx.fetch_asset::<A>(source);
2456 task.now_or_never()
2457 }
2458 /// Obtain the current element offset. This method should only be called during the
2459 /// prepaint phase of element drawing.
2460 pub fn element_offset(&self) -> Point<Pixels> {
2461 self.invalidator.debug_assert_prepaint();
2462 self.element_offset_stack
2463 .last()
2464 .copied()
2465 .unwrap_or_default()
2466 }
2467
2468 /// Obtain the current element opacity. This method should only be called during the
2469 /// prepaint phase of element drawing.
2470 pub(crate) fn element_opacity(&self) -> f32 {
2471 self.invalidator.debug_assert_paint_or_prepaint();
2472 self.element_opacity.unwrap_or(1.0)
2473 }
2474
2475 /// Obtain the current content mask. This method should only be called during element drawing.
2476 pub fn content_mask(&self) -> ContentMask<Pixels> {
2477 self.invalidator.debug_assert_paint_or_prepaint();
2478 self.content_mask_stack
2479 .last()
2480 .cloned()
2481 .unwrap_or_else(|| ContentMask {
2482 bounds: Bounds {
2483 origin: Point::default(),
2484 size: self.viewport_size,
2485 },
2486 })
2487 }
2488
2489 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2490 /// This can be used within a custom element to distinguish multiple sets of child elements.
2491 pub fn with_element_namespace<R>(
2492 &mut self,
2493 element_id: impl Into<ElementId>,
2494 f: impl FnOnce(&mut Self) -> R,
2495 ) -> R {
2496 self.element_id_stack.push(element_id.into());
2497 let result = f(self);
2498 self.element_id_stack.pop();
2499 result
2500 }
2501
2502 /// Use a piece of state that exists as long this element is being rendered in consecutive frames.
2503 pub fn use_keyed_state<S: 'static>(
2504 &mut self,
2505 key: impl Into<ElementId>,
2506 cx: &mut App,
2507 init: impl FnOnce(&mut Self, &mut App) -> S,
2508 ) -> Entity<S> {
2509 let current_view = self.current_view();
2510 self.with_global_id(key.into(), |global_id, window| {
2511 window.with_element_state(global_id, |state: Option<Entity<S>>, window| {
2512 if let Some(state) = state {
2513 (state.clone(), state)
2514 } else {
2515 let new_state = cx.new(|cx| init(window, cx));
2516 cx.observe(&new_state, move |_, cx| {
2517 cx.notify(current_view);
2518 })
2519 .detach();
2520 (new_state.clone(), new_state)
2521 }
2522 })
2523 })
2524 }
2525
2526 /// Immediately push an element ID onto the stack. Useful for simplifying IDs in lists
2527 pub fn with_id<R>(&mut self, id: impl Into<ElementId>, f: impl FnOnce(&mut Self) -> R) -> R {
2528 self.with_global_id(id.into(), |_, window| f(window))
2529 }
2530
2531 /// Use a piece of state that exists as long this element is being rendered in consecutive frames, without needing to specify a key
2532 ///
2533 /// NOTE: This method uses the location of the caller to generate an ID for this state.
2534 /// If this is not sufficient to identify your state (e.g. you're rendering a list item),
2535 /// you can provide a custom ElementID using the `use_keyed_state` method.
2536 #[track_caller]
2537 pub fn use_state<S: 'static>(
2538 &mut self,
2539 cx: &mut App,
2540 init: impl FnOnce(&mut Self, &mut App) -> S,
2541 ) -> Entity<S> {
2542 self.use_keyed_state(
2543 ElementId::CodeLocation(*core::panic::Location::caller()),
2544 cx,
2545 init,
2546 )
2547 }
2548
2549 /// Updates or initializes state for an element with the given id that lives across multiple
2550 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2551 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2552 /// when drawing the next frame. This method should only be called as part of element drawing.
2553 pub fn with_element_state<S, R>(
2554 &mut self,
2555 global_id: &GlobalElementId,
2556 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2557 ) -> R
2558 where
2559 S: 'static,
2560 {
2561 self.invalidator.debug_assert_paint_or_prepaint();
2562
2563 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2564 self.next_frame
2565 .accessed_element_states
2566 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2567
2568 if let Some(any) = self
2569 .next_frame
2570 .element_states
2571 .remove(&key)
2572 .or_else(|| self.rendered_frame.element_states.remove(&key))
2573 {
2574 let ElementStateBox {
2575 inner,
2576 #[cfg(debug_assertions)]
2577 type_name,
2578 } = any;
2579 // Using the extra inner option to avoid needing to reallocate a new box.
2580 let mut state_box = inner
2581 .downcast::<Option<S>>()
2582 .map_err(|_| {
2583 #[cfg(debug_assertions)]
2584 {
2585 anyhow::anyhow!(
2586 "invalid element state type for id, requested {:?}, actual: {:?}",
2587 std::any::type_name::<S>(),
2588 type_name
2589 )
2590 }
2591
2592 #[cfg(not(debug_assertions))]
2593 {
2594 anyhow::anyhow!(
2595 "invalid element state type for id, requested {:?}",
2596 std::any::type_name::<S>(),
2597 )
2598 }
2599 })
2600 .unwrap();
2601
2602 let state = state_box.take().expect(
2603 "reentrant call to with_element_state for the same state type and element id",
2604 );
2605 let (result, state) = f(Some(state), self);
2606 state_box.replace(state);
2607 self.next_frame.element_states.insert(
2608 key,
2609 ElementStateBox {
2610 inner: state_box,
2611 #[cfg(debug_assertions)]
2612 type_name,
2613 },
2614 );
2615 result
2616 } else {
2617 let (result, state) = f(None, self);
2618 self.next_frame.element_states.insert(
2619 key,
2620 ElementStateBox {
2621 inner: Box::new(Some(state)),
2622 #[cfg(debug_assertions)]
2623 type_name: std::any::type_name::<S>(),
2624 },
2625 );
2626 result
2627 }
2628 }
2629
2630 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2631 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2632 /// when the element is guaranteed to have an id.
2633 ///
2634 /// The first option means 'no ID provided'
2635 /// The second option means 'not yet initialized'
2636 pub fn with_optional_element_state<S, R>(
2637 &mut self,
2638 global_id: Option<&GlobalElementId>,
2639 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2640 ) -> R
2641 where
2642 S: 'static,
2643 {
2644 self.invalidator.debug_assert_paint_or_prepaint();
2645
2646 if let Some(global_id) = global_id {
2647 self.with_element_state(global_id, |state, cx| {
2648 let (result, state) = f(Some(state), cx);
2649 let state =
2650 state.expect("you must return some state when you pass some element id");
2651 (result, state)
2652 })
2653 } else {
2654 let (result, state) = f(None, self);
2655 debug_assert!(
2656 state.is_none(),
2657 "you must not return an element state when passing None for the global id"
2658 );
2659 result
2660 }
2661 }
2662
2663 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2664 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2665 /// with higher values being drawn on top.
2666 ///
2667 /// This method should only be called as part of the prepaint phase of element drawing.
2668 pub fn defer_draw(
2669 &mut self,
2670 element: AnyElement,
2671 absolute_offset: Point<Pixels>,
2672 priority: usize,
2673 ) {
2674 self.invalidator.debug_assert_prepaint();
2675 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2676 self.next_frame.deferred_draws.push(DeferredDraw {
2677 current_view: self.current_view(),
2678 parent_node,
2679 element_id_stack: self.element_id_stack.clone(),
2680 text_style_stack: self.text_style_stack.clone(),
2681 priority,
2682 element: Some(element),
2683 absolute_offset,
2684 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2685 paint_range: PaintIndex::default()..PaintIndex::default(),
2686 });
2687 }
2688
2689 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2690 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2691 /// for performance reasons.
2692 ///
2693 /// This method should only be called as part of the paint phase of element drawing.
2694 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2695 self.invalidator.debug_assert_paint();
2696
2697 let scale_factor = self.scale_factor();
2698 let content_mask = self.content_mask();
2699 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2700 if !clipped_bounds.is_empty() {
2701 self.next_frame
2702 .scene
2703 .push_layer(clipped_bounds.scale(scale_factor));
2704 }
2705
2706 let result = f(self);
2707
2708 if !clipped_bounds.is_empty() {
2709 self.next_frame.scene.pop_layer();
2710 }
2711
2712 result
2713 }
2714
2715 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2716 ///
2717 /// This method should only be called as part of the paint phase of element drawing.
2718 pub fn paint_shadows(
2719 &mut self,
2720 bounds: Bounds<Pixels>,
2721 corner_radii: Corners<Pixels>,
2722 shadows: &[BoxShadow],
2723 ) {
2724 self.invalidator.debug_assert_paint();
2725
2726 let scale_factor = self.scale_factor();
2727 let content_mask = self.content_mask();
2728 let opacity = self.element_opacity();
2729 for shadow in shadows {
2730 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2731 self.next_frame.scene.insert_primitive(Shadow {
2732 order: 0,
2733 blur_radius: shadow.blur_radius.scale(scale_factor),
2734 bounds: shadow_bounds.scale(scale_factor),
2735 content_mask: content_mask.scale(scale_factor),
2736 corner_radii: corner_radii.scale(scale_factor),
2737 color: shadow.color.opacity(opacity),
2738 });
2739 }
2740 }
2741
2742 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2743 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2744 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2745 ///
2746 /// This method should only be called as part of the paint phase of element drawing.
2747 ///
2748 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2749 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2750 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2751 pub fn paint_quad(&mut self, quad: PaintQuad) {
2752 self.invalidator.debug_assert_paint();
2753
2754 let scale_factor = self.scale_factor();
2755 let content_mask = self.content_mask();
2756 let opacity = self.element_opacity();
2757 self.next_frame.scene.insert_primitive(Quad {
2758 order: 0,
2759 bounds: quad.bounds.scale(scale_factor),
2760 content_mask: content_mask.scale(scale_factor),
2761 background: quad.background.opacity(opacity),
2762 border_color: quad.border_color.opacity(opacity),
2763 corner_radii: quad.corner_radii.scale(scale_factor),
2764 border_widths: quad.border_widths.scale(scale_factor),
2765 border_style: quad.border_style,
2766 });
2767 }
2768
2769 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2770 ///
2771 /// This method should only be called as part of the paint phase of element drawing.
2772 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2773 self.invalidator.debug_assert_paint();
2774
2775 let scale_factor = self.scale_factor();
2776 let content_mask = self.content_mask();
2777 let opacity = self.element_opacity();
2778 path.content_mask = content_mask;
2779 let color: Background = color.into();
2780 path.color = color.opacity(opacity);
2781 self.next_frame
2782 .scene
2783 .insert_primitive(path.scale(scale_factor));
2784 }
2785
2786 /// Paint an underline into the scene for the next frame at the current z-index.
2787 ///
2788 /// This method should only be called as part of the paint phase of element drawing.
2789 pub fn paint_underline(
2790 &mut self,
2791 origin: Point<Pixels>,
2792 width: Pixels,
2793 style: &UnderlineStyle,
2794 ) {
2795 self.invalidator.debug_assert_paint();
2796
2797 let scale_factor = self.scale_factor();
2798 let height = if style.wavy {
2799 style.thickness * 3.
2800 } else {
2801 style.thickness
2802 };
2803 let bounds = Bounds {
2804 origin,
2805 size: size(width, height),
2806 };
2807 let content_mask = self.content_mask();
2808 let element_opacity = self.element_opacity();
2809
2810 self.next_frame.scene.insert_primitive(Underline {
2811 order: 0,
2812 pad: 0,
2813 bounds: bounds.scale(scale_factor),
2814 content_mask: content_mask.scale(scale_factor),
2815 color: style.color.unwrap_or_default().opacity(element_opacity),
2816 thickness: style.thickness.scale(scale_factor),
2817 wavy: if style.wavy { 1 } else { 0 },
2818 });
2819 }
2820
2821 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2822 ///
2823 /// This method should only be called as part of the paint phase of element drawing.
2824 pub fn paint_strikethrough(
2825 &mut self,
2826 origin: Point<Pixels>,
2827 width: Pixels,
2828 style: &StrikethroughStyle,
2829 ) {
2830 self.invalidator.debug_assert_paint();
2831
2832 let scale_factor = self.scale_factor();
2833 let height = style.thickness;
2834 let bounds = Bounds {
2835 origin,
2836 size: size(width, height),
2837 };
2838 let content_mask = self.content_mask();
2839 let opacity = self.element_opacity();
2840
2841 self.next_frame.scene.insert_primitive(Underline {
2842 order: 0,
2843 pad: 0,
2844 bounds: bounds.scale(scale_factor),
2845 content_mask: content_mask.scale(scale_factor),
2846 thickness: style.thickness.scale(scale_factor),
2847 color: style.color.unwrap_or_default().opacity(opacity),
2848 wavy: 0,
2849 });
2850 }
2851
2852 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2853 ///
2854 /// The y component of the origin is the baseline of the glyph.
2855 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2856 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2857 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2858 ///
2859 /// This method should only be called as part of the paint phase of element drawing.
2860 pub fn paint_glyph(
2861 &mut self,
2862 origin: Point<Pixels>,
2863 font_id: FontId,
2864 glyph_id: GlyphId,
2865 font_size: Pixels,
2866 color: Hsla,
2867 ) -> Result<()> {
2868 self.invalidator.debug_assert_paint();
2869
2870 let element_opacity = self.element_opacity();
2871 let scale_factor = self.scale_factor();
2872 let glyph_origin = origin.scale(scale_factor);
2873 let subpixel_variant = Point {
2874 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2875 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2876 };
2877 let params = RenderGlyphParams {
2878 font_id,
2879 glyph_id,
2880 font_size,
2881 subpixel_variant,
2882 scale_factor,
2883 is_emoji: false,
2884 };
2885
2886 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2887 if !raster_bounds.is_zero() {
2888 let tile = self
2889 .sprite_atlas
2890 .get_or_insert_with(¶ms.clone().into(), &mut || {
2891 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2892 Ok(Some((size, Cow::Owned(bytes))))
2893 })?
2894 .expect("Callback above only errors or returns Some");
2895 let bounds = Bounds {
2896 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2897 size: tile.bounds.size.map(Into::into),
2898 };
2899 let content_mask = self.content_mask().scale(scale_factor);
2900 self.next_frame.scene.insert_primitive(MonochromeSprite {
2901 order: 0,
2902 pad: 0,
2903 bounds,
2904 content_mask,
2905 color: color.opacity(element_opacity),
2906 tile,
2907 transformation: TransformationMatrix::unit(),
2908 });
2909 }
2910 Ok(())
2911 }
2912
2913 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2914 ///
2915 /// The y component of the origin is the baseline of the glyph.
2916 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2917 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2918 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2919 ///
2920 /// This method should only be called as part of the paint phase of element drawing.
2921 pub fn paint_emoji(
2922 &mut self,
2923 origin: Point<Pixels>,
2924 font_id: FontId,
2925 glyph_id: GlyphId,
2926 font_size: Pixels,
2927 ) -> Result<()> {
2928 self.invalidator.debug_assert_paint();
2929
2930 let scale_factor = self.scale_factor();
2931 let glyph_origin = origin.scale(scale_factor);
2932 let params = RenderGlyphParams {
2933 font_id,
2934 glyph_id,
2935 font_size,
2936 // We don't render emojis with subpixel variants.
2937 subpixel_variant: Default::default(),
2938 scale_factor,
2939 is_emoji: true,
2940 };
2941
2942 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2943 if !raster_bounds.is_zero() {
2944 let tile = self
2945 .sprite_atlas
2946 .get_or_insert_with(¶ms.clone().into(), &mut || {
2947 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2948 Ok(Some((size, Cow::Owned(bytes))))
2949 })?
2950 .expect("Callback above only errors or returns Some");
2951
2952 let bounds = Bounds {
2953 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2954 size: tile.bounds.size.map(Into::into),
2955 };
2956 let content_mask = self.content_mask().scale(scale_factor);
2957 let opacity = self.element_opacity();
2958
2959 self.next_frame.scene.insert_primitive(PolychromeSprite {
2960 order: 0,
2961 pad: 0,
2962 grayscale: false,
2963 bounds,
2964 corner_radii: Default::default(),
2965 content_mask,
2966 tile,
2967 opacity,
2968 });
2969 }
2970 Ok(())
2971 }
2972
2973 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2974 ///
2975 /// This method should only be called as part of the paint phase of element drawing.
2976 pub fn paint_svg(
2977 &mut self,
2978 bounds: Bounds<Pixels>,
2979 path: SharedString,
2980 transformation: TransformationMatrix,
2981 color: Hsla,
2982 cx: &App,
2983 ) -> Result<()> {
2984 self.invalidator.debug_assert_paint();
2985
2986 let element_opacity = self.element_opacity();
2987 let scale_factor = self.scale_factor();
2988 let bounds = bounds.scale(scale_factor);
2989 let params = RenderSvgParams {
2990 path,
2991 size: bounds.size.map(|pixels| {
2992 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2993 }),
2994 };
2995
2996 let Some(tile) =
2997 self.sprite_atlas
2998 .get_or_insert_with(¶ms.clone().into(), &mut || {
2999 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
3000 return Ok(None);
3001 };
3002 Ok(Some((params.size, Cow::Owned(bytes))))
3003 })?
3004 else {
3005 return Ok(());
3006 };
3007 let content_mask = self.content_mask().scale(scale_factor);
3008
3009 self.next_frame.scene.insert_primitive(MonochromeSprite {
3010 order: 0,
3011 pad: 0,
3012 bounds: bounds
3013 .map_origin(|origin| origin.floor())
3014 .map_size(|size| size.ceil()),
3015 content_mask,
3016 color: color.opacity(element_opacity),
3017 tile,
3018 transformation,
3019 });
3020
3021 Ok(())
3022 }
3023
3024 /// Paint an image into the scene for the next frame at the current z-index.
3025 /// This method will panic if the frame_index is not valid
3026 ///
3027 /// This method should only be called as part of the paint phase of element drawing.
3028 pub fn paint_image(
3029 &mut self,
3030 bounds: Bounds<Pixels>,
3031 corner_radii: Corners<Pixels>,
3032 data: Arc<RenderImage>,
3033 frame_index: usize,
3034 grayscale: bool,
3035 ) -> Result<()> {
3036 self.invalidator.debug_assert_paint();
3037
3038 let scale_factor = self.scale_factor();
3039 let bounds = bounds.scale(scale_factor);
3040 let params = RenderImageParams {
3041 image_id: data.id,
3042 frame_index,
3043 };
3044
3045 let tile = self
3046 .sprite_atlas
3047 .get_or_insert_with(¶ms.into(), &mut || {
3048 Ok(Some((
3049 data.size(frame_index),
3050 Cow::Borrowed(
3051 data.as_bytes(frame_index)
3052 .expect("It's the caller's job to pass a valid frame index"),
3053 ),
3054 )))
3055 })?
3056 .expect("Callback above only returns Some");
3057 let content_mask = self.content_mask().scale(scale_factor);
3058 let corner_radii = corner_radii.scale(scale_factor);
3059 let opacity = self.element_opacity();
3060
3061 self.next_frame.scene.insert_primitive(PolychromeSprite {
3062 order: 0,
3063 pad: 0,
3064 grayscale,
3065 bounds: bounds
3066 .map_origin(|origin| origin.floor())
3067 .map_size(|size| size.ceil()),
3068 content_mask,
3069 corner_radii,
3070 tile,
3071 opacity,
3072 });
3073 Ok(())
3074 }
3075
3076 /// Paint a surface into the scene for the next frame at the current z-index.
3077 ///
3078 /// This method should only be called as part of the paint phase of element drawing.
3079 #[cfg(target_os = "macos")]
3080 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
3081 use crate::PaintSurface;
3082
3083 self.invalidator.debug_assert_paint();
3084
3085 let scale_factor = self.scale_factor();
3086 let bounds = bounds.scale(scale_factor);
3087 let content_mask = self.content_mask().scale(scale_factor);
3088 self.next_frame.scene.insert_primitive(PaintSurface {
3089 order: 0,
3090 bounds,
3091 content_mask,
3092 image_buffer,
3093 });
3094 }
3095
3096 /// Removes an image from the sprite atlas.
3097 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
3098 for frame_index in 0..data.frame_count() {
3099 let params = RenderImageParams {
3100 image_id: data.id,
3101 frame_index,
3102 };
3103
3104 self.sprite_atlas.remove(¶ms.clone().into());
3105 }
3106
3107 Ok(())
3108 }
3109
3110 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
3111 /// layout is being requested, along with the layout ids of any children. This method is called during
3112 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
3113 ///
3114 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3115 #[must_use]
3116 pub fn request_layout(
3117 &mut self,
3118 style: Style,
3119 children: impl IntoIterator<Item = LayoutId>,
3120 cx: &mut App,
3121 ) -> LayoutId {
3122 self.invalidator.debug_assert_prepaint();
3123
3124 cx.layout_id_buffer.clear();
3125 cx.layout_id_buffer.extend(children);
3126 let rem_size = self.rem_size();
3127
3128 self.layout_engine
3129 .as_mut()
3130 .unwrap()
3131 .request_layout(style, rem_size, &cx.layout_id_buffer)
3132 }
3133
3134 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
3135 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
3136 /// determine the element's size. One place this is used internally is when measuring text.
3137 ///
3138 /// The given closure is invoked at layout time with the known dimensions and available space and
3139 /// returns a `Size`.
3140 ///
3141 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
3142 pub fn request_measured_layout<
3143 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
3144 + 'static,
3145 >(
3146 &mut self,
3147 style: Style,
3148 measure: F,
3149 ) -> LayoutId {
3150 self.invalidator.debug_assert_prepaint();
3151
3152 let rem_size = self.rem_size();
3153 self.layout_engine
3154 .as_mut()
3155 .unwrap()
3156 .request_measured_layout(style, rem_size, measure)
3157 }
3158
3159 /// Compute the layout for the given id within the given available space.
3160 /// This method is called for its side effect, typically by the framework prior to painting.
3161 /// After calling it, you can request the bounds of the given layout node id or any descendant.
3162 ///
3163 /// This method should only be called as part of the prepaint phase of element drawing.
3164 pub fn compute_layout(
3165 &mut self,
3166 layout_id: LayoutId,
3167 available_space: Size<AvailableSpace>,
3168 cx: &mut App,
3169 ) {
3170 self.invalidator.debug_assert_prepaint();
3171
3172 let mut layout_engine = self.layout_engine.take().unwrap();
3173 layout_engine.compute_layout(layout_id, available_space, self, cx);
3174 self.layout_engine = Some(layout_engine);
3175 }
3176
3177 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
3178 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
3179 ///
3180 /// This method should only be called as part of element drawing.
3181 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
3182 self.invalidator.debug_assert_prepaint();
3183
3184 let mut bounds = self
3185 .layout_engine
3186 .as_mut()
3187 .unwrap()
3188 .layout_bounds(layout_id)
3189 .map(Into::into);
3190 bounds.origin += self.element_offset();
3191 bounds
3192 }
3193
3194 /// This method should be called during `prepaint`. You can use
3195 /// the returned [Hitbox] during `paint` or in an event handler
3196 /// to determine whether the inserted hitbox was the topmost.
3197 ///
3198 /// This method should only be called as part of the prepaint phase of element drawing.
3199 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, behavior: HitboxBehavior) -> Hitbox {
3200 self.invalidator.debug_assert_prepaint();
3201
3202 let content_mask = self.content_mask();
3203 let mut id = self.next_hitbox_id;
3204 self.next_hitbox_id = self.next_hitbox_id.next();
3205 let hitbox = Hitbox {
3206 id,
3207 bounds,
3208 content_mask,
3209 behavior,
3210 };
3211 self.next_frame.hitboxes.push(hitbox.clone());
3212 hitbox
3213 }
3214
3215 /// Set a hitbox which will act as a control area of the platform window.
3216 ///
3217 /// This method should only be called as part of the paint phase of element drawing.
3218 pub fn insert_window_control_hitbox(&mut self, area: WindowControlArea, hitbox: Hitbox) {
3219 self.invalidator.debug_assert_paint();
3220 self.next_frame.window_control_hitboxes.push((area, hitbox));
3221 }
3222
3223 /// Sets the key context for the current element. This context will be used to translate
3224 /// keybindings into actions.
3225 ///
3226 /// This method should only be called as part of the paint phase of element drawing.
3227 pub fn set_key_context(&mut self, context: KeyContext) {
3228 self.invalidator.debug_assert_paint();
3229 self.next_frame.dispatch_tree.set_key_context(context);
3230 }
3231
3232 /// Sets the focus handle for the current element. This handle will be used to manage focus state
3233 /// and keyboard event dispatch for the element.
3234 ///
3235 /// This method should only be called as part of the prepaint phase of element drawing.
3236 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
3237 self.invalidator.debug_assert_prepaint();
3238 if focus_handle.is_focused(self) {
3239 self.next_frame.focus = Some(focus_handle.id);
3240 }
3241 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
3242 }
3243
3244 /// Sets the view id for the current element, which will be used to manage view caching.
3245 ///
3246 /// This method should only be called as part of element prepaint. We plan on removing this
3247 /// method eventually when we solve some issues that require us to construct editor elements
3248 /// directly instead of always using editors via views.
3249 pub fn set_view_id(&mut self, view_id: EntityId) {
3250 self.invalidator.debug_assert_prepaint();
3251 self.next_frame.dispatch_tree.set_view_id(view_id);
3252 }
3253
3254 /// Get the entity ID for the currently rendering view
3255 pub fn current_view(&self) -> EntityId {
3256 self.invalidator.debug_assert_paint_or_prepaint();
3257 self.rendered_entity_stack.last().copied().unwrap()
3258 }
3259
3260 pub(crate) fn with_rendered_view<R>(
3261 &mut self,
3262 id: EntityId,
3263 f: impl FnOnce(&mut Self) -> R,
3264 ) -> R {
3265 self.rendered_entity_stack.push(id);
3266 let result = f(self);
3267 self.rendered_entity_stack.pop();
3268 result
3269 }
3270
3271 /// Executes the provided function with the specified image cache.
3272 pub fn with_image_cache<F, R>(&mut self, image_cache: Option<AnyImageCache>, f: F) -> R
3273 where
3274 F: FnOnce(&mut Self) -> R,
3275 {
3276 if let Some(image_cache) = image_cache {
3277 self.image_cache_stack.push(image_cache);
3278 let result = f(self);
3279 self.image_cache_stack.pop();
3280 result
3281 } else {
3282 f(self)
3283 }
3284 }
3285
3286 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
3287 /// platform to receive textual input with proper integration with concerns such
3288 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
3289 /// rendered.
3290 ///
3291 /// This method should only be called as part of the paint phase of element drawing.
3292 ///
3293 /// [element_input_handler]: crate::ElementInputHandler
3294 pub fn handle_input(
3295 &mut self,
3296 focus_handle: &FocusHandle,
3297 input_handler: impl InputHandler,
3298 cx: &App,
3299 ) {
3300 self.invalidator.debug_assert_paint();
3301
3302 if focus_handle.is_focused(self) {
3303 let cx = self.to_async(cx);
3304 self.next_frame
3305 .input_handlers
3306 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
3307 }
3308 }
3309
3310 /// Register a mouse event listener on the window for the next frame. The type of event
3311 /// is determined by the first parameter of the given listener. When the next frame is rendered
3312 /// the listener will be cleared.
3313 ///
3314 /// This method should only be called as part of the paint phase of element drawing.
3315 pub fn on_mouse_event<Event: MouseEvent>(
3316 &mut self,
3317 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3318 ) {
3319 self.invalidator.debug_assert_paint();
3320
3321 self.next_frame.mouse_listeners.push(Some(Box::new(
3322 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
3323 if let Some(event) = event.downcast_ref() {
3324 handler(event, phase, window, cx)
3325 }
3326 },
3327 )));
3328 }
3329
3330 /// Register a key event listener on the window for the next frame. The type of event
3331 /// is determined by the first parameter of the given listener. When the next frame is rendered
3332 /// the listener will be cleared.
3333 ///
3334 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3335 /// a specific need to register a global listener.
3336 ///
3337 /// This method should only be called as part of the paint phase of element drawing.
3338 pub fn on_key_event<Event: KeyEvent>(
3339 &mut self,
3340 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
3341 ) {
3342 self.invalidator.debug_assert_paint();
3343
3344 self.next_frame.dispatch_tree.on_key_event(Rc::new(
3345 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
3346 if let Some(event) = event.downcast_ref::<Event>() {
3347 listener(event, phase, window, cx)
3348 }
3349 },
3350 ));
3351 }
3352
3353 /// Register a modifiers changed event listener on the window for the next frame.
3354 ///
3355 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
3356 /// a specific need to register a global listener.
3357 ///
3358 /// This method should only be called as part of the paint phase of element drawing.
3359 pub fn on_modifiers_changed(
3360 &mut self,
3361 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
3362 ) {
3363 self.invalidator.debug_assert_paint();
3364
3365 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
3366 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
3367 listener(event, window, cx)
3368 },
3369 ));
3370 }
3371
3372 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
3373 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
3374 /// Returns a subscription and persists until the subscription is dropped.
3375 pub fn on_focus_in(
3376 &mut self,
3377 handle: &FocusHandle,
3378 cx: &mut App,
3379 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
3380 ) -> Subscription {
3381 let focus_id = handle.id;
3382 let (subscription, activate) =
3383 self.new_focus_listener(Box::new(move |event, window, cx| {
3384 if event.is_focus_in(focus_id) {
3385 listener(window, cx);
3386 }
3387 true
3388 }));
3389 cx.defer(move |_| activate());
3390 subscription
3391 }
3392
3393 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
3394 /// Returns a subscription and persists until the subscription is dropped.
3395 pub fn on_focus_out(
3396 &mut self,
3397 handle: &FocusHandle,
3398 cx: &mut App,
3399 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
3400 ) -> Subscription {
3401 let focus_id = handle.id;
3402 let (subscription, activate) =
3403 self.new_focus_listener(Box::new(move |event, window, cx| {
3404 if let Some(blurred_id) = event.previous_focus_path.last().copied()
3405 && event.is_focus_out(focus_id)
3406 {
3407 let event = FocusOutEvent {
3408 blurred: WeakFocusHandle {
3409 id: blurred_id,
3410 handles: Arc::downgrade(&cx.focus_handles),
3411 },
3412 };
3413 listener(event, window, cx)
3414 }
3415 true
3416 }));
3417 cx.defer(move |_| activate());
3418 subscription
3419 }
3420
3421 fn reset_cursor_style(&self, cx: &mut App) {
3422 // Set the cursor only if we're the active window.
3423 if self.is_window_hovered() {
3424 let style = self
3425 .rendered_frame
3426 .cursor_style(self)
3427 .unwrap_or(CursorStyle::Arrow);
3428 cx.platform.set_cursor_style(style);
3429 }
3430 }
3431
3432 /// Dispatch a given keystroke as though the user had typed it.
3433 /// You can create a keystroke with Keystroke::parse("").
3434 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3435 let keystroke = keystroke.with_simulated_ime();
3436 let result = self.dispatch_event(
3437 PlatformInput::KeyDown(KeyDownEvent {
3438 keystroke: keystroke.clone(),
3439 is_held: false,
3440 }),
3441 cx,
3442 );
3443 if !result.propagate {
3444 return true;
3445 }
3446
3447 if let Some(input) = keystroke.key_char
3448 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3449 {
3450 input_handler.dispatch_input(&input, self, cx);
3451 self.platform_window.set_input_handler(input_handler);
3452 return true;
3453 }
3454
3455 false
3456 }
3457
3458 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3459 /// binding for the action (last binding added to the keymap).
3460 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3461 self.highest_precedence_binding_for_action(action)
3462 .map(|binding| {
3463 binding
3464 .keystrokes()
3465 .iter()
3466 .map(ToString::to_string)
3467 .collect::<Vec<_>>()
3468 .join(" ")
3469 })
3470 .unwrap_or_else(|| action.name().to_string())
3471 }
3472
3473 /// Dispatch a mouse or keyboard event on the window.
3474 #[profiling::function]
3475 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3476 self.last_input_timestamp.set(Instant::now());
3477 // Handlers may set this to false by calling `stop_propagation`.
3478 cx.propagate_event = true;
3479 // Handlers may set this to true by calling `prevent_default`.
3480 self.default_prevented = false;
3481
3482 let event = match event {
3483 // Track the mouse position with our own state, since accessing the platform
3484 // API for the mouse position can only occur on the main thread.
3485 PlatformInput::MouseMove(mouse_move) => {
3486 self.mouse_position = mouse_move.position;
3487 self.modifiers = mouse_move.modifiers;
3488 PlatformInput::MouseMove(mouse_move)
3489 }
3490 PlatformInput::MouseDown(mouse_down) => {
3491 self.mouse_position = mouse_down.position;
3492 self.modifiers = mouse_down.modifiers;
3493 PlatformInput::MouseDown(mouse_down)
3494 }
3495 PlatformInput::MouseUp(mouse_up) => {
3496 self.mouse_position = mouse_up.position;
3497 self.modifiers = mouse_up.modifiers;
3498 PlatformInput::MouseUp(mouse_up)
3499 }
3500 PlatformInput::MouseExited(mouse_exited) => {
3501 self.modifiers = mouse_exited.modifiers;
3502 PlatformInput::MouseExited(mouse_exited)
3503 }
3504 PlatformInput::ModifiersChanged(modifiers_changed) => {
3505 self.modifiers = modifiers_changed.modifiers;
3506 self.capslock = modifiers_changed.capslock;
3507 PlatformInput::ModifiersChanged(modifiers_changed)
3508 }
3509 PlatformInput::ScrollWheel(scroll_wheel) => {
3510 self.mouse_position = scroll_wheel.position;
3511 self.modifiers = scroll_wheel.modifiers;
3512 PlatformInput::ScrollWheel(scroll_wheel)
3513 }
3514 // Translate dragging and dropping of external files from the operating system
3515 // to internal drag and drop events.
3516 PlatformInput::FileDrop(file_drop) => match file_drop {
3517 FileDropEvent::Entered { position, paths } => {
3518 self.mouse_position = position;
3519 if cx.active_drag.is_none() {
3520 cx.active_drag = Some(AnyDrag {
3521 value: Arc::new(paths.clone()),
3522 view: cx.new(|_| paths).into(),
3523 cursor_offset: position,
3524 cursor_style: None,
3525 });
3526 }
3527 PlatformInput::MouseMove(MouseMoveEvent {
3528 position,
3529 pressed_button: Some(MouseButton::Left),
3530 modifiers: Modifiers::default(),
3531 })
3532 }
3533 FileDropEvent::Pending { position } => {
3534 self.mouse_position = position;
3535 PlatformInput::MouseMove(MouseMoveEvent {
3536 position,
3537 pressed_button: Some(MouseButton::Left),
3538 modifiers: Modifiers::default(),
3539 })
3540 }
3541 FileDropEvent::Submit { position } => {
3542 cx.activate(true);
3543 self.mouse_position = position;
3544 PlatformInput::MouseUp(MouseUpEvent {
3545 button: MouseButton::Left,
3546 position,
3547 modifiers: Modifiers::default(),
3548 click_count: 1,
3549 })
3550 }
3551 FileDropEvent::Exited => {
3552 cx.active_drag.take();
3553 PlatformInput::FileDrop(FileDropEvent::Exited)
3554 }
3555 },
3556 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3557 };
3558
3559 if let Some(any_mouse_event) = event.mouse_event() {
3560 self.dispatch_mouse_event(any_mouse_event, cx);
3561 } else if let Some(any_key_event) = event.keyboard_event() {
3562 self.dispatch_key_event(any_key_event, cx);
3563 }
3564
3565 DispatchEventResult {
3566 propagate: cx.propagate_event,
3567 default_prevented: self.default_prevented,
3568 }
3569 }
3570
3571 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3572 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3573 if hit_test != self.mouse_hit_test {
3574 self.mouse_hit_test = hit_test;
3575 self.reset_cursor_style(cx);
3576 }
3577
3578 #[cfg(any(feature = "inspector", debug_assertions))]
3579 if self.is_inspector_picking(cx) {
3580 self.handle_inspector_mouse_event(event, cx);
3581 // When inspector is picking, all other mouse handling is skipped.
3582 return;
3583 }
3584
3585 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3586
3587 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3588 // special purposes, such as detecting events outside of a given Bounds.
3589 for listener in &mut mouse_listeners {
3590 let listener = listener.as_mut().unwrap();
3591 listener(event, DispatchPhase::Capture, self, cx);
3592 if !cx.propagate_event {
3593 break;
3594 }
3595 }
3596
3597 // Bubble phase, where most normal handlers do their work.
3598 if cx.propagate_event {
3599 for listener in mouse_listeners.iter_mut().rev() {
3600 let listener = listener.as_mut().unwrap();
3601 listener(event, DispatchPhase::Bubble, self, cx);
3602 if !cx.propagate_event {
3603 break;
3604 }
3605 }
3606 }
3607
3608 self.rendered_frame.mouse_listeners = mouse_listeners;
3609
3610 if cx.has_active_drag() {
3611 if event.is::<MouseMoveEvent>() {
3612 // If this was a mouse move event, redraw the window so that the
3613 // active drag can follow the mouse cursor.
3614 self.refresh();
3615 } else if event.is::<MouseUpEvent>() {
3616 // If this was a mouse up event, cancel the active drag and redraw
3617 // the window.
3618 cx.active_drag = None;
3619 self.refresh();
3620 }
3621 }
3622 }
3623
3624 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3625 if self.invalidator.is_dirty() {
3626 self.draw(cx).clear();
3627 }
3628
3629 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3630 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3631
3632 let mut keystroke: Option<Keystroke> = None;
3633
3634 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3635 if event.modifiers.number_of_modifiers() == 0
3636 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3637 && !self.pending_modifier.saw_keystroke
3638 {
3639 let key = match self.pending_modifier.modifiers {
3640 modifiers if modifiers.shift => Some("shift"),
3641 modifiers if modifiers.control => Some("control"),
3642 modifiers if modifiers.alt => Some("alt"),
3643 modifiers if modifiers.platform => Some("platform"),
3644 modifiers if modifiers.function => Some("function"),
3645 _ => None,
3646 };
3647 if let Some(key) = key {
3648 keystroke = Some(Keystroke {
3649 key: key.to_string(),
3650 key_char: None,
3651 modifiers: Modifiers::default(),
3652 });
3653 }
3654 }
3655
3656 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3657 && event.modifiers.number_of_modifiers() == 1
3658 {
3659 self.pending_modifier.saw_keystroke = false
3660 }
3661 self.pending_modifier.modifiers = event.modifiers
3662 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3663 self.pending_modifier.saw_keystroke = true;
3664 keystroke = Some(key_down_event.keystroke.clone());
3665 }
3666
3667 let Some(keystroke) = keystroke else {
3668 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3669 return;
3670 };
3671
3672 cx.propagate_event = true;
3673 self.dispatch_keystroke_interceptors(event, self.context_stack(), cx);
3674 if !cx.propagate_event {
3675 self.finish_dispatch_key_event(event, dispatch_path, self.context_stack(), cx);
3676 return;
3677 }
3678
3679 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3680 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3681 currently_pending = PendingInput::default();
3682 }
3683
3684 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3685 currently_pending.keystrokes,
3686 keystroke,
3687 &dispatch_path,
3688 );
3689
3690 if !match_result.to_replay.is_empty() {
3691 self.replay_pending_input(match_result.to_replay, cx);
3692 cx.propagate_event = true;
3693 }
3694
3695 if !match_result.pending.is_empty() {
3696 currently_pending.keystrokes = match_result.pending;
3697 currently_pending.focus = self.focus;
3698 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3699 cx.background_executor.timer(Duration::from_secs(1)).await;
3700 cx.update(move |window, cx| {
3701 let Some(currently_pending) = window
3702 .pending_input
3703 .take()
3704 .filter(|pending| pending.focus == window.focus)
3705 else {
3706 return;
3707 };
3708
3709 let node_id = window.focus_node_id_in_rendered_frame(window.focus);
3710 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3711
3712 let to_replay = window
3713 .rendered_frame
3714 .dispatch_tree
3715 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3716
3717 window.pending_input_changed(cx);
3718 window.replay_pending_input(to_replay, cx)
3719 })
3720 .log_err();
3721 }));
3722 self.pending_input = Some(currently_pending);
3723 self.pending_input_changed(cx);
3724 cx.propagate_event = false;
3725 return;
3726 }
3727
3728 for binding in match_result.bindings {
3729 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3730 if !cx.propagate_event {
3731 self.dispatch_keystroke_observers(
3732 event,
3733 Some(binding.action),
3734 match_result.context_stack,
3735 cx,
3736 );
3737 self.pending_input_changed(cx);
3738 return;
3739 }
3740 }
3741
3742 self.finish_dispatch_key_event(event, dispatch_path, match_result.context_stack, cx);
3743 self.pending_input_changed(cx);
3744 }
3745
3746 fn finish_dispatch_key_event(
3747 &mut self,
3748 event: &dyn Any,
3749 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3750 context_stack: Vec<KeyContext>,
3751 cx: &mut App,
3752 ) {
3753 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3754 if !cx.propagate_event {
3755 return;
3756 }
3757
3758 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3759 if !cx.propagate_event {
3760 return;
3761 }
3762
3763 self.dispatch_keystroke_observers(event, None, context_stack, cx);
3764 }
3765
3766 fn pending_input_changed(&mut self, cx: &mut App) {
3767 self.pending_input_observers
3768 .clone()
3769 .retain(&(), |callback| callback(self, cx));
3770 }
3771
3772 fn dispatch_key_down_up_event(
3773 &mut self,
3774 event: &dyn Any,
3775 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3776 cx: &mut App,
3777 ) {
3778 // Capture phase
3779 for node_id in dispatch_path {
3780 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3781
3782 for key_listener in node.key_listeners.clone() {
3783 key_listener(event, DispatchPhase::Capture, self, cx);
3784 if !cx.propagate_event {
3785 return;
3786 }
3787 }
3788 }
3789
3790 // Bubble phase
3791 for node_id in dispatch_path.iter().rev() {
3792 // Handle low level key events
3793 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3794 for key_listener in node.key_listeners.clone() {
3795 key_listener(event, DispatchPhase::Bubble, self, cx);
3796 if !cx.propagate_event {
3797 return;
3798 }
3799 }
3800 }
3801 }
3802
3803 fn dispatch_modifiers_changed_event(
3804 &mut self,
3805 event: &dyn Any,
3806 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3807 cx: &mut App,
3808 ) {
3809 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3810 return;
3811 };
3812 for node_id in dispatch_path.iter().rev() {
3813 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3814 for listener in node.modifiers_changed_listeners.clone() {
3815 listener(event, self, cx);
3816 if !cx.propagate_event {
3817 return;
3818 }
3819 }
3820 }
3821 }
3822
3823 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3824 pub fn has_pending_keystrokes(&self) -> bool {
3825 self.pending_input.is_some()
3826 }
3827
3828 pub(crate) fn clear_pending_keystrokes(&mut self) {
3829 self.pending_input.take();
3830 }
3831
3832 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3833 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3834 self.pending_input
3835 .as_ref()
3836 .map(|pending_input| pending_input.keystrokes.as_slice())
3837 }
3838
3839 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3840 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
3841 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3842
3843 'replay: for replay in replays {
3844 let event = KeyDownEvent {
3845 keystroke: replay.keystroke.clone(),
3846 is_held: false,
3847 };
3848
3849 cx.propagate_event = true;
3850 for binding in replay.bindings {
3851 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3852 if !cx.propagate_event {
3853 self.dispatch_keystroke_observers(
3854 &event,
3855 Some(binding.action),
3856 Vec::default(),
3857 cx,
3858 );
3859 continue 'replay;
3860 }
3861 }
3862
3863 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3864 if !cx.propagate_event {
3865 continue 'replay;
3866 }
3867 if let Some(input) = replay.keystroke.key_char.as_ref().cloned()
3868 && let Some(mut input_handler) = self.platform_window.take_input_handler()
3869 {
3870 input_handler.dispatch_input(&input, self, cx);
3871 self.platform_window.set_input_handler(input_handler)
3872 }
3873 }
3874 }
3875
3876 fn focus_node_id_in_rendered_frame(&self, focus_id: Option<FocusId>) -> DispatchNodeId {
3877 focus_id
3878 .and_then(|focus_id| {
3879 self.rendered_frame
3880 .dispatch_tree
3881 .focusable_node_id(focus_id)
3882 })
3883 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id())
3884 }
3885
3886 fn dispatch_action_on_node(
3887 &mut self,
3888 node_id: DispatchNodeId,
3889 action: &dyn Action,
3890 cx: &mut App,
3891 ) {
3892 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3893
3894 // Capture phase for global actions.
3895 cx.propagate_event = true;
3896 if let Some(mut global_listeners) = cx
3897 .global_action_listeners
3898 .remove(&action.as_any().type_id())
3899 {
3900 for listener in &global_listeners {
3901 listener(action.as_any(), DispatchPhase::Capture, cx);
3902 if !cx.propagate_event {
3903 break;
3904 }
3905 }
3906
3907 global_listeners.extend(
3908 cx.global_action_listeners
3909 .remove(&action.as_any().type_id())
3910 .unwrap_or_default(),
3911 );
3912
3913 cx.global_action_listeners
3914 .insert(action.as_any().type_id(), global_listeners);
3915 }
3916
3917 if !cx.propagate_event {
3918 return;
3919 }
3920
3921 // Capture phase for window actions.
3922 for node_id in &dispatch_path {
3923 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3924 for DispatchActionListener {
3925 action_type,
3926 listener,
3927 } in node.action_listeners.clone()
3928 {
3929 let any_action = action.as_any();
3930 if action_type == any_action.type_id() {
3931 listener(any_action, DispatchPhase::Capture, self, cx);
3932
3933 if !cx.propagate_event {
3934 return;
3935 }
3936 }
3937 }
3938 }
3939
3940 // Bubble phase for window actions.
3941 for node_id in dispatch_path.iter().rev() {
3942 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3943 for DispatchActionListener {
3944 action_type,
3945 listener,
3946 } in node.action_listeners.clone()
3947 {
3948 let any_action = action.as_any();
3949 if action_type == any_action.type_id() {
3950 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3951 listener(any_action, DispatchPhase::Bubble, self, cx);
3952
3953 if !cx.propagate_event {
3954 return;
3955 }
3956 }
3957 }
3958 }
3959
3960 // Bubble phase for global actions.
3961 if let Some(mut global_listeners) = cx
3962 .global_action_listeners
3963 .remove(&action.as_any().type_id())
3964 {
3965 for listener in global_listeners.iter().rev() {
3966 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3967
3968 listener(action.as_any(), DispatchPhase::Bubble, cx);
3969 if !cx.propagate_event {
3970 break;
3971 }
3972 }
3973
3974 global_listeners.extend(
3975 cx.global_action_listeners
3976 .remove(&action.as_any().type_id())
3977 .unwrap_or_default(),
3978 );
3979
3980 cx.global_action_listeners
3981 .insert(action.as_any().type_id(), global_listeners);
3982 }
3983 }
3984
3985 /// Register the given handler to be invoked whenever the global of the given type
3986 /// is updated.
3987 pub fn observe_global<G: Global>(
3988 &mut self,
3989 cx: &mut App,
3990 f: impl Fn(&mut Window, &mut App) + 'static,
3991 ) -> Subscription {
3992 let window_handle = self.handle;
3993 let (subscription, activate) = cx.global_observers.insert(
3994 TypeId::of::<G>(),
3995 Box::new(move |cx| {
3996 window_handle
3997 .update(cx, |_, window, cx| f(window, cx))
3998 .is_ok()
3999 }),
4000 );
4001 cx.defer(move |_| activate());
4002 subscription
4003 }
4004
4005 /// Focus the current window and bring it to the foreground at the platform level.
4006 pub fn activate_window(&self) {
4007 self.platform_window.activate();
4008 }
4009
4010 /// Minimize the current window at the platform level.
4011 pub fn minimize_window(&self) {
4012 self.platform_window.minimize();
4013 }
4014
4015 /// Toggle full screen status on the current window at the platform level.
4016 pub fn toggle_fullscreen(&self) {
4017 self.platform_window.toggle_fullscreen();
4018 }
4019
4020 /// Updates the IME panel position suggestions for languages like japanese, chinese.
4021 pub fn invalidate_character_coordinates(&self) {
4022 self.on_next_frame(|window, cx| {
4023 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
4024 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
4025 window
4026 .platform_window
4027 .update_ime_position(bounds.scale(window.scale_factor()));
4028 }
4029 window.platform_window.set_input_handler(input_handler);
4030 }
4031 });
4032 }
4033
4034 /// Present a platform dialog.
4035 /// The provided message will be presented, along with buttons for each answer.
4036 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
4037 pub fn prompt<T>(
4038 &mut self,
4039 level: PromptLevel,
4040 message: &str,
4041 detail: Option<&str>,
4042 answers: &[T],
4043 cx: &mut App,
4044 ) -> oneshot::Receiver<usize>
4045 where
4046 T: Clone + Into<PromptButton>,
4047 {
4048 let prompt_builder = cx.prompt_builder.take();
4049 let Some(prompt_builder) = prompt_builder else {
4050 unreachable!("Re-entrant window prompting is not supported by GPUI");
4051 };
4052
4053 let answers = answers
4054 .iter()
4055 .map(|answer| answer.clone().into())
4056 .collect::<Vec<_>>();
4057
4058 let receiver = match &prompt_builder {
4059 PromptBuilder::Default => self
4060 .platform_window
4061 .prompt(level, message, detail, &answers)
4062 .unwrap_or_else(|| {
4063 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4064 }),
4065 PromptBuilder::Custom(_) => {
4066 self.build_custom_prompt(&prompt_builder, level, message, detail, &answers, cx)
4067 }
4068 };
4069
4070 cx.prompt_builder = Some(prompt_builder);
4071
4072 receiver
4073 }
4074
4075 fn build_custom_prompt(
4076 &mut self,
4077 prompt_builder: &PromptBuilder,
4078 level: PromptLevel,
4079 message: &str,
4080 detail: Option<&str>,
4081 answers: &[PromptButton],
4082 cx: &mut App,
4083 ) -> oneshot::Receiver<usize> {
4084 let (sender, receiver) = oneshot::channel();
4085 let handle = PromptHandle::new(sender);
4086 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
4087 self.prompt = Some(handle);
4088 receiver
4089 }
4090
4091 /// Returns the current context stack.
4092 pub fn context_stack(&self) -> Vec<KeyContext> {
4093 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4094 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4095 dispatch_tree
4096 .dispatch_path(node_id)
4097 .iter()
4098 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
4099 .collect()
4100 }
4101
4102 /// Returns all available actions for the focused element.
4103 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
4104 let node_id = self.focus_node_id_in_rendered_frame(self.focus);
4105 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
4106 for action_type in cx.global_action_listeners.keys() {
4107 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
4108 let action = cx.actions.build_action_type(action_type).ok();
4109 if let Some(action) = action {
4110 actions.insert(ix, action);
4111 }
4112 }
4113 }
4114 actions
4115 }
4116
4117 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
4118 /// returned in the order they were added. For display, the last binding should take precedence.
4119 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
4120 self.rendered_frame
4121 .dispatch_tree
4122 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
4123 }
4124
4125 /// Returns the highest precedence key binding that invokes an action on the currently focused
4126 /// element. This is more efficient than getting the last result of `bindings_for_action`.
4127 pub fn highest_precedence_binding_for_action(&self, action: &dyn Action) -> Option<KeyBinding> {
4128 self.rendered_frame
4129 .dispatch_tree
4130 .highest_precedence_binding_for_action(
4131 action,
4132 &self.rendered_frame.dispatch_tree.context_stack,
4133 )
4134 }
4135
4136 /// Returns the key bindings for an action in a context.
4137 pub fn bindings_for_action_in_context(
4138 &self,
4139 action: &dyn Action,
4140 context: KeyContext,
4141 ) -> Vec<KeyBinding> {
4142 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4143 dispatch_tree.bindings_for_action(action, &[context])
4144 }
4145
4146 /// Returns the highest precedence key binding for an action in a context. This is more
4147 /// efficient than getting the last result of `bindings_for_action_in_context`.
4148 pub fn highest_precedence_binding_for_action_in_context(
4149 &self,
4150 action: &dyn Action,
4151 context: KeyContext,
4152 ) -> Option<KeyBinding> {
4153 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4154 dispatch_tree.highest_precedence_binding_for_action(action, &[context])
4155 }
4156
4157 /// Returns any bindings that would invoke an action on the given focus handle if it were
4158 /// focused. Bindings are returned in the order they were added. For display, the last binding
4159 /// should take precedence.
4160 pub fn bindings_for_action_in(
4161 &self,
4162 action: &dyn Action,
4163 focus_handle: &FocusHandle,
4164 ) -> Vec<KeyBinding> {
4165 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4166 let Some(context_stack) = self.context_stack_for_focus_handle(focus_handle) else {
4167 return vec![];
4168 };
4169 dispatch_tree.bindings_for_action(action, &context_stack)
4170 }
4171
4172 /// Returns the highest precedence key binding that would invoke an action on the given focus
4173 /// handle if it were focused. This is more efficient than getting the last result of
4174 /// `bindings_for_action_in`.
4175 pub fn highest_precedence_binding_for_action_in(
4176 &self,
4177 action: &dyn Action,
4178 focus_handle: &FocusHandle,
4179 ) -> Option<KeyBinding> {
4180 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4181 let context_stack = self.context_stack_for_focus_handle(focus_handle)?;
4182 dispatch_tree.highest_precedence_binding_for_action(action, &context_stack)
4183 }
4184
4185 fn context_stack_for_focus_handle(
4186 &self,
4187 focus_handle: &FocusHandle,
4188 ) -> Option<Vec<KeyContext>> {
4189 let dispatch_tree = &self.rendered_frame.dispatch_tree;
4190 let node_id = dispatch_tree.focusable_node_id(focus_handle.id)?;
4191 let context_stack: Vec<_> = dispatch_tree
4192 .dispatch_path(node_id)
4193 .into_iter()
4194 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
4195 .collect();
4196 Some(context_stack)
4197 }
4198
4199 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
4200 pub fn listener_for<V: Render, E>(
4201 &self,
4202 view: &Entity<V>,
4203 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
4204 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
4205 let view = view.downgrade();
4206 move |e: &E, window: &mut Window, cx: &mut App| {
4207 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
4208 }
4209 }
4210
4211 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
4212 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
4213 &self,
4214 view: &Entity<V>,
4215 f: Callback,
4216 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
4217 let view = view.downgrade();
4218 move |window: &mut Window, cx: &mut App| {
4219 view.update(cx, |view, cx| f(view, window, cx)).ok();
4220 }
4221 }
4222
4223 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
4224 /// If the callback returns false, the window won't be closed.
4225 pub fn on_window_should_close(
4226 &self,
4227 cx: &App,
4228 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
4229 ) {
4230 let mut cx = self.to_async(cx);
4231 self.platform_window.on_should_close(Box::new(move || {
4232 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
4233 }))
4234 }
4235
4236 /// Register an action listener on the window for the next frame. The type of action
4237 /// is determined by the first parameter of the given listener. When the next frame is rendered
4238 /// the listener will be cleared.
4239 ///
4240 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4241 /// a specific need to register a global listener.
4242 pub fn on_action(
4243 &mut self,
4244 action_type: TypeId,
4245 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4246 ) {
4247 self.next_frame
4248 .dispatch_tree
4249 .on_action(action_type, Rc::new(listener));
4250 }
4251
4252 /// Register an action listener on the window for the next frame if the condition is true.
4253 /// The type of action is determined by the first parameter of the given listener.
4254 /// When the next frame is rendered the listener will be cleared.
4255 ///
4256 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
4257 /// a specific need to register a global listener.
4258 pub fn on_action_when(
4259 &mut self,
4260 condition: bool,
4261 action_type: TypeId,
4262 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
4263 ) {
4264 if condition {
4265 self.next_frame
4266 .dispatch_tree
4267 .on_action(action_type, Rc::new(listener));
4268 }
4269 }
4270
4271 /// Read information about the GPU backing this window.
4272 /// Currently returns None on Mac and Windows.
4273 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
4274 self.platform_window.gpu_specs()
4275 }
4276
4277 /// Perform titlebar double-click action.
4278 /// This is MacOS specific.
4279 pub fn titlebar_double_click(&self) {
4280 self.platform_window.titlebar_double_click();
4281 }
4282
4283 /// Toggles the inspector mode on this window.
4284 #[cfg(any(feature = "inspector", debug_assertions))]
4285 pub fn toggle_inspector(&mut self, cx: &mut App) {
4286 self.inspector = match self.inspector {
4287 None => Some(cx.new(|_| Inspector::new())),
4288 Some(_) => None,
4289 };
4290 self.refresh();
4291 }
4292
4293 /// Returns true if the window is in inspector mode.
4294 pub fn is_inspector_picking(&self, _cx: &App) -> bool {
4295 #[cfg(any(feature = "inspector", debug_assertions))]
4296 {
4297 if let Some(inspector) = &self.inspector {
4298 return inspector.read(_cx).is_picking();
4299 }
4300 }
4301 false
4302 }
4303
4304 /// Executes the provided function with mutable access to an inspector state.
4305 #[cfg(any(feature = "inspector", debug_assertions))]
4306 pub fn with_inspector_state<T: 'static, R>(
4307 &mut self,
4308 _inspector_id: Option<&crate::InspectorElementId>,
4309 cx: &mut App,
4310 f: impl FnOnce(&mut Option<T>, &mut Self) -> R,
4311 ) -> R {
4312 if let Some(inspector_id) = _inspector_id
4313 && let Some(inspector) = &self.inspector
4314 {
4315 let inspector = inspector.clone();
4316 let active_element_id = inspector.read(cx).active_element_id();
4317 if Some(inspector_id) == active_element_id {
4318 return inspector.update(cx, |inspector, _cx| {
4319 inspector.with_active_element_state(self, f)
4320 });
4321 }
4322 }
4323 f(&mut None, self)
4324 }
4325
4326 #[cfg(any(feature = "inspector", debug_assertions))]
4327 pub(crate) fn build_inspector_element_id(
4328 &mut self,
4329 path: crate::InspectorElementPath,
4330 ) -> crate::InspectorElementId {
4331 self.invalidator.debug_assert_paint_or_prepaint();
4332 let path = Rc::new(path);
4333 let next_instance_id = self
4334 .next_frame
4335 .next_inspector_instance_ids
4336 .entry(path.clone())
4337 .or_insert(0);
4338 let instance_id = *next_instance_id;
4339 *next_instance_id += 1;
4340 crate::InspectorElementId { path, instance_id }
4341 }
4342
4343 #[cfg(any(feature = "inspector", debug_assertions))]
4344 fn prepaint_inspector(&mut self, inspector_width: Pixels, cx: &mut App) -> Option<AnyElement> {
4345 if let Some(inspector) = self.inspector.take() {
4346 let mut inspector_element = AnyView::from(inspector.clone()).into_any_element();
4347 inspector_element.prepaint_as_root(
4348 point(self.viewport_size.width - inspector_width, px(0.0)),
4349 size(inspector_width, self.viewport_size.height).into(),
4350 self,
4351 cx,
4352 );
4353 self.inspector = Some(inspector);
4354 Some(inspector_element)
4355 } else {
4356 None
4357 }
4358 }
4359
4360 #[cfg(any(feature = "inspector", debug_assertions))]
4361 fn paint_inspector(&mut self, mut inspector_element: Option<AnyElement>, cx: &mut App) {
4362 if let Some(mut inspector_element) = inspector_element {
4363 inspector_element.paint(self, cx);
4364 };
4365 }
4366
4367 /// Registers a hitbox that can be used for inspector picking mode, allowing users to select and
4368 /// inspect UI elements by clicking on them.
4369 #[cfg(any(feature = "inspector", debug_assertions))]
4370 pub fn insert_inspector_hitbox(
4371 &mut self,
4372 hitbox_id: HitboxId,
4373 inspector_id: Option<&crate::InspectorElementId>,
4374 cx: &App,
4375 ) {
4376 self.invalidator.debug_assert_paint_or_prepaint();
4377 if !self.is_inspector_picking(cx) {
4378 return;
4379 }
4380 if let Some(inspector_id) = inspector_id {
4381 self.next_frame
4382 .inspector_hitboxes
4383 .insert(hitbox_id, inspector_id.clone());
4384 }
4385 }
4386
4387 #[cfg(any(feature = "inspector", debug_assertions))]
4388 fn paint_inspector_hitbox(&mut self, cx: &App) {
4389 if let Some(inspector) = self.inspector.as_ref() {
4390 let inspector = inspector.read(cx);
4391 if let Some((hitbox_id, _)) = self.hovered_inspector_hitbox(inspector, &self.next_frame)
4392 && let Some(hitbox) = self
4393 .next_frame
4394 .hitboxes
4395 .iter()
4396 .find(|hitbox| hitbox.id == hitbox_id)
4397 {
4398 self.paint_quad(crate::fill(hitbox.bounds, crate::rgba(0x61afef4d)));
4399 }
4400 }
4401 }
4402
4403 #[cfg(any(feature = "inspector", debug_assertions))]
4404 fn handle_inspector_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
4405 let Some(inspector) = self.inspector.clone() else {
4406 return;
4407 };
4408 if event.downcast_ref::<MouseMoveEvent>().is_some() {
4409 inspector.update(cx, |inspector, _cx| {
4410 if let Some((_, inspector_id)) =
4411 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4412 {
4413 inspector.hover(inspector_id, self);
4414 }
4415 });
4416 } else if event.downcast_ref::<crate::MouseDownEvent>().is_some() {
4417 inspector.update(cx, |inspector, _cx| {
4418 if let Some((_, inspector_id)) =
4419 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4420 {
4421 inspector.select(inspector_id, self);
4422 }
4423 });
4424 } else if let Some(event) = event.downcast_ref::<crate::ScrollWheelEvent>() {
4425 // This should be kept in sync with SCROLL_LINES in x11 platform.
4426 const SCROLL_LINES: f32 = 3.0;
4427 const SCROLL_PIXELS_PER_LAYER: f32 = 36.0;
4428 let delta_y = event
4429 .delta
4430 .pixel_delta(px(SCROLL_PIXELS_PER_LAYER / SCROLL_LINES))
4431 .y;
4432 if let Some(inspector) = self.inspector.clone() {
4433 inspector.update(cx, |inspector, _cx| {
4434 if let Some(depth) = inspector.pick_depth.as_mut() {
4435 *depth += delta_y.0 / SCROLL_PIXELS_PER_LAYER;
4436 let max_depth = self.mouse_hit_test.ids.len() as f32 - 0.5;
4437 if *depth < 0.0 {
4438 *depth = 0.0;
4439 } else if *depth > max_depth {
4440 *depth = max_depth;
4441 }
4442 if let Some((_, inspector_id)) =
4443 self.hovered_inspector_hitbox(inspector, &self.rendered_frame)
4444 {
4445 inspector.set_active_element_id(inspector_id, self);
4446 }
4447 }
4448 });
4449 }
4450 }
4451 }
4452
4453 #[cfg(any(feature = "inspector", debug_assertions))]
4454 fn hovered_inspector_hitbox(
4455 &self,
4456 inspector: &Inspector,
4457 frame: &Frame,
4458 ) -> Option<(HitboxId, crate::InspectorElementId)> {
4459 if let Some(pick_depth) = inspector.pick_depth {
4460 let depth = (pick_depth as i64).try_into().unwrap_or(0);
4461 let max_skipped = self.mouse_hit_test.ids.len().saturating_sub(1);
4462 let skip_count = (depth as usize).min(max_skipped);
4463 for hitbox_id in self.mouse_hit_test.ids.iter().skip(skip_count) {
4464 if let Some(inspector_id) = frame.inspector_hitboxes.get(hitbox_id) {
4465 return Some((*hitbox_id, inspector_id.clone()));
4466 }
4467 }
4468 }
4469 None
4470 }
4471}
4472
4473// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
4474slotmap::new_key_type! {
4475 /// A unique identifier for a window.
4476 pub struct WindowId;
4477}
4478
4479impl WindowId {
4480 /// Converts this window ID to a `u64`.
4481 pub fn as_u64(&self) -> u64 {
4482 self.0.as_ffi()
4483 }
4484}
4485
4486impl From<u64> for WindowId {
4487 fn from(value: u64) -> Self {
4488 WindowId(slotmap::KeyData::from_ffi(value))
4489 }
4490}
4491
4492/// A handle to a window with a specific root view type.
4493/// Note that this does not keep the window alive on its own.
4494#[derive(Deref, DerefMut)]
4495pub struct WindowHandle<V> {
4496 #[deref]
4497 #[deref_mut]
4498 pub(crate) any_handle: AnyWindowHandle,
4499 state_type: PhantomData<V>,
4500}
4501
4502impl<V: 'static + Render> WindowHandle<V> {
4503 /// Creates a new handle from a window ID.
4504 /// This does not check if the root type of the window is `V`.
4505 pub fn new(id: WindowId) -> Self {
4506 WindowHandle {
4507 any_handle: AnyWindowHandle {
4508 id,
4509 state_type: TypeId::of::<V>(),
4510 },
4511 state_type: PhantomData,
4512 }
4513 }
4514
4515 /// Get the root view out of this window.
4516 ///
4517 /// This will fail if the window is closed or if the root view's type does not match `V`.
4518 #[cfg(any(test, feature = "test-support"))]
4519 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
4520 where
4521 C: AppContext,
4522 {
4523 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
4524 root_view
4525 .downcast::<V>()
4526 .map_err(|_| anyhow!("the type of the window's root view has changed"))
4527 }))
4528 }
4529
4530 /// Updates the root view of this window.
4531 ///
4532 /// This will fail if the window has been closed or if the root view's type does not match
4533 pub fn update<C, R>(
4534 &self,
4535 cx: &mut C,
4536 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
4537 ) -> Result<R>
4538 where
4539 C: AppContext,
4540 {
4541 cx.update_window(self.any_handle, |root_view, window, cx| {
4542 let view = root_view
4543 .downcast::<V>()
4544 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4545
4546 Ok(view.update(cx, |view, cx| update(view, window, cx)))
4547 })?
4548 }
4549
4550 /// Read the root view out of this window.
4551 ///
4552 /// This will fail if the window is closed or if the root view's type does not match `V`.
4553 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
4554 let x = cx
4555 .windows
4556 .get(self.id)
4557 .and_then(|window| {
4558 window
4559 .as_ref()
4560 .and_then(|window| window.root.clone())
4561 .map(|root_view| root_view.downcast::<V>())
4562 })
4563 .context("window not found")?
4564 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
4565
4566 Ok(x.read(cx))
4567 }
4568
4569 /// Read the root view out of this window, with a callback
4570 ///
4571 /// This will fail if the window is closed or if the root view's type does not match `V`.
4572 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
4573 where
4574 C: AppContext,
4575 {
4576 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
4577 }
4578
4579 /// Read the root view pointer off of this window.
4580 ///
4581 /// This will fail if the window is closed or if the root view's type does not match `V`.
4582 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
4583 where
4584 C: AppContext,
4585 {
4586 cx.read_window(self, |root_view, _cx| root_view)
4587 }
4588
4589 /// Check if this window is 'active'.
4590 ///
4591 /// Will return `None` if the window is closed or currently
4592 /// borrowed.
4593 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
4594 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
4595 .ok()
4596 }
4597}
4598
4599impl<V> Copy for WindowHandle<V> {}
4600
4601impl<V> Clone for WindowHandle<V> {
4602 fn clone(&self) -> Self {
4603 *self
4604 }
4605}
4606
4607impl<V> PartialEq for WindowHandle<V> {
4608 fn eq(&self, other: &Self) -> bool {
4609 self.any_handle == other.any_handle
4610 }
4611}
4612
4613impl<V> Eq for WindowHandle<V> {}
4614
4615impl<V> Hash for WindowHandle<V> {
4616 fn hash<H: Hasher>(&self, state: &mut H) {
4617 self.any_handle.hash(state);
4618 }
4619}
4620
4621impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
4622 fn from(val: WindowHandle<V>) -> Self {
4623 val.any_handle
4624 }
4625}
4626
4627unsafe impl<V> Send for WindowHandle<V> {}
4628unsafe impl<V> Sync for WindowHandle<V> {}
4629
4630/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
4631#[derive(Copy, Clone, PartialEq, Eq, Hash)]
4632pub struct AnyWindowHandle {
4633 pub(crate) id: WindowId,
4634 state_type: TypeId,
4635}
4636
4637impl AnyWindowHandle {
4638 /// Get the ID of this window.
4639 pub fn window_id(&self) -> WindowId {
4640 self.id
4641 }
4642
4643 /// Attempt to convert this handle to a window handle with a specific root view type.
4644 /// If the types do not match, this will return `None`.
4645 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
4646 if TypeId::of::<T>() == self.state_type {
4647 Some(WindowHandle {
4648 any_handle: *self,
4649 state_type: PhantomData,
4650 })
4651 } else {
4652 None
4653 }
4654 }
4655
4656 /// Updates the state of the root view of this window.
4657 ///
4658 /// This will fail if the window has been closed.
4659 pub fn update<C, R>(
4660 self,
4661 cx: &mut C,
4662 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
4663 ) -> Result<R>
4664 where
4665 C: AppContext,
4666 {
4667 cx.update_window(self, update)
4668 }
4669
4670 /// Read the state of the root view of this window.
4671 ///
4672 /// This will fail if the window has been closed.
4673 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
4674 where
4675 C: AppContext,
4676 T: 'static,
4677 {
4678 let view = self
4679 .downcast::<T>()
4680 .context("the type of the window's root view has changed")?;
4681
4682 cx.read_window(&view, read)
4683 }
4684}
4685
4686impl HasWindowHandle for Window {
4687 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
4688 self.platform_window.window_handle()
4689 }
4690}
4691
4692impl HasDisplayHandle for Window {
4693 fn display_handle(
4694 &self,
4695 ) -> std::result::Result<raw_window_handle::DisplayHandle<'_>, HandleError> {
4696 self.platform_window.display_handle()
4697 }
4698}
4699
4700/// An identifier for an [`Element`](crate::Element).
4701///
4702/// Can be constructed with a string, a number, or both, as well
4703/// as other internal representations.
4704#[derive(Clone, Debug, Eq, PartialEq, Hash)]
4705pub enum ElementId {
4706 /// The ID of a View element
4707 View(EntityId),
4708 /// An integer ID.
4709 Integer(u64),
4710 /// A string based ID.
4711 Name(SharedString),
4712 /// A UUID.
4713 Uuid(Uuid),
4714 /// An ID that's equated with a focus handle.
4715 FocusHandle(FocusId),
4716 /// A combination of a name and an integer.
4717 NamedInteger(SharedString, u64),
4718 /// A path.
4719 Path(Arc<std::path::Path>),
4720 /// A code location.
4721 CodeLocation(core::panic::Location<'static>),
4722 /// A labeled child of an element.
4723 NamedChild(Box<ElementId>, SharedString),
4724}
4725
4726impl ElementId {
4727 /// Constructs an `ElementId::NamedInteger` from a name and `usize`.
4728 pub fn named_usize(name: impl Into<SharedString>, integer: usize) -> ElementId {
4729 Self::NamedInteger(name.into(), integer as u64)
4730 }
4731}
4732
4733impl Display for ElementId {
4734 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4735 match self {
4736 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4737 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4738 ElementId::Name(name) => write!(f, "{}", name)?,
4739 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4740 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4741 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4742 ElementId::Path(path) => write!(f, "{}", path.display())?,
4743 ElementId::CodeLocation(location) => write!(f, "{}", location)?,
4744 ElementId::NamedChild(id, name) => write!(f, "{}-{}", id, name)?,
4745 }
4746
4747 Ok(())
4748 }
4749}
4750
4751impl TryInto<SharedString> for ElementId {
4752 type Error = anyhow::Error;
4753
4754 fn try_into(self) -> anyhow::Result<SharedString> {
4755 if let ElementId::Name(name) = self {
4756 Ok(name)
4757 } else {
4758 anyhow::bail!("element id is not string")
4759 }
4760 }
4761}
4762
4763impl From<usize> for ElementId {
4764 fn from(id: usize) -> Self {
4765 ElementId::Integer(id as u64)
4766 }
4767}
4768
4769impl From<i32> for ElementId {
4770 fn from(id: i32) -> Self {
4771 Self::Integer(id as u64)
4772 }
4773}
4774
4775impl From<SharedString> for ElementId {
4776 fn from(name: SharedString) -> Self {
4777 ElementId::Name(name)
4778 }
4779}
4780
4781impl From<Arc<std::path::Path>> for ElementId {
4782 fn from(path: Arc<std::path::Path>) -> Self {
4783 ElementId::Path(path)
4784 }
4785}
4786
4787impl From<&'static str> for ElementId {
4788 fn from(name: &'static str) -> Self {
4789 ElementId::Name(name.into())
4790 }
4791}
4792
4793impl<'a> From<&'a FocusHandle> for ElementId {
4794 fn from(handle: &'a FocusHandle) -> Self {
4795 ElementId::FocusHandle(handle.id)
4796 }
4797}
4798
4799impl From<(&'static str, EntityId)> for ElementId {
4800 fn from((name, id): (&'static str, EntityId)) -> Self {
4801 ElementId::NamedInteger(name.into(), id.as_u64())
4802 }
4803}
4804
4805impl From<(&'static str, usize)> for ElementId {
4806 fn from((name, id): (&'static str, usize)) -> Self {
4807 ElementId::NamedInteger(name.into(), id as u64)
4808 }
4809}
4810
4811impl From<(SharedString, usize)> for ElementId {
4812 fn from((name, id): (SharedString, usize)) -> Self {
4813 ElementId::NamedInteger(name, id as u64)
4814 }
4815}
4816
4817impl From<(&'static str, u64)> for ElementId {
4818 fn from((name, id): (&'static str, u64)) -> Self {
4819 ElementId::NamedInteger(name.into(), id)
4820 }
4821}
4822
4823impl From<Uuid> for ElementId {
4824 fn from(value: Uuid) -> Self {
4825 Self::Uuid(value)
4826 }
4827}
4828
4829impl From<(&'static str, u32)> for ElementId {
4830 fn from((name, id): (&'static str, u32)) -> Self {
4831 ElementId::NamedInteger(name.into(), id.into())
4832 }
4833}
4834
4835impl<T: Into<SharedString>> From<(ElementId, T)> for ElementId {
4836 fn from((id, name): (ElementId, T)) -> Self {
4837 ElementId::NamedChild(Box::new(id), name.into())
4838 }
4839}
4840
4841/// A rectangle to be rendered in the window at the given position and size.
4842/// Passed as an argument [`Window::paint_quad`].
4843#[derive(Clone)]
4844pub struct PaintQuad {
4845 /// The bounds of the quad within the window.
4846 pub bounds: Bounds<Pixels>,
4847 /// The radii of the quad's corners.
4848 pub corner_radii: Corners<Pixels>,
4849 /// The background color of the quad.
4850 pub background: Background,
4851 /// The widths of the quad's borders.
4852 pub border_widths: Edges<Pixels>,
4853 /// The color of the quad's borders.
4854 pub border_color: Hsla,
4855 /// The style of the quad's borders.
4856 pub border_style: BorderStyle,
4857}
4858
4859impl PaintQuad {
4860 /// Sets the corner radii of the quad.
4861 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4862 PaintQuad {
4863 corner_radii: corner_radii.into(),
4864 ..self
4865 }
4866 }
4867
4868 /// Sets the border widths of the quad.
4869 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4870 PaintQuad {
4871 border_widths: border_widths.into(),
4872 ..self
4873 }
4874 }
4875
4876 /// Sets the border color of the quad.
4877 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4878 PaintQuad {
4879 border_color: border_color.into(),
4880 ..self
4881 }
4882 }
4883
4884 /// Sets the background color of the quad.
4885 pub fn background(self, background: impl Into<Background>) -> Self {
4886 PaintQuad {
4887 background: background.into(),
4888 ..self
4889 }
4890 }
4891}
4892
4893/// Creates a quad with the given parameters.
4894pub fn quad(
4895 bounds: Bounds<Pixels>,
4896 corner_radii: impl Into<Corners<Pixels>>,
4897 background: impl Into<Background>,
4898 border_widths: impl Into<Edges<Pixels>>,
4899 border_color: impl Into<Hsla>,
4900 border_style: BorderStyle,
4901) -> PaintQuad {
4902 PaintQuad {
4903 bounds,
4904 corner_radii: corner_radii.into(),
4905 background: background.into(),
4906 border_widths: border_widths.into(),
4907 border_color: border_color.into(),
4908 border_style,
4909 }
4910}
4911
4912/// Creates a filled quad with the given bounds and background color.
4913pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4914 PaintQuad {
4915 bounds: bounds.into(),
4916 corner_radii: (0.).into(),
4917 background: background.into(),
4918 border_widths: (0.).into(),
4919 border_color: transparent_black(),
4920 border_style: BorderStyle::default(),
4921 }
4922}
4923
4924/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4925pub fn outline(
4926 bounds: impl Into<Bounds<Pixels>>,
4927 border_color: impl Into<Hsla>,
4928 border_style: BorderStyle,
4929) -> PaintQuad {
4930 PaintQuad {
4931 bounds: bounds.into(),
4932 corner_radii: (0.).into(),
4933 background: transparent_black().into(),
4934 border_widths: (1.).into(),
4935 border_color: border_color.into(),
4936 border_style,
4937 }
4938}