1use crate::{
2 Action, AnyDrag, AnyElement, AnyTooltip, AnyView, App, AppContext, Arena, Asset,
3 AsyncWindowContext, AvailableSpace, Background, BorderStyle, Bounds, BoxShadow, Context,
4 Corners, CursorStyle, Decorations, DevicePixels, DispatchActionListener, DispatchNodeId,
5 DispatchTree, DisplayId, Edges, Effect, Entity, EntityId, EventEmitter, FileDropEvent, FontId,
6 Global, GlobalElementId, GlyphId, GpuSpecs, Hsla, InputHandler, IsZero, KeyBinding, KeyContext,
7 KeyDownEvent, KeyEvent, Keystroke, KeystrokeEvent, LayoutId, LineLayoutIndex, Modifiers,
8 ModifiersChangedEvent, MonochromeSprite, MouseButton, MouseEvent, MouseMoveEvent, MouseUpEvent,
9 Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInput, PlatformInputHandler,
10 PlatformWindow, Point, PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams,
11 RenderImage, RenderImageParams, RenderSvgParams, Replay, ResizeEdge, SMOOTH_SVG_SCALE_FACTOR,
12 SUBPIXEL_VARIANTS, ScaledPixels, Scene, Shadow, SharedString, Size, StrikethroughStyle, Style,
13 SubscriberSet, Subscription, TaffyLayoutEngine, Task, TextStyle, TextStyleRefinement,
14 TransformationMatrix, Underline, UnderlineStyle, WindowAppearance, WindowBackgroundAppearance,
15 WindowBounds, WindowControls, WindowDecorations, WindowOptions, WindowParams, WindowTextSystem,
16 point, prelude::*, px, size, transparent_black,
17};
18use anyhow::{Context as _, Result, anyhow};
19use collections::{FxHashMap, FxHashSet};
20#[cfg(target_os = "macos")]
21use core_video::pixel_buffer::CVPixelBuffer;
22use derive_more::{Deref, DerefMut};
23use futures::FutureExt;
24use futures::channel::oneshot;
25use parking_lot::RwLock;
26use raw_window_handle::{HandleError, HasWindowHandle};
27use refineable::Refineable;
28use slotmap::SlotMap;
29use smallvec::SmallVec;
30use std::{
31 any::{Any, TypeId},
32 borrow::Cow,
33 cell::{Cell, RefCell},
34 cmp,
35 fmt::{Debug, Display},
36 hash::{Hash, Hasher},
37 marker::PhantomData,
38 mem,
39 ops::{DerefMut, Range},
40 rc::Rc,
41 sync::{
42 Arc, Weak,
43 atomic::{AtomicUsize, Ordering::SeqCst},
44 },
45 time::{Duration, Instant},
46};
47use util::post_inc;
48use util::{ResultExt, measure};
49use uuid::Uuid;
50
51mod prompts;
52
53pub use prompts::*;
54
55pub(crate) const DEFAULT_WINDOW_SIZE: Size<Pixels> = size(px(1024.), px(700.));
56
57/// Represents the two different phases when dispatching events.
58#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
59pub enum DispatchPhase {
60 /// After the capture phase comes the bubble phase, in which mouse event listeners are
61 /// invoked front to back and keyboard event listeners are invoked from the focused element
62 /// to the root of the element tree. This is the phase you'll most commonly want to use when
63 /// registering event listeners.
64 #[default]
65 Bubble,
66 /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
67 /// listeners are invoked from the root of the tree downward toward the focused element. This phase
68 /// is used for special purposes such as clearing the "pressed" state for click events. If
69 /// you stop event propagation during this phase, you need to know what you're doing. Handlers
70 /// outside of the immediate region may rely on detecting non-local events during this phase.
71 Capture,
72}
73
74impl DispatchPhase {
75 /// Returns true if this represents the "bubble" phase.
76 pub fn bubble(self) -> bool {
77 self == DispatchPhase::Bubble
78 }
79
80 /// Returns true if this represents the "capture" phase.
81 pub fn capture(self) -> bool {
82 self == DispatchPhase::Capture
83 }
84}
85
86struct WindowInvalidatorInner {
87 pub dirty: bool,
88 pub draw_phase: DrawPhase,
89 pub dirty_views: FxHashSet<EntityId>,
90}
91
92#[derive(Clone)]
93pub(crate) struct WindowInvalidator {
94 inner: Rc<RefCell<WindowInvalidatorInner>>,
95}
96
97impl WindowInvalidator {
98 pub fn new() -> Self {
99 WindowInvalidator {
100 inner: Rc::new(RefCell::new(WindowInvalidatorInner {
101 dirty: true,
102 draw_phase: DrawPhase::None,
103 dirty_views: FxHashSet::default(),
104 })),
105 }
106 }
107
108 pub fn invalidate_view(&self, entity: EntityId, cx: &mut App) -> bool {
109 let mut inner = self.inner.borrow_mut();
110 inner.dirty_views.insert(entity);
111 if inner.draw_phase == DrawPhase::None {
112 inner.dirty = true;
113 cx.push_effect(Effect::Notify { emitter: entity });
114 true
115 } else {
116 false
117 }
118 }
119
120 pub fn is_dirty(&self) -> bool {
121 self.inner.borrow().dirty
122 }
123
124 pub fn set_dirty(&self, dirty: bool) {
125 self.inner.borrow_mut().dirty = dirty
126 }
127
128 pub fn set_phase(&self, phase: DrawPhase) {
129 self.inner.borrow_mut().draw_phase = phase
130 }
131
132 pub fn take_views(&self) -> FxHashSet<EntityId> {
133 mem::take(&mut self.inner.borrow_mut().dirty_views)
134 }
135
136 pub fn replace_views(&self, views: FxHashSet<EntityId>) {
137 self.inner.borrow_mut().dirty_views = views;
138 }
139
140 pub fn not_drawing(&self) -> bool {
141 self.inner.borrow().draw_phase == DrawPhase::None
142 }
143
144 #[track_caller]
145 pub fn debug_assert_paint(&self) {
146 debug_assert!(
147 matches!(self.inner.borrow().draw_phase, DrawPhase::Paint),
148 "this method can only be called during paint"
149 );
150 }
151
152 #[track_caller]
153 pub fn debug_assert_prepaint(&self) {
154 debug_assert!(
155 matches!(self.inner.borrow().draw_phase, DrawPhase::Prepaint),
156 "this method can only be called during request_layout, or prepaint"
157 );
158 }
159
160 #[track_caller]
161 pub fn debug_assert_paint_or_prepaint(&self) {
162 debug_assert!(
163 matches!(
164 self.inner.borrow().draw_phase,
165 DrawPhase::Paint | DrawPhase::Prepaint
166 ),
167 "this method can only be called during request_layout, prepaint, or paint"
168 );
169 }
170}
171
172type AnyObserver = Box<dyn FnMut(&mut Window, &mut App) -> bool + 'static>;
173
174pub(crate) type AnyWindowFocusListener =
175 Box<dyn FnMut(&WindowFocusEvent, &mut Window, &mut App) -> bool + 'static>;
176
177pub(crate) struct WindowFocusEvent {
178 pub(crate) previous_focus_path: SmallVec<[FocusId; 8]>,
179 pub(crate) current_focus_path: SmallVec<[FocusId; 8]>,
180}
181
182impl WindowFocusEvent {
183 pub fn is_focus_in(&self, focus_id: FocusId) -> bool {
184 !self.previous_focus_path.contains(&focus_id) && self.current_focus_path.contains(&focus_id)
185 }
186
187 pub fn is_focus_out(&self, focus_id: FocusId) -> bool {
188 self.previous_focus_path.contains(&focus_id) && !self.current_focus_path.contains(&focus_id)
189 }
190}
191
192/// This is provided when subscribing for `Context::on_focus_out` events.
193pub struct FocusOutEvent {
194 /// A weak focus handle representing what was blurred.
195 pub blurred: WeakFocusHandle,
196}
197
198slotmap::new_key_type! {
199 /// A globally unique identifier for a focusable element.
200 pub struct FocusId;
201}
202
203thread_local! {
204 /// 8MB wasn't quite enough...
205 pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(32 * 1024 * 1024));
206}
207
208pub(crate) type FocusMap = RwLock<SlotMap<FocusId, AtomicUsize>>;
209
210impl FocusId {
211 /// Obtains whether the element associated with this handle is currently focused.
212 pub fn is_focused(&self, window: &Window) -> bool {
213 window.focus == Some(*self)
214 }
215
216 /// Obtains whether the element associated with this handle contains the focused
217 /// element or is itself focused.
218 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
219 window
220 .focused(cx)
221 .map_or(false, |focused| self.contains(focused.id, window))
222 }
223
224 /// Obtains whether the element associated with this handle is contained within the
225 /// focused element or is itself focused.
226 pub fn within_focused(&self, window: &Window, cx: &App) -> bool {
227 let focused = window.focused(cx);
228 focused.map_or(false, |focused| focused.id.contains(*self, window))
229 }
230
231 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
232 pub(crate) fn contains(&self, other: Self, window: &Window) -> bool {
233 window
234 .rendered_frame
235 .dispatch_tree
236 .focus_contains(*self, other)
237 }
238}
239
240/// A handle which can be used to track and manipulate the focused element in a window.
241pub struct FocusHandle {
242 pub(crate) id: FocusId,
243 handles: Arc<FocusMap>,
244}
245
246impl std::fmt::Debug for FocusHandle {
247 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
248 f.write_fmt(format_args!("FocusHandle({:?})", self.id))
249 }
250}
251
252impl FocusHandle {
253 pub(crate) fn new(handles: &Arc<FocusMap>) -> Self {
254 let id = handles.write().insert(AtomicUsize::new(1));
255 Self {
256 id,
257 handles: handles.clone(),
258 }
259 }
260
261 pub(crate) fn for_id(id: FocusId, handles: &Arc<FocusMap>) -> Option<Self> {
262 let lock = handles.read();
263 let ref_count = lock.get(id)?;
264 if ref_count.load(SeqCst) == 0 {
265 None
266 } else {
267 ref_count.fetch_add(1, SeqCst);
268 Some(Self {
269 id,
270 handles: handles.clone(),
271 })
272 }
273 }
274
275 /// Converts this focus handle into a weak variant, which does not prevent it from being released.
276 pub fn downgrade(&self) -> WeakFocusHandle {
277 WeakFocusHandle {
278 id: self.id,
279 handles: Arc::downgrade(&self.handles),
280 }
281 }
282
283 /// Moves the focus to the element associated with this handle.
284 pub fn focus(&self, window: &mut Window) {
285 window.focus(self)
286 }
287
288 /// Obtains whether the element associated with this handle is currently focused.
289 pub fn is_focused(&self, window: &Window) -> bool {
290 self.id.is_focused(window)
291 }
292
293 /// Obtains whether the element associated with this handle contains the focused
294 /// element or is itself focused.
295 pub fn contains_focused(&self, window: &Window, cx: &App) -> bool {
296 self.id.contains_focused(window, cx)
297 }
298
299 /// Obtains whether the element associated with this handle is contained within the
300 /// focused element or is itself focused.
301 pub fn within_focused(&self, window: &Window, cx: &mut App) -> bool {
302 self.id.within_focused(window, cx)
303 }
304
305 /// Obtains whether this handle contains the given handle in the most recently rendered frame.
306 pub fn contains(&self, other: &Self, window: &Window) -> bool {
307 self.id.contains(other.id, window)
308 }
309
310 /// Dispatch an action on the element that rendered this focus handle
311 pub fn dispatch_action(&self, action: &dyn Action, window: &mut Window, cx: &mut App) {
312 if let Some(node_id) = window
313 .rendered_frame
314 .dispatch_tree
315 .focusable_node_id(self.id)
316 {
317 window.dispatch_action_on_node(node_id, action, cx)
318 }
319 }
320}
321
322impl Clone for FocusHandle {
323 fn clone(&self) -> Self {
324 Self::for_id(self.id, &self.handles).unwrap()
325 }
326}
327
328impl PartialEq for FocusHandle {
329 fn eq(&self, other: &Self) -> bool {
330 self.id == other.id
331 }
332}
333
334impl Eq for FocusHandle {}
335
336impl Drop for FocusHandle {
337 fn drop(&mut self) {
338 self.handles
339 .read()
340 .get(self.id)
341 .unwrap()
342 .fetch_sub(1, SeqCst);
343 }
344}
345
346/// A weak reference to a focus handle.
347#[derive(Clone, Debug)]
348pub struct WeakFocusHandle {
349 pub(crate) id: FocusId,
350 pub(crate) handles: Weak<FocusMap>,
351}
352
353impl WeakFocusHandle {
354 /// Attempts to upgrade the [WeakFocusHandle] to a [FocusHandle].
355 pub fn upgrade(&self) -> Option<FocusHandle> {
356 let handles = self.handles.upgrade()?;
357 FocusHandle::for_id(self.id, &handles)
358 }
359}
360
361impl PartialEq for WeakFocusHandle {
362 fn eq(&self, other: &WeakFocusHandle) -> bool {
363 self.id == other.id
364 }
365}
366
367impl Eq for WeakFocusHandle {}
368
369impl PartialEq<FocusHandle> for WeakFocusHandle {
370 fn eq(&self, other: &FocusHandle) -> bool {
371 self.id == other.id
372 }
373}
374
375impl PartialEq<WeakFocusHandle> for FocusHandle {
376 fn eq(&self, other: &WeakFocusHandle) -> bool {
377 self.id == other.id
378 }
379}
380
381/// Focusable allows users of your view to easily
382/// focus it (using window.focus_view(cx, view))
383pub trait Focusable: 'static {
384 /// Returns the focus handle associated with this view.
385 fn focus_handle(&self, cx: &App) -> FocusHandle;
386}
387
388impl<V: Focusable> Focusable for Entity<V> {
389 fn focus_handle(&self, cx: &App) -> FocusHandle {
390 self.read(cx).focus_handle(cx)
391 }
392}
393
394/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
395/// where the lifecycle of the view is handled by another view.
396pub trait ManagedView: Focusable + EventEmitter<DismissEvent> + Render {}
397
398impl<M: Focusable + EventEmitter<DismissEvent> + Render> ManagedView for M {}
399
400/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
401pub struct DismissEvent;
402
403type FrameCallback = Box<dyn FnOnce(&mut Window, &mut App)>;
404
405pub(crate) type AnyMouseListener =
406 Box<dyn FnMut(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static>;
407
408#[derive(Clone)]
409pub(crate) struct CursorStyleRequest {
410 pub(crate) hitbox_id: Option<HitboxId>, // None represents whole window
411 pub(crate) style: CursorStyle,
412}
413
414/// An identifier for a [Hitbox].
415#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
416pub struct HitboxId(usize);
417
418impl HitboxId {
419 /// Checks if the hitbox with this id is currently hovered.
420 pub fn is_hovered(&self, window: &Window) -> bool {
421 window.mouse_hit_test.0.contains(self)
422 }
423}
424
425/// A rectangular region that potentially blocks hitboxes inserted prior.
426/// See [Window::insert_hitbox] for more details.
427#[derive(Clone, Debug, Deref)]
428pub struct Hitbox {
429 /// A unique identifier for the hitbox.
430 pub id: HitboxId,
431 /// The bounds of the hitbox.
432 #[deref]
433 pub bounds: Bounds<Pixels>,
434 /// The content mask when the hitbox was inserted.
435 pub content_mask: ContentMask<Pixels>,
436 /// Whether the hitbox occludes other hitboxes inserted prior.
437 pub opaque: bool,
438}
439
440impl Hitbox {
441 /// Checks if the hitbox is currently hovered.
442 pub fn is_hovered(&self, window: &Window) -> bool {
443 self.id.is_hovered(window)
444 }
445}
446
447#[derive(Default, Eq, PartialEq)]
448pub(crate) struct HitTest(SmallVec<[HitboxId; 8]>);
449
450/// An identifier for a tooltip.
451#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
452pub struct TooltipId(usize);
453
454impl TooltipId {
455 /// Checks if the tooltip is currently hovered.
456 pub fn is_hovered(&self, window: &Window) -> bool {
457 window
458 .tooltip_bounds
459 .as_ref()
460 .map_or(false, |tooltip_bounds| {
461 tooltip_bounds.id == *self
462 && tooltip_bounds.bounds.contains(&window.mouse_position())
463 })
464 }
465}
466
467pub(crate) struct TooltipBounds {
468 id: TooltipId,
469 bounds: Bounds<Pixels>,
470}
471
472#[derive(Clone)]
473pub(crate) struct TooltipRequest {
474 id: TooltipId,
475 tooltip: AnyTooltip,
476}
477
478pub(crate) struct DeferredDraw {
479 current_view: EntityId,
480 priority: usize,
481 parent_node: DispatchNodeId,
482 element_id_stack: SmallVec<[ElementId; 32]>,
483 text_style_stack: Vec<TextStyleRefinement>,
484 element: Option<AnyElement>,
485 absolute_offset: Point<Pixels>,
486 prepaint_range: Range<PrepaintStateIndex>,
487 paint_range: Range<PaintIndex>,
488}
489
490pub(crate) struct Frame {
491 pub(crate) focus: Option<FocusId>,
492 pub(crate) window_active: bool,
493 pub(crate) element_states: FxHashMap<(GlobalElementId, TypeId), ElementStateBox>,
494 accessed_element_states: Vec<(GlobalElementId, TypeId)>,
495 pub(crate) mouse_listeners: Vec<Option<AnyMouseListener>>,
496 pub(crate) dispatch_tree: DispatchTree,
497 pub(crate) scene: Scene,
498 pub(crate) hitboxes: Vec<Hitbox>,
499 pub(crate) deferred_draws: Vec<DeferredDraw>,
500 pub(crate) input_handlers: Vec<Option<PlatformInputHandler>>,
501 pub(crate) tooltip_requests: Vec<Option<TooltipRequest>>,
502 pub(crate) cursor_styles: Vec<CursorStyleRequest>,
503 #[cfg(any(test, feature = "test-support"))]
504 pub(crate) debug_bounds: FxHashMap<String, Bounds<Pixels>>,
505}
506
507#[derive(Clone, Default)]
508pub(crate) struct PrepaintStateIndex {
509 hitboxes_index: usize,
510 tooltips_index: usize,
511 deferred_draws_index: usize,
512 dispatch_tree_index: usize,
513 accessed_element_states_index: usize,
514 line_layout_index: LineLayoutIndex,
515}
516
517#[derive(Clone, Default)]
518pub(crate) struct PaintIndex {
519 scene_index: usize,
520 mouse_listeners_index: usize,
521 input_handlers_index: usize,
522 cursor_styles_index: usize,
523 accessed_element_states_index: usize,
524 line_layout_index: LineLayoutIndex,
525}
526
527impl Frame {
528 pub(crate) fn new(dispatch_tree: DispatchTree) -> Self {
529 Frame {
530 focus: None,
531 window_active: false,
532 element_states: FxHashMap::default(),
533 accessed_element_states: Vec::new(),
534 mouse_listeners: Vec::new(),
535 dispatch_tree,
536 scene: Scene::default(),
537 hitboxes: Vec::new(),
538 deferred_draws: Vec::new(),
539 input_handlers: Vec::new(),
540 tooltip_requests: Vec::new(),
541 cursor_styles: Vec::new(),
542
543 #[cfg(any(test, feature = "test-support"))]
544 debug_bounds: FxHashMap::default(),
545 }
546 }
547
548 pub(crate) fn clear(&mut self) {
549 self.element_states.clear();
550 self.accessed_element_states.clear();
551 self.mouse_listeners.clear();
552 self.dispatch_tree.clear();
553 self.scene.clear();
554 self.input_handlers.clear();
555 self.tooltip_requests.clear();
556 self.cursor_styles.clear();
557 self.hitboxes.clear();
558 self.deferred_draws.clear();
559 self.focus = None;
560 }
561
562 pub(crate) fn hit_test(&self, position: Point<Pixels>) -> HitTest {
563 let mut hit_test = HitTest::default();
564 for hitbox in self.hitboxes.iter().rev() {
565 let bounds = hitbox.bounds.intersect(&hitbox.content_mask.bounds);
566 if bounds.contains(&position) {
567 hit_test.0.push(hitbox.id);
568 if hitbox.opaque {
569 break;
570 }
571 }
572 }
573 hit_test
574 }
575
576 pub(crate) fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
577 self.focus
578 .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
579 .unwrap_or_default()
580 }
581
582 pub(crate) fn finish(&mut self, prev_frame: &mut Self) {
583 for element_state_key in &self.accessed_element_states {
584 if let Some((element_state_key, element_state)) =
585 prev_frame.element_states.remove_entry(element_state_key)
586 {
587 self.element_states.insert(element_state_key, element_state);
588 }
589 }
590
591 self.scene.finish();
592 }
593}
594
595/// Holds the state for a specific window.
596pub struct Window {
597 pub(crate) handle: AnyWindowHandle,
598 pub(crate) invalidator: WindowInvalidator,
599 pub(crate) removed: bool,
600 pub(crate) platform_window: Box<dyn PlatformWindow>,
601 display_id: Option<DisplayId>,
602 sprite_atlas: Arc<dyn PlatformAtlas>,
603 text_system: Arc<WindowTextSystem>,
604 rem_size: Pixels,
605 /// The stack of override values for the window's rem size.
606 ///
607 /// This is used by `with_rem_size` to allow rendering an element tree with
608 /// a given rem size.
609 rem_size_override_stack: SmallVec<[Pixels; 8]>,
610 pub(crate) viewport_size: Size<Pixels>,
611 layout_engine: Option<TaffyLayoutEngine>,
612 pub(crate) root: Option<AnyView>,
613 pub(crate) element_id_stack: SmallVec<[ElementId; 32]>,
614 pub(crate) text_style_stack: Vec<TextStyleRefinement>,
615 pub(crate) rendered_entity_stack: Vec<EntityId>,
616 pub(crate) element_offset_stack: Vec<Point<Pixels>>,
617 pub(crate) element_opacity: Option<f32>,
618 pub(crate) content_mask_stack: Vec<ContentMask<Pixels>>,
619 pub(crate) requested_autoscroll: Option<Bounds<Pixels>>,
620 pub(crate) rendered_frame: Frame,
621 pub(crate) next_frame: Frame,
622 pub(crate) next_hitbox_id: HitboxId,
623 pub(crate) next_tooltip_id: TooltipId,
624 pub(crate) tooltip_bounds: Option<TooltipBounds>,
625 next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>>,
626 pub(crate) dirty_views: FxHashSet<EntityId>,
627 focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
628 pub(crate) focus_lost_listeners: SubscriberSet<(), AnyObserver>,
629 default_prevented: bool,
630 mouse_position: Point<Pixels>,
631 mouse_hit_test: HitTest,
632 modifiers: Modifiers,
633 scale_factor: f32,
634 pub(crate) bounds_observers: SubscriberSet<(), AnyObserver>,
635 appearance: WindowAppearance,
636 pub(crate) appearance_observers: SubscriberSet<(), AnyObserver>,
637 active: Rc<Cell<bool>>,
638 hovered: Rc<Cell<bool>>,
639 pub(crate) needs_present: Rc<Cell<bool>>,
640 pub(crate) last_input_timestamp: Rc<Cell<Instant>>,
641 pub(crate) refreshing: bool,
642 pub(crate) activation_observers: SubscriberSet<(), AnyObserver>,
643 pub(crate) focus: Option<FocusId>,
644 focus_enabled: bool,
645 pending_input: Option<PendingInput>,
646 pending_modifier: ModifierState,
647 pub(crate) pending_input_observers: SubscriberSet<(), AnyObserver>,
648 prompt: Option<RenderablePromptHandle>,
649}
650
651#[derive(Clone, Debug, Default)]
652struct ModifierState {
653 modifiers: Modifiers,
654 saw_keystroke: bool,
655}
656
657#[derive(Clone, Copy, Debug, Eq, PartialEq)]
658pub(crate) enum DrawPhase {
659 None,
660 Prepaint,
661 Paint,
662 Focus,
663}
664
665#[derive(Default, Debug)]
666struct PendingInput {
667 keystrokes: SmallVec<[Keystroke; 1]>,
668 focus: Option<FocusId>,
669 timer: Option<Task<()>>,
670}
671
672pub(crate) struct ElementStateBox {
673 pub(crate) inner: Box<dyn Any>,
674 #[cfg(debug_assertions)]
675 pub(crate) type_name: &'static str,
676}
677
678fn default_bounds(display_id: Option<DisplayId>, cx: &mut App) -> Bounds<Pixels> {
679 const DEFAULT_WINDOW_OFFSET: Point<Pixels> = point(px(0.), px(35.));
680
681 // TODO, BUG: if you open a window with the currently active window
682 // on the stack, this will erroneously select the 'unwrap_or_else'
683 // code path
684 cx.active_window()
685 .and_then(|w| w.update(cx, |_, window, _| window.bounds()).ok())
686 .map(|mut bounds| {
687 bounds.origin += DEFAULT_WINDOW_OFFSET;
688 bounds
689 })
690 .unwrap_or_else(|| {
691 let display = display_id
692 .map(|id| cx.find_display(id))
693 .unwrap_or_else(|| cx.primary_display());
694
695 display
696 .map(|display| display.default_bounds())
697 .unwrap_or_else(|| Bounds::new(point(px(0.), px(0.)), DEFAULT_WINDOW_SIZE))
698 })
699}
700
701impl Window {
702 pub(crate) fn new(
703 handle: AnyWindowHandle,
704 options: WindowOptions,
705 cx: &mut App,
706 ) -> Result<Self> {
707 let WindowOptions {
708 window_bounds,
709 titlebar,
710 focus,
711 show,
712 kind,
713 is_movable,
714 display_id,
715 window_background,
716 app_id,
717 window_min_size,
718 window_decorations,
719 } = options;
720
721 let bounds = window_bounds
722 .map(|bounds| bounds.get_bounds())
723 .unwrap_or_else(|| default_bounds(display_id, cx));
724 let mut platform_window = cx.platform.open_window(
725 handle,
726 WindowParams {
727 bounds,
728 titlebar,
729 kind,
730 is_movable,
731 focus,
732 show,
733 display_id,
734 window_min_size,
735 },
736 )?;
737 let display_id = platform_window.display().map(|display| display.id());
738 let sprite_atlas = platform_window.sprite_atlas();
739 let mouse_position = platform_window.mouse_position();
740 let modifiers = platform_window.modifiers();
741 let content_size = platform_window.content_size();
742 let scale_factor = platform_window.scale_factor();
743 let appearance = platform_window.appearance();
744 let text_system = Arc::new(WindowTextSystem::new(cx.text_system().clone()));
745 let invalidator = WindowInvalidator::new();
746 let active = Rc::new(Cell::new(platform_window.is_active()));
747 let hovered = Rc::new(Cell::new(platform_window.is_hovered()));
748 let needs_present = Rc::new(Cell::new(false));
749 let next_frame_callbacks: Rc<RefCell<Vec<FrameCallback>>> = Default::default();
750 let last_input_timestamp = Rc::new(Cell::new(Instant::now()));
751
752 platform_window
753 .request_decorations(window_decorations.unwrap_or(WindowDecorations::Server));
754 platform_window.set_background_appearance(window_background);
755
756 if let Some(ref window_open_state) = window_bounds {
757 match window_open_state {
758 WindowBounds::Fullscreen(_) => platform_window.toggle_fullscreen(),
759 WindowBounds::Maximized(_) => platform_window.zoom(),
760 WindowBounds::Windowed(_) => {}
761 }
762 }
763
764 platform_window.on_close(Box::new({
765 let mut cx = cx.to_async();
766 move || {
767 let _ = handle.update(&mut cx, |_, window, _| window.remove_window());
768 }
769 }));
770 platform_window.on_request_frame(Box::new({
771 let mut cx = cx.to_async();
772 let invalidator = invalidator.clone();
773 let active = active.clone();
774 let needs_present = needs_present.clone();
775 let next_frame_callbacks = next_frame_callbacks.clone();
776 let last_input_timestamp = last_input_timestamp.clone();
777 move |request_frame_options| {
778 let next_frame_callbacks = next_frame_callbacks.take();
779 if !next_frame_callbacks.is_empty() {
780 handle
781 .update(&mut cx, |_, window, cx| {
782 for callback in next_frame_callbacks {
783 callback(window, cx);
784 }
785 })
786 .log_err();
787 }
788
789 // Keep presenting the current scene for 1 extra second since the
790 // last input to prevent the display from underclocking the refresh rate.
791 let needs_present = request_frame_options.require_presentation
792 || needs_present.get()
793 || (active.get()
794 && last_input_timestamp.get().elapsed() < Duration::from_secs(1));
795
796 if invalidator.is_dirty() {
797 measure("frame duration", || {
798 handle
799 .update(&mut cx, |_, window, cx| {
800 window.draw(cx);
801 window.present();
802 })
803 .log_err();
804 })
805 } else if needs_present {
806 handle
807 .update(&mut cx, |_, window, _| window.present())
808 .log_err();
809 }
810
811 handle
812 .update(&mut cx, |_, window, _| {
813 window.complete_frame();
814 })
815 .log_err();
816 }
817 }));
818 platform_window.on_resize(Box::new({
819 let mut cx = cx.to_async();
820 move |_, _| {
821 handle
822 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
823 .log_err();
824 }
825 }));
826 platform_window.on_moved(Box::new({
827 let mut cx = cx.to_async();
828 move || {
829 handle
830 .update(&mut cx, |_, window, cx| window.bounds_changed(cx))
831 .log_err();
832 }
833 }));
834 platform_window.on_appearance_changed(Box::new({
835 let mut cx = cx.to_async();
836 move || {
837 handle
838 .update(&mut cx, |_, window, cx| window.appearance_changed(cx))
839 .log_err();
840 }
841 }));
842 platform_window.on_active_status_change(Box::new({
843 let mut cx = cx.to_async();
844 move |active| {
845 handle
846 .update(&mut cx, |_, window, cx| {
847 window.active.set(active);
848 window
849 .activation_observers
850 .clone()
851 .retain(&(), |callback| callback(window, cx));
852 window.refresh();
853 })
854 .log_err();
855 }
856 }));
857 platform_window.on_hover_status_change(Box::new({
858 let mut cx = cx.to_async();
859 move |active| {
860 handle
861 .update(&mut cx, |_, window, _| {
862 window.hovered.set(active);
863 window.refresh();
864 })
865 .log_err();
866 }
867 }));
868 platform_window.on_input({
869 let mut cx = cx.to_async();
870 Box::new(move |event| {
871 handle
872 .update(&mut cx, |_, window, cx| window.dispatch_event(event, cx))
873 .log_err()
874 .unwrap_or(DispatchEventResult::default())
875 })
876 });
877
878 if let Some(app_id) = app_id {
879 platform_window.set_app_id(&app_id);
880 }
881
882 platform_window.map_window().unwrap();
883
884 Ok(Window {
885 handle,
886 invalidator,
887 removed: false,
888 platform_window,
889 display_id,
890 sprite_atlas,
891 text_system,
892 rem_size: px(16.),
893 rem_size_override_stack: SmallVec::new(),
894 viewport_size: content_size,
895 layout_engine: Some(TaffyLayoutEngine::new()),
896 root: None,
897 element_id_stack: SmallVec::default(),
898 text_style_stack: Vec::new(),
899 rendered_entity_stack: Vec::new(),
900 element_offset_stack: Vec::new(),
901 content_mask_stack: Vec::new(),
902 element_opacity: None,
903 requested_autoscroll: None,
904 rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
905 next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
906 next_frame_callbacks,
907 next_hitbox_id: HitboxId::default(),
908 next_tooltip_id: TooltipId::default(),
909 tooltip_bounds: None,
910 dirty_views: FxHashSet::default(),
911 focus_listeners: SubscriberSet::new(),
912 focus_lost_listeners: SubscriberSet::new(),
913 default_prevented: true,
914 mouse_position,
915 mouse_hit_test: HitTest::default(),
916 modifiers,
917 scale_factor,
918 bounds_observers: SubscriberSet::new(),
919 appearance,
920 appearance_observers: SubscriberSet::new(),
921 active,
922 hovered,
923 needs_present,
924 last_input_timestamp,
925 refreshing: false,
926 activation_observers: SubscriberSet::new(),
927 focus: None,
928 focus_enabled: true,
929 pending_input: None,
930 pending_modifier: ModifierState::default(),
931 pending_input_observers: SubscriberSet::new(),
932 prompt: None,
933 })
934 }
935
936 pub(crate) fn new_focus_listener(
937 &self,
938 value: AnyWindowFocusListener,
939 ) -> (Subscription, impl FnOnce() + use<>) {
940 self.focus_listeners.insert((), value)
941 }
942}
943
944#[derive(Clone, Debug, Default, PartialEq, Eq)]
945pub(crate) struct DispatchEventResult {
946 pub propagate: bool,
947 pub default_prevented: bool,
948}
949
950/// Indicates which region of the window is visible. Content falling outside of this mask will not be
951/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
952/// to leave room to support more complex shapes in the future.
953#[derive(Clone, Debug, Default, PartialEq, Eq)]
954#[repr(C)]
955pub struct ContentMask<P: Clone + Default + Debug> {
956 /// The bounds
957 pub bounds: Bounds<P>,
958}
959
960impl ContentMask<Pixels> {
961 /// Scale the content mask's pixel units by the given scaling factor.
962 pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
963 ContentMask {
964 bounds: self.bounds.scale(factor),
965 }
966 }
967
968 /// Intersect the content mask with the given content mask.
969 pub fn intersect(&self, other: &Self) -> Self {
970 let bounds = self.bounds.intersect(&other.bounds);
971 ContentMask { bounds }
972 }
973}
974
975impl Window {
976 fn mark_view_dirty(&mut self, view_id: EntityId) {
977 // Mark ancestor views as dirty. If already in the `dirty_views` set, then all its ancestors
978 // should already be dirty.
979 for view_id in self
980 .rendered_frame
981 .dispatch_tree
982 .view_path(view_id)
983 .into_iter()
984 .rev()
985 {
986 if !self.dirty_views.insert(view_id) {
987 break;
988 }
989 }
990 }
991
992 /// Registers a callback to be invoked when the window appearance changes.
993 pub fn observe_window_appearance(
994 &self,
995 mut callback: impl FnMut(&mut Window, &mut App) + 'static,
996 ) -> Subscription {
997 let (subscription, activate) = self.appearance_observers.insert(
998 (),
999 Box::new(move |window, cx| {
1000 callback(window, cx);
1001 true
1002 }),
1003 );
1004 activate();
1005 subscription
1006 }
1007
1008 /// Replaces the root entity of the window with a new one.
1009 pub fn replace_root<E>(
1010 &mut self,
1011 cx: &mut App,
1012 build_view: impl FnOnce(&mut Window, &mut Context<E>) -> E,
1013 ) -> Entity<E>
1014 where
1015 E: 'static + Render,
1016 {
1017 let view = cx.new(|cx| build_view(self, cx));
1018 self.root = Some(view.clone().into());
1019 self.refresh();
1020 view
1021 }
1022
1023 /// Returns the root entity of the window, if it has one.
1024 pub fn root<E>(&self) -> Option<Option<Entity<E>>>
1025 where
1026 E: 'static + Render,
1027 {
1028 self.root
1029 .as_ref()
1030 .map(|view| view.clone().downcast::<E>().ok())
1031 }
1032
1033 /// Obtain a handle to the window that belongs to this context.
1034 pub fn window_handle(&self) -> AnyWindowHandle {
1035 self.handle
1036 }
1037
1038 /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
1039 pub fn refresh(&mut self) {
1040 if self.invalidator.not_drawing() {
1041 self.refreshing = true;
1042 self.invalidator.set_dirty(true);
1043 }
1044 }
1045
1046 /// Close this window.
1047 pub fn remove_window(&mut self) {
1048 self.removed = true;
1049 }
1050
1051 /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
1052 pub fn focused(&self, cx: &App) -> Option<FocusHandle> {
1053 self.focus
1054 .and_then(|id| FocusHandle::for_id(id, &cx.focus_handles))
1055 }
1056
1057 /// Move focus to the element associated with the given [`FocusHandle`].
1058 pub fn focus(&mut self, handle: &FocusHandle) {
1059 if !self.focus_enabled || self.focus == Some(handle.id) {
1060 return;
1061 }
1062
1063 self.focus = Some(handle.id);
1064 self.clear_pending_keystrokes();
1065 self.refresh();
1066 }
1067
1068 /// Remove focus from all elements within this context's window.
1069 pub fn blur(&mut self) {
1070 if !self.focus_enabled {
1071 return;
1072 }
1073
1074 self.focus = None;
1075 self.refresh();
1076 }
1077
1078 /// Blur the window and don't allow anything in it to be focused again.
1079 pub fn disable_focus(&mut self) {
1080 self.blur();
1081 self.focus_enabled = false;
1082 }
1083
1084 /// Accessor for the text system.
1085 pub fn text_system(&self) -> &Arc<WindowTextSystem> {
1086 &self.text_system
1087 }
1088
1089 /// The current text style. Which is composed of all the style refinements provided to `with_text_style`.
1090 pub fn text_style(&self) -> TextStyle {
1091 let mut style = TextStyle::default();
1092 for refinement in &self.text_style_stack {
1093 style.refine(refinement);
1094 }
1095 style
1096 }
1097
1098 /// Check if the platform window is maximized
1099 /// On some platforms (namely Windows) this is different than the bounds being the size of the display
1100 pub fn is_maximized(&self) -> bool {
1101 self.platform_window.is_maximized()
1102 }
1103
1104 /// request a certain window decoration (Wayland)
1105 pub fn request_decorations(&self, decorations: WindowDecorations) {
1106 self.platform_window.request_decorations(decorations);
1107 }
1108
1109 /// Start a window resize operation (Wayland)
1110 pub fn start_window_resize(&self, edge: ResizeEdge) {
1111 self.platform_window.start_window_resize(edge);
1112 }
1113
1114 /// Return the `WindowBounds` to indicate that how a window should be opened
1115 /// after it has been closed
1116 pub fn window_bounds(&self) -> WindowBounds {
1117 self.platform_window.window_bounds()
1118 }
1119
1120 /// Return the `WindowBounds` excluding insets (Wayland and X11)
1121 pub fn inner_window_bounds(&self) -> WindowBounds {
1122 self.platform_window.inner_window_bounds()
1123 }
1124
1125 /// Dispatch the given action on the currently focused element.
1126 pub fn dispatch_action(&mut self, action: Box<dyn Action>, cx: &mut App) {
1127 let focus_handle = self.focused(cx);
1128
1129 let window = self.handle;
1130 cx.defer(move |cx| {
1131 window
1132 .update(cx, |_, window, cx| {
1133 let node_id = focus_handle
1134 .and_then(|handle| {
1135 window
1136 .rendered_frame
1137 .dispatch_tree
1138 .focusable_node_id(handle.id)
1139 })
1140 .unwrap_or_else(|| window.rendered_frame.dispatch_tree.root_node_id());
1141
1142 window.dispatch_action_on_node(node_id, action.as_ref(), cx);
1143 })
1144 .log_err();
1145 })
1146 }
1147
1148 pub(crate) fn dispatch_keystroke_observers(
1149 &mut self,
1150 event: &dyn Any,
1151 action: Option<Box<dyn Action>>,
1152 cx: &mut App,
1153 ) {
1154 let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
1155 return;
1156 };
1157
1158 cx.keystroke_observers.clone().retain(&(), move |callback| {
1159 (callback)(
1160 &KeystrokeEvent {
1161 keystroke: key_down_event.keystroke.clone(),
1162 action: action.as_ref().map(|action| action.boxed_clone()),
1163 },
1164 self,
1165 cx,
1166 )
1167 });
1168 }
1169
1170 /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
1171 /// that are currently on the stack to be returned to the app.
1172 pub fn defer(&self, cx: &mut App, f: impl FnOnce(&mut Window, &mut App) + 'static) {
1173 let handle = self.handle;
1174 cx.defer(move |cx| {
1175 handle.update(cx, |_, window, cx| f(window, cx)).ok();
1176 });
1177 }
1178
1179 /// Subscribe to events emitted by a entity.
1180 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1181 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1182 pub fn observe<T: 'static>(
1183 &mut self,
1184 observed: &Entity<T>,
1185 cx: &mut App,
1186 mut on_notify: impl FnMut(Entity<T>, &mut Window, &mut App) + 'static,
1187 ) -> Subscription {
1188 let entity_id = observed.entity_id();
1189 let observed = observed.downgrade();
1190 let window_handle = self.handle;
1191 cx.new_observer(
1192 entity_id,
1193 Box::new(move |cx| {
1194 window_handle
1195 .update(cx, |_, window, cx| {
1196 if let Some(handle) = observed.upgrade() {
1197 on_notify(handle, window, cx);
1198 true
1199 } else {
1200 false
1201 }
1202 })
1203 .unwrap_or(false)
1204 }),
1205 )
1206 }
1207
1208 /// Subscribe to events emitted by a entity.
1209 /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
1210 /// The callback will be invoked a handle to the emitting entity, the event, and a window context for the current window.
1211 pub fn subscribe<Emitter, Evt>(
1212 &mut self,
1213 entity: &Entity<Emitter>,
1214 cx: &mut App,
1215 mut on_event: impl FnMut(Entity<Emitter>, &Evt, &mut Window, &mut App) + 'static,
1216 ) -> Subscription
1217 where
1218 Emitter: EventEmitter<Evt>,
1219 Evt: 'static,
1220 {
1221 let entity_id = entity.entity_id();
1222 let entity = entity.downgrade();
1223 let window_handle = self.handle;
1224 cx.new_subscription(
1225 entity_id,
1226 (
1227 TypeId::of::<Evt>(),
1228 Box::new(move |event, cx| {
1229 window_handle
1230 .update(cx, |_, window, cx| {
1231 if let Some(handle) = Entity::<Emitter>::upgrade_from(&entity) {
1232 let event = event.downcast_ref().expect("invalid event type");
1233 on_event(handle, event, window, cx);
1234 true
1235 } else {
1236 false
1237 }
1238 })
1239 .unwrap_or(false)
1240 }),
1241 ),
1242 )
1243 }
1244
1245 /// Register a callback to be invoked when the given `Entity` is released.
1246 pub fn observe_release<T>(
1247 &self,
1248 entity: &Entity<T>,
1249 cx: &mut App,
1250 mut on_release: impl FnOnce(&mut T, &mut Window, &mut App) + 'static,
1251 ) -> Subscription
1252 where
1253 T: 'static,
1254 {
1255 let entity_id = entity.entity_id();
1256 let window_handle = self.handle;
1257 let (subscription, activate) = cx.release_listeners.insert(
1258 entity_id,
1259 Box::new(move |entity, cx| {
1260 let entity = entity.downcast_mut().expect("invalid entity type");
1261 let _ = window_handle.update(cx, |_, window, cx| on_release(entity, window, cx));
1262 }),
1263 );
1264 activate();
1265 subscription
1266 }
1267
1268 /// Creates an [`AsyncWindowContext`], which has a static lifetime and can be held across
1269 /// await points in async code.
1270 pub fn to_async(&self, cx: &App) -> AsyncWindowContext {
1271 AsyncWindowContext::new_context(cx.to_async(), self.handle)
1272 }
1273
1274 /// Schedule the given closure to be run directly after the current frame is rendered.
1275 pub fn on_next_frame(&self, callback: impl FnOnce(&mut Window, &mut App) + 'static) {
1276 RefCell::borrow_mut(&self.next_frame_callbacks).push(Box::new(callback));
1277 }
1278
1279 /// Schedule a frame to be drawn on the next animation frame.
1280 ///
1281 /// This is useful for elements that need to animate continuously, such as a video player or an animated GIF.
1282 /// It will cause the window to redraw on the next frame, even if no other changes have occurred.
1283 ///
1284 /// If called from within a view, it will notify that view on the next frame. Otherwise, it will refresh the entire window.
1285 pub fn request_animation_frame(&self) {
1286 let entity = self.current_view();
1287 self.on_next_frame(move |_, cx| cx.notify(entity));
1288 }
1289
1290 /// Spawn the future returned by the given closure on the application thread pool.
1291 /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
1292 /// use within your future.
1293 #[track_caller]
1294 pub fn spawn<AsyncFn, R>(&self, cx: &App, f: AsyncFn) -> Task<R>
1295 where
1296 R: 'static,
1297 AsyncFn: AsyncFnOnce(&mut AsyncWindowContext) -> R + 'static,
1298 {
1299 let handle = self.handle;
1300 cx.spawn(async move |app| {
1301 let mut async_window_cx = AsyncWindowContext::new_context(app.clone(), handle);
1302 f(&mut async_window_cx).await
1303 })
1304 }
1305
1306 fn bounds_changed(&mut self, cx: &mut App) {
1307 self.scale_factor = self.platform_window.scale_factor();
1308 self.viewport_size = self.platform_window.content_size();
1309 self.display_id = self.platform_window.display().map(|display| display.id());
1310
1311 self.refresh();
1312
1313 self.bounds_observers
1314 .clone()
1315 .retain(&(), |callback| callback(self, cx));
1316 }
1317
1318 /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
1319 pub fn bounds(&self) -> Bounds<Pixels> {
1320 self.platform_window.bounds()
1321 }
1322
1323 /// Set the content size of the window.
1324 pub fn resize(&mut self, size: Size<Pixels>) {
1325 self.platform_window.resize(size);
1326 }
1327
1328 /// Returns whether or not the window is currently fullscreen
1329 pub fn is_fullscreen(&self) -> bool {
1330 self.platform_window.is_fullscreen()
1331 }
1332
1333 pub(crate) fn appearance_changed(&mut self, cx: &mut App) {
1334 self.appearance = self.platform_window.appearance();
1335
1336 self.appearance_observers
1337 .clone()
1338 .retain(&(), |callback| callback(self, cx));
1339 }
1340
1341 /// Returns the appearance of the current window.
1342 pub fn appearance(&self) -> WindowAppearance {
1343 self.appearance
1344 }
1345
1346 /// Returns the size of the drawable area within the window.
1347 pub fn viewport_size(&self) -> Size<Pixels> {
1348 self.viewport_size
1349 }
1350
1351 /// Returns whether this window is focused by the operating system (receiving key events).
1352 pub fn is_window_active(&self) -> bool {
1353 self.active.get()
1354 }
1355
1356 /// Returns whether this window is considered to be the window
1357 /// that currently owns the mouse cursor.
1358 /// On mac, this is equivalent to `is_window_active`.
1359 pub fn is_window_hovered(&self) -> bool {
1360 if cfg!(any(
1361 target_os = "windows",
1362 target_os = "linux",
1363 target_os = "freebsd"
1364 )) {
1365 self.hovered.get()
1366 } else {
1367 self.is_window_active()
1368 }
1369 }
1370
1371 /// Toggle zoom on the window.
1372 pub fn zoom_window(&self) {
1373 self.platform_window.zoom();
1374 }
1375
1376 /// Opens the native title bar context menu, useful when implementing client side decorations (Wayland and X11)
1377 pub fn show_window_menu(&self, position: Point<Pixels>) {
1378 self.platform_window.show_window_menu(position)
1379 }
1380
1381 /// Tells the compositor to take control of window movement (Wayland and X11)
1382 ///
1383 /// Events may not be received during a move operation.
1384 pub fn start_window_move(&self) {
1385 self.platform_window.start_window_move()
1386 }
1387
1388 /// When using client side decorations, set this to the width of the invisible decorations (Wayland and X11)
1389 pub fn set_client_inset(&self, inset: Pixels) {
1390 self.platform_window.set_client_inset(inset);
1391 }
1392
1393 /// Returns whether the title bar window controls need to be rendered by the application (Wayland and X11)
1394 pub fn window_decorations(&self) -> Decorations {
1395 self.platform_window.window_decorations()
1396 }
1397
1398 /// Returns which window controls are currently visible (Wayland)
1399 pub fn window_controls(&self) -> WindowControls {
1400 self.platform_window.window_controls()
1401 }
1402
1403 /// Updates the window's title at the platform level.
1404 pub fn set_window_title(&mut self, title: &str) {
1405 self.platform_window.set_title(title);
1406 }
1407
1408 /// Sets the application identifier.
1409 pub fn set_app_id(&mut self, app_id: &str) {
1410 self.platform_window.set_app_id(app_id);
1411 }
1412
1413 /// Sets the window background appearance.
1414 pub fn set_background_appearance(&self, background_appearance: WindowBackgroundAppearance) {
1415 self.platform_window
1416 .set_background_appearance(background_appearance);
1417 }
1418
1419 /// Mark the window as dirty at the platform level.
1420 pub fn set_window_edited(&mut self, edited: bool) {
1421 self.platform_window.set_edited(edited);
1422 }
1423
1424 /// Determine the display on which the window is visible.
1425 pub fn display(&self, cx: &App) -> Option<Rc<dyn PlatformDisplay>> {
1426 cx.platform
1427 .displays()
1428 .into_iter()
1429 .find(|display| Some(display.id()) == self.display_id)
1430 }
1431
1432 /// Show the platform character palette.
1433 pub fn show_character_palette(&self) {
1434 self.platform_window.show_character_palette();
1435 }
1436
1437 /// The scale factor of the display associated with the window. For example, it could
1438 /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
1439 /// be rendered as two pixels on screen.
1440 pub fn scale_factor(&self) -> f32 {
1441 self.scale_factor
1442 }
1443
1444 /// The size of an em for the base font of the application. Adjusting this value allows the
1445 /// UI to scale, just like zooming a web page.
1446 pub fn rem_size(&self) -> Pixels {
1447 self.rem_size_override_stack
1448 .last()
1449 .copied()
1450 .unwrap_or(self.rem_size)
1451 }
1452
1453 /// Sets the size of an em for the base font of the application. Adjusting this value allows the
1454 /// UI to scale, just like zooming a web page.
1455 pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
1456 self.rem_size = rem_size.into();
1457 }
1458
1459 /// Executes the provided function with the specified rem size.
1460 ///
1461 /// This method must only be called as part of element drawing.
1462 pub fn with_rem_size<F, R>(&mut self, rem_size: Option<impl Into<Pixels>>, f: F) -> R
1463 where
1464 F: FnOnce(&mut Self) -> R,
1465 {
1466 self.invalidator.debug_assert_paint_or_prepaint();
1467
1468 if let Some(rem_size) = rem_size {
1469 self.rem_size_override_stack.push(rem_size.into());
1470 let result = f(self);
1471 self.rem_size_override_stack.pop();
1472 result
1473 } else {
1474 f(self)
1475 }
1476 }
1477
1478 /// The line height associated with the current text style.
1479 pub fn line_height(&self) -> Pixels {
1480 self.text_style().line_height_in_pixels(self.rem_size())
1481 }
1482
1483 /// Call to prevent the default action of an event. Currently only used to prevent
1484 /// parent elements from becoming focused on mouse down.
1485 pub fn prevent_default(&mut self) {
1486 self.default_prevented = true;
1487 }
1488
1489 /// Obtain whether default has been prevented for the event currently being dispatched.
1490 pub fn default_prevented(&self) -> bool {
1491 self.default_prevented
1492 }
1493
1494 /// Determine whether the given action is available along the dispatch path to the currently focused element.
1495 pub fn is_action_available(&self, action: &dyn Action, cx: &mut App) -> bool {
1496 let target = self
1497 .focused(cx)
1498 .and_then(|focused_handle| {
1499 self.rendered_frame
1500 .dispatch_tree
1501 .focusable_node_id(focused_handle.id)
1502 })
1503 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
1504 self.rendered_frame
1505 .dispatch_tree
1506 .is_action_available(action, target)
1507 }
1508
1509 /// The position of the mouse relative to the window.
1510 pub fn mouse_position(&self) -> Point<Pixels> {
1511 self.mouse_position
1512 }
1513
1514 /// The current state of the keyboard's modifiers
1515 pub fn modifiers(&self) -> Modifiers {
1516 self.modifiers
1517 }
1518
1519 fn complete_frame(&self) {
1520 self.platform_window.completed_frame();
1521 }
1522
1523 /// Produces a new frame and assigns it to `rendered_frame`. To actually show
1524 /// the contents of the new [Scene], use [present].
1525 #[profiling::function]
1526 pub fn draw(&mut self, cx: &mut App) {
1527 self.invalidate_entities();
1528 cx.entities.clear_accessed();
1529 debug_assert!(self.rendered_entity_stack.is_empty());
1530 self.invalidator.set_dirty(false);
1531 self.requested_autoscroll = None;
1532
1533 // Restore the previously-used input handler.
1534 if let Some(input_handler) = self.platform_window.take_input_handler() {
1535 self.rendered_frame.input_handlers.push(Some(input_handler));
1536 }
1537 self.draw_roots(cx);
1538 self.dirty_views.clear();
1539 self.next_frame.window_active = self.active.get();
1540
1541 // Register requested input handler with the platform window.
1542 if let Some(input_handler) = self.next_frame.input_handlers.pop() {
1543 self.platform_window
1544 .set_input_handler(input_handler.unwrap());
1545 }
1546
1547 self.layout_engine.as_mut().unwrap().clear();
1548 self.text_system().finish_frame();
1549 self.next_frame.finish(&mut self.rendered_frame);
1550 ELEMENT_ARENA.with_borrow_mut(|element_arena| {
1551 let percentage = (element_arena.len() as f32 / element_arena.capacity() as f32) * 100.;
1552 if percentage >= 80. {
1553 log::warn!("elevated element arena occupation: {}.", percentage);
1554 }
1555 element_arena.clear();
1556 });
1557
1558 self.invalidator.set_phase(DrawPhase::Focus);
1559 let previous_focus_path = self.rendered_frame.focus_path();
1560 let previous_window_active = self.rendered_frame.window_active;
1561 mem::swap(&mut self.rendered_frame, &mut self.next_frame);
1562 self.next_frame.clear();
1563 let current_focus_path = self.rendered_frame.focus_path();
1564 let current_window_active = self.rendered_frame.window_active;
1565
1566 if previous_focus_path != current_focus_path
1567 || previous_window_active != current_window_active
1568 {
1569 if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1570 self.focus_lost_listeners
1571 .clone()
1572 .retain(&(), |listener| listener(self, cx));
1573 }
1574
1575 let event = WindowFocusEvent {
1576 previous_focus_path: if previous_window_active {
1577 previous_focus_path
1578 } else {
1579 Default::default()
1580 },
1581 current_focus_path: if current_window_active {
1582 current_focus_path
1583 } else {
1584 Default::default()
1585 },
1586 };
1587 self.focus_listeners
1588 .clone()
1589 .retain(&(), |listener| listener(&event, self, cx));
1590 }
1591
1592 debug_assert!(self.rendered_entity_stack.is_empty());
1593 self.record_entities_accessed(cx);
1594 self.reset_cursor_style(cx);
1595 self.refreshing = false;
1596 self.invalidator.set_phase(DrawPhase::None);
1597 self.needs_present.set(true);
1598 }
1599
1600 fn record_entities_accessed(&mut self, cx: &mut App) {
1601 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1602 let mut entities = mem::take(entities_ref.deref_mut());
1603 drop(entities_ref);
1604 let handle = self.handle;
1605 cx.record_entities_accessed(
1606 handle,
1607 // Try moving window invalidator into the Window
1608 self.invalidator.clone(),
1609 &entities,
1610 );
1611 let mut entities_ref = cx.entities.accessed_entities.borrow_mut();
1612 mem::swap(&mut entities, entities_ref.deref_mut());
1613 }
1614
1615 fn invalidate_entities(&mut self) {
1616 let mut views = self.invalidator.take_views();
1617 for entity in views.drain() {
1618 self.mark_view_dirty(entity);
1619 }
1620 self.invalidator.replace_views(views);
1621 }
1622
1623 #[profiling::function]
1624 fn present(&self) {
1625 self.platform_window.draw(&self.rendered_frame.scene);
1626 self.needs_present.set(false);
1627 profiling::finish_frame!();
1628 }
1629
1630 fn draw_roots(&mut self, cx: &mut App) {
1631 self.invalidator.set_phase(DrawPhase::Prepaint);
1632 self.tooltip_bounds.take();
1633
1634 // Layout all root elements.
1635 let mut root_element = self.root.as_ref().unwrap().clone().into_any();
1636 root_element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1637
1638 let mut sorted_deferred_draws =
1639 (0..self.next_frame.deferred_draws.len()).collect::<SmallVec<[_; 8]>>();
1640 sorted_deferred_draws.sort_by_key(|ix| self.next_frame.deferred_draws[*ix].priority);
1641 self.prepaint_deferred_draws(&sorted_deferred_draws, cx);
1642
1643 let mut prompt_element = None;
1644 let mut active_drag_element = None;
1645 let mut tooltip_element = None;
1646 if let Some(prompt) = self.prompt.take() {
1647 let mut element = prompt.view.any_view().into_any();
1648 element.prepaint_as_root(Point::default(), self.viewport_size.into(), self, cx);
1649 prompt_element = Some(element);
1650 self.prompt = Some(prompt);
1651 } else if let Some(active_drag) = cx.active_drag.take() {
1652 let mut element = active_drag.view.clone().into_any();
1653 let offset = self.mouse_position() - active_drag.cursor_offset;
1654 element.prepaint_as_root(offset, AvailableSpace::min_size(), self, cx);
1655 active_drag_element = Some(element);
1656 cx.active_drag = Some(active_drag);
1657 } else {
1658 tooltip_element = self.prepaint_tooltip(cx);
1659 }
1660
1661 self.mouse_hit_test = self.next_frame.hit_test(self.mouse_position);
1662
1663 // Now actually paint the elements.
1664 self.invalidator.set_phase(DrawPhase::Paint);
1665 root_element.paint(self, cx);
1666
1667 self.paint_deferred_draws(&sorted_deferred_draws, cx);
1668
1669 if let Some(mut prompt_element) = prompt_element {
1670 prompt_element.paint(self, cx);
1671 } else if let Some(mut drag_element) = active_drag_element {
1672 drag_element.paint(self, cx);
1673 } else if let Some(mut tooltip_element) = tooltip_element {
1674 tooltip_element.paint(self, cx);
1675 }
1676 }
1677
1678 fn prepaint_tooltip(&mut self, cx: &mut App) -> Option<AnyElement> {
1679 // Use indexing instead of iteration to avoid borrowing self for the duration of the loop.
1680 for tooltip_request_index in (0..self.next_frame.tooltip_requests.len()).rev() {
1681 let Some(Some(tooltip_request)) = self
1682 .next_frame
1683 .tooltip_requests
1684 .get(tooltip_request_index)
1685 .cloned()
1686 else {
1687 log::error!("Unexpectedly absent TooltipRequest");
1688 continue;
1689 };
1690 let mut element = tooltip_request.tooltip.view.clone().into_any();
1691 let mouse_position = tooltip_request.tooltip.mouse_position;
1692 let tooltip_size = element.layout_as_root(AvailableSpace::min_size(), self, cx);
1693
1694 let mut tooltip_bounds =
1695 Bounds::new(mouse_position + point(px(1.), px(1.)), tooltip_size);
1696 let window_bounds = Bounds {
1697 origin: Point::default(),
1698 size: self.viewport_size(),
1699 };
1700
1701 if tooltip_bounds.right() > window_bounds.right() {
1702 let new_x = mouse_position.x - tooltip_bounds.size.width - px(1.);
1703 if new_x >= Pixels::ZERO {
1704 tooltip_bounds.origin.x = new_x;
1705 } else {
1706 tooltip_bounds.origin.x = cmp::max(
1707 Pixels::ZERO,
1708 tooltip_bounds.origin.x - tooltip_bounds.right() - window_bounds.right(),
1709 );
1710 }
1711 }
1712
1713 if tooltip_bounds.bottom() > window_bounds.bottom() {
1714 let new_y = mouse_position.y - tooltip_bounds.size.height - px(1.);
1715 if new_y >= Pixels::ZERO {
1716 tooltip_bounds.origin.y = new_y;
1717 } else {
1718 tooltip_bounds.origin.y = cmp::max(
1719 Pixels::ZERO,
1720 tooltip_bounds.origin.y - tooltip_bounds.bottom() - window_bounds.bottom(),
1721 );
1722 }
1723 }
1724
1725 // It's possible for an element to have an active tooltip while not being painted (e.g.
1726 // via the `visible_on_hover` method). Since mouse listeners are not active in this
1727 // case, instead update the tooltip's visibility here.
1728 let is_visible =
1729 (tooltip_request.tooltip.check_visible_and_update)(tooltip_bounds, self, cx);
1730 if !is_visible {
1731 continue;
1732 }
1733
1734 self.with_absolute_element_offset(tooltip_bounds.origin, |window| {
1735 element.prepaint(window, cx)
1736 });
1737
1738 self.tooltip_bounds = Some(TooltipBounds {
1739 id: tooltip_request.id,
1740 bounds: tooltip_bounds,
1741 });
1742 return Some(element);
1743 }
1744 None
1745 }
1746
1747 fn prepaint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1748 assert_eq!(self.element_id_stack.len(), 0);
1749
1750 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1751 for deferred_draw_ix in deferred_draw_indices {
1752 let deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1753 self.element_id_stack
1754 .clone_from(&deferred_draw.element_id_stack);
1755 self.text_style_stack
1756 .clone_from(&deferred_draw.text_style_stack);
1757 self.next_frame
1758 .dispatch_tree
1759 .set_active_node(deferred_draw.parent_node);
1760
1761 let prepaint_start = self.prepaint_index();
1762 if let Some(element) = deferred_draw.element.as_mut() {
1763 self.with_rendered_view(deferred_draw.current_view, |window| {
1764 window.with_absolute_element_offset(deferred_draw.absolute_offset, |window| {
1765 element.prepaint(window, cx)
1766 });
1767 })
1768 } else {
1769 self.reuse_prepaint(deferred_draw.prepaint_range.clone());
1770 }
1771 let prepaint_end = self.prepaint_index();
1772 deferred_draw.prepaint_range = prepaint_start..prepaint_end;
1773 }
1774 assert_eq!(
1775 self.next_frame.deferred_draws.len(),
1776 0,
1777 "cannot call defer_draw during deferred drawing"
1778 );
1779 self.next_frame.deferred_draws = deferred_draws;
1780 self.element_id_stack.clear();
1781 self.text_style_stack.clear();
1782 }
1783
1784 fn paint_deferred_draws(&mut self, deferred_draw_indices: &[usize], cx: &mut App) {
1785 assert_eq!(self.element_id_stack.len(), 0);
1786
1787 let mut deferred_draws = mem::take(&mut self.next_frame.deferred_draws);
1788 for deferred_draw_ix in deferred_draw_indices {
1789 let mut deferred_draw = &mut deferred_draws[*deferred_draw_ix];
1790 self.element_id_stack
1791 .clone_from(&deferred_draw.element_id_stack);
1792 self.next_frame
1793 .dispatch_tree
1794 .set_active_node(deferred_draw.parent_node);
1795
1796 let paint_start = self.paint_index();
1797 if let Some(element) = deferred_draw.element.as_mut() {
1798 self.with_rendered_view(deferred_draw.current_view, |window| {
1799 element.paint(window, cx);
1800 })
1801 } else {
1802 self.reuse_paint(deferred_draw.paint_range.clone());
1803 }
1804 let paint_end = self.paint_index();
1805 deferred_draw.paint_range = paint_start..paint_end;
1806 }
1807 self.next_frame.deferred_draws = deferred_draws;
1808 self.element_id_stack.clear();
1809 }
1810
1811 pub(crate) fn prepaint_index(&self) -> PrepaintStateIndex {
1812 PrepaintStateIndex {
1813 hitboxes_index: self.next_frame.hitboxes.len(),
1814 tooltips_index: self.next_frame.tooltip_requests.len(),
1815 deferred_draws_index: self.next_frame.deferred_draws.len(),
1816 dispatch_tree_index: self.next_frame.dispatch_tree.len(),
1817 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1818 line_layout_index: self.text_system.layout_index(),
1819 }
1820 }
1821
1822 pub(crate) fn reuse_prepaint(&mut self, range: Range<PrepaintStateIndex>) {
1823 self.next_frame.hitboxes.extend(
1824 self.rendered_frame.hitboxes[range.start.hitboxes_index..range.end.hitboxes_index]
1825 .iter()
1826 .cloned(),
1827 );
1828 self.next_frame.tooltip_requests.extend(
1829 self.rendered_frame.tooltip_requests
1830 [range.start.tooltips_index..range.end.tooltips_index]
1831 .iter_mut()
1832 .map(|request| request.take()),
1833 );
1834 self.next_frame.accessed_element_states.extend(
1835 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1836 ..range.end.accessed_element_states_index]
1837 .iter()
1838 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1839 );
1840 self.text_system
1841 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1842
1843 let reused_subtree = self.next_frame.dispatch_tree.reuse_subtree(
1844 range.start.dispatch_tree_index..range.end.dispatch_tree_index,
1845 &mut self.rendered_frame.dispatch_tree,
1846 self.focus,
1847 );
1848
1849 if reused_subtree.contains_focus() {
1850 self.next_frame.focus = self.focus;
1851 }
1852
1853 self.next_frame.deferred_draws.extend(
1854 self.rendered_frame.deferred_draws
1855 [range.start.deferred_draws_index..range.end.deferred_draws_index]
1856 .iter()
1857 .map(|deferred_draw| DeferredDraw {
1858 current_view: deferred_draw.current_view,
1859 parent_node: reused_subtree.refresh_node_id(deferred_draw.parent_node),
1860 element_id_stack: deferred_draw.element_id_stack.clone(),
1861 text_style_stack: deferred_draw.text_style_stack.clone(),
1862 priority: deferred_draw.priority,
1863 element: None,
1864 absolute_offset: deferred_draw.absolute_offset,
1865 prepaint_range: deferred_draw.prepaint_range.clone(),
1866 paint_range: deferred_draw.paint_range.clone(),
1867 }),
1868 );
1869 }
1870
1871 pub(crate) fn paint_index(&self) -> PaintIndex {
1872 PaintIndex {
1873 scene_index: self.next_frame.scene.len(),
1874 mouse_listeners_index: self.next_frame.mouse_listeners.len(),
1875 input_handlers_index: self.next_frame.input_handlers.len(),
1876 cursor_styles_index: self.next_frame.cursor_styles.len(),
1877 accessed_element_states_index: self.next_frame.accessed_element_states.len(),
1878 line_layout_index: self.text_system.layout_index(),
1879 }
1880 }
1881
1882 pub(crate) fn reuse_paint(&mut self, range: Range<PaintIndex>) {
1883 self.next_frame.cursor_styles.extend(
1884 self.rendered_frame.cursor_styles
1885 [range.start.cursor_styles_index..range.end.cursor_styles_index]
1886 .iter()
1887 .cloned(),
1888 );
1889 self.next_frame.input_handlers.extend(
1890 self.rendered_frame.input_handlers
1891 [range.start.input_handlers_index..range.end.input_handlers_index]
1892 .iter_mut()
1893 .map(|handler| handler.take()),
1894 );
1895 self.next_frame.mouse_listeners.extend(
1896 self.rendered_frame.mouse_listeners
1897 [range.start.mouse_listeners_index..range.end.mouse_listeners_index]
1898 .iter_mut()
1899 .map(|listener| listener.take()),
1900 );
1901 self.next_frame.accessed_element_states.extend(
1902 self.rendered_frame.accessed_element_states[range.start.accessed_element_states_index
1903 ..range.end.accessed_element_states_index]
1904 .iter()
1905 .map(|(id, type_id)| (GlobalElementId(id.0.clone()), *type_id)),
1906 );
1907
1908 self.text_system
1909 .reuse_layouts(range.start.line_layout_index..range.end.line_layout_index);
1910 self.next_frame.scene.replay(
1911 range.start.scene_index..range.end.scene_index,
1912 &self.rendered_frame.scene,
1913 );
1914 }
1915
1916 /// Push a text style onto the stack, and call a function with that style active.
1917 /// Use [`Window::text_style`] to get the current, combined text style. This method
1918 /// should only be called as part of element drawing.
1919 pub fn with_text_style<F, R>(&mut self, style: Option<TextStyleRefinement>, f: F) -> R
1920 where
1921 F: FnOnce(&mut Self) -> R,
1922 {
1923 self.invalidator.debug_assert_paint_or_prepaint();
1924 if let Some(style) = style {
1925 self.text_style_stack.push(style);
1926 let result = f(self);
1927 self.text_style_stack.pop();
1928 result
1929 } else {
1930 f(self)
1931 }
1932 }
1933
1934 /// Updates the cursor style at the platform level. This method should only be called
1935 /// during the prepaint phase of element drawing.
1936 pub fn set_cursor_style(&mut self, style: CursorStyle, hitbox: Option<&Hitbox>) {
1937 self.invalidator.debug_assert_paint();
1938 self.next_frame.cursor_styles.push(CursorStyleRequest {
1939 hitbox_id: hitbox.map(|hitbox| hitbox.id),
1940 style,
1941 });
1942 }
1943
1944 /// Sets a tooltip to be rendered for the upcoming frame. This method should only be called
1945 /// during the paint phase of element drawing.
1946 pub fn set_tooltip(&mut self, tooltip: AnyTooltip) -> TooltipId {
1947 self.invalidator.debug_assert_prepaint();
1948 let id = TooltipId(post_inc(&mut self.next_tooltip_id.0));
1949 self.next_frame
1950 .tooltip_requests
1951 .push(Some(TooltipRequest { id, tooltip }));
1952 id
1953 }
1954
1955 /// Invoke the given function with the given content mask after intersecting it
1956 /// with the current mask. This method should only be called during element drawing.
1957 pub fn with_content_mask<R>(
1958 &mut self,
1959 mask: Option<ContentMask<Pixels>>,
1960 f: impl FnOnce(&mut Self) -> R,
1961 ) -> R {
1962 self.invalidator.debug_assert_paint_or_prepaint();
1963 if let Some(mask) = mask {
1964 let mask = mask.intersect(&self.content_mask());
1965 self.content_mask_stack.push(mask);
1966 let result = f(self);
1967 self.content_mask_stack.pop();
1968 result
1969 } else {
1970 f(self)
1971 }
1972 }
1973
1974 /// Updates the global element offset relative to the current offset. This is used to implement
1975 /// scrolling. This method should only be called during the prepaint phase of element drawing.
1976 pub fn with_element_offset<R>(
1977 &mut self,
1978 offset: Point<Pixels>,
1979 f: impl FnOnce(&mut Self) -> R,
1980 ) -> R {
1981 self.invalidator.debug_assert_prepaint();
1982
1983 if offset.is_zero() {
1984 return f(self);
1985 };
1986
1987 let abs_offset = self.element_offset() + offset;
1988 self.with_absolute_element_offset(abs_offset, f)
1989 }
1990
1991 /// Updates the global element offset based on the given offset. This is used to implement
1992 /// drag handles and other manual painting of elements. This method should only be called during
1993 /// the prepaint phase of element drawing.
1994 pub fn with_absolute_element_offset<R>(
1995 &mut self,
1996 offset: Point<Pixels>,
1997 f: impl FnOnce(&mut Self) -> R,
1998 ) -> R {
1999 self.invalidator.debug_assert_prepaint();
2000 self.element_offset_stack.push(offset);
2001 let result = f(self);
2002 self.element_offset_stack.pop();
2003 result
2004 }
2005
2006 pub(crate) fn with_element_opacity<R>(
2007 &mut self,
2008 opacity: Option<f32>,
2009 f: impl FnOnce(&mut Self) -> R,
2010 ) -> R {
2011 if opacity.is_none() {
2012 return f(self);
2013 }
2014
2015 self.invalidator.debug_assert_paint_or_prepaint();
2016 self.element_opacity = opacity;
2017 let result = f(self);
2018 self.element_opacity = None;
2019 result
2020 }
2021
2022 /// Perform prepaint on child elements in a "retryable" manner, so that any side effects
2023 /// of prepaints can be discarded before prepainting again. This is used to support autoscroll
2024 /// where we need to prepaint children to detect the autoscroll bounds, then adjust the
2025 /// element offset and prepaint again. See [`List`] for an example. This method should only be
2026 /// called during the prepaint phase of element drawing.
2027 pub fn transact<T, U>(&mut self, f: impl FnOnce(&mut Self) -> Result<T, U>) -> Result<T, U> {
2028 self.invalidator.debug_assert_prepaint();
2029 let index = self.prepaint_index();
2030 let result = f(self);
2031 if result.is_err() {
2032 self.next_frame.hitboxes.truncate(index.hitboxes_index);
2033 self.next_frame
2034 .tooltip_requests
2035 .truncate(index.tooltips_index);
2036 self.next_frame
2037 .deferred_draws
2038 .truncate(index.deferred_draws_index);
2039 self.next_frame
2040 .dispatch_tree
2041 .truncate(index.dispatch_tree_index);
2042 self.next_frame
2043 .accessed_element_states
2044 .truncate(index.accessed_element_states_index);
2045 self.text_system.truncate_layouts(index.line_layout_index);
2046 }
2047 result
2048 }
2049
2050 /// When you call this method during [`prepaint`], containing elements will attempt to
2051 /// scroll to cause the specified bounds to become visible. When they decide to autoscroll, they will call
2052 /// [`prepaint`] again with a new set of bounds. See [`List`] for an example of an element
2053 /// that supports this method being called on the elements it contains. This method should only be
2054 /// called during the prepaint phase of element drawing.
2055 pub fn request_autoscroll(&mut self, bounds: Bounds<Pixels>) {
2056 self.invalidator.debug_assert_prepaint();
2057 self.requested_autoscroll = Some(bounds);
2058 }
2059
2060 /// This method can be called from a containing element such as [`List`] to support the autoscroll behavior
2061 /// described in [`request_autoscroll`].
2062 pub fn take_autoscroll(&mut self) -> Option<Bounds<Pixels>> {
2063 self.invalidator.debug_assert_prepaint();
2064 self.requested_autoscroll.take()
2065 }
2066
2067 /// Asynchronously load an asset, if the asset hasn't finished loading this will return None.
2068 /// Your view will be re-drawn once the asset has finished loading.
2069 ///
2070 /// Note that the multiple calls to this method will only result in one `Asset::load` call at a
2071 /// time.
2072 pub fn use_asset<A: Asset>(&mut self, source: &A::Source, cx: &mut App) -> Option<A::Output> {
2073 let (task, is_first) = cx.fetch_asset::<A>(source);
2074 task.clone().now_or_never().or_else(|| {
2075 if is_first {
2076 let entity = self.current_view();
2077 self.spawn(cx, {
2078 let task = task.clone();
2079 async move |cx| {
2080 task.await;
2081
2082 cx.on_next_frame(move |_, cx| {
2083 cx.notify(entity);
2084 });
2085 }
2086 })
2087 .detach();
2088 }
2089
2090 None
2091 })
2092 }
2093 /// Obtain the current element offset. This method should only be called during the
2094 /// prepaint phase of element drawing.
2095 pub fn element_offset(&self) -> Point<Pixels> {
2096 self.invalidator.debug_assert_prepaint();
2097 self.element_offset_stack
2098 .last()
2099 .copied()
2100 .unwrap_or_default()
2101 }
2102
2103 /// Obtain the current element opacity. This method should only be called during the
2104 /// prepaint phase of element drawing.
2105 pub(crate) fn element_opacity(&self) -> f32 {
2106 self.invalidator.debug_assert_paint_or_prepaint();
2107 self.element_opacity.unwrap_or(1.0)
2108 }
2109
2110 /// Obtain the current content mask. This method should only be called during element drawing.
2111 pub fn content_mask(&self) -> ContentMask<Pixels> {
2112 self.invalidator.debug_assert_paint_or_prepaint();
2113 self.content_mask_stack
2114 .last()
2115 .cloned()
2116 .unwrap_or_else(|| ContentMask {
2117 bounds: Bounds {
2118 origin: Point::default(),
2119 size: self.viewport_size,
2120 },
2121 })
2122 }
2123
2124 /// Provide elements in the called function with a new namespace in which their identifiers must be unique.
2125 /// This can be used within a custom element to distinguish multiple sets of child elements.
2126 pub fn with_element_namespace<R>(
2127 &mut self,
2128 element_id: impl Into<ElementId>,
2129 f: impl FnOnce(&mut Self) -> R,
2130 ) -> R {
2131 self.element_id_stack.push(element_id.into());
2132 let result = f(self);
2133 self.element_id_stack.pop();
2134 result
2135 }
2136
2137 /// Updates or initializes state for an element with the given id that lives across multiple
2138 /// frames. If an element with this ID existed in the rendered frame, its state will be passed
2139 /// to the given closure. The state returned by the closure will be stored so it can be referenced
2140 /// when drawing the next frame. This method should only be called as part of element drawing.
2141 pub fn with_element_state<S, R>(
2142 &mut self,
2143 global_id: &GlobalElementId,
2144 f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2145 ) -> R
2146 where
2147 S: 'static,
2148 {
2149 self.invalidator.debug_assert_paint_or_prepaint();
2150
2151 let key = (GlobalElementId(global_id.0.clone()), TypeId::of::<S>());
2152 self.next_frame
2153 .accessed_element_states
2154 .push((GlobalElementId(key.0.clone()), TypeId::of::<S>()));
2155
2156 if let Some(any) = self
2157 .next_frame
2158 .element_states
2159 .remove(&key)
2160 .or_else(|| self.rendered_frame.element_states.remove(&key))
2161 {
2162 let ElementStateBox {
2163 inner,
2164 #[cfg(debug_assertions)]
2165 type_name,
2166 } = any;
2167 // Using the extra inner option to avoid needing to reallocate a new box.
2168 let mut state_box = inner
2169 .downcast::<Option<S>>()
2170 .map_err(|_| {
2171 #[cfg(debug_assertions)]
2172 {
2173 anyhow::anyhow!(
2174 "invalid element state type for id, requested {:?}, actual: {:?}",
2175 std::any::type_name::<S>(),
2176 type_name
2177 )
2178 }
2179
2180 #[cfg(not(debug_assertions))]
2181 {
2182 anyhow::anyhow!(
2183 "invalid element state type for id, requested {:?}",
2184 std::any::type_name::<S>(),
2185 )
2186 }
2187 })
2188 .unwrap();
2189
2190 let state = state_box.take().expect(
2191 "reentrant call to with_element_state for the same state type and element id",
2192 );
2193 let (result, state) = f(Some(state), self);
2194 state_box.replace(state);
2195 self.next_frame.element_states.insert(
2196 key,
2197 ElementStateBox {
2198 inner: state_box,
2199 #[cfg(debug_assertions)]
2200 type_name,
2201 },
2202 );
2203 result
2204 } else {
2205 let (result, state) = f(None, self);
2206 self.next_frame.element_states.insert(
2207 key,
2208 ElementStateBox {
2209 inner: Box::new(Some(state)),
2210 #[cfg(debug_assertions)]
2211 type_name: std::any::type_name::<S>(),
2212 },
2213 );
2214 result
2215 }
2216 }
2217
2218 /// A variant of `with_element_state` that allows the element's id to be optional. This is a convenience
2219 /// method for elements where the element id may or may not be assigned. Prefer using `with_element_state`
2220 /// when the element is guaranteed to have an id.
2221 ///
2222 /// The first option means 'no ID provided'
2223 /// The second option means 'not yet initialized'
2224 pub fn with_optional_element_state<S, R>(
2225 &mut self,
2226 global_id: Option<&GlobalElementId>,
2227 f: impl FnOnce(Option<Option<S>>, &mut Self) -> (R, Option<S>),
2228 ) -> R
2229 where
2230 S: 'static,
2231 {
2232 self.invalidator.debug_assert_paint_or_prepaint();
2233
2234 if let Some(global_id) = global_id {
2235 self.with_element_state(global_id, |state, cx| {
2236 let (result, state) = f(Some(state), cx);
2237 let state =
2238 state.expect("you must return some state when you pass some element id");
2239 (result, state)
2240 })
2241 } else {
2242 let (result, state) = f(None, self);
2243 debug_assert!(
2244 state.is_none(),
2245 "you must not return an element state when passing None for the global id"
2246 );
2247 result
2248 }
2249 }
2250
2251 /// Defers the drawing of the given element, scheduling it to be painted on top of the currently-drawn tree
2252 /// at a later time. The `priority` parameter determines the drawing order relative to other deferred elements,
2253 /// with higher values being drawn on top.
2254 ///
2255 /// This method should only be called as part of the prepaint phase of element drawing.
2256 pub fn defer_draw(
2257 &mut self,
2258 element: AnyElement,
2259 absolute_offset: Point<Pixels>,
2260 priority: usize,
2261 ) {
2262 self.invalidator.debug_assert_prepaint();
2263 let parent_node = self.next_frame.dispatch_tree.active_node_id().unwrap();
2264 self.next_frame.deferred_draws.push(DeferredDraw {
2265 current_view: self.current_view(),
2266 parent_node,
2267 element_id_stack: self.element_id_stack.clone(),
2268 text_style_stack: self.text_style_stack.clone(),
2269 priority,
2270 element: Some(element),
2271 absolute_offset,
2272 prepaint_range: PrepaintStateIndex::default()..PrepaintStateIndex::default(),
2273 paint_range: PaintIndex::default()..PaintIndex::default(),
2274 });
2275 }
2276
2277 /// Creates a new painting layer for the specified bounds. A "layer" is a batch
2278 /// of geometry that are non-overlapping and have the same draw order. This is typically used
2279 /// for performance reasons.
2280 ///
2281 /// This method should only be called as part of the paint phase of element drawing.
2282 pub fn paint_layer<R>(&mut self, bounds: Bounds<Pixels>, f: impl FnOnce(&mut Self) -> R) -> R {
2283 self.invalidator.debug_assert_paint();
2284
2285 let scale_factor = self.scale_factor();
2286 let content_mask = self.content_mask();
2287 let clipped_bounds = bounds.intersect(&content_mask.bounds);
2288 if !clipped_bounds.is_empty() {
2289 self.next_frame
2290 .scene
2291 .push_layer(clipped_bounds.scale(scale_factor));
2292 }
2293
2294 let result = f(self);
2295
2296 if !clipped_bounds.is_empty() {
2297 self.next_frame.scene.pop_layer();
2298 }
2299
2300 result
2301 }
2302
2303 /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
2304 ///
2305 /// This method should only be called as part of the paint phase of element drawing.
2306 pub fn paint_shadows(
2307 &mut self,
2308 bounds: Bounds<Pixels>,
2309 corner_radii: Corners<Pixels>,
2310 shadows: &[BoxShadow],
2311 ) {
2312 self.invalidator.debug_assert_paint();
2313
2314 let scale_factor = self.scale_factor();
2315 let content_mask = self.content_mask();
2316 let opacity = self.element_opacity();
2317 for shadow in shadows {
2318 let shadow_bounds = (bounds + shadow.offset).dilate(shadow.spread_radius);
2319 self.next_frame.scene.insert_primitive(Shadow {
2320 order: 0,
2321 blur_radius: shadow.blur_radius.scale(scale_factor),
2322 bounds: shadow_bounds.scale(scale_factor),
2323 content_mask: content_mask.scale(scale_factor),
2324 corner_radii: corner_radii.scale(scale_factor),
2325 color: shadow.color.opacity(opacity),
2326 });
2327 }
2328 }
2329
2330 /// Paint one or more quads into the scene for the next frame at the current stacking context.
2331 /// Quads are colored rectangular regions with an optional background, border, and corner radius.
2332 /// see [`fill`](crate::fill), [`outline`](crate::outline), and [`quad`](crate::quad) to construct this type.
2333 ///
2334 /// This method should only be called as part of the paint phase of element drawing.
2335 ///
2336 /// Note that the `quad.corner_radii` are allowed to exceed the bounds, creating sharp corners
2337 /// where the circular arcs meet. This will not display well when combined with dashed borders.
2338 /// Use `Corners::clamp_radii_for_quad_size` if the radii should fit within the bounds.
2339 pub fn paint_quad(&mut self, quad: PaintQuad) {
2340 self.invalidator.debug_assert_paint();
2341
2342 let scale_factor = self.scale_factor();
2343 let content_mask = self.content_mask();
2344 let opacity = self.element_opacity();
2345 self.next_frame.scene.insert_primitive(Quad {
2346 order: 0,
2347 bounds: quad.bounds.scale(scale_factor),
2348 content_mask: content_mask.scale(scale_factor),
2349 background: quad.background.opacity(opacity),
2350 border_color: quad.border_color.opacity(opacity),
2351 corner_radii: quad.corner_radii.scale(scale_factor),
2352 border_widths: quad.border_widths.scale(scale_factor),
2353 border_style: quad.border_style,
2354 });
2355 }
2356
2357 /// Paint the given `Path` into the scene for the next frame at the current z-index.
2358 ///
2359 /// This method should only be called as part of the paint phase of element drawing.
2360 pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Background>) {
2361 self.invalidator.debug_assert_paint();
2362
2363 let scale_factor = self.scale_factor();
2364 let content_mask = self.content_mask();
2365 let opacity = self.element_opacity();
2366 path.content_mask = content_mask;
2367 let color: Background = color.into();
2368 path.color = color.opacity(opacity);
2369 self.next_frame
2370 .scene
2371 .insert_primitive(path.scale(scale_factor));
2372 }
2373
2374 /// Paint an underline into the scene for the next frame at the current z-index.
2375 ///
2376 /// This method should only be called as part of the paint phase of element drawing.
2377 pub fn paint_underline(
2378 &mut self,
2379 origin: Point<Pixels>,
2380 width: Pixels,
2381 style: &UnderlineStyle,
2382 ) {
2383 self.invalidator.debug_assert_paint();
2384
2385 let scale_factor = self.scale_factor();
2386 let height = if style.wavy {
2387 style.thickness * 3.
2388 } else {
2389 style.thickness
2390 };
2391 let bounds = Bounds {
2392 origin,
2393 size: size(width, height),
2394 };
2395 let content_mask = self.content_mask();
2396 let element_opacity = self.element_opacity();
2397
2398 self.next_frame.scene.insert_primitive(Underline {
2399 order: 0,
2400 pad: 0,
2401 bounds: bounds.scale(scale_factor),
2402 content_mask: content_mask.scale(scale_factor),
2403 color: style.color.unwrap_or_default().opacity(element_opacity),
2404 thickness: style.thickness.scale(scale_factor),
2405 wavy: style.wavy,
2406 });
2407 }
2408
2409 /// Paint a strikethrough into the scene for the next frame at the current z-index.
2410 ///
2411 /// This method should only be called as part of the paint phase of element drawing.
2412 pub fn paint_strikethrough(
2413 &mut self,
2414 origin: Point<Pixels>,
2415 width: Pixels,
2416 style: &StrikethroughStyle,
2417 ) {
2418 self.invalidator.debug_assert_paint();
2419
2420 let scale_factor = self.scale_factor();
2421 let height = style.thickness;
2422 let bounds = Bounds {
2423 origin,
2424 size: size(width, height),
2425 };
2426 let content_mask = self.content_mask();
2427 let opacity = self.element_opacity();
2428
2429 self.next_frame.scene.insert_primitive(Underline {
2430 order: 0,
2431 pad: 0,
2432 bounds: bounds.scale(scale_factor),
2433 content_mask: content_mask.scale(scale_factor),
2434 thickness: style.thickness.scale(scale_factor),
2435 color: style.color.unwrap_or_default().opacity(opacity),
2436 wavy: false,
2437 });
2438 }
2439
2440 /// Paints a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
2441 ///
2442 /// The y component of the origin is the baseline of the glyph.
2443 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2444 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2445 /// This method is only useful if you need to paint a single glyph that has already been shaped.
2446 ///
2447 /// This method should only be called as part of the paint phase of element drawing.
2448 pub fn paint_glyph(
2449 &mut self,
2450 origin: Point<Pixels>,
2451 font_id: FontId,
2452 glyph_id: GlyphId,
2453 font_size: Pixels,
2454 color: Hsla,
2455 ) -> Result<()> {
2456 self.invalidator.debug_assert_paint();
2457
2458 let element_opacity = self.element_opacity();
2459 let scale_factor = self.scale_factor();
2460 let glyph_origin = origin.scale(scale_factor);
2461 let subpixel_variant = Point {
2462 x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2463 y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
2464 };
2465 let params = RenderGlyphParams {
2466 font_id,
2467 glyph_id,
2468 font_size,
2469 subpixel_variant,
2470 scale_factor,
2471 is_emoji: false,
2472 };
2473
2474 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2475 if !raster_bounds.is_zero() {
2476 let tile = self
2477 .sprite_atlas
2478 .get_or_insert_with(¶ms.clone().into(), &mut || {
2479 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2480 Ok(Some((size, Cow::Owned(bytes))))
2481 })?
2482 .expect("Callback above only errors or returns Some");
2483 let bounds = Bounds {
2484 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2485 size: tile.bounds.size.map(Into::into),
2486 };
2487 let content_mask = self.content_mask().scale(scale_factor);
2488 self.next_frame.scene.insert_primitive(MonochromeSprite {
2489 order: 0,
2490 pad: 0,
2491 bounds,
2492 content_mask,
2493 color: color.opacity(element_opacity),
2494 tile,
2495 transformation: TransformationMatrix::unit(),
2496 });
2497 }
2498 Ok(())
2499 }
2500
2501 /// Paints an emoji glyph into the scene for the next frame at the current z-index.
2502 ///
2503 /// The y component of the origin is the baseline of the glyph.
2504 /// You should generally prefer to use the [`ShapedLine::paint`](crate::ShapedLine::paint) or
2505 /// [`WrappedLine::paint`](crate::WrappedLine::paint) methods in the [`TextSystem`](crate::TextSystem).
2506 /// This method is only useful if you need to paint a single emoji that has already been shaped.
2507 ///
2508 /// This method should only be called as part of the paint phase of element drawing.
2509 pub fn paint_emoji(
2510 &mut self,
2511 origin: Point<Pixels>,
2512 font_id: FontId,
2513 glyph_id: GlyphId,
2514 font_size: Pixels,
2515 ) -> Result<()> {
2516 self.invalidator.debug_assert_paint();
2517
2518 let scale_factor = self.scale_factor();
2519 let glyph_origin = origin.scale(scale_factor);
2520 let params = RenderGlyphParams {
2521 font_id,
2522 glyph_id,
2523 font_size,
2524 // We don't render emojis with subpixel variants.
2525 subpixel_variant: Default::default(),
2526 scale_factor,
2527 is_emoji: true,
2528 };
2529
2530 let raster_bounds = self.text_system().raster_bounds(¶ms)?;
2531 if !raster_bounds.is_zero() {
2532 let tile = self
2533 .sprite_atlas
2534 .get_or_insert_with(¶ms.clone().into(), &mut || {
2535 let (size, bytes) = self.text_system().rasterize_glyph(¶ms)?;
2536 Ok(Some((size, Cow::Owned(bytes))))
2537 })?
2538 .expect("Callback above only errors or returns Some");
2539
2540 let bounds = Bounds {
2541 origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
2542 size: tile.bounds.size.map(Into::into),
2543 };
2544 let content_mask = self.content_mask().scale(scale_factor);
2545 let opacity = self.element_opacity();
2546
2547 self.next_frame.scene.insert_primitive(PolychromeSprite {
2548 order: 0,
2549 pad: 0,
2550 grayscale: false,
2551 bounds,
2552 corner_radii: Default::default(),
2553 content_mask,
2554 tile,
2555 opacity,
2556 });
2557 }
2558 Ok(())
2559 }
2560
2561 /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
2562 ///
2563 /// This method should only be called as part of the paint phase of element drawing.
2564 pub fn paint_svg(
2565 &mut self,
2566 bounds: Bounds<Pixels>,
2567 path: SharedString,
2568 transformation: TransformationMatrix,
2569 color: Hsla,
2570 cx: &App,
2571 ) -> Result<()> {
2572 self.invalidator.debug_assert_paint();
2573
2574 let element_opacity = self.element_opacity();
2575 let scale_factor = self.scale_factor();
2576 let bounds = bounds.scale(scale_factor);
2577 let params = RenderSvgParams {
2578 path,
2579 size: bounds.size.map(|pixels| {
2580 DevicePixels::from((pixels.0 * SMOOTH_SVG_SCALE_FACTOR).ceil() as i32)
2581 }),
2582 };
2583
2584 let Some(tile) =
2585 self.sprite_atlas
2586 .get_or_insert_with(¶ms.clone().into(), &mut || {
2587 let Some(bytes) = cx.svg_renderer.render(¶ms)? else {
2588 return Ok(None);
2589 };
2590 Ok(Some((params.size, Cow::Owned(bytes))))
2591 })?
2592 else {
2593 return Ok(());
2594 };
2595 let content_mask = self.content_mask().scale(scale_factor);
2596
2597 self.next_frame.scene.insert_primitive(MonochromeSprite {
2598 order: 0,
2599 pad: 0,
2600 bounds: bounds
2601 .map_origin(|origin| origin.floor())
2602 .map_size(|size| size.ceil()),
2603 content_mask,
2604 color: color.opacity(element_opacity),
2605 tile,
2606 transformation,
2607 });
2608
2609 Ok(())
2610 }
2611
2612 /// Paint an image into the scene for the next frame at the current z-index.
2613 /// This method will panic if the frame_index is not valid
2614 ///
2615 /// This method should only be called as part of the paint phase of element drawing.
2616 pub fn paint_image(
2617 &mut self,
2618 bounds: Bounds<Pixels>,
2619 corner_radii: Corners<Pixels>,
2620 data: Arc<RenderImage>,
2621 frame_index: usize,
2622 grayscale: bool,
2623 ) -> Result<()> {
2624 self.invalidator.debug_assert_paint();
2625
2626 let scale_factor = self.scale_factor();
2627 let bounds = bounds.scale(scale_factor);
2628 let params = RenderImageParams {
2629 image_id: data.id,
2630 frame_index,
2631 };
2632
2633 let tile = self
2634 .sprite_atlas
2635 .get_or_insert_with(¶ms.clone().into(), &mut || {
2636 Ok(Some((
2637 data.size(frame_index),
2638 Cow::Borrowed(
2639 data.as_bytes(frame_index)
2640 .expect("It's the caller's job to pass a valid frame index"),
2641 ),
2642 )))
2643 })?
2644 .expect("Callback above only returns Some");
2645 let content_mask = self.content_mask().scale(scale_factor);
2646 let corner_radii = corner_radii.scale(scale_factor);
2647 let opacity = self.element_opacity();
2648
2649 self.next_frame.scene.insert_primitive(PolychromeSprite {
2650 order: 0,
2651 pad: 0,
2652 grayscale,
2653 bounds,
2654 content_mask,
2655 corner_radii,
2656 tile,
2657 opacity,
2658 });
2659 Ok(())
2660 }
2661
2662 /// Paint a surface into the scene for the next frame at the current z-index.
2663 ///
2664 /// This method should only be called as part of the paint phase of element drawing.
2665 #[cfg(target_os = "macos")]
2666 pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVPixelBuffer) {
2667 use crate::PaintSurface;
2668
2669 self.invalidator.debug_assert_paint();
2670
2671 let scale_factor = self.scale_factor();
2672 let bounds = bounds.scale(scale_factor);
2673 let content_mask = self.content_mask().scale(scale_factor);
2674 self.next_frame.scene.insert_primitive(PaintSurface {
2675 order: 0,
2676 bounds,
2677 content_mask,
2678 image_buffer,
2679 });
2680 }
2681
2682 /// Removes an image from the sprite atlas.
2683 pub fn drop_image(&mut self, data: Arc<RenderImage>) -> Result<()> {
2684 for frame_index in 0..data.frame_count() {
2685 let params = RenderImageParams {
2686 image_id: data.id,
2687 frame_index,
2688 };
2689
2690 self.sprite_atlas.remove(¶ms.clone().into());
2691 }
2692
2693 Ok(())
2694 }
2695
2696 /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
2697 /// layout is being requested, along with the layout ids of any children. This method is called during
2698 /// calls to the [`Element::request_layout`] trait method and enables any element to participate in layout.
2699 ///
2700 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2701 #[must_use]
2702 pub fn request_layout(
2703 &mut self,
2704 style: Style,
2705 children: impl IntoIterator<Item = LayoutId>,
2706 cx: &mut App,
2707 ) -> LayoutId {
2708 self.invalidator.debug_assert_prepaint();
2709
2710 cx.layout_id_buffer.clear();
2711 cx.layout_id_buffer.extend(children);
2712 let rem_size = self.rem_size();
2713
2714 self.layout_engine
2715 .as_mut()
2716 .unwrap()
2717 .request_layout(style, rem_size, &cx.layout_id_buffer)
2718 }
2719
2720 /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
2721 /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
2722 /// determine the element's size. One place this is used internally is when measuring text.
2723 ///
2724 /// The given closure is invoked at layout time with the known dimensions and available space and
2725 /// returns a `Size`.
2726 ///
2727 /// This method should only be called as part of the request_layout or prepaint phase of element drawing.
2728 pub fn request_measured_layout<
2729 F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut Window, &mut App) -> Size<Pixels>
2730 + 'static,
2731 >(
2732 &mut self,
2733 style: Style,
2734 measure: F,
2735 ) -> LayoutId {
2736 self.invalidator.debug_assert_prepaint();
2737
2738 let rem_size = self.rem_size();
2739 self.layout_engine
2740 .as_mut()
2741 .unwrap()
2742 .request_measured_layout(style, rem_size, measure)
2743 }
2744
2745 /// Compute the layout for the given id within the given available space.
2746 /// This method is called for its side effect, typically by the framework prior to painting.
2747 /// After calling it, you can request the bounds of the given layout node id or any descendant.
2748 ///
2749 /// This method should only be called as part of the prepaint phase of element drawing.
2750 pub fn compute_layout(
2751 &mut self,
2752 layout_id: LayoutId,
2753 available_space: Size<AvailableSpace>,
2754 cx: &mut App,
2755 ) {
2756 self.invalidator.debug_assert_prepaint();
2757
2758 let mut layout_engine = self.layout_engine.take().unwrap();
2759 layout_engine.compute_layout(layout_id, available_space, self, cx);
2760 self.layout_engine = Some(layout_engine);
2761 }
2762
2763 /// Obtain the bounds computed for the given LayoutId relative to the window. This method will usually be invoked by
2764 /// GPUI itself automatically in order to pass your element its `Bounds` automatically.
2765 ///
2766 /// This method should only be called as part of element drawing.
2767 pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
2768 self.invalidator.debug_assert_prepaint();
2769
2770 let mut bounds = self
2771 .layout_engine
2772 .as_mut()
2773 .unwrap()
2774 .layout_bounds(layout_id)
2775 .map(Into::into);
2776 bounds.origin += self.element_offset();
2777 bounds
2778 }
2779
2780 /// This method should be called during `prepaint`. You can use
2781 /// the returned [Hitbox] during `paint` or in an event handler
2782 /// to determine whether the inserted hitbox was the topmost.
2783 ///
2784 /// This method should only be called as part of the prepaint phase of element drawing.
2785 pub fn insert_hitbox(&mut self, bounds: Bounds<Pixels>, opaque: bool) -> Hitbox {
2786 self.invalidator.debug_assert_prepaint();
2787
2788 let content_mask = self.content_mask();
2789 let id = self.next_hitbox_id;
2790 self.next_hitbox_id.0 += 1;
2791 let hitbox = Hitbox {
2792 id,
2793 bounds,
2794 content_mask,
2795 opaque,
2796 };
2797 self.next_frame.hitboxes.push(hitbox.clone());
2798 hitbox
2799 }
2800
2801 /// Sets the key context for the current element. This context will be used to translate
2802 /// keybindings into actions.
2803 ///
2804 /// This method should only be called as part of the paint phase of element drawing.
2805 pub fn set_key_context(&mut self, context: KeyContext) {
2806 self.invalidator.debug_assert_paint();
2807 self.next_frame.dispatch_tree.set_key_context(context);
2808 }
2809
2810 /// Sets the focus handle for the current element. This handle will be used to manage focus state
2811 /// and keyboard event dispatch for the element.
2812 ///
2813 /// This method should only be called as part of the prepaint phase of element drawing.
2814 pub fn set_focus_handle(&mut self, focus_handle: &FocusHandle, _: &App) {
2815 self.invalidator.debug_assert_prepaint();
2816 if focus_handle.is_focused(self) {
2817 self.next_frame.focus = Some(focus_handle.id);
2818 }
2819 self.next_frame.dispatch_tree.set_focus_id(focus_handle.id);
2820 }
2821
2822 /// Sets the view id for the current element, which will be used to manage view caching.
2823 ///
2824 /// This method should only be called as part of element prepaint. We plan on removing this
2825 /// method eventually when we solve some issues that require us to construct editor elements
2826 /// directly instead of always using editors via views.
2827 pub fn set_view_id(&mut self, view_id: EntityId) {
2828 self.invalidator.debug_assert_prepaint();
2829 self.next_frame.dispatch_tree.set_view_id(view_id);
2830 }
2831
2832 /// Get the entity ID for the currently rendering view
2833 pub fn current_view(&self) -> EntityId {
2834 self.invalidator.debug_assert_paint_or_prepaint();
2835 self.rendered_entity_stack.last().copied().unwrap()
2836 }
2837
2838 pub(crate) fn with_rendered_view<R>(
2839 &mut self,
2840 id: EntityId,
2841 f: impl FnOnce(&mut Self) -> R,
2842 ) -> R {
2843 self.rendered_entity_stack.push(id);
2844 let result = f(self);
2845 self.rendered_entity_stack.pop();
2846 result
2847 }
2848
2849 /// Sets an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
2850 /// platform to receive textual input with proper integration with concerns such
2851 /// as IME interactions. This handler will be active for the upcoming frame until the following frame is
2852 /// rendered.
2853 ///
2854 /// This method should only be called as part of the paint phase of element drawing.
2855 ///
2856 /// [element_input_handler]: crate::ElementInputHandler
2857 pub fn handle_input(
2858 &mut self,
2859 focus_handle: &FocusHandle,
2860 input_handler: impl InputHandler,
2861 cx: &App,
2862 ) {
2863 self.invalidator.debug_assert_paint();
2864
2865 if focus_handle.is_focused(self) {
2866 let cx = self.to_async(cx);
2867 self.next_frame
2868 .input_handlers
2869 .push(Some(PlatformInputHandler::new(cx, Box::new(input_handler))));
2870 }
2871 }
2872
2873 /// Register a mouse event listener on the window for the next frame. The type of event
2874 /// is determined by the first parameter of the given listener. When the next frame is rendered
2875 /// the listener will be cleared.
2876 ///
2877 /// This method should only be called as part of the paint phase of element drawing.
2878 pub fn on_mouse_event<Event: MouseEvent>(
2879 &mut self,
2880 mut handler: impl FnMut(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2881 ) {
2882 self.invalidator.debug_assert_paint();
2883
2884 self.next_frame.mouse_listeners.push(Some(Box::new(
2885 move |event: &dyn Any, phase: DispatchPhase, window: &mut Window, cx: &mut App| {
2886 if let Some(event) = event.downcast_ref() {
2887 handler(event, phase, window, cx)
2888 }
2889 },
2890 )));
2891 }
2892
2893 /// Register a key event listener on the window for the next frame. The type of event
2894 /// is determined by the first parameter of the given listener. When the next frame is rendered
2895 /// the listener will be cleared.
2896 ///
2897 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2898 /// a specific need to register a global listener.
2899 ///
2900 /// This method should only be called as part of the paint phase of element drawing.
2901 pub fn on_key_event<Event: KeyEvent>(
2902 &mut self,
2903 listener: impl Fn(&Event, DispatchPhase, &mut Window, &mut App) + 'static,
2904 ) {
2905 self.invalidator.debug_assert_paint();
2906
2907 self.next_frame.dispatch_tree.on_key_event(Rc::new(
2908 move |event: &dyn Any, phase, window: &mut Window, cx: &mut App| {
2909 if let Some(event) = event.downcast_ref::<Event>() {
2910 listener(event, phase, window, cx)
2911 }
2912 },
2913 ));
2914 }
2915
2916 /// Register a modifiers changed event listener on the window for the next frame.
2917 ///
2918 /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
2919 /// a specific need to register a global listener.
2920 ///
2921 /// This method should only be called as part of the paint phase of element drawing.
2922 pub fn on_modifiers_changed(
2923 &mut self,
2924 listener: impl Fn(&ModifiersChangedEvent, &mut Window, &mut App) + 'static,
2925 ) {
2926 self.invalidator.debug_assert_paint();
2927
2928 self.next_frame.dispatch_tree.on_modifiers_changed(Rc::new(
2929 move |event: &ModifiersChangedEvent, window: &mut Window, cx: &mut App| {
2930 listener(event, window, cx)
2931 },
2932 ));
2933 }
2934
2935 /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2936 /// This does not fire if the given focus handle - or one of its descendants - was previously focused.
2937 /// Returns a subscription and persists until the subscription is dropped.
2938 pub fn on_focus_in(
2939 &mut self,
2940 handle: &FocusHandle,
2941 cx: &mut App,
2942 mut listener: impl FnMut(&mut Window, &mut App) + 'static,
2943 ) -> Subscription {
2944 let focus_id = handle.id;
2945 let (subscription, activate) =
2946 self.new_focus_listener(Box::new(move |event, window, cx| {
2947 if event.is_focus_in(focus_id) {
2948 listener(window, cx);
2949 }
2950 true
2951 }));
2952 cx.defer(move |_| activate());
2953 subscription
2954 }
2955
2956 /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2957 /// Returns a subscription and persists until the subscription is dropped.
2958 pub fn on_focus_out(
2959 &mut self,
2960 handle: &FocusHandle,
2961 cx: &mut App,
2962 mut listener: impl FnMut(FocusOutEvent, &mut Window, &mut App) + 'static,
2963 ) -> Subscription {
2964 let focus_id = handle.id;
2965 let (subscription, activate) =
2966 self.new_focus_listener(Box::new(move |event, window, cx| {
2967 if let Some(blurred_id) = event.previous_focus_path.last().copied() {
2968 if event.is_focus_out(focus_id) {
2969 let event = FocusOutEvent {
2970 blurred: WeakFocusHandle {
2971 id: blurred_id,
2972 handles: Arc::downgrade(&cx.focus_handles),
2973 },
2974 };
2975 listener(event, window, cx)
2976 }
2977 }
2978 true
2979 }));
2980 cx.defer(move |_| activate());
2981 subscription
2982 }
2983
2984 fn reset_cursor_style(&self, cx: &mut App) {
2985 // Set the cursor only if we're the active window.
2986 if self.is_window_hovered() {
2987 let style = self
2988 .rendered_frame
2989 .cursor_styles
2990 .iter()
2991 .rev()
2992 .find(|request| {
2993 request
2994 .hitbox_id
2995 .map_or(true, |hitbox_id| hitbox_id.is_hovered(self))
2996 })
2997 .map(|request| request.style)
2998 .unwrap_or(CursorStyle::Arrow);
2999 cx.platform.set_cursor_style(style);
3000 }
3001 }
3002
3003 /// Dispatch a given keystroke as though the user had typed it.
3004 /// You can create a keystroke with Keystroke::parse("").
3005 pub fn dispatch_keystroke(&mut self, keystroke: Keystroke, cx: &mut App) -> bool {
3006 let keystroke = keystroke.with_simulated_ime();
3007 let result = self.dispatch_event(
3008 PlatformInput::KeyDown(KeyDownEvent {
3009 keystroke: keystroke.clone(),
3010 is_held: false,
3011 }),
3012 cx,
3013 );
3014 if !result.propagate {
3015 return true;
3016 }
3017
3018 if let Some(input) = keystroke.key_char {
3019 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3020 input_handler.dispatch_input(&input, self, cx);
3021 self.platform_window.set_input_handler(input_handler);
3022 return true;
3023 }
3024 }
3025
3026 false
3027 }
3028
3029 /// Return a key binding string for an action, to display in the UI. Uses the highest precedence
3030 /// binding for the action (last binding added to the keymap).
3031 pub fn keystroke_text_for(&self, action: &dyn Action) -> String {
3032 self.bindings_for_action(action)
3033 .last()
3034 .map(|binding| {
3035 binding
3036 .keystrokes()
3037 .iter()
3038 .map(ToString::to_string)
3039 .collect::<Vec<_>>()
3040 .join(" ")
3041 })
3042 .unwrap_or_else(|| action.name().to_string())
3043 }
3044
3045 /// Dispatch a mouse or keyboard event on the window.
3046 #[profiling::function]
3047 pub fn dispatch_event(&mut self, event: PlatformInput, cx: &mut App) -> DispatchEventResult {
3048 self.last_input_timestamp.set(Instant::now());
3049 // Handlers may set this to false by calling `stop_propagation`.
3050 cx.propagate_event = true;
3051 // Handlers may set this to true by calling `prevent_default`.
3052 self.default_prevented = false;
3053
3054 let event = match event {
3055 // Track the mouse position with our own state, since accessing the platform
3056 // API for the mouse position can only occur on the main thread.
3057 PlatformInput::MouseMove(mouse_move) => {
3058 self.mouse_position = mouse_move.position;
3059 self.modifiers = mouse_move.modifiers;
3060 PlatformInput::MouseMove(mouse_move)
3061 }
3062 PlatformInput::MouseDown(mouse_down) => {
3063 self.mouse_position = mouse_down.position;
3064 self.modifiers = mouse_down.modifiers;
3065 PlatformInput::MouseDown(mouse_down)
3066 }
3067 PlatformInput::MouseUp(mouse_up) => {
3068 self.mouse_position = mouse_up.position;
3069 self.modifiers = mouse_up.modifiers;
3070 PlatformInput::MouseUp(mouse_up)
3071 }
3072 PlatformInput::MouseExited(mouse_exited) => {
3073 self.modifiers = mouse_exited.modifiers;
3074 PlatformInput::MouseExited(mouse_exited)
3075 }
3076 PlatformInput::ModifiersChanged(modifiers_changed) => {
3077 self.modifiers = modifiers_changed.modifiers;
3078 PlatformInput::ModifiersChanged(modifiers_changed)
3079 }
3080 PlatformInput::ScrollWheel(scroll_wheel) => {
3081 self.mouse_position = scroll_wheel.position;
3082 self.modifiers = scroll_wheel.modifiers;
3083 PlatformInput::ScrollWheel(scroll_wheel)
3084 }
3085 // Translate dragging and dropping of external files from the operating system
3086 // to internal drag and drop events.
3087 PlatformInput::FileDrop(file_drop) => match file_drop {
3088 FileDropEvent::Entered { position, paths } => {
3089 self.mouse_position = position;
3090 if cx.active_drag.is_none() {
3091 cx.active_drag = Some(AnyDrag {
3092 value: Arc::new(paths.clone()),
3093 view: cx.new(|_| paths).into(),
3094 cursor_offset: position,
3095 });
3096 }
3097 PlatformInput::MouseMove(MouseMoveEvent {
3098 position,
3099 pressed_button: Some(MouseButton::Left),
3100 modifiers: Modifiers::default(),
3101 })
3102 }
3103 FileDropEvent::Pending { position } => {
3104 self.mouse_position = position;
3105 PlatformInput::MouseMove(MouseMoveEvent {
3106 position,
3107 pressed_button: Some(MouseButton::Left),
3108 modifiers: Modifiers::default(),
3109 })
3110 }
3111 FileDropEvent::Submit { position } => {
3112 cx.activate(true);
3113 self.mouse_position = position;
3114 PlatformInput::MouseUp(MouseUpEvent {
3115 button: MouseButton::Left,
3116 position,
3117 modifiers: Modifiers::default(),
3118 click_count: 1,
3119 })
3120 }
3121 FileDropEvent::Exited => {
3122 cx.active_drag.take();
3123 PlatformInput::FileDrop(FileDropEvent::Exited)
3124 }
3125 },
3126 PlatformInput::KeyDown(_) | PlatformInput::KeyUp(_) => event,
3127 };
3128
3129 if let Some(any_mouse_event) = event.mouse_event() {
3130 self.dispatch_mouse_event(any_mouse_event, cx);
3131 } else if let Some(any_key_event) = event.keyboard_event() {
3132 self.dispatch_key_event(any_key_event, cx);
3133 }
3134
3135 DispatchEventResult {
3136 propagate: cx.propagate_event,
3137 default_prevented: self.default_prevented,
3138 }
3139 }
3140
3141 fn dispatch_mouse_event(&mut self, event: &dyn Any, cx: &mut App) {
3142 let hit_test = self.rendered_frame.hit_test(self.mouse_position());
3143 if hit_test != self.mouse_hit_test {
3144 self.mouse_hit_test = hit_test;
3145 self.reset_cursor_style(cx);
3146 }
3147
3148 let mut mouse_listeners = mem::take(&mut self.rendered_frame.mouse_listeners);
3149
3150 // Capture phase, events bubble from back to front. Handlers for this phase are used for
3151 // special purposes, such as detecting events outside of a given Bounds.
3152 for listener in &mut mouse_listeners {
3153 let listener = listener.as_mut().unwrap();
3154 listener(event, DispatchPhase::Capture, self, cx);
3155 if !cx.propagate_event {
3156 break;
3157 }
3158 }
3159
3160 // Bubble phase, where most normal handlers do their work.
3161 if cx.propagate_event {
3162 for listener in mouse_listeners.iter_mut().rev() {
3163 let listener = listener.as_mut().unwrap();
3164 listener(event, DispatchPhase::Bubble, self, cx);
3165 if !cx.propagate_event {
3166 break;
3167 }
3168 }
3169 }
3170
3171 self.rendered_frame.mouse_listeners = mouse_listeners;
3172
3173 if cx.has_active_drag() {
3174 if event.is::<MouseMoveEvent>() {
3175 // If this was a mouse move event, redraw the window so that the
3176 // active drag can follow the mouse cursor.
3177 self.refresh();
3178 } else if event.is::<MouseUpEvent>() {
3179 // If this was a mouse up event, cancel the active drag and redraw
3180 // the window.
3181 cx.active_drag = None;
3182 self.refresh();
3183 }
3184 }
3185 }
3186
3187 fn dispatch_key_event(&mut self, event: &dyn Any, cx: &mut App) {
3188 if self.invalidator.is_dirty() {
3189 self.draw(cx);
3190 }
3191
3192 let node_id = self
3193 .focus
3194 .and_then(|focus_id| {
3195 self.rendered_frame
3196 .dispatch_tree
3197 .focusable_node_id(focus_id)
3198 })
3199 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3200
3201 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3202
3203 let mut keystroke: Option<Keystroke> = None;
3204
3205 if let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() {
3206 if event.modifiers.number_of_modifiers() == 0
3207 && self.pending_modifier.modifiers.number_of_modifiers() == 1
3208 && !self.pending_modifier.saw_keystroke
3209 {
3210 let key = match self.pending_modifier.modifiers {
3211 modifiers if modifiers.shift => Some("shift"),
3212 modifiers if modifiers.control => Some("control"),
3213 modifiers if modifiers.alt => Some("alt"),
3214 modifiers if modifiers.platform => Some("platform"),
3215 modifiers if modifiers.function => Some("function"),
3216 _ => None,
3217 };
3218 if let Some(key) = key {
3219 keystroke = Some(Keystroke {
3220 key: key.to_string(),
3221 key_char: None,
3222 modifiers: Modifiers::default(),
3223 });
3224 }
3225 }
3226
3227 if self.pending_modifier.modifiers.number_of_modifiers() == 0
3228 && event.modifiers.number_of_modifiers() == 1
3229 {
3230 self.pending_modifier.saw_keystroke = false
3231 }
3232 self.pending_modifier.modifiers = event.modifiers
3233 } else if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
3234 self.pending_modifier.saw_keystroke = true;
3235 keystroke = Some(key_down_event.keystroke.clone());
3236 }
3237
3238 let Some(keystroke) = keystroke else {
3239 self.finish_dispatch_key_event(event, dispatch_path, cx);
3240 return;
3241 };
3242
3243 let mut currently_pending = self.pending_input.take().unwrap_or_default();
3244 if currently_pending.focus.is_some() && currently_pending.focus != self.focus {
3245 currently_pending = PendingInput::default();
3246 }
3247
3248 let match_result = self.rendered_frame.dispatch_tree.dispatch_key(
3249 currently_pending.keystrokes,
3250 keystroke,
3251 &dispatch_path,
3252 );
3253
3254 if !match_result.to_replay.is_empty() {
3255 self.replay_pending_input(match_result.to_replay, cx)
3256 }
3257
3258 if !match_result.pending.is_empty() {
3259 currently_pending.keystrokes = match_result.pending;
3260 currently_pending.focus = self.focus;
3261 currently_pending.timer = Some(self.spawn(cx, async move |cx| {
3262 cx.background_executor.timer(Duration::from_secs(1)).await;
3263 cx.update(move |window, cx| {
3264 let Some(currently_pending) = window
3265 .pending_input
3266 .take()
3267 .filter(|pending| pending.focus == window.focus)
3268 else {
3269 return;
3270 };
3271
3272 let dispatch_path = window.rendered_frame.dispatch_tree.dispatch_path(node_id);
3273
3274 let to_replay = window
3275 .rendered_frame
3276 .dispatch_tree
3277 .flush_dispatch(currently_pending.keystrokes, &dispatch_path);
3278
3279 window.replay_pending_input(to_replay, cx)
3280 })
3281 .log_err();
3282 }));
3283 self.pending_input = Some(currently_pending);
3284 self.pending_input_changed(cx);
3285 cx.propagate_event = false;
3286 return;
3287 }
3288
3289 cx.propagate_event = true;
3290 for binding in match_result.bindings {
3291 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3292 if !cx.propagate_event {
3293 self.dispatch_keystroke_observers(event, Some(binding.action), cx);
3294 self.pending_input_changed(cx);
3295 return;
3296 }
3297 }
3298
3299 self.finish_dispatch_key_event(event, dispatch_path, cx);
3300 self.pending_input_changed(cx);
3301 }
3302
3303 fn finish_dispatch_key_event(
3304 &mut self,
3305 event: &dyn Any,
3306 dispatch_path: SmallVec<[DispatchNodeId; 32]>,
3307 cx: &mut App,
3308 ) {
3309 self.dispatch_key_down_up_event(event, &dispatch_path, cx);
3310 if !cx.propagate_event {
3311 return;
3312 }
3313
3314 self.dispatch_modifiers_changed_event(event, &dispatch_path, cx);
3315 if !cx.propagate_event {
3316 return;
3317 }
3318
3319 self.dispatch_keystroke_observers(event, None, cx);
3320 }
3321
3322 fn pending_input_changed(&mut self, cx: &mut App) {
3323 self.pending_input_observers
3324 .clone()
3325 .retain(&(), |callback| callback(self, cx));
3326 }
3327
3328 fn dispatch_key_down_up_event(
3329 &mut self,
3330 event: &dyn Any,
3331 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3332 cx: &mut App,
3333 ) {
3334 // Capture phase
3335 for node_id in dispatch_path {
3336 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3337
3338 for key_listener in node.key_listeners.clone() {
3339 key_listener(event, DispatchPhase::Capture, self, cx);
3340 if !cx.propagate_event {
3341 return;
3342 }
3343 }
3344 }
3345
3346 // Bubble phase
3347 for node_id in dispatch_path.iter().rev() {
3348 // Handle low level key events
3349 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3350 for key_listener in node.key_listeners.clone() {
3351 key_listener(event, DispatchPhase::Bubble, self, cx);
3352 if !cx.propagate_event {
3353 return;
3354 }
3355 }
3356 }
3357 }
3358
3359 fn dispatch_modifiers_changed_event(
3360 &mut self,
3361 event: &dyn Any,
3362 dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
3363 cx: &mut App,
3364 ) {
3365 let Some(event) = event.downcast_ref::<ModifiersChangedEvent>() else {
3366 return;
3367 };
3368 for node_id in dispatch_path.iter().rev() {
3369 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3370 for listener in node.modifiers_changed_listeners.clone() {
3371 listener(event, self, cx);
3372 if !cx.propagate_event {
3373 return;
3374 }
3375 }
3376 }
3377 }
3378
3379 /// Determine whether a potential multi-stroke key binding is in progress on this window.
3380 pub fn has_pending_keystrokes(&self) -> bool {
3381 self.pending_input.is_some()
3382 }
3383
3384 pub(crate) fn clear_pending_keystrokes(&mut self) {
3385 self.pending_input.take();
3386 }
3387
3388 /// Returns the currently pending input keystrokes that might result in a multi-stroke key binding.
3389 pub fn pending_input_keystrokes(&self) -> Option<&[Keystroke]> {
3390 self.pending_input
3391 .as_ref()
3392 .map(|pending_input| pending_input.keystrokes.as_slice())
3393 }
3394
3395 fn replay_pending_input(&mut self, replays: SmallVec<[Replay; 1]>, cx: &mut App) {
3396 let node_id = self
3397 .focus
3398 .and_then(|focus_id| {
3399 self.rendered_frame
3400 .dispatch_tree
3401 .focusable_node_id(focus_id)
3402 })
3403 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3404
3405 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3406
3407 'replay: for replay in replays {
3408 let event = KeyDownEvent {
3409 keystroke: replay.keystroke.clone(),
3410 is_held: false,
3411 };
3412
3413 cx.propagate_event = true;
3414 for binding in replay.bindings {
3415 self.dispatch_action_on_node(node_id, binding.action.as_ref(), cx);
3416 if !cx.propagate_event {
3417 self.dispatch_keystroke_observers(&event, Some(binding.action), cx);
3418 continue 'replay;
3419 }
3420 }
3421
3422 self.dispatch_key_down_up_event(&event, &dispatch_path, cx);
3423 if !cx.propagate_event {
3424 continue 'replay;
3425 }
3426 if let Some(input) = replay.keystroke.key_char.as_ref().cloned() {
3427 if let Some(mut input_handler) = self.platform_window.take_input_handler() {
3428 input_handler.dispatch_input(&input, self, cx);
3429 self.platform_window.set_input_handler(input_handler)
3430 }
3431 }
3432 }
3433 }
3434
3435 fn dispatch_action_on_node(
3436 &mut self,
3437 node_id: DispatchNodeId,
3438 action: &dyn Action,
3439 cx: &mut App,
3440 ) {
3441 let dispatch_path = self.rendered_frame.dispatch_tree.dispatch_path(node_id);
3442
3443 // Capture phase for global actions.
3444 cx.propagate_event = true;
3445 if let Some(mut global_listeners) = cx
3446 .global_action_listeners
3447 .remove(&action.as_any().type_id())
3448 {
3449 for listener in &global_listeners {
3450 listener(action.as_any(), DispatchPhase::Capture, cx);
3451 if !cx.propagate_event {
3452 break;
3453 }
3454 }
3455
3456 global_listeners.extend(
3457 cx.global_action_listeners
3458 .remove(&action.as_any().type_id())
3459 .unwrap_or_default(),
3460 );
3461
3462 cx.global_action_listeners
3463 .insert(action.as_any().type_id(), global_listeners);
3464 }
3465
3466 if !cx.propagate_event {
3467 return;
3468 }
3469
3470 // Capture phase for window actions.
3471 for node_id in &dispatch_path {
3472 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3473 for DispatchActionListener {
3474 action_type,
3475 listener,
3476 } in node.action_listeners.clone()
3477 {
3478 let any_action = action.as_any();
3479 if action_type == any_action.type_id() {
3480 listener(any_action, DispatchPhase::Capture, self, cx);
3481
3482 if !cx.propagate_event {
3483 return;
3484 }
3485 }
3486 }
3487 }
3488
3489 // Bubble phase for window actions.
3490 for node_id in dispatch_path.iter().rev() {
3491 let node = self.rendered_frame.dispatch_tree.node(*node_id);
3492 for DispatchActionListener {
3493 action_type,
3494 listener,
3495 } in node.action_listeners.clone()
3496 {
3497 let any_action = action.as_any();
3498 if action_type == any_action.type_id() {
3499 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3500 listener(any_action, DispatchPhase::Bubble, self, cx);
3501
3502 if !cx.propagate_event {
3503 return;
3504 }
3505 }
3506 }
3507 }
3508
3509 // Bubble phase for global actions.
3510 if let Some(mut global_listeners) = cx
3511 .global_action_listeners
3512 .remove(&action.as_any().type_id())
3513 {
3514 for listener in global_listeners.iter().rev() {
3515 cx.propagate_event = false; // Actions stop propagation by default during the bubble phase
3516
3517 listener(action.as_any(), DispatchPhase::Bubble, cx);
3518 if !cx.propagate_event {
3519 break;
3520 }
3521 }
3522
3523 global_listeners.extend(
3524 cx.global_action_listeners
3525 .remove(&action.as_any().type_id())
3526 .unwrap_or_default(),
3527 );
3528
3529 cx.global_action_listeners
3530 .insert(action.as_any().type_id(), global_listeners);
3531 }
3532 }
3533
3534 /// Register the given handler to be invoked whenever the global of the given type
3535 /// is updated.
3536 pub fn observe_global<G: Global>(
3537 &mut self,
3538 cx: &mut App,
3539 f: impl Fn(&mut Window, &mut App) + 'static,
3540 ) -> Subscription {
3541 let window_handle = self.handle;
3542 let (subscription, activate) = cx.global_observers.insert(
3543 TypeId::of::<G>(),
3544 Box::new(move |cx| {
3545 window_handle
3546 .update(cx, |_, window, cx| f(window, cx))
3547 .is_ok()
3548 }),
3549 );
3550 cx.defer(move |_| activate());
3551 subscription
3552 }
3553
3554 /// Focus the current window and bring it to the foreground at the platform level.
3555 pub fn activate_window(&self) {
3556 self.platform_window.activate();
3557 }
3558
3559 /// Minimize the current window at the platform level.
3560 pub fn minimize_window(&self) {
3561 self.platform_window.minimize();
3562 }
3563
3564 /// Toggle full screen status on the current window at the platform level.
3565 pub fn toggle_fullscreen(&self) {
3566 self.platform_window.toggle_fullscreen();
3567 }
3568
3569 /// Updates the IME panel position suggestions for languages like japanese, chinese.
3570 pub fn invalidate_character_coordinates(&self) {
3571 self.on_next_frame(|window, cx| {
3572 if let Some(mut input_handler) = window.platform_window.take_input_handler() {
3573 if let Some(bounds) = input_handler.selected_bounds(window, cx) {
3574 window
3575 .platform_window
3576 .update_ime_position(bounds.scale(window.scale_factor()));
3577 }
3578 window.platform_window.set_input_handler(input_handler);
3579 }
3580 });
3581 }
3582
3583 /// Present a platform dialog.
3584 /// The provided message will be presented, along with buttons for each answer.
3585 /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
3586 pub fn prompt(
3587 &mut self,
3588 level: PromptLevel,
3589 message: &str,
3590 detail: Option<&str>,
3591 answers: &[&str],
3592 cx: &mut App,
3593 ) -> oneshot::Receiver<usize> {
3594 let prompt_builder = cx.prompt_builder.take();
3595 let Some(prompt_builder) = prompt_builder else {
3596 unreachable!("Re-entrant window prompting is not supported by GPUI");
3597 };
3598
3599 let receiver = match &prompt_builder {
3600 PromptBuilder::Default => self
3601 .platform_window
3602 .prompt(level, message, detail, answers)
3603 .unwrap_or_else(|| {
3604 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3605 }),
3606 PromptBuilder::Custom(_) => {
3607 self.build_custom_prompt(&prompt_builder, level, message, detail, answers, cx)
3608 }
3609 };
3610
3611 cx.prompt_builder = Some(prompt_builder);
3612
3613 receiver
3614 }
3615
3616 fn build_custom_prompt(
3617 &mut self,
3618 prompt_builder: &PromptBuilder,
3619 level: PromptLevel,
3620 message: &str,
3621 detail: Option<&str>,
3622 answers: &[&str],
3623 cx: &mut App,
3624 ) -> oneshot::Receiver<usize> {
3625 let (sender, receiver) = oneshot::channel();
3626 let handle = PromptHandle::new(sender);
3627 let handle = (prompt_builder)(level, message, detail, answers, handle, self, cx);
3628 self.prompt = Some(handle);
3629 receiver
3630 }
3631
3632 /// Returns the current context stack.
3633 pub fn context_stack(&self) -> Vec<KeyContext> {
3634 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3635 let node_id = self
3636 .focus
3637 .and_then(|focus_id| dispatch_tree.focusable_node_id(focus_id))
3638 .unwrap_or_else(|| dispatch_tree.root_node_id());
3639
3640 dispatch_tree
3641 .dispatch_path(node_id)
3642 .iter()
3643 .filter_map(move |&node_id| dispatch_tree.node(node_id).context.clone())
3644 .collect()
3645 }
3646
3647 /// Returns all available actions for the focused element.
3648 pub fn available_actions(&self, cx: &App) -> Vec<Box<dyn Action>> {
3649 let node_id = self
3650 .focus
3651 .and_then(|focus_id| {
3652 self.rendered_frame
3653 .dispatch_tree
3654 .focusable_node_id(focus_id)
3655 })
3656 .unwrap_or_else(|| self.rendered_frame.dispatch_tree.root_node_id());
3657
3658 let mut actions = self.rendered_frame.dispatch_tree.available_actions(node_id);
3659 for action_type in cx.global_action_listeners.keys() {
3660 if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id()) {
3661 let action = cx.actions.build_action_type(action_type).ok();
3662 if let Some(action) = action {
3663 actions.insert(ix, action);
3664 }
3665 }
3666 }
3667 actions
3668 }
3669
3670 /// Returns key bindings that invoke an action on the currently focused element. Bindings are
3671 /// returned in the order they were added. For display, the last binding should take precedence.
3672 pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
3673 self.rendered_frame
3674 .dispatch_tree
3675 .bindings_for_action(action, &self.rendered_frame.dispatch_tree.context_stack)
3676 }
3677
3678 /// Returns any bindings that would invoke an action on the given focus handle if it were
3679 /// focused. Bindings are returned in the order they were added. For display, the last binding
3680 /// should take precedence.
3681 pub fn bindings_for_action_in(
3682 &self,
3683 action: &dyn Action,
3684 focus_handle: &FocusHandle,
3685 ) -> Vec<KeyBinding> {
3686 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3687
3688 let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
3689 return vec![];
3690 };
3691 let context_stack: Vec<_> = dispatch_tree
3692 .dispatch_path(node_id)
3693 .into_iter()
3694 .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
3695 .collect();
3696 dispatch_tree.bindings_for_action(action, &context_stack)
3697 }
3698
3699 /// Returns the key bindings for the given action in the given context.
3700 pub fn bindings_for_action_in_context(
3701 &self,
3702 action: &dyn Action,
3703 context: KeyContext,
3704 ) -> Vec<KeyBinding> {
3705 let dispatch_tree = &self.rendered_frame.dispatch_tree;
3706 dispatch_tree.bindings_for_action(action, &[context])
3707 }
3708
3709 /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
3710 pub fn listener_for<V: Render, E>(
3711 &self,
3712 view: &Entity<V>,
3713 f: impl Fn(&mut V, &E, &mut Window, &mut Context<V>) + 'static,
3714 ) -> impl Fn(&E, &mut Window, &mut App) + 'static {
3715 let view = view.downgrade();
3716 move |e: &E, window: &mut Window, cx: &mut App| {
3717 view.update(cx, |view, cx| f(view, e, window, cx)).ok();
3718 }
3719 }
3720
3721 /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
3722 pub fn handler_for<V: Render, Callback: Fn(&mut V, &mut Window, &mut Context<V>) + 'static>(
3723 &self,
3724 view: &Entity<V>,
3725 f: Callback,
3726 ) -> impl Fn(&mut Window, &mut App) + use<V, Callback> {
3727 let view = view.downgrade();
3728 move |window: &mut Window, cx: &mut App| {
3729 view.update(cx, |view, cx| f(view, window, cx)).ok();
3730 }
3731 }
3732
3733 /// Register a callback that can interrupt the closing of the current window based the returned boolean.
3734 /// If the callback returns false, the window won't be closed.
3735 pub fn on_window_should_close(
3736 &self,
3737 cx: &App,
3738 f: impl Fn(&mut Window, &mut App) -> bool + 'static,
3739 ) {
3740 let mut cx = self.to_async(cx);
3741 self.platform_window.on_should_close(Box::new(move || {
3742 cx.update(|window, cx| f(window, cx)).unwrap_or(true)
3743 }))
3744 }
3745
3746 /// Register an action listener on the window for the next frame. The type of action
3747 /// is determined by the first parameter of the given listener. When the next frame is rendered
3748 /// the listener will be cleared.
3749 ///
3750 /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
3751 /// a specific need to register a global listener.
3752 pub fn on_action(
3753 &mut self,
3754 action_type: TypeId,
3755 listener: impl Fn(&dyn Any, DispatchPhase, &mut Window, &mut App) + 'static,
3756 ) {
3757 self.next_frame
3758 .dispatch_tree
3759 .on_action(action_type, Rc::new(listener));
3760 }
3761
3762 /// Read information about the GPU backing this window.
3763 /// Currently returns None on Mac and Windows.
3764 pub fn gpu_specs(&self) -> Option<GpuSpecs> {
3765 self.platform_window.gpu_specs()
3766 }
3767}
3768
3769// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
3770slotmap::new_key_type! {
3771 /// A unique identifier for a window.
3772 pub struct WindowId;
3773}
3774
3775impl WindowId {
3776 /// Converts this window ID to a `u64`.
3777 pub fn as_u64(&self) -> u64 {
3778 self.0.as_ffi()
3779 }
3780}
3781
3782impl From<u64> for WindowId {
3783 fn from(value: u64) -> Self {
3784 WindowId(slotmap::KeyData::from_ffi(value))
3785 }
3786}
3787
3788/// A handle to a window with a specific root view type.
3789/// Note that this does not keep the window alive on its own.
3790#[derive(Deref, DerefMut)]
3791pub struct WindowHandle<V> {
3792 #[deref]
3793 #[deref_mut]
3794 pub(crate) any_handle: AnyWindowHandle,
3795 state_type: PhantomData<V>,
3796}
3797
3798impl<V: 'static + Render> WindowHandle<V> {
3799 /// Creates a new handle from a window ID.
3800 /// This does not check if the root type of the window is `V`.
3801 pub fn new(id: WindowId) -> Self {
3802 WindowHandle {
3803 any_handle: AnyWindowHandle {
3804 id,
3805 state_type: TypeId::of::<V>(),
3806 },
3807 state_type: PhantomData,
3808 }
3809 }
3810
3811 /// Get the root view out of this window.
3812 ///
3813 /// This will fail if the window is closed or if the root view's type does not match `V`.
3814 #[cfg(any(test, feature = "test-support"))]
3815 pub fn root<C>(&self, cx: &mut C) -> Result<Entity<V>>
3816 where
3817 C: AppContext,
3818 {
3819 crate::Flatten::flatten(cx.update_window(self.any_handle, |root_view, _, _| {
3820 root_view
3821 .downcast::<V>()
3822 .map_err(|_| anyhow!("the type of the window's root view has changed"))
3823 }))
3824 }
3825
3826 /// Updates the root view of this window.
3827 ///
3828 /// This will fail if the window has been closed or if the root view's type does not match
3829 pub fn update<C, R>(
3830 &self,
3831 cx: &mut C,
3832 update: impl FnOnce(&mut V, &mut Window, &mut Context<V>) -> R,
3833 ) -> Result<R>
3834 where
3835 C: AppContext,
3836 {
3837 cx.update_window(self.any_handle, |root_view, window, cx| {
3838 let view = root_view
3839 .downcast::<V>()
3840 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3841
3842 Ok(view.update(cx, |view, cx| update(view, window, cx)))
3843 })?
3844 }
3845
3846 /// Read the root view out of this window.
3847 ///
3848 /// This will fail if the window is closed or if the root view's type does not match `V`.
3849 pub fn read<'a>(&self, cx: &'a App) -> Result<&'a V> {
3850 let x = cx
3851 .windows
3852 .get(self.id)
3853 .and_then(|window| {
3854 window
3855 .as_ref()
3856 .and_then(|window| window.root.clone())
3857 .map(|root_view| root_view.downcast::<V>())
3858 })
3859 .ok_or_else(|| anyhow!("window not found"))?
3860 .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3861
3862 Ok(x.read(cx))
3863 }
3864
3865 /// Read the root view out of this window, with a callback
3866 ///
3867 /// This will fail if the window is closed or if the root view's type does not match `V`.
3868 pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &App) -> R) -> Result<R>
3869 where
3870 C: AppContext,
3871 {
3872 cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3873 }
3874
3875 /// Read the root view pointer off of this window.
3876 ///
3877 /// This will fail if the window is closed or if the root view's type does not match `V`.
3878 pub fn entity<C>(&self, cx: &C) -> Result<Entity<V>>
3879 where
3880 C: AppContext,
3881 {
3882 cx.read_window(self, |root_view, _cx| root_view.clone())
3883 }
3884
3885 /// Check if this window is 'active'.
3886 ///
3887 /// Will return `None` if the window is closed or currently
3888 /// borrowed.
3889 pub fn is_active(&self, cx: &mut App) -> Option<bool> {
3890 cx.update_window(self.any_handle, |_, window, _| window.is_window_active())
3891 .ok()
3892 }
3893}
3894
3895impl<V> Copy for WindowHandle<V> {}
3896
3897impl<V> Clone for WindowHandle<V> {
3898 fn clone(&self) -> Self {
3899 *self
3900 }
3901}
3902
3903impl<V> PartialEq for WindowHandle<V> {
3904 fn eq(&self, other: &Self) -> bool {
3905 self.any_handle == other.any_handle
3906 }
3907}
3908
3909impl<V> Eq for WindowHandle<V> {}
3910
3911impl<V> Hash for WindowHandle<V> {
3912 fn hash<H: Hasher>(&self, state: &mut H) {
3913 self.any_handle.hash(state);
3914 }
3915}
3916
3917impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3918 fn from(val: WindowHandle<V>) -> Self {
3919 val.any_handle
3920 }
3921}
3922
3923unsafe impl<V> Send for WindowHandle<V> {}
3924unsafe impl<V> Sync for WindowHandle<V> {}
3925
3926/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3927#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3928pub struct AnyWindowHandle {
3929 pub(crate) id: WindowId,
3930 state_type: TypeId,
3931}
3932
3933impl AnyWindowHandle {
3934 /// Get the ID of this window.
3935 pub fn window_id(&self) -> WindowId {
3936 self.id
3937 }
3938
3939 /// Attempt to convert this handle to a window handle with a specific root view type.
3940 /// If the types do not match, this will return `None`.
3941 pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3942 if TypeId::of::<T>() == self.state_type {
3943 Some(WindowHandle {
3944 any_handle: *self,
3945 state_type: PhantomData,
3946 })
3947 } else {
3948 None
3949 }
3950 }
3951
3952 /// Updates the state of the root view of this window.
3953 ///
3954 /// This will fail if the window has been closed.
3955 pub fn update<C, R>(
3956 self,
3957 cx: &mut C,
3958 update: impl FnOnce(AnyView, &mut Window, &mut App) -> R,
3959 ) -> Result<R>
3960 where
3961 C: AppContext,
3962 {
3963 cx.update_window(self, update)
3964 }
3965
3966 /// Read the state of the root view of this window.
3967 ///
3968 /// This will fail if the window has been closed.
3969 pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(Entity<T>, &App) -> R) -> Result<R>
3970 where
3971 C: AppContext,
3972 T: 'static,
3973 {
3974 let view = self
3975 .downcast::<T>()
3976 .context("the type of the window's root view has changed")?;
3977
3978 cx.read_window(&view, read)
3979 }
3980}
3981
3982impl HasWindowHandle for Window {
3983 fn window_handle(&self) -> Result<raw_window_handle::WindowHandle<'_>, HandleError> {
3984 self.platform_window.window_handle()
3985 }
3986}
3987
3988/// An identifier for an [`Element`](crate::Element).
3989///
3990/// Can be constructed with a string, a number, or both, as well
3991/// as other internal representations.
3992#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3993pub enum ElementId {
3994 /// The ID of a View element
3995 View(EntityId),
3996 /// An integer ID.
3997 Integer(usize),
3998 /// A string based ID.
3999 Name(SharedString),
4000 /// A UUID.
4001 Uuid(Uuid),
4002 /// An ID that's equated with a focus handle.
4003 FocusHandle(FocusId),
4004 /// A combination of a name and an integer.
4005 NamedInteger(SharedString, usize),
4006 /// A path
4007 Path(Arc<std::path::Path>),
4008}
4009
4010impl Display for ElementId {
4011 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
4012 match self {
4013 ElementId::View(entity_id) => write!(f, "view-{}", entity_id)?,
4014 ElementId::Integer(ix) => write!(f, "{}", ix)?,
4015 ElementId::Name(name) => write!(f, "{}", name)?,
4016 ElementId::FocusHandle(_) => write!(f, "FocusHandle")?,
4017 ElementId::NamedInteger(s, i) => write!(f, "{}-{}", s, i)?,
4018 ElementId::Uuid(uuid) => write!(f, "{}", uuid)?,
4019 ElementId::Path(path) => write!(f, "{}", path.display())?,
4020 }
4021
4022 Ok(())
4023 }
4024}
4025
4026impl TryInto<SharedString> for ElementId {
4027 type Error = anyhow::Error;
4028
4029 fn try_into(self) -> anyhow::Result<SharedString> {
4030 if let ElementId::Name(name) = self {
4031 Ok(name)
4032 } else {
4033 Err(anyhow!("element id is not string"))
4034 }
4035 }
4036}
4037
4038impl From<usize> for ElementId {
4039 fn from(id: usize) -> Self {
4040 ElementId::Integer(id)
4041 }
4042}
4043
4044impl From<i32> for ElementId {
4045 fn from(id: i32) -> Self {
4046 Self::Integer(id as usize)
4047 }
4048}
4049
4050impl From<SharedString> for ElementId {
4051 fn from(name: SharedString) -> Self {
4052 ElementId::Name(name)
4053 }
4054}
4055
4056impl From<Arc<std::path::Path>> for ElementId {
4057 fn from(path: Arc<std::path::Path>) -> Self {
4058 ElementId::Path(path)
4059 }
4060}
4061
4062impl From<&'static str> for ElementId {
4063 fn from(name: &'static str) -> Self {
4064 ElementId::Name(name.into())
4065 }
4066}
4067
4068impl<'a> From<&'a FocusHandle> for ElementId {
4069 fn from(handle: &'a FocusHandle) -> Self {
4070 ElementId::FocusHandle(handle.id)
4071 }
4072}
4073
4074impl From<(&'static str, EntityId)> for ElementId {
4075 fn from((name, id): (&'static str, EntityId)) -> Self {
4076 ElementId::NamedInteger(name.into(), id.as_u64() as usize)
4077 }
4078}
4079
4080impl From<(&'static str, usize)> for ElementId {
4081 fn from((name, id): (&'static str, usize)) -> Self {
4082 ElementId::NamedInteger(name.into(), id)
4083 }
4084}
4085
4086impl From<(SharedString, usize)> for ElementId {
4087 fn from((name, id): (SharedString, usize)) -> Self {
4088 ElementId::NamedInteger(name, id)
4089 }
4090}
4091
4092impl From<(&'static str, u64)> for ElementId {
4093 fn from((name, id): (&'static str, u64)) -> Self {
4094 ElementId::NamedInteger(name.into(), id as usize)
4095 }
4096}
4097
4098impl From<Uuid> for ElementId {
4099 fn from(value: Uuid) -> Self {
4100 Self::Uuid(value)
4101 }
4102}
4103
4104impl From<(&'static str, u32)> for ElementId {
4105 fn from((name, id): (&'static str, u32)) -> Self {
4106 ElementId::NamedInteger(name.into(), id as usize)
4107 }
4108}
4109
4110/// A rectangle to be rendered in the window at the given position and size.
4111/// Passed as an argument [`Window::paint_quad`].
4112#[derive(Clone)]
4113pub struct PaintQuad {
4114 /// The bounds of the quad within the window.
4115 pub bounds: Bounds<Pixels>,
4116 /// The radii of the quad's corners.
4117 pub corner_radii: Corners<Pixels>,
4118 /// The background color of the quad.
4119 pub background: Background,
4120 /// The widths of the quad's borders.
4121 pub border_widths: Edges<Pixels>,
4122 /// The color of the quad's borders.
4123 pub border_color: Hsla,
4124 /// The style of the quad's borders.
4125 pub border_style: BorderStyle,
4126}
4127
4128impl PaintQuad {
4129 /// Sets the corner radii of the quad.
4130 pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
4131 PaintQuad {
4132 corner_radii: corner_radii.into(),
4133 ..self
4134 }
4135 }
4136
4137 /// Sets the border widths of the quad.
4138 pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
4139 PaintQuad {
4140 border_widths: border_widths.into(),
4141 ..self
4142 }
4143 }
4144
4145 /// Sets the border color of the quad.
4146 pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
4147 PaintQuad {
4148 border_color: border_color.into(),
4149 ..self
4150 }
4151 }
4152
4153 /// Sets the background color of the quad.
4154 pub fn background(self, background: impl Into<Background>) -> Self {
4155 PaintQuad {
4156 background: background.into(),
4157 ..self
4158 }
4159 }
4160}
4161
4162/// Creates a quad with the given parameters.
4163pub fn quad(
4164 bounds: Bounds<Pixels>,
4165 corner_radii: impl Into<Corners<Pixels>>,
4166 background: impl Into<Background>,
4167 border_widths: impl Into<Edges<Pixels>>,
4168 border_color: impl Into<Hsla>,
4169 border_style: BorderStyle,
4170) -> PaintQuad {
4171 PaintQuad {
4172 bounds,
4173 corner_radii: corner_radii.into(),
4174 background: background.into(),
4175 border_widths: border_widths.into(),
4176 border_color: border_color.into(),
4177 border_style,
4178 }
4179}
4180
4181/// Creates a filled quad with the given bounds and background color.
4182pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Background>) -> PaintQuad {
4183 PaintQuad {
4184 bounds: bounds.into(),
4185 corner_radii: (0.).into(),
4186 background: background.into(),
4187 border_widths: (0.).into(),
4188 border_color: transparent_black(),
4189 border_style: BorderStyle::default(),
4190 }
4191}
4192
4193/// Creates a rectangle outline with the given bounds, border color, and a 1px border width
4194pub fn outline(
4195 bounds: impl Into<Bounds<Pixels>>,
4196 border_color: impl Into<Hsla>,
4197 border_style: BorderStyle,
4198) -> PaintQuad {
4199 PaintQuad {
4200 bounds: bounds.into(),
4201 corner_radii: (0.).into(),
4202 background: transparent_black().into(),
4203 border_widths: (1.).into(),
4204 border_color: border_color.into(),
4205 border_style,
4206 }
4207}