window.rs

   1use crate::{
   2    px, size, Action, AnyBox, AnyDrag, AnyView, AppContext, AsyncWindowContext, AvailableSpace,
   3    Bounds, BoxShadow, Context, Corners, DevicePixels, DispatchContext, DisplayId, Edges, Effect,
   4    EntityId, EventEmitter, ExternalPaths, FileDropEvent, FocusEvent, FontId, GlobalElementId,
   5    GlyphId, Hsla, ImageData, InputEvent, IsZero, KeyListener, KeyMatch, KeyMatcher, Keystroke,
   6    LayoutId, MainThread, MainThreadOnly, Model, ModelContext, Modifiers, MonochromeSprite,
   7    MouseButton, MouseDownEvent, MouseMoveEvent, MouseUpEvent, Path, Pixels, PlatformAtlas,
   8    PlatformWindow, Point, PolychromeSprite, Quad, Reference, RenderGlyphParams, RenderImageParams,
   9    RenderSvgParams, ScaledPixels, SceneBuilder, Shadow, SharedString, Size, Style, Subscription,
  10    TaffyLayoutEngine, Task, Underline, UnderlineStyle, View, VisualContext, WeakModel, WeakView,
  11    WindowOptions, SUBPIXEL_VARIANTS,
  12};
  13use anyhow::Result;
  14use collections::HashMap;
  15use derive_more::{Deref, DerefMut};
  16use parking_lot::RwLock;
  17use slotmap::SlotMap;
  18use smallvec::SmallVec;
  19use std::{
  20    any::{Any, TypeId},
  21    borrow::{Borrow, BorrowMut, Cow},
  22    fmt::Debug,
  23    future::Future,
  24    marker::PhantomData,
  25    mem,
  26    sync::{
  27        atomic::{AtomicUsize, Ordering::SeqCst},
  28        Arc,
  29    },
  30};
  31use util::ResultExt;
  32
  33/// A global stacking order, which is created by stacking successive z-index values.
  34/// Each z-index will always be interpreted in the context of its parent z-index.
  35#[derive(Deref, DerefMut, Ord, PartialOrd, Eq, PartialEq, Clone, Default)]
  36pub(crate) struct StackingOrder(pub(crate) SmallVec<[u32; 16]>);
  37
  38/// Represents the two different phases when dispatching events.
  39#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  40pub enum DispatchPhase {
  41    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  42    /// invoked front to back and keyboard event listeners are invoked from the focused element
  43    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  44    /// registering event listeners.
  45    #[default]
  46    Bubble,
  47    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  48    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  49    /// is used for special purposes such as clearing the "pressed" state for click events. If
  50    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  51    /// outside of the immediate region may rely on detecting non-local events during this phase.
  52    Capture,
  53}
  54
  55type AnyListener = Box<dyn Fn(&dyn Any, DispatchPhase, &mut WindowContext) + Send + 'static>;
  56type AnyKeyListener = Box<
  57    dyn Fn(
  58            &dyn Any,
  59            &[&DispatchContext],
  60            DispatchPhase,
  61            &mut WindowContext,
  62        ) -> Option<Box<dyn Action>>
  63        + Send
  64        + 'static,
  65>;
  66type AnyFocusListener = Box<dyn Fn(&FocusEvent, &mut WindowContext) + Send + 'static>;
  67
  68slotmap::new_key_type! { pub struct FocusId; }
  69
  70/// A handle which can be used to track and manipulate the focused element in a window.
  71pub struct FocusHandle {
  72    pub(crate) id: FocusId,
  73    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  74}
  75
  76impl FocusHandle {
  77    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
  78        let id = handles.write().insert(AtomicUsize::new(1));
  79        Self {
  80            id,
  81            handles: handles.clone(),
  82        }
  83    }
  84
  85    pub(crate) fn for_id(
  86        id: FocusId,
  87        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
  88    ) -> Option<Self> {
  89        let lock = handles.read();
  90        let ref_count = lock.get(id)?;
  91        if ref_count.load(SeqCst) == 0 {
  92            None
  93        } else {
  94            ref_count.fetch_add(1, SeqCst);
  95            Some(Self {
  96                id,
  97                handles: handles.clone(),
  98            })
  99        }
 100    }
 101
 102    /// Obtains whether the element associated with this handle is currently focused.
 103    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 104        cx.window.focus == Some(self.id)
 105    }
 106
 107    /// Obtains whether the element associated with this handle contains the focused
 108    /// element or is itself focused.
 109    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 110        cx.focused()
 111            .map_or(false, |focused| self.contains(&focused, cx))
 112    }
 113
 114    /// Obtains whether the element associated with this handle is contained within the
 115    /// focused element or is itself focused.
 116    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 117        let focused = cx.focused();
 118        focused.map_or(false, |focused| focused.contains(self, cx))
 119    }
 120
 121    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 122    pub(crate) fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 123        let mut ancestor = Some(other.id);
 124        while let Some(ancestor_id) = ancestor {
 125            if self.id == ancestor_id {
 126                return true;
 127            } else {
 128                ancestor = cx.window.focus_parents_by_child.get(&ancestor_id).copied();
 129            }
 130        }
 131        false
 132    }
 133}
 134
 135impl Clone for FocusHandle {
 136    fn clone(&self) -> Self {
 137        Self::for_id(self.id, &self.handles).unwrap()
 138    }
 139}
 140
 141impl PartialEq for FocusHandle {
 142    fn eq(&self, other: &Self) -> bool {
 143        self.id == other.id
 144    }
 145}
 146
 147impl Eq for FocusHandle {}
 148
 149impl Drop for FocusHandle {
 150    fn drop(&mut self) {
 151        self.handles
 152            .read()
 153            .get(self.id)
 154            .unwrap()
 155            .fetch_sub(1, SeqCst);
 156    }
 157}
 158
 159// Holds the state for a specific window.
 160pub struct Window {
 161    handle: AnyWindowHandle,
 162    platform_window: MainThreadOnly<Box<dyn PlatformWindow>>,
 163    display_id: DisplayId,
 164    sprite_atlas: Arc<dyn PlatformAtlas>,
 165    rem_size: Pixels,
 166    content_size: Size<Pixels>,
 167    pub(crate) layout_engine: TaffyLayoutEngine,
 168    pub(crate) root_view: Option<AnyView>,
 169    pub(crate) element_id_stack: GlobalElementId,
 170    prev_frame_element_states: HashMap<GlobalElementId, AnyBox>,
 171    element_states: HashMap<GlobalElementId, AnyBox>,
 172    prev_frame_key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 173    key_matchers: HashMap<GlobalElementId, KeyMatcher>,
 174    z_index_stack: StackingOrder,
 175    content_mask_stack: Vec<ContentMask<Pixels>>,
 176    element_offset_stack: Vec<Point<Pixels>>,
 177    mouse_listeners: HashMap<TypeId, Vec<(StackingOrder, AnyListener)>>,
 178    key_dispatch_stack: Vec<KeyDispatchStackFrame>,
 179    freeze_key_dispatch_stack: bool,
 180    focus_stack: Vec<FocusId>,
 181    focus_parents_by_child: HashMap<FocusId, FocusId>,
 182    pub(crate) focus_listeners: Vec<AnyFocusListener>,
 183    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 184    default_prevented: bool,
 185    mouse_position: Point<Pixels>,
 186    scale_factor: f32,
 187    pub(crate) scene_builder: SceneBuilder,
 188    pub(crate) dirty: bool,
 189    pub(crate) last_blur: Option<Option<FocusId>>,
 190    pub(crate) focus: Option<FocusId>,
 191}
 192
 193impl Window {
 194    pub(crate) fn new(
 195        handle: AnyWindowHandle,
 196        options: WindowOptions,
 197        cx: &mut MainThread<AppContext>,
 198    ) -> Self {
 199        let platform_window = cx.platform().open_window(handle, options);
 200        let display_id = platform_window.display().id();
 201        let sprite_atlas = platform_window.sprite_atlas();
 202        let mouse_position = platform_window.mouse_position();
 203        let content_size = platform_window.content_size();
 204        let scale_factor = platform_window.scale_factor();
 205        platform_window.on_resize(Box::new({
 206            let cx = cx.to_async();
 207            move |content_size, scale_factor| {
 208                cx.update_window(handle, |cx| {
 209                    cx.window.scale_factor = scale_factor;
 210                    cx.window.scene_builder = SceneBuilder::new();
 211                    cx.window.content_size = content_size;
 212                    cx.window.display_id = cx
 213                        .window
 214                        .platform_window
 215                        .borrow_on_main_thread()
 216                        .display()
 217                        .id();
 218                    cx.window.dirty = true;
 219                })
 220                .log_err();
 221            }
 222        }));
 223
 224        platform_window.on_input({
 225            let cx = cx.to_async();
 226            Box::new(move |event| {
 227                cx.update_window(handle, |cx| cx.dispatch_event(event))
 228                    .log_err()
 229                    .unwrap_or(true)
 230            })
 231        });
 232
 233        let platform_window = MainThreadOnly::new(Arc::new(platform_window), cx.executor.clone());
 234
 235        Window {
 236            handle,
 237            platform_window,
 238            display_id,
 239            sprite_atlas,
 240            rem_size: px(16.),
 241            content_size,
 242            layout_engine: TaffyLayoutEngine::new(),
 243            root_view: None,
 244            element_id_stack: GlobalElementId::default(),
 245            prev_frame_element_states: HashMap::default(),
 246            element_states: HashMap::default(),
 247            prev_frame_key_matchers: HashMap::default(),
 248            key_matchers: HashMap::default(),
 249            z_index_stack: StackingOrder(SmallVec::new()),
 250            content_mask_stack: Vec::new(),
 251            element_offset_stack: Vec::new(),
 252            mouse_listeners: HashMap::default(),
 253            key_dispatch_stack: Vec::new(),
 254            freeze_key_dispatch_stack: false,
 255            focus_stack: Vec::new(),
 256            focus_parents_by_child: HashMap::default(),
 257            focus_listeners: Vec::new(),
 258            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 259            default_prevented: true,
 260            mouse_position,
 261            scale_factor,
 262            scene_builder: SceneBuilder::new(),
 263            dirty: true,
 264            last_blur: None,
 265            focus: None,
 266        }
 267    }
 268}
 269
 270/// When constructing the element tree, we maintain a stack of key dispatch frames until we
 271/// find the focused element. We interleave key listeners with dispatch contexts so we can use the
 272/// contexts when matching key events against the keymap.
 273enum KeyDispatchStackFrame {
 274    Listener {
 275        event_type: TypeId,
 276        listener: AnyKeyListener,
 277    },
 278    Context(DispatchContext),
 279}
 280
 281/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 282/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 283/// to leave room to support more complex shapes in the future.
 284#[derive(Clone, Debug, Default, PartialEq, Eq)]
 285#[repr(C)]
 286pub struct ContentMask<P: Clone + Default + Debug> {
 287    pub bounds: Bounds<P>,
 288}
 289
 290impl ContentMask<Pixels> {
 291    /// Scale the content mask's pixel units by the given scaling factor.
 292    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 293        ContentMask {
 294            bounds: self.bounds.scale(factor),
 295        }
 296    }
 297
 298    /// Intersect the content mask with the given content mask.
 299    pub fn intersect(&self, other: &Self) -> Self {
 300        let bounds = self.bounds.intersect(&other.bounds);
 301        ContentMask { bounds }
 302    }
 303}
 304
 305/// Provides access to application state in the context of a single window. Derefs
 306/// to an `AppContext`, so you can also pass a `WindowContext` to any method that takes
 307/// an `AppContext` and call any `AppContext` methods.
 308pub struct WindowContext<'a, 'w> {
 309    pub(crate) app: Reference<'a, AppContext>,
 310    pub(crate) window: Reference<'w, Window>,
 311}
 312
 313impl<'a, 'w> WindowContext<'a, 'w> {
 314    pub(crate) fn immutable(app: &'a AppContext, window: &'w Window) -> Self {
 315        Self {
 316            app: Reference::Immutable(app),
 317            window: Reference::Immutable(window),
 318        }
 319    }
 320
 321    pub(crate) fn mutable(app: &'a mut AppContext, window: &'w mut Window) -> Self {
 322        Self {
 323            app: Reference::Mutable(app),
 324            window: Reference::Mutable(window),
 325        }
 326    }
 327
 328    /// Obtain a handle to the window that belongs to this context.
 329    pub fn window_handle(&self) -> AnyWindowHandle {
 330        self.window.handle
 331    }
 332
 333    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 334    pub fn notify(&mut self) {
 335        self.window.dirty = true;
 336    }
 337
 338    /// Obtain a new `FocusHandle`, which allows you to track and manipulate the keyboard focus
 339    /// for elements rendered within this window.
 340    pub fn focus_handle(&mut self) -> FocusHandle {
 341        FocusHandle::new(&self.window.focus_handles)
 342    }
 343
 344    /// Obtain the currently focused `FocusHandle`. If no elements are focused, returns `None`.
 345    pub fn focused(&self) -> Option<FocusHandle> {
 346        self.window
 347            .focus
 348            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 349    }
 350
 351    /// Move focus to the element associated with the given `FocusHandle`.
 352    pub fn focus(&mut self, handle: &FocusHandle) {
 353        if self.window.last_blur.is_none() {
 354            self.window.last_blur = Some(self.window.focus);
 355        }
 356
 357        let window_id = self.window.handle.id;
 358        self.window.focus = Some(handle.id);
 359        self.app.push_effect(Effect::FocusChanged {
 360            window_id,
 361            focused: Some(handle.id),
 362        });
 363        self.notify();
 364    }
 365
 366    /// Remove focus from all elements within this context's window.
 367    pub fn blur(&mut self) {
 368        if self.window.last_blur.is_none() {
 369            self.window.last_blur = Some(self.window.focus);
 370        }
 371
 372        let window_id = self.window.handle.id;
 373        self.window.focus = None;
 374        self.app.push_effect(Effect::FocusChanged {
 375            window_id,
 376            focused: None,
 377        });
 378        self.notify();
 379    }
 380
 381    /// Schedule the given closure to be run on the main thread. It will be invoked with
 382    /// a `MainThread<WindowContext>`, which provides access to platform-specific functionality
 383    /// of the window.
 384    pub fn run_on_main<R>(
 385        &mut self,
 386        f: impl FnOnce(&mut MainThread<WindowContext<'_, '_>>) -> R + Send + 'static,
 387    ) -> Task<Result<R>>
 388    where
 389        R: Send + 'static,
 390    {
 391        if self.executor.is_main_thread() {
 392            Task::ready(Ok(f(unsafe {
 393                mem::transmute::<&mut Self, &mut MainThread<Self>>(self)
 394            })))
 395        } else {
 396            let id = self.window.handle.id;
 397            self.app.run_on_main(move |cx| cx.update_window(id, f))
 398        }
 399    }
 400
 401    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 402    /// await points in async code.
 403    pub fn to_async(&self) -> AsyncWindowContext {
 404        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 405    }
 406
 407    /// Schedule the given closure to be run directly after the current frame is rendered.
 408    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut WindowContext) + Send + 'static) {
 409        let f = Box::new(f);
 410        let display_id = self.window.display_id;
 411        self.run_on_main(move |cx| {
 412            if let Some(callbacks) = cx.next_frame_callbacks.get_mut(&display_id) {
 413                callbacks.push(f);
 414                // If there was already a callback, it means that we already scheduled a frame.
 415                if callbacks.len() > 1 {
 416                    return;
 417                }
 418            } else {
 419                let async_cx = cx.to_async();
 420                cx.next_frame_callbacks.insert(display_id, vec![f]);
 421                cx.platform().set_display_link_output_callback(
 422                    display_id,
 423                    Box::new(move |_current_time, _output_time| {
 424                        let _ = async_cx.update(|cx| {
 425                            let callbacks = cx
 426                                .next_frame_callbacks
 427                                .get_mut(&display_id)
 428                                .unwrap()
 429                                .drain(..)
 430                                .collect::<Vec<_>>();
 431                            for callback in callbacks {
 432                                callback(cx);
 433                            }
 434
 435                            cx.run_on_main(move |cx| {
 436                                if cx.next_frame_callbacks.get(&display_id).unwrap().is_empty() {
 437                                    cx.platform().stop_display_link(display_id);
 438                                }
 439                            })
 440                            .detach();
 441                        });
 442                    }),
 443                );
 444            }
 445
 446            cx.platform().start_display_link(display_id);
 447        })
 448        .detach();
 449    }
 450
 451    /// Spawn the future returned by the given closure on the application thread pool.
 452    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 453    /// use within your future.
 454    pub fn spawn<Fut, R>(
 455        &mut self,
 456        f: impl FnOnce(AnyWindowHandle, AsyncWindowContext) -> Fut + Send + 'static,
 457    ) -> Task<R>
 458    where
 459        R: Send + 'static,
 460        Fut: Future<Output = R> + Send + 'static,
 461    {
 462        let window = self.window.handle;
 463        self.app.spawn(move |app| {
 464            let cx = AsyncWindowContext::new(app, window);
 465            let future = f(window, cx);
 466            async move { future.await }
 467        })
 468    }
 469
 470    /// Update the global of the given type. The given closure is given simultaneous mutable
 471    /// access both to the global and the context.
 472    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 473    where
 474        G: 'static,
 475    {
 476        let mut global = self.app.lease_global::<G>();
 477        let result = f(&mut global, self);
 478        self.app.end_global_lease(global);
 479        result
 480    }
 481
 482    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 483    /// layout is being requested, along with the layout ids of any children. This method is called during
 484    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 485    pub fn request_layout(
 486        &mut self,
 487        style: &Style,
 488        children: impl IntoIterator<Item = LayoutId>,
 489    ) -> LayoutId {
 490        self.app.layout_id_buffer.clear();
 491        self.app.layout_id_buffer.extend(children.into_iter());
 492        let rem_size = self.rem_size();
 493
 494        self.window
 495            .layout_engine
 496            .request_layout(style, rem_size, &self.app.layout_id_buffer)
 497    }
 498
 499    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 500    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 501    /// determine the element's size. One place this is used internally is when measuring text.
 502    ///
 503    /// The given closure is invoked at layout time with the known dimensions and available space and
 504    /// returns a `Size`.
 505    pub fn request_measured_layout<
 506        F: Fn(Size<Option<Pixels>>, Size<AvailableSpace>) -> Size<Pixels> + Send + Sync + 'static,
 507    >(
 508        &mut self,
 509        style: Style,
 510        rem_size: Pixels,
 511        measure: F,
 512    ) -> LayoutId {
 513        self.window
 514            .layout_engine
 515            .request_measured_layout(style, rem_size, measure)
 516    }
 517
 518    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 519    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 520    /// in order to pass your element its `Bounds` automatically.
 521    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 522        let mut bounds = self
 523            .window
 524            .layout_engine
 525            .layout_bounds(layout_id)
 526            .map(Into::into);
 527        bounds.origin += self.element_offset();
 528        bounds
 529    }
 530
 531    /// The scale factor of the display associated with the window. For example, it could
 532    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 533    /// be rendered as two pixels on screen.
 534    pub fn scale_factor(&self) -> f32 {
 535        self.window.scale_factor
 536    }
 537
 538    /// The size of an em for the base font of the application. Adjusting this value allows the
 539    /// UI to scale, just like zooming a web page.
 540    pub fn rem_size(&self) -> Pixels {
 541        self.window.rem_size
 542    }
 543
 544    /// The line height associated with the current text style.
 545    pub fn line_height(&self) -> Pixels {
 546        let rem_size = self.rem_size();
 547        let text_style = self.text_style();
 548        text_style
 549            .line_height
 550            .to_pixels(text_style.font_size.into(), rem_size)
 551    }
 552
 553    /// Call to prevent the default action of an event. Currently only used to prevent
 554    /// parent elements from becoming focused on mouse down.
 555    pub fn prevent_default(&mut self) {
 556        self.window.default_prevented = true;
 557    }
 558
 559    /// Obtain whether default has been prevented for the event currently being dispatched.
 560    pub fn default_prevented(&self) -> bool {
 561        self.window.default_prevented
 562    }
 563
 564    /// Register a mouse event listener on the window for the current frame. The type of event
 565    /// is determined by the first parameter of the given listener. When the next frame is rendered
 566    /// the listener will be cleared.
 567    ///
 568    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 569    /// a specific need to register a global listener.
 570    pub fn on_mouse_event<Event: 'static>(
 571        &mut self,
 572        handler: impl Fn(&Event, DispatchPhase, &mut WindowContext) + Send + 'static,
 573    ) {
 574        let order = self.window.z_index_stack.clone();
 575        self.window
 576            .mouse_listeners
 577            .entry(TypeId::of::<Event>())
 578            .or_default()
 579            .push((
 580                order,
 581                Box::new(move |event: &dyn Any, phase, cx| {
 582                    handler(event.downcast_ref().unwrap(), phase, cx)
 583                }),
 584            ))
 585    }
 586
 587    /// The position of the mouse relative to the window.
 588    pub fn mouse_position(&self) -> Point<Pixels> {
 589        self.window.mouse_position
 590    }
 591
 592    /// Called during painting to invoke the given closure in a new stacking context. The given
 593    /// z-index is interpreted relative to the previous call to `stack`.
 594    pub fn stack<R>(&mut self, z_index: u32, f: impl FnOnce(&mut Self) -> R) -> R {
 595        self.window.z_index_stack.push(z_index);
 596        let result = f(self);
 597        self.window.z_index_stack.pop();
 598        result
 599    }
 600
 601    /// Paint one or more drop shadows into the scene for the current frame at the current z-index.
 602    pub fn paint_shadows(
 603        &mut self,
 604        bounds: Bounds<Pixels>,
 605        corner_radii: Corners<Pixels>,
 606        shadows: &[BoxShadow],
 607    ) {
 608        let scale_factor = self.scale_factor();
 609        let content_mask = self.content_mask();
 610        let window = &mut *self.window;
 611        for shadow in shadows {
 612            let mut shadow_bounds = bounds;
 613            shadow_bounds.origin += shadow.offset;
 614            shadow_bounds.dilate(shadow.spread_radius);
 615            window.scene_builder.insert(
 616                &window.z_index_stack,
 617                Shadow {
 618                    order: 0,
 619                    bounds: shadow_bounds.scale(scale_factor),
 620                    content_mask: content_mask.scale(scale_factor),
 621                    corner_radii: corner_radii.scale(scale_factor),
 622                    color: shadow.color,
 623                    blur_radius: shadow.blur_radius.scale(scale_factor),
 624                },
 625            );
 626        }
 627    }
 628
 629    /// Paint one or more quads into the scene for the current frame at the current stacking context.
 630    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
 631    pub fn paint_quad(
 632        &mut self,
 633        bounds: Bounds<Pixels>,
 634        corner_radii: Corners<Pixels>,
 635        background: impl Into<Hsla>,
 636        border_widths: Edges<Pixels>,
 637        border_color: impl Into<Hsla>,
 638    ) {
 639        let scale_factor = self.scale_factor();
 640        let content_mask = self.content_mask();
 641
 642        let window = &mut *self.window;
 643        window.scene_builder.insert(
 644            &window.z_index_stack,
 645            Quad {
 646                order: 0,
 647                bounds: bounds.scale(scale_factor),
 648                content_mask: content_mask.scale(scale_factor),
 649                background: background.into(),
 650                border_color: border_color.into(),
 651                corner_radii: corner_radii.scale(scale_factor),
 652                border_widths: border_widths.scale(scale_factor),
 653            },
 654        );
 655    }
 656
 657    /// Paint the given `Path` into the scene for the current frame at the current z-index.
 658    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
 659        let scale_factor = self.scale_factor();
 660        let content_mask = self.content_mask();
 661        path.content_mask = content_mask;
 662        path.color = color.into();
 663        let window = &mut *self.window;
 664        window
 665            .scene_builder
 666            .insert(&window.z_index_stack, path.scale(scale_factor));
 667    }
 668
 669    /// Paint an underline into the scene for the current frame at the current z-index.
 670    pub fn paint_underline(
 671        &mut self,
 672        origin: Point<Pixels>,
 673        width: Pixels,
 674        style: &UnderlineStyle,
 675    ) -> Result<()> {
 676        let scale_factor = self.scale_factor();
 677        let height = if style.wavy {
 678            style.thickness * 3.
 679        } else {
 680            style.thickness
 681        };
 682        let bounds = Bounds {
 683            origin,
 684            size: size(width, height),
 685        };
 686        let content_mask = self.content_mask();
 687        let window = &mut *self.window;
 688        window.scene_builder.insert(
 689            &window.z_index_stack,
 690            Underline {
 691                order: 0,
 692                bounds: bounds.scale(scale_factor),
 693                content_mask: content_mask.scale(scale_factor),
 694                thickness: style.thickness.scale(scale_factor),
 695                color: style.color.unwrap_or_default(),
 696                wavy: style.wavy,
 697            },
 698        );
 699        Ok(())
 700    }
 701
 702    /// Paint a monochrome (non-emoji) glyph into the scene for the current frame at the current z-index.
 703    pub fn paint_glyph(
 704        &mut self,
 705        origin: Point<Pixels>,
 706        font_id: FontId,
 707        glyph_id: GlyphId,
 708        font_size: Pixels,
 709        color: Hsla,
 710    ) -> Result<()> {
 711        let scale_factor = self.scale_factor();
 712        let glyph_origin = origin.scale(scale_factor);
 713        let subpixel_variant = Point {
 714            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 715            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
 716        };
 717        let params = RenderGlyphParams {
 718            font_id,
 719            glyph_id,
 720            font_size,
 721            subpixel_variant,
 722            scale_factor,
 723            is_emoji: false,
 724        };
 725
 726        let raster_bounds = self.text_system().raster_bounds(&params)?;
 727        if !raster_bounds.is_zero() {
 728            let tile =
 729                self.window
 730                    .sprite_atlas
 731                    .get_or_insert_with(&params.clone().into(), &mut || {
 732                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 733                        Ok((size, Cow::Owned(bytes)))
 734                    })?;
 735            let bounds = Bounds {
 736                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 737                size: tile.bounds.size.map(Into::into),
 738            };
 739            let content_mask = self.content_mask().scale(scale_factor);
 740            let window = &mut *self.window;
 741            window.scene_builder.insert(
 742                &window.z_index_stack,
 743                MonochromeSprite {
 744                    order: 0,
 745                    bounds,
 746                    content_mask,
 747                    color,
 748                    tile,
 749                },
 750            );
 751        }
 752        Ok(())
 753    }
 754
 755    /// Paint an emoji glyph into the scene for the current frame at the current z-index.
 756    pub fn paint_emoji(
 757        &mut self,
 758        origin: Point<Pixels>,
 759        font_id: FontId,
 760        glyph_id: GlyphId,
 761        font_size: Pixels,
 762    ) -> Result<()> {
 763        let scale_factor = self.scale_factor();
 764        let glyph_origin = origin.scale(scale_factor);
 765        let params = RenderGlyphParams {
 766            font_id,
 767            glyph_id,
 768            font_size,
 769            // We don't render emojis with subpixel variants.
 770            subpixel_variant: Default::default(),
 771            scale_factor,
 772            is_emoji: true,
 773        };
 774
 775        let raster_bounds = self.text_system().raster_bounds(&params)?;
 776        if !raster_bounds.is_zero() {
 777            let tile =
 778                self.window
 779                    .sprite_atlas
 780                    .get_or_insert_with(&params.clone().into(), &mut || {
 781                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
 782                        Ok((size, Cow::Owned(bytes)))
 783                    })?;
 784            let bounds = Bounds {
 785                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
 786                size: tile.bounds.size.map(Into::into),
 787            };
 788            let content_mask = self.content_mask().scale(scale_factor);
 789            let window = &mut *self.window;
 790
 791            window.scene_builder.insert(
 792                &window.z_index_stack,
 793                PolychromeSprite {
 794                    order: 0,
 795                    bounds,
 796                    corner_radii: Default::default(),
 797                    content_mask,
 798                    tile,
 799                    grayscale: false,
 800                },
 801            );
 802        }
 803        Ok(())
 804    }
 805
 806    /// Paint a monochrome SVG into the scene for the current frame at the current stacking context.
 807    pub fn paint_svg(
 808        &mut self,
 809        bounds: Bounds<Pixels>,
 810        path: SharedString,
 811        color: Hsla,
 812    ) -> Result<()> {
 813        let scale_factor = self.scale_factor();
 814        let bounds = bounds.scale(scale_factor);
 815        // Render the SVG at twice the size to get a higher quality result.
 816        let params = RenderSvgParams {
 817            path,
 818            size: bounds
 819                .size
 820                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
 821        };
 822
 823        let tile =
 824            self.window
 825                .sprite_atlas
 826                .get_or_insert_with(&params.clone().into(), &mut || {
 827                    let bytes = self.svg_renderer.render(&params)?;
 828                    Ok((params.size, Cow::Owned(bytes)))
 829                })?;
 830        let content_mask = self.content_mask().scale(scale_factor);
 831
 832        let window = &mut *self.window;
 833        window.scene_builder.insert(
 834            &window.z_index_stack,
 835            MonochromeSprite {
 836                order: 0,
 837                bounds,
 838                content_mask,
 839                color,
 840                tile,
 841            },
 842        );
 843
 844        Ok(())
 845    }
 846
 847    /// Paint an image into the scene for the current frame at the current z-index.
 848    pub fn paint_image(
 849        &mut self,
 850        bounds: Bounds<Pixels>,
 851        corner_radii: Corners<Pixels>,
 852        data: Arc<ImageData>,
 853        grayscale: bool,
 854    ) -> Result<()> {
 855        let scale_factor = self.scale_factor();
 856        let bounds = bounds.scale(scale_factor);
 857        let params = RenderImageParams { image_id: data.id };
 858
 859        let tile = self
 860            .window
 861            .sprite_atlas
 862            .get_or_insert_with(&params.clone().into(), &mut || {
 863                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
 864            })?;
 865        let content_mask = self.content_mask().scale(scale_factor);
 866        let corner_radii = corner_radii.scale(scale_factor);
 867
 868        let window = &mut *self.window;
 869        window.scene_builder.insert(
 870            &window.z_index_stack,
 871            PolychromeSprite {
 872                order: 0,
 873                bounds,
 874                content_mask,
 875                corner_radii,
 876                tile,
 877                grayscale,
 878            },
 879        );
 880        Ok(())
 881    }
 882
 883    /// Draw pixels to the display for this window based on the contents of its scene.
 884    pub(crate) fn draw(&mut self) {
 885        let root_view = self.window.root_view.take().unwrap();
 886
 887        self.start_frame();
 888
 889        self.stack(0, |cx| {
 890            let available_space = cx.window.content_size.map(Into::into);
 891            root_view.draw(available_space, cx);
 892        });
 893
 894        if let Some(mut active_drag) = self.app.active_drag.take() {
 895            self.stack(1, |cx| {
 896                let offset = cx.mouse_position() - active_drag.cursor_offset;
 897                cx.with_element_offset(Some(offset), |cx| {
 898                    let available_space =
 899                        size(AvailableSpace::MinContent, AvailableSpace::MinContent);
 900                    if let Some(drag_handle_view) = &mut active_drag.drag_handle_view {
 901                        drag_handle_view.draw(available_space, cx);
 902                    }
 903                    cx.active_drag = Some(active_drag);
 904                });
 905            });
 906        }
 907
 908        self.window.root_view = Some(root_view);
 909        let scene = self.window.scene_builder.build();
 910
 911        self.run_on_main(|cx| {
 912            cx.window
 913                .platform_window
 914                .borrow_on_main_thread()
 915                .draw(scene);
 916            cx.window.dirty = false;
 917        })
 918        .detach();
 919    }
 920
 921    fn start_frame(&mut self) {
 922        self.text_system().start_frame();
 923
 924        let window = &mut *self.window;
 925
 926        // Move the current frame element states to the previous frame.
 927        // The new empty element states map will be populated for any element states we
 928        // reference during the upcoming frame.
 929        mem::swap(
 930            &mut window.element_states,
 931            &mut window.prev_frame_element_states,
 932        );
 933        window.element_states.clear();
 934
 935        // Make the current key matchers the previous, and then clear the current.
 936        // An empty key matcher map will be created for every identified element in the
 937        // upcoming frame.
 938        mem::swap(
 939            &mut window.key_matchers,
 940            &mut window.prev_frame_key_matchers,
 941        );
 942        window.key_matchers.clear();
 943
 944        // Clear mouse event listeners, because elements add new element listeners
 945        // when the upcoming frame is painted.
 946        window.mouse_listeners.values_mut().for_each(Vec::clear);
 947
 948        // Clear focus state, because we determine what is focused when the new elements
 949        // in the upcoming frame are initialized.
 950        window.focus_listeners.clear();
 951        window.key_dispatch_stack.clear();
 952        window.focus_parents_by_child.clear();
 953        window.freeze_key_dispatch_stack = false;
 954    }
 955
 956    /// Dispatch a mouse or keyboard event on the window.
 957    fn dispatch_event(&mut self, event: InputEvent) -> bool {
 958        let event = match event {
 959            // Track the mouse position with our own state, since accessing the platform
 960            // API for the mouse position can only occur on the main thread.
 961            InputEvent::MouseMove(mouse_move) => {
 962                self.window.mouse_position = mouse_move.position;
 963                InputEvent::MouseMove(mouse_move)
 964            }
 965            // Translate dragging and dropping of external files from the operating system
 966            // to internal drag and drop events.
 967            InputEvent::FileDrop(file_drop) => match file_drop {
 968                FileDropEvent::Entered { position, files } => {
 969                    self.window.mouse_position = position;
 970                    self.active_drag.get_or_insert_with(|| AnyDrag {
 971                        drag_handle_view: None,
 972                        cursor_offset: position,
 973                        state: Box::new(files),
 974                        state_type: TypeId::of::<ExternalPaths>(),
 975                    });
 976                    InputEvent::MouseDown(MouseDownEvent {
 977                        position,
 978                        button: MouseButton::Left,
 979                        click_count: 1,
 980                        modifiers: Modifiers::default(),
 981                    })
 982                }
 983                FileDropEvent::Pending { position } => {
 984                    self.window.mouse_position = position;
 985                    InputEvent::MouseMove(MouseMoveEvent {
 986                        position,
 987                        pressed_button: Some(MouseButton::Left),
 988                        modifiers: Modifiers::default(),
 989                    })
 990                }
 991                FileDropEvent::Submit { position } => {
 992                    self.window.mouse_position = position;
 993                    InputEvent::MouseUp(MouseUpEvent {
 994                        button: MouseButton::Left,
 995                        position,
 996                        modifiers: Modifiers::default(),
 997                        click_count: 1,
 998                    })
 999                }
1000                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1001                    button: MouseButton::Left,
1002                    position: Point::default(),
1003                    modifiers: Modifiers::default(),
1004                    click_count: 1,
1005                }),
1006            },
1007            _ => event,
1008        };
1009
1010        if let Some(any_mouse_event) = event.mouse_event() {
1011            // Handlers may set this to false by calling `stop_propagation`
1012            self.app.propagate_event = true;
1013            self.window.default_prevented = false;
1014
1015            if let Some(mut handlers) = self
1016                .window
1017                .mouse_listeners
1018                .remove(&any_mouse_event.type_id())
1019            {
1020                // Because handlers may add other handlers, we sort every time.
1021                handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1022
1023                // Capture phase, events bubble from back to front. Handlers for this phase are used for
1024                // special purposes, such as detecting events outside of a given Bounds.
1025                for (_, handler) in &handlers {
1026                    handler(any_mouse_event, DispatchPhase::Capture, self);
1027                    if !self.app.propagate_event {
1028                        break;
1029                    }
1030                }
1031
1032                // Bubble phase, where most normal handlers do their work.
1033                if self.app.propagate_event {
1034                    for (_, handler) in handlers.iter().rev() {
1035                        handler(any_mouse_event, DispatchPhase::Bubble, self);
1036                        if !self.app.propagate_event {
1037                            break;
1038                        }
1039                    }
1040                }
1041
1042                if self.app.propagate_event
1043                    && any_mouse_event.downcast_ref::<MouseUpEvent>().is_some()
1044                {
1045                    self.active_drag = None;
1046                }
1047
1048                // Just in case any handlers added new handlers, which is weird, but possible.
1049                handlers.extend(
1050                    self.window
1051                        .mouse_listeners
1052                        .get_mut(&any_mouse_event.type_id())
1053                        .into_iter()
1054                        .flat_map(|handlers| handlers.drain(..)),
1055                );
1056                self.window
1057                    .mouse_listeners
1058                    .insert(any_mouse_event.type_id(), handlers);
1059            }
1060        } else if let Some(any_key_event) = event.keyboard_event() {
1061            let key_dispatch_stack = mem::take(&mut self.window.key_dispatch_stack);
1062            let key_event_type = any_key_event.type_id();
1063            let mut context_stack = SmallVec::<[&DispatchContext; 16]>::new();
1064
1065            for (ix, frame) in key_dispatch_stack.iter().enumerate() {
1066                match frame {
1067                    KeyDispatchStackFrame::Listener {
1068                        event_type,
1069                        listener,
1070                    } => {
1071                        if key_event_type == *event_type {
1072                            if let Some(action) = listener(
1073                                any_key_event,
1074                                &context_stack,
1075                                DispatchPhase::Capture,
1076                                self,
1077                            ) {
1078                                self.dispatch_action(action, &key_dispatch_stack[..ix]);
1079                            }
1080                            if !self.app.propagate_event {
1081                                break;
1082                            }
1083                        }
1084                    }
1085                    KeyDispatchStackFrame::Context(context) => {
1086                        context_stack.push(&context);
1087                    }
1088                }
1089            }
1090
1091            if self.app.propagate_event {
1092                for (ix, frame) in key_dispatch_stack.iter().enumerate().rev() {
1093                    match frame {
1094                        KeyDispatchStackFrame::Listener {
1095                            event_type,
1096                            listener,
1097                        } => {
1098                            if key_event_type == *event_type {
1099                                if let Some(action) = listener(
1100                                    any_key_event,
1101                                    &context_stack,
1102                                    DispatchPhase::Bubble,
1103                                    self,
1104                                ) {
1105                                    self.dispatch_action(action, &key_dispatch_stack[..ix]);
1106                                }
1107
1108                                if !self.app.propagate_event {
1109                                    break;
1110                                }
1111                            }
1112                        }
1113                        KeyDispatchStackFrame::Context(_) => {
1114                            context_stack.pop();
1115                        }
1116                    }
1117                }
1118            }
1119
1120            drop(context_stack);
1121            self.window.key_dispatch_stack = key_dispatch_stack;
1122        }
1123
1124        true
1125    }
1126
1127    /// Attempt to map a keystroke to an action based on the keymap.
1128    pub fn match_keystroke(
1129        &mut self,
1130        element_id: &GlobalElementId,
1131        keystroke: &Keystroke,
1132        context_stack: &[&DispatchContext],
1133    ) -> KeyMatch {
1134        let key_match = self
1135            .window
1136            .key_matchers
1137            .get_mut(element_id)
1138            .unwrap()
1139            .match_keystroke(keystroke, context_stack);
1140
1141        if key_match.is_some() {
1142            for matcher in self.window.key_matchers.values_mut() {
1143                matcher.clear_pending();
1144            }
1145        }
1146
1147        key_match
1148    }
1149
1150    /// Register the given handler to be invoked whenever the global of the given type
1151    /// is updated.
1152    pub fn observe_global<G: 'static>(
1153        &mut self,
1154        f: impl Fn(&mut WindowContext<'_, '_>) + Send + 'static,
1155    ) -> Subscription {
1156        let window_id = self.window.handle.id;
1157        self.global_observers.insert(
1158            TypeId::of::<G>(),
1159            Box::new(move |cx| cx.update_window(window_id, |cx| f(cx)).is_ok()),
1160        )
1161    }
1162
1163    fn dispatch_action(
1164        &mut self,
1165        action: Box<dyn Action>,
1166        dispatch_stack: &[KeyDispatchStackFrame],
1167    ) {
1168        let action_type = action.as_any().type_id();
1169
1170        if let Some(mut global_listeners) = self.app.global_action_listeners.remove(&action_type) {
1171            for listener in &global_listeners {
1172                listener(action.as_ref(), DispatchPhase::Capture, self);
1173                if !self.app.propagate_event {
1174                    break;
1175                }
1176            }
1177            global_listeners.extend(
1178                self.global_action_listeners
1179                    .remove(&action_type)
1180                    .unwrap_or_default(),
1181            );
1182            self.global_action_listeners
1183                .insert(action_type, global_listeners);
1184        }
1185
1186        if self.app.propagate_event {
1187            for stack_frame in dispatch_stack {
1188                if let KeyDispatchStackFrame::Listener {
1189                    event_type,
1190                    listener,
1191                } = stack_frame
1192                {
1193                    if action_type == *event_type {
1194                        listener(action.as_any(), &[], DispatchPhase::Capture, self);
1195                        if !self.app.propagate_event {
1196                            break;
1197                        }
1198                    }
1199                }
1200            }
1201        }
1202
1203        if self.app.propagate_event {
1204            for stack_frame in dispatch_stack.iter().rev() {
1205                if let KeyDispatchStackFrame::Listener {
1206                    event_type,
1207                    listener,
1208                } = stack_frame
1209                {
1210                    if action_type == *event_type {
1211                        listener(action.as_any(), &[], DispatchPhase::Bubble, self);
1212                        if !self.app.propagate_event {
1213                            break;
1214                        }
1215                    }
1216                }
1217            }
1218        }
1219
1220        if self.app.propagate_event {
1221            if let Some(mut global_listeners) =
1222                self.app.global_action_listeners.remove(&action_type)
1223            {
1224                for listener in global_listeners.iter().rev() {
1225                    listener(action.as_ref(), DispatchPhase::Bubble, self);
1226                    if !self.app.propagate_event {
1227                        break;
1228                    }
1229                }
1230                global_listeners.extend(
1231                    self.global_action_listeners
1232                        .remove(&action_type)
1233                        .unwrap_or_default(),
1234                );
1235                self.global_action_listeners
1236                    .insert(action_type, global_listeners);
1237            }
1238        }
1239    }
1240}
1241
1242impl Context for WindowContext<'_, '_> {
1243    type ModelContext<'a, T> = ModelContext<'a, T>;
1244    type Result<T> = T;
1245
1246    fn build_model<T>(
1247        &mut self,
1248        build_model: impl FnOnce(&mut Self::ModelContext<'_, T>) -> T,
1249    ) -> Model<T>
1250    where
1251        T: 'static + Send,
1252    {
1253        let slot = self.app.entities.reserve();
1254        let model = build_model(&mut ModelContext::mutable(&mut *self.app, slot.downgrade()));
1255        self.entities.insert(slot, model)
1256    }
1257
1258    fn update_entity<T: 'static, R>(
1259        &mut self,
1260        model: &Model<T>,
1261        update: impl FnOnce(&mut T, &mut Self::ModelContext<'_, T>) -> R,
1262    ) -> R {
1263        let mut entity = self.entities.lease(model);
1264        let result = update(
1265            &mut *entity,
1266            &mut ModelContext::mutable(&mut *self.app, model.downgrade()),
1267        );
1268        self.entities.end_lease(entity);
1269        result
1270    }
1271}
1272
1273impl VisualContext for WindowContext<'_, '_> {
1274    type ViewContext<'a, 'w, V> = ViewContext<'a, 'w, V>;
1275
1276    /// Builds a new view in the current window. The first argument is a function that builds
1277    /// an entity representing the view's state. It is invoked with a `ViewContext` that provides
1278    /// entity-specific access to the window and application state during construction. The second
1279    /// argument is a render function that returns a component based on the view's state.
1280    fn build_view<E, V>(
1281        &mut self,
1282        build_view_state: impl FnOnce(&mut Self::ViewContext<'_, '_, V>) -> V,
1283        render: impl Fn(&mut V, &mut ViewContext<'_, '_, V>) -> E + Send + 'static,
1284    ) -> Self::Result<View<V>>
1285    where
1286        E: crate::Component<V>,
1287        V: 'static + Send,
1288    {
1289        let slot = self.app.entities.reserve();
1290        let view = View::for_handle(slot.clone(), render);
1291        let mut cx = ViewContext::mutable(&mut *self.app, &mut *self.window, view.downgrade());
1292        let entity = build_view_state(&mut cx);
1293        self.entities.insert(slot, entity);
1294        view
1295    }
1296
1297    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
1298    fn update_view<T: 'static, R>(
1299        &mut self,
1300        view: &View<T>,
1301        update: impl FnOnce(&mut T, &mut Self::ViewContext<'_, '_, T>) -> R,
1302    ) -> Self::Result<R> {
1303        let mut lease = self.app.entities.lease(&view.state);
1304        let mut cx = ViewContext::mutable(&mut *self.app, &mut *self.window, view.downgrade());
1305        let result = update(&mut *lease, &mut cx);
1306        cx.app.entities.end_lease(lease);
1307        result
1308    }
1309}
1310
1311impl<'a, 'w> std::ops::Deref for WindowContext<'a, 'w> {
1312    type Target = AppContext;
1313
1314    fn deref(&self) -> &Self::Target {
1315        &self.app
1316    }
1317}
1318
1319impl<'a, 'w> std::ops::DerefMut for WindowContext<'a, 'w> {
1320    fn deref_mut(&mut self) -> &mut Self::Target {
1321        &mut self.app
1322    }
1323}
1324
1325impl<'a, 'w> Borrow<AppContext> for WindowContext<'a, 'w> {
1326    fn borrow(&self) -> &AppContext {
1327        &self.app
1328    }
1329}
1330
1331impl<'a, 'w> BorrowMut<AppContext> for WindowContext<'a, 'w> {
1332    fn borrow_mut(&mut self) -> &mut AppContext {
1333        &mut self.app
1334    }
1335}
1336
1337pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
1338    fn app_mut(&mut self) -> &mut AppContext {
1339        self.borrow_mut()
1340    }
1341
1342    fn window(&self) -> &Window {
1343        self.borrow()
1344    }
1345
1346    fn window_mut(&mut self) -> &mut Window {
1347        self.borrow_mut()
1348    }
1349
1350    /// Pushes the given element id onto the global stack and invokes the given closure
1351    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
1352    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
1353    /// used to associate state with identified elements across separate frames.
1354    fn with_element_id<R>(
1355        &mut self,
1356        id: impl Into<ElementId>,
1357        f: impl FnOnce(GlobalElementId, &mut Self) -> R,
1358    ) -> R {
1359        let keymap = self.app_mut().keymap.clone();
1360        let window = self.window_mut();
1361        window.element_id_stack.push(id.into());
1362        let global_id = window.element_id_stack.clone();
1363
1364        if window.key_matchers.get(&global_id).is_none() {
1365            window.key_matchers.insert(
1366                global_id.clone(),
1367                window
1368                    .prev_frame_key_matchers
1369                    .remove(&global_id)
1370                    .unwrap_or_else(|| KeyMatcher::new(keymap)),
1371            );
1372        }
1373
1374        let result = f(global_id, self);
1375        let window: &mut Window = self.borrow_mut();
1376        window.element_id_stack.pop();
1377        result
1378    }
1379
1380    /// Invoke the given function with the given content mask after intersecting it
1381    /// with the current mask.
1382    fn with_content_mask<R>(
1383        &mut self,
1384        mask: ContentMask<Pixels>,
1385        f: impl FnOnce(&mut Self) -> R,
1386    ) -> R {
1387        let mask = mask.intersect(&self.content_mask());
1388        self.window_mut().content_mask_stack.push(mask);
1389        let result = f(self);
1390        self.window_mut().content_mask_stack.pop();
1391        result
1392    }
1393
1394    /// Update the global element offset based on the given offset. This is used to implement
1395    /// scrolling and position drag handles.
1396    fn with_element_offset<R>(
1397        &mut self,
1398        offset: Option<Point<Pixels>>,
1399        f: impl FnOnce(&mut Self) -> R,
1400    ) -> R {
1401        let Some(offset) = offset else {
1402            return f(self);
1403        };
1404
1405        let offset = self.element_offset() + offset;
1406        self.window_mut().element_offset_stack.push(offset);
1407        let result = f(self);
1408        self.window_mut().element_offset_stack.pop();
1409        result
1410    }
1411
1412    /// Obtain the current element offset.
1413    fn element_offset(&self) -> Point<Pixels> {
1414        self.window()
1415            .element_offset_stack
1416            .last()
1417            .copied()
1418            .unwrap_or_default()
1419    }
1420
1421    /// Update or intialize state for an element with the given id that lives across multiple
1422    /// frames. If an element with this id existed in the previous frame, its state will be passed
1423    /// to the given closure. The state returned by the closure will be stored so it can be referenced
1424    /// when drawing the next frame.
1425    fn with_element_state<S, R>(
1426        &mut self,
1427        id: ElementId,
1428        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1429    ) -> R
1430    where
1431        S: 'static + Send,
1432    {
1433        self.with_element_id(id, |global_id, cx| {
1434            if let Some(any) = cx
1435                .window_mut()
1436                .element_states
1437                .remove(&global_id)
1438                .or_else(|| cx.window_mut().prev_frame_element_states.remove(&global_id))
1439            {
1440                // Using the extra inner option to avoid needing to reallocate a new box.
1441                let mut state_box = any
1442                    .downcast::<Option<S>>()
1443                    .expect("invalid element state type for id");
1444                let state = state_box
1445                    .take()
1446                    .expect("element state is already on the stack");
1447                let (result, state) = f(Some(state), cx);
1448                state_box.replace(state);
1449                cx.window_mut().element_states.insert(global_id, state_box);
1450                result
1451            } else {
1452                let (result, state) = f(None, cx);
1453                cx.window_mut()
1454                    .element_states
1455                    .insert(global_id, Box::new(Some(state)));
1456                result
1457            }
1458        })
1459    }
1460
1461    /// Like `with_element_state`, but for situations where the element_id is optional. If the
1462    /// id is `None`, no state will be retrieved or stored.
1463    fn with_optional_element_state<S, R>(
1464        &mut self,
1465        element_id: Option<ElementId>,
1466        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
1467    ) -> R
1468    where
1469        S: 'static + Send,
1470    {
1471        if let Some(element_id) = element_id {
1472            self.with_element_state(element_id, f)
1473        } else {
1474            f(None, self).0
1475        }
1476    }
1477
1478    /// Obtain the current content mask.
1479    fn content_mask(&self) -> ContentMask<Pixels> {
1480        self.window()
1481            .content_mask_stack
1482            .last()
1483            .cloned()
1484            .unwrap_or_else(|| ContentMask {
1485                bounds: Bounds {
1486                    origin: Point::default(),
1487                    size: self.window().content_size,
1488                },
1489            })
1490    }
1491
1492    /// The size of an em for the base font of the application. Adjusting this value allows the
1493    /// UI to scale, just like zooming a web page.
1494    fn rem_size(&self) -> Pixels {
1495        self.window().rem_size
1496    }
1497}
1498
1499impl Borrow<Window> for WindowContext<'_, '_> {
1500    fn borrow(&self) -> &Window {
1501        &self.window
1502    }
1503}
1504
1505impl BorrowMut<Window> for WindowContext<'_, '_> {
1506    fn borrow_mut(&mut self) -> &mut Window {
1507        &mut self.window
1508    }
1509}
1510
1511impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
1512
1513pub struct ViewContext<'a, 'w, V> {
1514    window_cx: WindowContext<'a, 'w>,
1515    view: WeakView<V>,
1516}
1517
1518impl<V> Borrow<AppContext> for ViewContext<'_, '_, V> {
1519    fn borrow(&self) -> &AppContext {
1520        &*self.window_cx.app
1521    }
1522}
1523
1524impl<V> BorrowMut<AppContext> for ViewContext<'_, '_, V> {
1525    fn borrow_mut(&mut self) -> &mut AppContext {
1526        &mut *self.window_cx.app
1527    }
1528}
1529
1530impl<V> Borrow<Window> for ViewContext<'_, '_, V> {
1531    fn borrow(&self) -> &Window {
1532        &*self.window_cx.window
1533    }
1534}
1535
1536impl<V> BorrowMut<Window> for ViewContext<'_, '_, V> {
1537    fn borrow_mut(&mut self) -> &mut Window {
1538        &mut *self.window_cx.window
1539    }
1540}
1541
1542impl<'a, 'w, V: 'static> ViewContext<'a, 'w, V> {
1543    pub(crate) fn mutable(
1544        app: &'a mut AppContext,
1545        window: &'w mut Window,
1546        view: WeakView<V>,
1547    ) -> Self {
1548        Self {
1549            window_cx: WindowContext::mutable(app, window),
1550            view,
1551        }
1552    }
1553
1554    pub fn view(&self) -> WeakView<V> {
1555        self.view.clone()
1556    }
1557
1558    pub fn model(&self) -> WeakModel<V> {
1559        self.view.state.clone()
1560    }
1561
1562    pub fn stack<R>(&mut self, order: u32, f: impl FnOnce(&mut Self) -> R) -> R {
1563        self.window.z_index_stack.push(order);
1564        let result = f(self);
1565        self.window.z_index_stack.pop();
1566        result
1567    }
1568
1569    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + Send + 'static)
1570    where
1571        V: Any + Send,
1572    {
1573        let view = self.view().upgrade().unwrap();
1574        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
1575    }
1576
1577    pub fn observe<E>(
1578        &mut self,
1579        handle: &Model<E>,
1580        mut on_notify: impl FnMut(&mut V, Model<E>, &mut ViewContext<'_, '_, V>) + Send + 'static,
1581    ) -> Subscription
1582    where
1583        E: 'static,
1584        V: Any + Send,
1585    {
1586        let view = self.view();
1587        let handle = handle.downgrade();
1588        let window_handle = self.window.handle;
1589        self.app.observers.insert(
1590            handle.entity_id,
1591            Box::new(move |cx| {
1592                cx.update_window(window_handle.id, |cx| {
1593                    if let Some(handle) = handle.upgrade() {
1594                        view.update(cx, |this, cx| on_notify(this, handle, cx))
1595                            .is_ok()
1596                    } else {
1597                        false
1598                    }
1599                })
1600                .unwrap_or(false)
1601            }),
1602        )
1603    }
1604
1605    pub fn subscribe<E: EventEmitter>(
1606        &mut self,
1607        handle: &Model<E>,
1608        mut on_event: impl FnMut(&mut V, Model<E>, &E::Event, &mut ViewContext<'_, '_, V>)
1609            + Send
1610            + 'static,
1611    ) -> Subscription {
1612        let view = self.view();
1613        let handle = handle.downgrade();
1614        let window_handle = self.window.handle;
1615        self.app.event_listeners.insert(
1616            handle.entity_id,
1617            Box::new(move |event, cx| {
1618                cx.update_window(window_handle.id, |cx| {
1619                    if let Some(handle) = handle.upgrade() {
1620                        let event = event.downcast_ref().expect("invalid event type");
1621                        view.update(cx, |this, cx| on_event(this, handle, event, cx))
1622                            .is_ok()
1623                    } else {
1624                        false
1625                    }
1626                })
1627                .unwrap_or(false)
1628            }),
1629        )
1630    }
1631
1632    pub fn on_release(
1633        &mut self,
1634        mut on_release: impl FnMut(&mut V, &mut WindowContext) + Send + 'static,
1635    ) -> Subscription {
1636        let window_handle = self.window.handle;
1637        self.app.release_listeners.insert(
1638            self.view.state.entity_id,
1639            Box::new(move |this, cx| {
1640                let this = this.downcast_mut().expect("invalid entity type");
1641                // todo!("are we okay with silently swallowing the error?")
1642                let _ = cx.update_window(window_handle.id, |cx| on_release(this, cx));
1643            }),
1644        )
1645    }
1646
1647    pub fn observe_release<T: 'static>(
1648        &mut self,
1649        handle: &Model<T>,
1650        mut on_release: impl FnMut(&mut V, &mut T, &mut ViewContext<'_, '_, V>) + Send + 'static,
1651    ) -> Subscription
1652    where
1653        V: Any + Send,
1654    {
1655        let view = self.view();
1656        let window_handle = self.window.handle;
1657        self.app.release_listeners.insert(
1658            handle.entity_id,
1659            Box::new(move |entity, cx| {
1660                let entity = entity.downcast_mut().expect("invalid entity type");
1661                let _ = cx.update_window(window_handle.id, |cx| {
1662                    view.update(cx, |this, cx| on_release(this, entity, cx))
1663                });
1664            }),
1665        )
1666    }
1667
1668    pub fn notify(&mut self) {
1669        self.window_cx.notify();
1670        self.window_cx.app.push_effect(Effect::Notify {
1671            emitter: self.view.state.entity_id,
1672        });
1673    }
1674
1675    pub fn on_focus_changed(
1676        &mut self,
1677        listener: impl Fn(&mut V, &FocusEvent, &mut ViewContext<V>) + Send + 'static,
1678    ) {
1679        let handle = self.view();
1680        self.window.focus_listeners.push(Box::new(move |event, cx| {
1681            handle
1682                .update(cx, |view, cx| listener(view, event, cx))
1683                .log_err();
1684        }));
1685    }
1686
1687    pub fn with_key_listeners<R>(
1688        &mut self,
1689        key_listeners: impl IntoIterator<Item = (TypeId, KeyListener<V>)>,
1690        f: impl FnOnce(&mut Self) -> R,
1691    ) -> R {
1692        let old_stack_len = self.window.key_dispatch_stack.len();
1693        if !self.window.freeze_key_dispatch_stack {
1694            for (event_type, listener) in key_listeners {
1695                let handle = self.view();
1696                let listener = Box::new(
1697                    move |event: &dyn Any,
1698                          context_stack: &[&DispatchContext],
1699                          phase: DispatchPhase,
1700                          cx: &mut WindowContext<'_, '_>| {
1701                        handle
1702                            .update(cx, |view, cx| {
1703                                listener(view, event, context_stack, phase, cx)
1704                            })
1705                            .log_err()
1706                            .flatten()
1707                    },
1708                );
1709                self.window
1710                    .key_dispatch_stack
1711                    .push(KeyDispatchStackFrame::Listener {
1712                        event_type,
1713                        listener,
1714                    });
1715            }
1716        }
1717
1718        let result = f(self);
1719
1720        if !self.window.freeze_key_dispatch_stack {
1721            self.window.key_dispatch_stack.truncate(old_stack_len);
1722        }
1723
1724        result
1725    }
1726
1727    pub fn with_key_dispatch_context<R>(
1728        &mut self,
1729        context: DispatchContext,
1730        f: impl FnOnce(&mut Self) -> R,
1731    ) -> R {
1732        if context.is_empty() {
1733            return f(self);
1734        }
1735
1736        if !self.window.freeze_key_dispatch_stack {
1737            self.window
1738                .key_dispatch_stack
1739                .push(KeyDispatchStackFrame::Context(context));
1740        }
1741
1742        let result = f(self);
1743
1744        if !self.window.freeze_key_dispatch_stack {
1745            self.window.key_dispatch_stack.pop();
1746        }
1747
1748        result
1749    }
1750
1751    pub fn with_focus<R>(
1752        &mut self,
1753        focus_handle: FocusHandle,
1754        f: impl FnOnce(&mut Self) -> R,
1755    ) -> R {
1756        if let Some(parent_focus_id) = self.window.focus_stack.last().copied() {
1757            self.window
1758                .focus_parents_by_child
1759                .insert(focus_handle.id, parent_focus_id);
1760        }
1761        self.window.focus_stack.push(focus_handle.id);
1762
1763        if Some(focus_handle.id) == self.window.focus {
1764            self.window.freeze_key_dispatch_stack = true;
1765        }
1766
1767        let result = f(self);
1768
1769        self.window.focus_stack.pop();
1770        result
1771    }
1772
1773    pub fn run_on_main<R>(
1774        &mut self,
1775        view: &mut V,
1776        f: impl FnOnce(&mut V, &mut MainThread<ViewContext<'_, '_, V>>) -> R + Send + 'static,
1777    ) -> Task<Result<R>>
1778    where
1779        R: Send + 'static,
1780    {
1781        if self.executor.is_main_thread() {
1782            let cx = unsafe { mem::transmute::<&mut Self, &mut MainThread<Self>>(self) };
1783            Task::ready(Ok(f(view, cx)))
1784        } else {
1785            let view = self.view().upgrade().unwrap();
1786            self.window_cx.run_on_main(move |cx| view.update(cx, f))
1787        }
1788    }
1789
1790    pub fn spawn<Fut, R>(
1791        &mut self,
1792        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut + Send + 'static,
1793    ) -> Task<R>
1794    where
1795        R: Send + 'static,
1796        Fut: Future<Output = R> + Send + 'static,
1797    {
1798        let view = self.view();
1799        self.window_cx.spawn(move |_, cx| {
1800            let result = f(view, cx);
1801            async move { result.await }
1802        })
1803    }
1804
1805    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
1806    where
1807        G: 'static + Send,
1808    {
1809        let mut global = self.app.lease_global::<G>();
1810        let result = f(&mut global, self);
1811        self.app.end_global_lease(global);
1812        result
1813    }
1814
1815    pub fn observe_global<G: 'static>(
1816        &mut self,
1817        f: impl Fn(&mut V, &mut ViewContext<'_, '_, V>) + Send + 'static,
1818    ) -> Subscription {
1819        let window_id = self.window.handle.id;
1820        let handle = self.view();
1821        self.global_observers.insert(
1822            TypeId::of::<G>(),
1823            Box::new(move |cx| {
1824                cx.update_window(window_id, |cx| {
1825                    handle.update(cx, |view, cx| f(view, cx)).is_ok()
1826                })
1827                .unwrap_or(false)
1828            }),
1829        )
1830    }
1831
1832    pub fn on_mouse_event<Event: 'static>(
1833        &mut self,
1834        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + Send + 'static,
1835    ) {
1836        let handle = self.view().upgrade().unwrap();
1837        self.window_cx.on_mouse_event(move |event, phase, cx| {
1838            handle.update(cx, |view, cx| {
1839                handler(view, event, phase, cx);
1840            })
1841        });
1842    }
1843}
1844
1845impl<'a, 'w, V> ViewContext<'a, 'w, V>
1846where
1847    V: EventEmitter,
1848    V::Event: Any + Send,
1849{
1850    pub fn emit(&mut self, event: V::Event) {
1851        let emitter = self.view.state.entity_id;
1852        self.app.push_effect(Effect::Emit {
1853            emitter,
1854            event: Box::new(event),
1855        });
1856    }
1857}
1858
1859impl<'a, 'w, V> Context for ViewContext<'a, 'w, V> {
1860    type ModelContext<'b, U> = ModelContext<'b, U>;
1861    type Result<U> = U;
1862
1863    fn build_model<T>(
1864        &mut self,
1865        build_model: impl FnOnce(&mut Self::ModelContext<'_, T>) -> T,
1866    ) -> Model<T>
1867    where
1868        T: 'static + Send,
1869    {
1870        self.window_cx.build_model(build_model)
1871    }
1872
1873    fn update_entity<T: 'static, R>(
1874        &mut self,
1875        model: &Model<T>,
1876        update: impl FnOnce(&mut T, &mut Self::ModelContext<'_, T>) -> R,
1877    ) -> R {
1878        self.window_cx.update_entity(model, update)
1879    }
1880}
1881
1882impl<V: 'static> VisualContext for ViewContext<'_, '_, V> {
1883    type ViewContext<'a, 'w, V2> = ViewContext<'a, 'w, V2>;
1884
1885    fn build_view<E, V2>(
1886        &mut self,
1887        build_view: impl FnOnce(&mut Self::ViewContext<'_, '_, V2>) -> V2,
1888        render: impl Fn(&mut V2, &mut ViewContext<'_, '_, V2>) -> E + Send + 'static,
1889    ) -> Self::Result<View<V2>>
1890    where
1891        E: crate::Component<V2>,
1892        V2: 'static + Send,
1893    {
1894        self.window_cx.build_view(build_view, render)
1895    }
1896
1897    fn update_view<V2: 'static, R>(
1898        &mut self,
1899        view: &View<V2>,
1900        update: impl FnOnce(&mut V2, &mut Self::ViewContext<'_, '_, V2>) -> R,
1901    ) -> Self::Result<R> {
1902        self.window_cx.update_view(view, update)
1903    }
1904}
1905
1906impl<'a, 'w, V> std::ops::Deref for ViewContext<'a, 'w, V> {
1907    type Target = WindowContext<'a, 'w>;
1908
1909    fn deref(&self) -> &Self::Target {
1910        &self.window_cx
1911    }
1912}
1913
1914impl<'a, 'w, V> std::ops::DerefMut for ViewContext<'a, 'w, V> {
1915    fn deref_mut(&mut self) -> &mut Self::Target {
1916        &mut self.window_cx
1917    }
1918}
1919
1920// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
1921slotmap::new_key_type! { pub struct WindowId; }
1922
1923impl WindowId {
1924    pub fn as_u64(&self) -> u64 {
1925        self.0.as_ffi()
1926    }
1927}
1928
1929#[derive(PartialEq, Eq)]
1930pub struct WindowHandle<V> {
1931    id: WindowId,
1932    state_type: PhantomData<V>,
1933}
1934
1935impl<S> Copy for WindowHandle<S> {}
1936
1937impl<S> Clone for WindowHandle<S> {
1938    fn clone(&self) -> Self {
1939        WindowHandle {
1940            id: self.id,
1941            state_type: PhantomData,
1942        }
1943    }
1944}
1945
1946impl<S> WindowHandle<S> {
1947    pub fn new(id: WindowId) -> Self {
1948        WindowHandle {
1949            id,
1950            state_type: PhantomData,
1951        }
1952    }
1953}
1954
1955impl<S: 'static> Into<AnyWindowHandle> for WindowHandle<S> {
1956    fn into(self) -> AnyWindowHandle {
1957        AnyWindowHandle {
1958            id: self.id,
1959            state_type: TypeId::of::<S>(),
1960        }
1961    }
1962}
1963
1964#[derive(Copy, Clone, PartialEq, Eq)]
1965pub struct AnyWindowHandle {
1966    pub(crate) id: WindowId,
1967    state_type: TypeId,
1968}
1969
1970impl AnyWindowHandle {
1971    pub fn window_id(&self) -> WindowId {
1972        self.id
1973    }
1974}
1975
1976#[cfg(any(test, feature = "test-support"))]
1977impl From<SmallVec<[u32; 16]>> for StackingOrder {
1978    fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
1979        StackingOrder(small_vec)
1980    }
1981}
1982
1983#[derive(Clone, Debug, Eq, PartialEq, Hash)]
1984pub enum ElementId {
1985    View(EntityId),
1986    Number(usize),
1987    Name(SharedString),
1988    FocusHandle(FocusId),
1989}
1990
1991impl From<EntityId> for ElementId {
1992    fn from(id: EntityId) -> Self {
1993        ElementId::View(id)
1994    }
1995}
1996
1997impl From<usize> for ElementId {
1998    fn from(id: usize) -> Self {
1999        ElementId::Number(id)
2000    }
2001}
2002
2003impl From<i32> for ElementId {
2004    fn from(id: i32) -> Self {
2005        Self::Number(id as usize)
2006    }
2007}
2008
2009impl From<SharedString> for ElementId {
2010    fn from(name: SharedString) -> Self {
2011        ElementId::Name(name)
2012    }
2013}
2014
2015impl From<&'static str> for ElementId {
2016    fn from(name: &'static str) -> Self {
2017        ElementId::Name(name.into())
2018    }
2019}
2020
2021impl<'a> From<&'a FocusHandle> for ElementId {
2022    fn from(handle: &'a FocusHandle) -> Self {
2023        ElementId::FocusHandle(handle.id)
2024    }
2025}