key_dispatch.rs

  1/// KeyDispatch is where GPUI deals with binding actions to key events.
  2///
  3/// The key pieces to making a key binding work are to define an action,
  4/// implement a method that takes that action as a type parameter,
  5/// and then to register the action during render on a focused node
  6/// with a keymap context:
  7///
  8/// ```rust
  9/// actions!(editor,[Undo, Redo]);
 10///
 11/// impl Editor {
 12///   fn undo(&mut self, _: &Undo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
 13///   fn redo(&mut self, _: &Redo, _window: &mut Window, _cx: &mut Context<Self>) { ... }
 14/// }
 15///
 16/// impl Render for Editor {
 17///   fn render(&mut self, window: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
 18///     div()
 19///       .track_focus(&self.focus_handle(cx))
 20///       .key_context("Editor")
 21///       .on_action(cx.listener(Editor::undo))
 22///       .on_action(cx.listener(Editor::redo))
 23///     ...
 24///    }
 25/// }
 26///```
 27///
 28/// The keybindings themselves are managed independently by calling cx.bind_keys().
 29/// (Though mostly when developing Zed itself, you just need to add a new line to
 30///  assets/keymaps/default-{platform}.json).
 31///
 32/// ```rust
 33/// cx.bind_keys([
 34///   KeyBinding::new("cmd-z", Editor::undo, Some("Editor")),
 35///   KeyBinding::new("cmd-shift-z", Editor::redo, Some("Editor")),
 36/// ])
 37/// ```
 38///
 39/// With all of this in place, GPUI will ensure that if you have an Editor that contains
 40/// the focus, hitting cmd-z will Undo.
 41///
 42/// In real apps, it is a little more complicated than this, because typically you have
 43/// several nested views that each register keyboard handlers. In this case action matching
 44/// bubbles up from the bottom. For example in Zed, the Workspace is the top-level view, which contains Pane's, which contain Editors. If there are conflicting keybindings defined
 45/// then the Editor's bindings take precedence over the Pane's bindings, which take precedence over the Workspace.
 46///
 47/// In GPUI, keybindings are not limited to just single keystrokes, you can define
 48/// sequences by separating the keys with a space:
 49///
 50///  KeyBinding::new("cmd-k left", pane::SplitLeft, Some("Pane"))
 51///
 52use crate::{
 53    Action, ActionRegistry, App, DispatchPhase, EntityId, FocusId, KeyBinding, KeyContext, Keymap,
 54    Keystroke, ModifiersChangedEvent, Window,
 55};
 56use collections::FxHashMap;
 57use smallvec::SmallVec;
 58use std::{
 59    any::{Any, TypeId},
 60    cell::RefCell,
 61    mem,
 62    ops::Range,
 63    rc::Rc,
 64};
 65
 66#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
 67pub(crate) struct DispatchNodeId(usize);
 68
 69pub(crate) struct DispatchTree {
 70    node_stack: Vec<DispatchNodeId>,
 71    pub(crate) context_stack: Vec<KeyContext>,
 72    view_stack: Vec<EntityId>,
 73    nodes: Vec<DispatchNode>,
 74    focusable_node_ids: FxHashMap<FocusId, DispatchNodeId>,
 75    view_node_ids: FxHashMap<EntityId, DispatchNodeId>,
 76    keymap: Rc<RefCell<Keymap>>,
 77    action_registry: Rc<ActionRegistry>,
 78}
 79
 80#[derive(Default)]
 81pub(crate) struct DispatchNode {
 82    pub key_listeners: Vec<KeyListener>,
 83    pub action_listeners: Vec<DispatchActionListener>,
 84    pub modifiers_changed_listeners: Vec<ModifiersChangedListener>,
 85    pub context: Option<KeyContext>,
 86    pub focus_id: Option<FocusId>,
 87    view_id: Option<EntityId>,
 88    parent: Option<DispatchNodeId>,
 89}
 90
 91pub(crate) struct ReusedSubtree {
 92    old_range: Range<usize>,
 93    new_range: Range<usize>,
 94    contains_focus: bool,
 95}
 96
 97impl ReusedSubtree {
 98    pub fn refresh_node_id(&self, node_id: DispatchNodeId) -> DispatchNodeId {
 99        debug_assert!(
100            self.old_range.contains(&node_id.0),
101            "node {} was not part of the reused subtree {:?}",
102            node_id.0,
103            self.old_range
104        );
105        DispatchNodeId((node_id.0 - self.old_range.start) + self.new_range.start)
106    }
107
108    pub fn contains_focus(&self) -> bool {
109        self.contains_focus
110    }
111}
112
113#[derive(Default, Debug)]
114pub(crate) struct Replay {
115    pub(crate) keystroke: Keystroke,
116    pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
117}
118
119#[derive(Default, Debug)]
120pub(crate) struct DispatchResult {
121    pub(crate) pending: SmallVec<[Keystroke; 1]>,
122    pub(crate) bindings: SmallVec<[KeyBinding; 1]>,
123    pub(crate) to_replay: SmallVec<[Replay; 1]>,
124    pub(crate) context_stack: Vec<KeyContext>,
125}
126
127type KeyListener = Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>;
128type ModifiersChangedListener = Rc<dyn Fn(&ModifiersChangedEvent, &mut Window, &mut App)>;
129
130#[derive(Clone)]
131pub(crate) struct DispatchActionListener {
132    pub(crate) action_type: TypeId,
133    pub(crate) listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
134}
135
136impl DispatchTree {
137    pub fn new(keymap: Rc<RefCell<Keymap>>, action_registry: Rc<ActionRegistry>) -> Self {
138        Self {
139            node_stack: Vec::new(),
140            context_stack: Vec::new(),
141            view_stack: Vec::new(),
142            nodes: Vec::new(),
143            focusable_node_ids: FxHashMap::default(),
144            view_node_ids: FxHashMap::default(),
145            keymap,
146            action_registry,
147        }
148    }
149
150    pub fn clear(&mut self) {
151        self.node_stack.clear();
152        self.context_stack.clear();
153        self.view_stack.clear();
154        self.nodes.clear();
155        self.focusable_node_ids.clear();
156        self.view_node_ids.clear();
157    }
158
159    pub fn len(&self) -> usize {
160        self.nodes.len()
161    }
162
163    pub fn push_node(&mut self) -> DispatchNodeId {
164        let parent = self.node_stack.last().copied();
165        let node_id = DispatchNodeId(self.nodes.len());
166
167        self.nodes.push(DispatchNode {
168            parent,
169            ..Default::default()
170        });
171        self.node_stack.push(node_id);
172        node_id
173    }
174
175    pub fn set_active_node(&mut self, node_id: DispatchNodeId) {
176        let next_node_parent = self.nodes[node_id.0].parent;
177        while self.node_stack.last().copied() != next_node_parent && !self.node_stack.is_empty() {
178            self.pop_node();
179        }
180
181        if self.node_stack.last().copied() == next_node_parent {
182            self.node_stack.push(node_id);
183            let active_node = &self.nodes[node_id.0];
184            if let Some(view_id) = active_node.view_id {
185                self.view_stack.push(view_id)
186            }
187            if let Some(context) = active_node.context.clone() {
188                self.context_stack.push(context);
189            }
190        } else {
191            debug_assert_eq!(self.node_stack.len(), 0);
192
193            let mut current_node_id = Some(node_id);
194            while let Some(node_id) = current_node_id {
195                let node = &self.nodes[node_id.0];
196                if let Some(context) = node.context.clone() {
197                    self.context_stack.push(context);
198                }
199                if node.view_id.is_some() {
200                    self.view_stack.push(node.view_id.unwrap());
201                }
202                self.node_stack.push(node_id);
203                current_node_id = node.parent;
204            }
205
206            self.context_stack.reverse();
207            self.view_stack.reverse();
208            self.node_stack.reverse();
209        }
210    }
211
212    pub fn set_key_context(&mut self, context: KeyContext) {
213        self.active_node().context = Some(context.clone());
214        self.context_stack.push(context);
215    }
216
217    pub fn set_focus_id(&mut self, focus_id: FocusId) {
218        let node_id = *self.node_stack.last().unwrap();
219        self.nodes[node_id.0].focus_id = Some(focus_id);
220        self.focusable_node_ids.insert(focus_id, node_id);
221    }
222
223    pub fn set_view_id(&mut self, view_id: EntityId) {
224        if self.view_stack.last().copied() != Some(view_id) {
225            let node_id = *self.node_stack.last().unwrap();
226            self.nodes[node_id.0].view_id = Some(view_id);
227            self.view_node_ids.insert(view_id, node_id);
228            self.view_stack.push(view_id);
229        }
230    }
231
232    pub fn pop_node(&mut self) {
233        let node = &self.nodes[self.active_node_id().unwrap().0];
234        if node.context.is_some() {
235            self.context_stack.pop();
236        }
237        if node.view_id.is_some() {
238            self.view_stack.pop();
239        }
240        self.node_stack.pop();
241    }
242
243    fn move_node(&mut self, source: &mut DispatchNode) {
244        self.push_node();
245        if let Some(context) = source.context.clone() {
246            self.set_key_context(context);
247        }
248        if let Some(focus_id) = source.focus_id {
249            self.set_focus_id(focus_id);
250        }
251        if let Some(view_id) = source.view_id {
252            self.set_view_id(view_id);
253        }
254
255        let target = self.active_node();
256        target.key_listeners = mem::take(&mut source.key_listeners);
257        target.action_listeners = mem::take(&mut source.action_listeners);
258        target.modifiers_changed_listeners = mem::take(&mut source.modifiers_changed_listeners);
259    }
260
261    pub fn reuse_subtree(
262        &mut self,
263        old_range: Range<usize>,
264        source: &mut Self,
265        focus: Option<FocusId>,
266    ) -> ReusedSubtree {
267        let new_range = self.nodes.len()..self.nodes.len() + old_range.len();
268
269        let mut contains_focus = false;
270        let mut source_stack = vec![];
271        for (source_node_id, source_node) in source
272            .nodes
273            .iter_mut()
274            .enumerate()
275            .skip(old_range.start)
276            .take(old_range.len())
277        {
278            let source_node_id = DispatchNodeId(source_node_id);
279            while let Some(source_ancestor) = source_stack.last() {
280                if source_node.parent == Some(*source_ancestor) {
281                    break;
282                } else {
283                    source_stack.pop();
284                    self.pop_node();
285                }
286            }
287
288            source_stack.push(source_node_id);
289            if source_node.focus_id.is_some() && source_node.focus_id == focus {
290                contains_focus = true;
291            }
292            self.move_node(source_node);
293        }
294
295        while !source_stack.is_empty() {
296            source_stack.pop();
297            self.pop_node();
298        }
299
300        ReusedSubtree {
301            old_range,
302            new_range,
303            contains_focus,
304        }
305    }
306
307    pub fn truncate(&mut self, index: usize) {
308        for node in &self.nodes[index..] {
309            if let Some(focus_id) = node.focus_id {
310                self.focusable_node_ids.remove(&focus_id);
311            }
312
313            if let Some(view_id) = node.view_id {
314                self.view_node_ids.remove(&view_id);
315            }
316        }
317        self.nodes.truncate(index);
318    }
319
320    pub fn on_key_event(&mut self, listener: KeyListener) {
321        self.active_node().key_listeners.push(listener);
322    }
323
324    pub fn on_modifiers_changed(&mut self, listener: ModifiersChangedListener) {
325        self.active_node()
326            .modifiers_changed_listeners
327            .push(listener);
328    }
329
330    pub fn on_action(
331        &mut self,
332        action_type: TypeId,
333        listener: Rc<dyn Fn(&dyn Any, DispatchPhase, &mut Window, &mut App)>,
334    ) {
335        self.active_node()
336            .action_listeners
337            .push(DispatchActionListener {
338                action_type,
339                listener,
340            });
341    }
342
343    pub fn focus_contains(&self, parent: FocusId, child: FocusId) -> bool {
344        if parent == child {
345            return true;
346        }
347
348        if let Some(parent_node_id) = self.focusable_node_ids.get(&parent) {
349            let mut current_node_id = self.focusable_node_ids.get(&child).copied();
350            while let Some(node_id) = current_node_id {
351                if node_id == *parent_node_id {
352                    return true;
353                }
354                current_node_id = self.nodes[node_id.0].parent;
355            }
356        }
357        false
358    }
359
360    pub fn available_actions(&self, target: DispatchNodeId) -> Vec<Box<dyn Action>> {
361        let mut actions = Vec::<Box<dyn Action>>::new();
362        for node_id in self.dispatch_path(target) {
363            let node = &self.nodes[node_id.0];
364            for DispatchActionListener { action_type, .. } in &node.action_listeners {
365                if let Err(ix) = actions.binary_search_by_key(action_type, |a| a.as_any().type_id())
366                {
367                    // Intentionally silence these errors without logging.
368                    // If an action cannot be built by default, it's not available.
369                    let action = self.action_registry.build_action_type(action_type).ok();
370                    if let Some(action) = action {
371                        actions.insert(ix, action);
372                    }
373                }
374            }
375        }
376        actions
377    }
378
379    pub fn is_action_available(&self, action: &dyn Action, target: DispatchNodeId) -> bool {
380        for node_id in self.dispatch_path(target) {
381            let node = &self.nodes[node_id.0];
382            if node
383                .action_listeners
384                .iter()
385                .any(|listener| listener.action_type == action.as_any().type_id())
386            {
387                return true;
388            }
389        }
390        false
391    }
392
393    /// Returns key bindings that invoke an action on the currently focused element. Bindings are
394    /// returned in the order they were added. For display, the last binding should take precedence.
395    pub fn bindings_for_action(
396        &self,
397        action: &dyn Action,
398        context_stack: &[KeyContext],
399    ) -> Vec<KeyBinding> {
400        let keymap = self.keymap.borrow();
401        keymap
402            .bindings_for_action(action)
403            .filter(|binding| {
404                let (bindings, _) = keymap.bindings_for_input(&binding.keystrokes, context_stack);
405                bindings.iter().any(|b| b.action.partial_eq(action))
406            })
407            .cloned()
408            .collect()
409    }
410
411    fn bindings_for_input(
412        &self,
413        input: &[Keystroke],
414        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
415    ) -> (SmallVec<[KeyBinding; 1]>, bool, Vec<KeyContext>) {
416        let context_stack: Vec<KeyContext> = dispatch_path
417            .iter()
418            .filter_map(|node_id| self.node(*node_id).context.clone())
419            .collect();
420
421        let (bindings, partial) = self
422            .keymap
423            .borrow()
424            .bindings_for_input(input, &context_stack);
425        return (bindings, partial, context_stack);
426    }
427
428    /// dispatch_key processes the keystroke
429    /// input should be set to the value of `pending` from the previous call to dispatch_key.
430    /// This returns three instructions to the input handler:
431    /// - bindings: any bindings to execute before processing this keystroke
432    /// - pending: the new set of pending keystrokes to store
433    /// - to_replay: any keystroke that had been pushed to pending, but are no-longer matched,
434    ///   these should be replayed first.
435    pub fn dispatch_key(
436        &mut self,
437        mut input: SmallVec<[Keystroke; 1]>,
438        keystroke: Keystroke,
439        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
440    ) -> DispatchResult {
441        input.push(keystroke.clone());
442        let (bindings, pending, context_stack) = self.bindings_for_input(&input, dispatch_path);
443
444        if pending {
445            return DispatchResult {
446                pending: input,
447                context_stack,
448                ..Default::default()
449            };
450        } else if !bindings.is_empty() {
451            return DispatchResult {
452                bindings,
453                context_stack,
454                ..Default::default()
455            };
456        } else if input.len() == 1 {
457            return DispatchResult {
458                context_stack,
459                ..Default::default()
460            };
461        }
462        input.pop();
463
464        let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
465
466        let mut result = self.dispatch_key(suffix, keystroke, dispatch_path);
467        to_replay.extend(result.to_replay);
468        result.to_replay = to_replay;
469        result
470    }
471
472    /// If the user types a matching prefix of a binding and then waits for a timeout
473    /// flush_dispatch() converts any previously pending input to replay events.
474    pub fn flush_dispatch(
475        &mut self,
476        input: SmallVec<[Keystroke; 1]>,
477        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
478    ) -> SmallVec<[Replay; 1]> {
479        let (suffix, mut to_replay) = self.replay_prefix(input, dispatch_path);
480
481        if !suffix.is_empty() {
482            to_replay.extend(self.flush_dispatch(suffix, dispatch_path))
483        }
484
485        to_replay
486    }
487
488    /// Converts the longest prefix of input to a replay event and returns the rest.
489    fn replay_prefix(
490        &self,
491        mut input: SmallVec<[Keystroke; 1]>,
492        dispatch_path: &SmallVec<[DispatchNodeId; 32]>,
493    ) -> (SmallVec<[Keystroke; 1]>, SmallVec<[Replay; 1]>) {
494        let mut to_replay: SmallVec<[Replay; 1]> = Default::default();
495        for last in (0..input.len()).rev() {
496            let (bindings, _, _) = self.bindings_for_input(&input[0..=last], dispatch_path);
497            if !bindings.is_empty() {
498                to_replay.push(Replay {
499                    keystroke: input.drain(0..=last).next_back().unwrap(),
500                    bindings,
501                });
502                break;
503            }
504        }
505        if to_replay.is_empty() {
506            to_replay.push(Replay {
507                keystroke: input.remove(0),
508                ..Default::default()
509            });
510        }
511        (input, to_replay)
512    }
513
514    pub fn dispatch_path(&self, target: DispatchNodeId) -> SmallVec<[DispatchNodeId; 32]> {
515        let mut dispatch_path: SmallVec<[DispatchNodeId; 32]> = SmallVec::new();
516        let mut current_node_id = Some(target);
517        while let Some(node_id) = current_node_id {
518            dispatch_path.push(node_id);
519            current_node_id = self.nodes[node_id.0].parent;
520        }
521        dispatch_path.reverse(); // Reverse the path so it goes from the root to the focused node.
522        dispatch_path
523    }
524
525    pub fn focus_path(&self, focus_id: FocusId) -> SmallVec<[FocusId; 8]> {
526        let mut focus_path: SmallVec<[FocusId; 8]> = SmallVec::new();
527        let mut current_node_id = self.focusable_node_ids.get(&focus_id).copied();
528        while let Some(node_id) = current_node_id {
529            let node = self.node(node_id);
530            if let Some(focus_id) = node.focus_id {
531                focus_path.push(focus_id);
532            }
533            current_node_id = node.parent;
534        }
535        focus_path.reverse(); // Reverse the path so it goes from the root to the focused node.
536        focus_path
537    }
538
539    pub fn view_path(&self, view_id: EntityId) -> SmallVec<[EntityId; 8]> {
540        let mut view_path: SmallVec<[EntityId; 8]> = SmallVec::new();
541        let mut current_node_id = self.view_node_ids.get(&view_id).copied();
542        while let Some(node_id) = current_node_id {
543            let node = self.node(node_id);
544            if let Some(view_id) = node.view_id {
545                view_path.push(view_id);
546            }
547            current_node_id = node.parent;
548        }
549        view_path.reverse(); // Reverse the path so it goes from the root to the view node.
550        view_path
551    }
552
553    pub fn node(&self, node_id: DispatchNodeId) -> &DispatchNode {
554        &self.nodes[node_id.0]
555    }
556
557    fn active_node(&mut self) -> &mut DispatchNode {
558        let active_node_id = self.active_node_id().unwrap();
559        &mut self.nodes[active_node_id.0]
560    }
561
562    pub fn focusable_node_id(&self, target: FocusId) -> Option<DispatchNodeId> {
563        self.focusable_node_ids.get(&target).copied()
564    }
565
566    pub fn root_node_id(&self) -> DispatchNodeId {
567        debug_assert!(!self.nodes.is_empty());
568        DispatchNodeId(0)
569    }
570
571    pub fn active_node_id(&self) -> Option<DispatchNodeId> {
572        self.node_stack.last().copied()
573    }
574}
575
576#[cfg(test)]
577mod tests {
578    use std::{cell::RefCell, rc::Rc};
579
580    use crate::{Action, ActionRegistry, DispatchTree, KeyBinding, KeyContext, Keymap};
581
582    #[derive(PartialEq, Eq)]
583    struct TestAction;
584
585    impl Action for TestAction {
586        fn name(&self) -> &'static str {
587            "test::TestAction"
588        }
589
590        fn debug_name() -> &'static str
591        where
592            Self: ::std::marker::Sized,
593        {
594            "test::TestAction"
595        }
596
597        fn partial_eq(&self, action: &dyn Action) -> bool {
598            action
599                .as_any()
600                .downcast_ref::<Self>()
601                .map_or(false, |a| self == a)
602        }
603
604        fn boxed_clone(&self) -> std::boxed::Box<dyn Action> {
605            Box::new(TestAction)
606        }
607
608        fn build(_value: serde_json::Value) -> anyhow::Result<Box<dyn Action>>
609        where
610            Self: Sized,
611        {
612            Ok(Box::new(TestAction))
613        }
614    }
615
616    #[test]
617    fn test_keybinding_for_action_bounds() {
618        let keymap = Keymap::new(vec![KeyBinding::new(
619            "cmd-n",
620            TestAction,
621            Some("ProjectPanel"),
622        )]);
623
624        let mut registry = ActionRegistry::default();
625
626        registry.load_action::<TestAction>();
627
628        let keymap = Rc::new(RefCell::new(keymap));
629
630        let tree = DispatchTree::new(keymap, Rc::new(registry));
631
632        let contexts = vec![
633            KeyContext::parse("Workspace").unwrap(),
634            KeyContext::parse("ProjectPanel").unwrap(),
635        ];
636
637        let keybinding = tree.bindings_for_action(&TestAction, &contexts);
638
639        assert!(keybinding[0].action.partial_eq(&TestAction))
640    }
641}