request.rs

  1use std::io::{Cursor, Write};
  2
  3use crate::role::Role;
  4use crate::{LanguageModelToolUse, LanguageModelToolUseId};
  5use base64::write::EncoderWriter;
  6use gpui::{
  7    point, size, App, AppContext as _, DevicePixels, Image, ObjectFit, RenderImage, Size, Task,
  8};
  9use image::{codecs::png::PngEncoder, imageops::resize, DynamicImage, ImageDecoder};
 10use serde::{Deserialize, Serialize};
 11use ui::{px, SharedString};
 12use util::ResultExt;
 13
 14#[derive(Clone, PartialEq, Eq, Serialize, Deserialize, Hash)]
 15pub struct LanguageModelImage {
 16    /// A base64-encoded PNG image.
 17    pub source: SharedString,
 18    size: Size<DevicePixels>,
 19}
 20
 21impl std::fmt::Debug for LanguageModelImage {
 22    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 23        f.debug_struct("LanguageModelImage")
 24            .field("source", &format!("<{} bytes>", self.source.len()))
 25            .field("size", &self.size)
 26            .finish()
 27    }
 28}
 29
 30/// Anthropic wants uploaded images to be smaller than this in both dimensions.
 31const ANTHROPIC_SIZE_LIMT: f32 = 1568.;
 32
 33impl LanguageModelImage {
 34    pub fn from_image(data: Image, cx: &mut App) -> Task<Option<Self>> {
 35        cx.background_spawn(async move {
 36            match data.format() {
 37                gpui::ImageFormat::Png
 38                | gpui::ImageFormat::Jpeg
 39                | gpui::ImageFormat::Webp
 40                | gpui::ImageFormat::Gif => {}
 41                _ => return None,
 42            };
 43
 44            let image = image::codecs::png::PngDecoder::new(Cursor::new(data.bytes())).log_err()?;
 45            let (width, height) = image.dimensions();
 46            let image_size = size(DevicePixels(width as i32), DevicePixels(height as i32));
 47
 48            let mut base64_image = Vec::new();
 49
 50            {
 51                let mut base64_encoder = EncoderWriter::new(
 52                    Cursor::new(&mut base64_image),
 53                    &base64::engine::general_purpose::STANDARD,
 54                );
 55
 56                if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32
 57                    || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32
 58                {
 59                    let new_bounds = ObjectFit::ScaleDown.get_bounds(
 60                        gpui::Bounds {
 61                            origin: point(px(0.0), px(0.0)),
 62                            size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)),
 63                        },
 64                        image_size,
 65                    );
 66                    let image = DynamicImage::from_decoder(image).log_err()?.resize(
 67                        new_bounds.size.width.0 as u32,
 68                        new_bounds.size.height.0 as u32,
 69                        image::imageops::FilterType::Triangle,
 70                    );
 71
 72                    let mut png = Vec::new();
 73                    image
 74                        .write_with_encoder(PngEncoder::new(&mut png))
 75                        .log_err()?;
 76
 77                    base64_encoder.write_all(png.as_slice()).log_err()?;
 78                } else {
 79                    base64_encoder.write_all(data.bytes()).log_err()?;
 80                }
 81            }
 82
 83            // SAFETY: The base64 encoder should not produce non-UTF8.
 84            let source = unsafe { String::from_utf8_unchecked(base64_image) };
 85
 86            Some(LanguageModelImage {
 87                size: image_size,
 88                source: source.into(),
 89            })
 90        })
 91    }
 92
 93    /// Resolves image into an LLM-ready format (base64).
 94    pub fn from_render_image(data: &RenderImage) -> Option<Self> {
 95        let image_size = data.size(0);
 96
 97        let mut bytes = data.as_bytes(0).unwrap_or(&[]).to_vec();
 98        // Convert from BGRA to RGBA.
 99        for pixel in bytes.chunks_exact_mut(4) {
100            pixel.swap(2, 0);
101        }
102        let mut image = image::RgbaImage::from_vec(
103            image_size.width.0 as u32,
104            image_size.height.0 as u32,
105            bytes,
106        )
107        .expect("We already know this works");
108
109        // https://docs.anthropic.com/en/docs/build-with-claude/vision
110        if image_size.width.0 > ANTHROPIC_SIZE_LIMT as i32
111            || image_size.height.0 > ANTHROPIC_SIZE_LIMT as i32
112        {
113            let new_bounds = ObjectFit::ScaleDown.get_bounds(
114                gpui::Bounds {
115                    origin: point(px(0.0), px(0.0)),
116                    size: size(px(ANTHROPIC_SIZE_LIMT), px(ANTHROPIC_SIZE_LIMT)),
117                },
118                image_size,
119            );
120
121            image = resize(
122                &image,
123                new_bounds.size.width.0 as u32,
124                new_bounds.size.height.0 as u32,
125                image::imageops::FilterType::Triangle,
126            );
127        }
128
129        let mut png = Vec::new();
130
131        image
132            .write_with_encoder(PngEncoder::new(&mut png))
133            .log_err()?;
134
135        let mut base64_image = Vec::new();
136
137        {
138            let mut base64_encoder = EncoderWriter::new(
139                Cursor::new(&mut base64_image),
140                &base64::engine::general_purpose::STANDARD,
141            );
142
143            base64_encoder.write_all(png.as_slice()).log_err()?;
144        }
145
146        // SAFETY: The base64 encoder should not produce non-UTF8.
147        let source = unsafe { String::from_utf8_unchecked(base64_image) };
148
149        Some(LanguageModelImage {
150            size: image_size,
151            source: source.into(),
152        })
153    }
154
155    pub fn estimate_tokens(&self) -> usize {
156        let width = self.size.width.0.unsigned_abs() as usize;
157        let height = self.size.height.0.unsigned_abs() as usize;
158
159        // From: https://docs.anthropic.com/en/docs/build-with-claude/vision#calculate-image-costs
160        // Note that are a lot of conditions on Anthropic's API, and OpenAI doesn't use this,
161        // so this method is more of a rough guess.
162        (width * height) / 750
163    }
164}
165
166#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)]
167pub struct LanguageModelToolResult {
168    pub tool_use_id: LanguageModelToolUseId,
169    pub is_error: bool,
170    pub content: String,
171}
172
173#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq, Hash)]
174pub enum MessageContent {
175    Text(String),
176    Image(LanguageModelImage),
177    ToolUse(LanguageModelToolUse),
178    ToolResult(LanguageModelToolResult),
179}
180
181impl From<String> for MessageContent {
182    fn from(value: String) -> Self {
183        MessageContent::Text(value)
184    }
185}
186
187impl From<&str> for MessageContent {
188    fn from(value: &str) -> Self {
189        MessageContent::Text(value.to_string())
190    }
191}
192
193#[derive(Clone, Serialize, Deserialize, Debug, PartialEq, Hash)]
194pub struct LanguageModelRequestMessage {
195    pub role: Role,
196    pub content: Vec<MessageContent>,
197    pub cache: bool,
198}
199
200impl LanguageModelRequestMessage {
201    pub fn string_contents(&self) -> String {
202        let mut string_buffer = String::new();
203        for string in self.content.iter().filter_map(|content| match content {
204            MessageContent::Text(text) => Some(text),
205            MessageContent::ToolResult(tool_result) => Some(&tool_result.content),
206            MessageContent::ToolUse(_) | MessageContent::Image(_) => None,
207        }) {
208            string_buffer.push_str(string.as_str())
209        }
210        string_buffer
211    }
212
213    pub fn contents_empty(&self) -> bool {
214        self.content.is_empty()
215            || self
216                .content
217                .first()
218                .map(|content| match content {
219                    MessageContent::Text(text) => text.chars().all(|c| c.is_whitespace()),
220                    MessageContent::ToolResult(tool_result) => {
221                        tool_result.content.chars().all(|c| c.is_whitespace())
222                    }
223                    MessageContent::ToolUse(_) | MessageContent::Image(_) => true,
224                })
225                .unwrap_or(false)
226    }
227}
228
229#[derive(Debug, PartialEq, Hash, Clone, Serialize, Deserialize)]
230pub struct LanguageModelRequestTool {
231    pub name: String,
232    pub description: String,
233    pub input_schema: serde_json::Value,
234}
235
236#[derive(Clone, Debug, Default, Serialize, Deserialize, PartialEq)]
237pub struct LanguageModelRequest {
238    pub messages: Vec<LanguageModelRequestMessage>,
239    pub tools: Vec<LanguageModelRequestTool>,
240    pub stop: Vec<String>,
241    pub temperature: Option<f32>,
242}
243
244#[derive(Serialize, Deserialize, Debug, Eq, PartialEq)]
245pub struct LanguageModelResponseMessage {
246    pub role: Option<Role>,
247    pub content: Option<String>,
248}