window.rs

   1#![deny(missing_docs)]
   2
   3use crate::{
   4    px, size, transparent_black, Action, AnyDrag, AnyView, AppContext, Arena, ArenaBox, ArenaRef,
   5    AsyncWindowContext, AvailableSpace, Bounds, BoxShadow, Context, Corners, CursorStyle,
   6    DevicePixels, DispatchActionListener, DispatchNodeId, DispatchTree, DisplayId, Edges, Effect,
   7    Entity, EntityId, EventEmitter, FileDropEvent, Flatten, FontId, GlobalElementId, GlyphId, Hsla,
   8    ImageData, InputEvent, IsZero, KeyBinding, KeyContext, KeyDownEvent, KeystrokeEvent, LayoutId,
   9    Model, ModelContext, Modifiers, MonochromeSprite, MouseButton, MouseMoveEvent, MouseUpEvent,
  10    Path, Pixels, PlatformAtlas, PlatformDisplay, PlatformInputHandler, PlatformWindow, Point,
  11    PolychromeSprite, PromptLevel, Quad, Render, RenderGlyphParams, RenderImageParams,
  12    RenderSvgParams, ScaledPixels, Scene, SceneBuilder, Shadow, SharedString, Size, Style,
  13    SubscriberSet, Subscription, Surface, TaffyLayoutEngine, Task, Underline, UnderlineStyle, View,
  14    VisualContext, WeakView, WindowBounds, WindowOptions, SUBPIXEL_VARIANTS,
  15};
  16use anyhow::{anyhow, Context as _, Result};
  17use collections::FxHashMap;
  18use derive_more::{Deref, DerefMut};
  19use futures::{
  20    channel::{mpsc, oneshot},
  21    StreamExt,
  22};
  23use media::core_video::CVImageBuffer;
  24use parking_lot::RwLock;
  25use slotmap::SlotMap;
  26use smallvec::SmallVec;
  27use std::{
  28    any::{Any, TypeId},
  29    borrow::{Borrow, BorrowMut, Cow},
  30    cell::RefCell,
  31    collections::hash_map::Entry,
  32    fmt::Debug,
  33    future::Future,
  34    hash::{Hash, Hasher},
  35    marker::PhantomData,
  36    mem,
  37    rc::Rc,
  38    sync::{
  39        atomic::{AtomicUsize, Ordering::SeqCst},
  40        Arc,
  41    },
  42};
  43use util::{post_inc, ResultExt};
  44
  45const ACTIVE_DRAG_Z_INDEX: u8 = 1;
  46
  47/// A global stacking order, which is created by stacking successive z-index values.
  48/// Each z-index will always be interpreted in the context of its parent z-index.
  49#[derive(Deref, DerefMut, Clone, Ord, PartialOrd, PartialEq, Eq, Default)]
  50pub struct StackingOrder {
  51    #[deref]
  52    #[deref_mut]
  53    context_stack: SmallVec<[u8; 64]>,
  54    id: u32,
  55}
  56
  57impl std::fmt::Debug for StackingOrder {
  58    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
  59        let mut stacks = self.context_stack.iter().peekable();
  60        write!(f, "[({}): ", self.id)?;
  61        while let Some(z_index) = stacks.next() {
  62            write!(f, "{z_index}")?;
  63            if stacks.peek().is_some() {
  64                write!(f, "->")?;
  65            }
  66        }
  67        write!(f, "]")?;
  68        Ok(())
  69    }
  70}
  71
  72/// Represents the two different phases when dispatching events.
  73#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)]
  74pub enum DispatchPhase {
  75    /// After the capture phase comes the bubble phase, in which mouse event listeners are
  76    /// invoked front to back and keyboard event listeners are invoked from the focused element
  77    /// to the root of the element tree. This is the phase you'll most commonly want to use when
  78    /// registering event listeners.
  79    #[default]
  80    Bubble,
  81    /// During the initial capture phase, mouse event listeners are invoked back to front, and keyboard
  82    /// listeners are invoked from the root of the tree downward toward the focused element. This phase
  83    /// is used for special purposes such as clearing the "pressed" state for click events. If
  84    /// you stop event propagation during this phase, you need to know what you're doing. Handlers
  85    /// outside of the immediate region may rely on detecting non-local events during this phase.
  86    Capture,
  87}
  88
  89impl DispatchPhase {
  90    /// Returns true if this represents the "bubble" phase.
  91    pub fn bubble(self) -> bool {
  92        self == DispatchPhase::Bubble
  93    }
  94
  95    /// Returns true if this represents the "capture" phase.
  96    pub fn capture(self) -> bool {
  97        self == DispatchPhase::Capture
  98    }
  99}
 100
 101type AnyObserver = Box<dyn FnMut(&mut WindowContext) -> bool + 'static>;
 102type AnyMouseListener = ArenaBox<dyn FnMut(&dyn Any, DispatchPhase, &mut WindowContext) + 'static>;
 103type AnyWindowFocusListener = Box<dyn FnMut(&FocusEvent, &mut WindowContext) -> bool + 'static>;
 104
 105struct FocusEvent {
 106    previous_focus_path: SmallVec<[FocusId; 8]>,
 107    current_focus_path: SmallVec<[FocusId; 8]>,
 108}
 109
 110slotmap::new_key_type! {
 111    /// A globally unique identifier for a focusable element.
 112    pub struct FocusId;
 113}
 114
 115thread_local! {
 116    pub(crate) static ELEMENT_ARENA: RefCell<Arena> = RefCell::new(Arena::new(4 * 1024 * 1024));
 117}
 118
 119impl FocusId {
 120    /// Obtains whether the element associated with this handle is currently focused.
 121    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 122        cx.window.focus == Some(*self)
 123    }
 124
 125    /// Obtains whether the element associated with this handle contains the focused
 126    /// element or is itself focused.
 127    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 128        cx.focused()
 129            .map_or(false, |focused| self.contains(focused.id, cx))
 130    }
 131
 132    /// Obtains whether the element associated with this handle is contained within the
 133    /// focused element or is itself focused.
 134    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 135        let focused = cx.focused();
 136        focused.map_or(false, |focused| focused.id.contains(*self, cx))
 137    }
 138
 139    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 140    pub(crate) fn contains(&self, other: Self, cx: &WindowContext) -> bool {
 141        cx.window
 142            .rendered_frame
 143            .dispatch_tree
 144            .focus_contains(*self, other)
 145    }
 146}
 147
 148/// A handle which can be used to track and manipulate the focused element in a window.
 149pub struct FocusHandle {
 150    pub(crate) id: FocusId,
 151    handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 152}
 153
 154impl std::fmt::Debug for FocusHandle {
 155    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 156        f.write_fmt(format_args!("FocusHandle({:?})", self.id))
 157    }
 158}
 159
 160impl FocusHandle {
 161    pub(crate) fn new(handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>) -> Self {
 162        let id = handles.write().insert(AtomicUsize::new(1));
 163        Self {
 164            id,
 165            handles: handles.clone(),
 166        }
 167    }
 168
 169    pub(crate) fn for_id(
 170        id: FocusId,
 171        handles: &Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 172    ) -> Option<Self> {
 173        let lock = handles.read();
 174        let ref_count = lock.get(id)?;
 175        if ref_count.load(SeqCst) == 0 {
 176            None
 177        } else {
 178            ref_count.fetch_add(1, SeqCst);
 179            Some(Self {
 180                id,
 181                handles: handles.clone(),
 182            })
 183        }
 184    }
 185
 186    /// Moves the focus to the element associated with this handle.
 187    pub fn focus(&self, cx: &mut WindowContext) {
 188        cx.focus(self)
 189    }
 190
 191    /// Obtains whether the element associated with this handle is currently focused.
 192    pub fn is_focused(&self, cx: &WindowContext) -> bool {
 193        self.id.is_focused(cx)
 194    }
 195
 196    /// Obtains whether the element associated with this handle contains the focused
 197    /// element or is itself focused.
 198    pub fn contains_focused(&self, cx: &WindowContext) -> bool {
 199        self.id.contains_focused(cx)
 200    }
 201
 202    /// Obtains whether the element associated with this handle is contained within the
 203    /// focused element or is itself focused.
 204    pub fn within_focused(&self, cx: &WindowContext) -> bool {
 205        self.id.within_focused(cx)
 206    }
 207
 208    /// Obtains whether this handle contains the given handle in the most recently rendered frame.
 209    pub fn contains(&self, other: &Self, cx: &WindowContext) -> bool {
 210        self.id.contains(other.id, cx)
 211    }
 212}
 213
 214impl Clone for FocusHandle {
 215    fn clone(&self) -> Self {
 216        Self::for_id(self.id, &self.handles).unwrap()
 217    }
 218}
 219
 220impl PartialEq for FocusHandle {
 221    fn eq(&self, other: &Self) -> bool {
 222        self.id == other.id
 223    }
 224}
 225
 226impl Eq for FocusHandle {}
 227
 228impl Drop for FocusHandle {
 229    fn drop(&mut self) {
 230        self.handles
 231            .read()
 232            .get(self.id)
 233            .unwrap()
 234            .fetch_sub(1, SeqCst);
 235    }
 236}
 237
 238/// FocusableView allows users of your view to easily
 239/// focus it (using cx.focus_view(view))
 240pub trait FocusableView: 'static + Render {
 241    /// Returns the focus handle associated with this view.
 242    fn focus_handle(&self, cx: &AppContext) -> FocusHandle;
 243}
 244
 245/// ManagedView is a view (like a Modal, Popover, Menu, etc.)
 246/// where the lifecycle of the view is handled by another view.
 247pub trait ManagedView: FocusableView + EventEmitter<DismissEvent> {}
 248
 249impl<M: FocusableView + EventEmitter<DismissEvent>> ManagedView for M {}
 250
 251/// Emitted by implementers of [`ManagedView`] to indicate the view should be dismissed, such as when a view is presented as a modal.
 252pub struct DismissEvent;
 253
 254// Holds the state for a specific window.
 255#[doc(hidden)]
 256pub struct Window {
 257    pub(crate) handle: AnyWindowHandle,
 258    pub(crate) removed: bool,
 259    pub(crate) platform_window: Box<dyn PlatformWindow>,
 260    display_id: DisplayId,
 261    sprite_atlas: Arc<dyn PlatformAtlas>,
 262    rem_size: Pixels,
 263    viewport_size: Size<Pixels>,
 264    layout_engine: Option<TaffyLayoutEngine>,
 265    pub(crate) root_view: Option<AnyView>,
 266    pub(crate) element_id_stack: GlobalElementId,
 267    pub(crate) rendered_frame: Frame,
 268    pub(crate) next_frame: Frame,
 269    frame_arena: Arena,
 270    pub(crate) focus_handles: Arc<RwLock<SlotMap<FocusId, AtomicUsize>>>,
 271    focus_listeners: SubscriberSet<(), AnyWindowFocusListener>,
 272    focus_lost_listeners: SubscriberSet<(), AnyObserver>,
 273    default_prevented: bool,
 274    mouse_position: Point<Pixels>,
 275    modifiers: Modifiers,
 276    requested_cursor_style: Option<CursorStyle>,
 277    scale_factor: f32,
 278    bounds: WindowBounds,
 279    bounds_observers: SubscriberSet<(), AnyObserver>,
 280    active: bool,
 281    pub(crate) dirty: bool,
 282    pub(crate) drawing: bool,
 283    activation_observers: SubscriberSet<(), AnyObserver>,
 284    pub(crate) focus: Option<FocusId>,
 285    focus_enabled: bool,
 286
 287    #[cfg(any(test, feature = "test-support"))]
 288    pub(crate) focus_invalidated: bool,
 289}
 290
 291pub(crate) struct ElementStateBox {
 292    inner: Box<dyn Any>,
 293    #[cfg(debug_assertions)]
 294    type_name: &'static str,
 295}
 296
 297pub(crate) struct Frame {
 298    focus: Option<FocusId>,
 299    window_active: bool,
 300    pub(crate) element_states: FxHashMap<GlobalElementId, ElementStateBox>,
 301    mouse_listeners: FxHashMap<TypeId, Vec<(StackingOrder, AnyMouseListener)>>,
 302    pub(crate) dispatch_tree: DispatchTree,
 303    pub(crate) scene_builder: SceneBuilder,
 304    pub(crate) depth_map: Vec<(StackingOrder, Bounds<Pixels>)>,
 305    pub(crate) z_index_stack: StackingOrder,
 306    pub(crate) next_stacking_order_id: u32,
 307    content_mask_stack: Vec<ContentMask<Pixels>>,
 308    element_offset_stack: Vec<Point<Pixels>>,
 309}
 310
 311impl Frame {
 312    fn new(dispatch_tree: DispatchTree) -> Self {
 313        Frame {
 314            focus: None,
 315            window_active: false,
 316            element_states: FxHashMap::default(),
 317            mouse_listeners: FxHashMap::default(),
 318            dispatch_tree,
 319            scene_builder: SceneBuilder::default(),
 320            z_index_stack: StackingOrder::default(),
 321            next_stacking_order_id: 0,
 322            depth_map: Default::default(),
 323            content_mask_stack: Vec::new(),
 324            element_offset_stack: Vec::new(),
 325        }
 326    }
 327
 328    fn clear(&mut self) {
 329        self.element_states.clear();
 330        self.mouse_listeners.values_mut().for_each(Vec::clear);
 331        self.dispatch_tree.clear();
 332        self.depth_map.clear();
 333        self.next_stacking_order_id = 0;
 334    }
 335
 336    fn focus_path(&self) -> SmallVec<[FocusId; 8]> {
 337        self.focus
 338            .map(|focus_id| self.dispatch_tree.focus_path(focus_id))
 339            .unwrap_or_default()
 340    }
 341}
 342
 343impl Window {
 344    pub(crate) fn new(
 345        handle: AnyWindowHandle,
 346        options: WindowOptions,
 347        cx: &mut AppContext,
 348    ) -> Self {
 349        let platform_window = cx.platform.open_window(
 350            handle,
 351            options,
 352            Box::new({
 353                let mut cx = cx.to_async();
 354                move || handle.update(&mut cx, |_, cx| cx.draw())
 355            }),
 356        );
 357        let display_id = platform_window.display().id();
 358        let sprite_atlas = platform_window.sprite_atlas();
 359        let mouse_position = platform_window.mouse_position();
 360        let modifiers = platform_window.modifiers();
 361        let content_size = platform_window.content_size();
 362        let scale_factor = platform_window.scale_factor();
 363        let bounds = platform_window.bounds();
 364
 365        platform_window.on_resize(Box::new({
 366            let mut cx = cx.to_async();
 367            move |_, _| {
 368                handle
 369                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 370                    .log_err();
 371            }
 372        }));
 373        platform_window.on_moved(Box::new({
 374            let mut cx = cx.to_async();
 375            move || {
 376                handle
 377                    .update(&mut cx, |_, cx| cx.window_bounds_changed())
 378                    .log_err();
 379            }
 380        }));
 381        platform_window.on_active_status_change(Box::new({
 382            let mut cx = cx.to_async();
 383            move |active| {
 384                handle
 385                    .update(&mut cx, |_, cx| {
 386                        cx.window.active = active;
 387                        cx.window
 388                            .activation_observers
 389                            .clone()
 390                            .retain(&(), |callback| callback(cx));
 391                    })
 392                    .log_err();
 393            }
 394        }));
 395
 396        platform_window.on_input({
 397            let mut cx = cx.to_async();
 398            Box::new(move |event| {
 399                handle
 400                    .update(&mut cx, |_, cx| cx.dispatch_event(event))
 401                    .log_err()
 402                    .unwrap_or(false)
 403            })
 404        });
 405
 406        Window {
 407            handle,
 408            removed: false,
 409            platform_window,
 410            display_id,
 411            sprite_atlas,
 412            rem_size: px(16.),
 413            viewport_size: content_size,
 414            layout_engine: Some(TaffyLayoutEngine::new()),
 415            root_view: None,
 416            element_id_stack: GlobalElementId::default(),
 417            rendered_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
 418            next_frame: Frame::new(DispatchTree::new(cx.keymap.clone(), cx.actions.clone())),
 419            frame_arena: Arena::new(1024 * 1024),
 420            focus_handles: Arc::new(RwLock::new(SlotMap::with_key())),
 421            focus_listeners: SubscriberSet::new(),
 422            focus_lost_listeners: SubscriberSet::new(),
 423            default_prevented: true,
 424            mouse_position,
 425            modifiers,
 426            requested_cursor_style: None,
 427            scale_factor,
 428            bounds,
 429            bounds_observers: SubscriberSet::new(),
 430            active: false,
 431            dirty: false,
 432            drawing: false,
 433            activation_observers: SubscriberSet::new(),
 434            focus: None,
 435            focus_enabled: true,
 436
 437            #[cfg(any(test, feature = "test-support"))]
 438            focus_invalidated: false,
 439        }
 440    }
 441}
 442
 443/// Indicates which region of the window is visible. Content falling outside of this mask will not be
 444/// rendered. Currently, only rectangular content masks are supported, but we give the mask its own type
 445/// to leave room to support more complex shapes in the future.
 446#[derive(Clone, Debug, Default, PartialEq, Eq)]
 447#[repr(C)]
 448pub struct ContentMask<P: Clone + Default + Debug> {
 449    /// The bounds
 450    pub bounds: Bounds<P>,
 451}
 452
 453impl ContentMask<Pixels> {
 454    /// Scale the content mask's pixel units by the given scaling factor.
 455    pub fn scale(&self, factor: f32) -> ContentMask<ScaledPixels> {
 456        ContentMask {
 457            bounds: self.bounds.scale(factor),
 458        }
 459    }
 460
 461    /// Intersect the content mask with the given content mask.
 462    pub fn intersect(&self, other: &Self) -> Self {
 463        let bounds = self.bounds.intersect(&other.bounds);
 464        ContentMask { bounds }
 465    }
 466}
 467
 468/// Provides access to application state in the context of a single window. Derefs
 469/// to an [`AppContext`], so you can also pass a [`WindowContext`] to any method that takes
 470/// an [`AppContext`] and call any [`AppContext`] methods.
 471pub struct WindowContext<'a> {
 472    pub(crate) app: &'a mut AppContext,
 473    pub(crate) window: &'a mut Window,
 474}
 475
 476impl<'a> WindowContext<'a> {
 477    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window) -> Self {
 478        Self { app, window }
 479    }
 480
 481    /// Obtain a handle to the window that belongs to this context.
 482    pub fn window_handle(&self) -> AnyWindowHandle {
 483        self.window.handle
 484    }
 485
 486    /// Mark the window as dirty, scheduling it to be redrawn on the next frame.
 487    pub fn notify(&mut self) {
 488        if !self.window.drawing {
 489            self.window.dirty = true;
 490        }
 491    }
 492
 493    /// Close this window.
 494    pub fn remove_window(&mut self) {
 495        self.window.removed = true;
 496    }
 497
 498    /// Obtain a new [`FocusHandle`], which allows you to track and manipulate the keyboard focus
 499    /// for elements rendered within this window.
 500    pub fn focus_handle(&mut self) -> FocusHandle {
 501        FocusHandle::new(&self.window.focus_handles)
 502    }
 503
 504    /// Obtain the currently focused [`FocusHandle`]. If no elements are focused, returns `None`.
 505    pub fn focused(&self) -> Option<FocusHandle> {
 506        self.window
 507            .focus
 508            .and_then(|id| FocusHandle::for_id(id, &self.window.focus_handles))
 509    }
 510
 511    /// Move focus to the element associated with the given [`FocusHandle`].
 512    pub fn focus(&mut self, handle: &FocusHandle) {
 513        if !self.window.focus_enabled || self.window.focus == Some(handle.id) {
 514            return;
 515        }
 516
 517        self.window.focus = Some(handle.id);
 518        self.window
 519            .rendered_frame
 520            .dispatch_tree
 521            .clear_pending_keystrokes();
 522
 523        #[cfg(any(test, feature = "test-support"))]
 524        {
 525            self.window.focus_invalidated = true;
 526        }
 527
 528        self.notify();
 529    }
 530
 531    /// Remove focus from all elements within this context's window.
 532    pub fn blur(&mut self) {
 533        if !self.window.focus_enabled {
 534            return;
 535        }
 536
 537        self.window.focus = None;
 538        self.notify();
 539    }
 540
 541    /// Blur the window and don't allow anything in it to be focused again.
 542    pub fn disable_focus(&mut self) {
 543        self.blur();
 544        self.window.focus_enabled = false;
 545    }
 546
 547    /// Dispatch the given action on the currently focused element.
 548    pub fn dispatch_action(&mut self, action: Box<dyn Action>) {
 549        let focus_handle = self.focused();
 550
 551        self.defer(move |cx| {
 552            let node_id = focus_handle
 553                .and_then(|handle| {
 554                    cx.window
 555                        .rendered_frame
 556                        .dispatch_tree
 557                        .focusable_node_id(handle.id)
 558                })
 559                .unwrap_or_else(|| cx.window.rendered_frame.dispatch_tree.root_node_id());
 560
 561            cx.propagate_event = true;
 562            cx.dispatch_action_on_node(node_id, action);
 563        })
 564    }
 565
 566    pub(crate) fn dispatch_keystroke_observers(
 567        &mut self,
 568        event: &dyn Any,
 569        action: Option<Box<dyn Action>>,
 570    ) {
 571        let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() else {
 572            return;
 573        };
 574
 575        self.keystroke_observers
 576            .clone()
 577            .retain(&(), move |callback| {
 578                (callback)(
 579                    &KeystrokeEvent {
 580                        keystroke: key_down_event.keystroke.clone(),
 581                        action: action.as_ref().map(|action| action.boxed_clone()),
 582                    },
 583                    self,
 584                );
 585                true
 586            });
 587    }
 588
 589    pub(crate) fn clear_pending_keystrokes(&mut self) {
 590        self.window
 591            .rendered_frame
 592            .dispatch_tree
 593            .clear_pending_keystrokes();
 594        self.window
 595            .next_frame
 596            .dispatch_tree
 597            .clear_pending_keystrokes();
 598    }
 599
 600    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
 601    /// that are currently on the stack to be returned to the app.
 602    pub fn defer(&mut self, f: impl FnOnce(&mut WindowContext) + 'static) {
 603        let handle = self.window.handle;
 604        self.app.defer(move |cx| {
 605            handle.update(cx, |_, cx| f(cx)).ok();
 606        });
 607    }
 608
 609    /// Subscribe to events emitted by a model or view.
 610    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
 611    /// The callback will be invoked a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a window context for the current window.
 612    pub fn subscribe<Emitter, E, Evt>(
 613        &mut self,
 614        entity: &E,
 615        mut on_event: impl FnMut(E, &Evt, &mut WindowContext<'_>) + 'static,
 616    ) -> Subscription
 617    where
 618        Emitter: EventEmitter<Evt>,
 619        E: Entity<Emitter>,
 620        Evt: 'static,
 621    {
 622        let entity_id = entity.entity_id();
 623        let entity = entity.downgrade();
 624        let window_handle = self.window.handle;
 625        let (subscription, activate) = self.app.event_listeners.insert(
 626            entity_id,
 627            (
 628                TypeId::of::<Evt>(),
 629                Box::new(move |event, cx| {
 630                    window_handle
 631                        .update(cx, |_, cx| {
 632                            if let Some(handle) = E::upgrade_from(&entity) {
 633                                let event = event.downcast_ref().expect("invalid event type");
 634                                on_event(handle, event, cx);
 635                                true
 636                            } else {
 637                                false
 638                            }
 639                        })
 640                        .unwrap_or(false)
 641                }),
 642            ),
 643        );
 644        self.app.defer(move |_| activate());
 645        subscription
 646    }
 647
 648    /// Create an `AsyncWindowContext`, which has a static lifetime and can be held across
 649    /// await points in async code.
 650    pub fn to_async(&self) -> AsyncWindowContext {
 651        AsyncWindowContext::new(self.app.to_async(), self.window.handle)
 652    }
 653
 654    /// Schedule the given closure to be run directly after the current frame is rendered.
 655    pub fn on_next_frame(&mut self, callback: impl FnOnce(&mut WindowContext) + 'static) {
 656        let handle = self.window.handle;
 657        let display_id = self.window.display_id;
 658
 659        let mut frame_consumers = std::mem::take(&mut self.app.frame_consumers);
 660        if let Entry::Vacant(e) = frame_consumers.entry(display_id) {
 661            let (tx, mut rx) = mpsc::unbounded::<()>();
 662            self.platform.set_display_link_output_callback(
 663                display_id,
 664                Box::new(move |_current_time, _output_time| _ = tx.unbounded_send(())),
 665            );
 666
 667            let consumer_task = self.app.spawn(|cx| async move {
 668                while rx.next().await.is_some() {
 669                    cx.update(|cx| {
 670                        for callback in cx
 671                            .next_frame_callbacks
 672                            .get_mut(&display_id)
 673                            .unwrap()
 674                            .drain(..)
 675                            .collect::<SmallVec<[_; 32]>>()
 676                        {
 677                            callback(cx);
 678                        }
 679                    })
 680                    .ok();
 681
 682                    // Flush effects, then stop the display link if no new next_frame_callbacks have been added.
 683
 684                    cx.update(|cx| {
 685                        if cx.next_frame_callbacks.is_empty() {
 686                            cx.platform.stop_display_link(display_id);
 687                        }
 688                    })
 689                    .ok();
 690                }
 691            });
 692            e.insert(consumer_task);
 693        }
 694        debug_assert!(self.app.frame_consumers.is_empty());
 695        self.app.frame_consumers = frame_consumers;
 696
 697        if self.next_frame_callbacks.is_empty() {
 698            self.platform.start_display_link(display_id);
 699        }
 700
 701        self.next_frame_callbacks
 702            .entry(display_id)
 703            .or_default()
 704            .push(Box::new(move |cx: &mut AppContext| {
 705                cx.update_window(handle, |_root_view, cx| callback(cx)).ok();
 706            }));
 707    }
 708
 709    /// Spawn the future returned by the given closure on the application thread pool.
 710    /// The closure is provided a handle to the current window and an `AsyncWindowContext` for
 711    /// use within your future.
 712    pub fn spawn<Fut, R>(&mut self, f: impl FnOnce(AsyncWindowContext) -> Fut) -> Task<R>
 713    where
 714        R: 'static,
 715        Fut: Future<Output = R> + 'static,
 716    {
 717        self.app
 718            .spawn(|app| f(AsyncWindowContext::new(app, self.window.handle)))
 719    }
 720
 721    /// Update the global of the given type. The given closure is given simultaneous mutable
 722    /// access both to the global and the context.
 723    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
 724    where
 725        G: 'static,
 726    {
 727        let mut global = self.app.lease_global::<G>();
 728        let result = f(&mut global, self);
 729        self.app.end_global_lease(global);
 730        result
 731    }
 732
 733    #[must_use]
 734    /// Add a node to the layout tree for the current frame. Takes the `Style` of the element for which
 735    /// layout is being requested, along with the layout ids of any children. This method is called during
 736    /// calls to the `Element::layout` trait method and enables any element to participate in layout.
 737    pub fn request_layout(
 738        &mut self,
 739        style: &Style,
 740        children: impl IntoIterator<Item = LayoutId>,
 741    ) -> LayoutId {
 742        self.app.layout_id_buffer.clear();
 743        self.app.layout_id_buffer.extend(children);
 744        let rem_size = self.rem_size();
 745
 746        self.window.layout_engine.as_mut().unwrap().request_layout(
 747            style,
 748            rem_size,
 749            &self.app.layout_id_buffer,
 750        )
 751    }
 752
 753    /// Add a node to the layout tree for the current frame. Instead of taking a `Style` and children,
 754    /// this variant takes a function that is invoked during layout so you can use arbitrary logic to
 755    /// determine the element's size. One place this is used internally is when measuring text.
 756    ///
 757    /// The given closure is invoked at layout time with the known dimensions and available space and
 758    /// returns a `Size`.
 759    pub fn request_measured_layout<
 760        F: FnMut(Size<Option<Pixels>>, Size<AvailableSpace>, &mut WindowContext) -> Size<Pixels>
 761            + 'static,
 762    >(
 763        &mut self,
 764        style: Style,
 765        measure: F,
 766    ) -> LayoutId {
 767        let rem_size = self.rem_size();
 768        self.window
 769            .layout_engine
 770            .as_mut()
 771            .unwrap()
 772            .request_measured_layout(style, rem_size, measure)
 773    }
 774
 775    /// Compute the layout for the given id within the given available space.
 776    /// This method is called for its side effect, typically by the framework prior to painting.
 777    /// After calling it, you can request the bounds of the given layout node id or any descendant.
 778    pub fn compute_layout(&mut self, layout_id: LayoutId, available_space: Size<AvailableSpace>) {
 779        let mut layout_engine = self.window.layout_engine.take().unwrap();
 780        layout_engine.compute_layout(layout_id, available_space, self);
 781        self.window.layout_engine = Some(layout_engine);
 782    }
 783
 784    /// Obtain the bounds computed for the given LayoutId relative to the window. This method should not
 785    /// be invoked until the paint phase begins, and will usually be invoked by GPUI itself automatically
 786    /// in order to pass your element its `Bounds` automatically.
 787    pub fn layout_bounds(&mut self, layout_id: LayoutId) -> Bounds<Pixels> {
 788        let mut bounds = self
 789            .window
 790            .layout_engine
 791            .as_mut()
 792            .unwrap()
 793            .layout_bounds(layout_id)
 794            .map(Into::into);
 795        bounds.origin += self.element_offset();
 796        bounds
 797    }
 798
 799    fn window_bounds_changed(&mut self) {
 800        self.window.scale_factor = self.window.platform_window.scale_factor();
 801        self.window.viewport_size = self.window.platform_window.content_size();
 802        self.window.bounds = self.window.platform_window.bounds();
 803        self.window.display_id = self.window.platform_window.display().id();
 804        self.notify();
 805
 806        self.window
 807            .bounds_observers
 808            .clone()
 809            .retain(&(), |callback| callback(self));
 810    }
 811
 812    /// Returns the bounds of the current window in the global coordinate space, which could span across multiple displays.
 813    pub fn window_bounds(&self) -> WindowBounds {
 814        self.window.bounds
 815    }
 816
 817    /// Returns the size of the drawable area within the window.
 818    pub fn viewport_size(&self) -> Size<Pixels> {
 819        self.window.viewport_size
 820    }
 821
 822    /// Returns whether this window is focused by the operating system (receiving key events).
 823    pub fn is_window_active(&self) -> bool {
 824        self.window.active
 825    }
 826
 827    /// Toggle zoom on the window.
 828    pub fn zoom_window(&self) {
 829        self.window.platform_window.zoom();
 830    }
 831
 832    /// Update the window's title at the platform level.
 833    pub fn set_window_title(&mut self, title: &str) {
 834        self.window.platform_window.set_title(title);
 835    }
 836
 837    /// Mark the window as dirty at the platform level.
 838    pub fn set_window_edited(&mut self, edited: bool) {
 839        self.window.platform_window.set_edited(edited);
 840    }
 841
 842    /// Determine the display on which the window is visible.
 843    pub fn display(&self) -> Option<Rc<dyn PlatformDisplay>> {
 844        self.platform
 845            .displays()
 846            .into_iter()
 847            .find(|display| display.id() == self.window.display_id)
 848    }
 849
 850    /// Show the platform character palette.
 851    pub fn show_character_palette(&self) {
 852        self.window.platform_window.show_character_palette();
 853    }
 854
 855    /// The scale factor of the display associated with the window. For example, it could
 856    /// return 2.0 for a "retina" display, indicating that each logical pixel should actually
 857    /// be rendered as two pixels on screen.
 858    pub fn scale_factor(&self) -> f32 {
 859        self.window.scale_factor
 860    }
 861
 862    /// The size of an em for the base font of the application. Adjusting this value allows the
 863    /// UI to scale, just like zooming a web page.
 864    pub fn rem_size(&self) -> Pixels {
 865        self.window.rem_size
 866    }
 867
 868    /// Sets the size of an em for the base font of the application. Adjusting this value allows the
 869    /// UI to scale, just like zooming a web page.
 870    pub fn set_rem_size(&mut self, rem_size: impl Into<Pixels>) {
 871        self.window.rem_size = rem_size.into();
 872    }
 873
 874    /// The line height associated with the current text style.
 875    pub fn line_height(&self) -> Pixels {
 876        let rem_size = self.rem_size();
 877        let text_style = self.text_style();
 878        text_style
 879            .line_height
 880            .to_pixels(text_style.font_size, rem_size)
 881    }
 882
 883    /// Call to prevent the default action of an event. Currently only used to prevent
 884    /// parent elements from becoming focused on mouse down.
 885    pub fn prevent_default(&mut self) {
 886        self.window.default_prevented = true;
 887    }
 888
 889    /// Obtain whether default has been prevented for the event currently being dispatched.
 890    pub fn default_prevented(&self) -> bool {
 891        self.window.default_prevented
 892    }
 893
 894    /// Register a mouse event listener on the window for the next frame. The type of event
 895    /// is determined by the first parameter of the given listener. When the next frame is rendered
 896    /// the listener will be cleared.
 897    pub fn on_mouse_event<Event: 'static>(
 898        &mut self,
 899        mut handler: impl FnMut(&Event, DispatchPhase, &mut WindowContext) + 'static,
 900    ) {
 901        let order = self.window.next_frame.z_index_stack.clone();
 902        let handler = self
 903            .window
 904            .frame_arena
 905            .alloc(|| {
 906                move |event: &dyn Any, phase: DispatchPhase, cx: &mut WindowContext<'_>| {
 907                    handler(event.downcast_ref().unwrap(), phase, cx)
 908                }
 909            })
 910            .map(|handler| handler as _);
 911        self.window
 912            .next_frame
 913            .mouse_listeners
 914            .entry(TypeId::of::<Event>())
 915            .or_default()
 916            .push((order, handler))
 917    }
 918
 919    /// Register a key event listener on the window for the next frame. The type of event
 920    /// is determined by the first parameter of the given listener. When the next frame is rendered
 921    /// the listener will be cleared.
 922    ///
 923    /// This is a fairly low-level method, so prefer using event handlers on elements unless you have
 924    /// a specific need to register a global listener.
 925    pub fn on_key_event<Event: 'static>(
 926        &mut self,
 927        listener: impl Fn(&Event, DispatchPhase, &mut WindowContext) + 'static,
 928    ) {
 929        let listener = self
 930            .window
 931            .frame_arena
 932            .alloc(|| {
 933                move |event: &dyn Any, phase, cx: &mut WindowContext<'_>| {
 934                    if let Some(event) = event.downcast_ref::<Event>() {
 935                        listener(event, phase, cx)
 936                    }
 937                }
 938            })
 939            .map(|handler| handler as _);
 940        self.window
 941            .next_frame
 942            .dispatch_tree
 943            .on_key_event(ArenaRef::from(listener));
 944    }
 945
 946    /// Register an action listener on the window for the next frame. The type of action
 947    /// is determined by the first parameter of the given listener. When the next frame is rendered
 948    /// the listener will be cleared.
 949    ///
 950    /// This is a fairly low-level method, so prefer using action handlers on elements unless you have
 951    /// a specific need to register a global listener.
 952    pub fn on_action(
 953        &mut self,
 954        action_type: TypeId,
 955        listener: impl Fn(&dyn Any, DispatchPhase, &mut WindowContext) + 'static,
 956    ) {
 957        let listener = self
 958            .window
 959            .frame_arena
 960            .alloc(|| listener)
 961            .map(|handler| handler as _);
 962        self.window
 963            .next_frame
 964            .dispatch_tree
 965            .on_action(action_type, ArenaRef::from(listener));
 966    }
 967
 968    /// Determine whether the given action is available along the dispatch path to the currently focused element.
 969    pub fn is_action_available(&self, action: &dyn Action) -> bool {
 970        let target = self
 971            .focused()
 972            .and_then(|focused_handle| {
 973                self.window
 974                    .rendered_frame
 975                    .dispatch_tree
 976                    .focusable_node_id(focused_handle.id)
 977            })
 978            .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
 979        self.window
 980            .rendered_frame
 981            .dispatch_tree
 982            .is_action_available(action, target)
 983    }
 984
 985    /// The position of the mouse relative to the window.
 986    pub fn mouse_position(&self) -> Point<Pixels> {
 987        self.window.mouse_position
 988    }
 989
 990    /// The current state of the keyboard's modifiers
 991    pub fn modifiers(&self) -> Modifiers {
 992        self.window.modifiers
 993    }
 994
 995    /// Update the cursor style at the platform level.
 996    pub fn set_cursor_style(&mut self, style: CursorStyle) {
 997        self.window.requested_cursor_style = Some(style)
 998    }
 999
1000    /// Called during painting to track which z-index is on top at each pixel position
1001    pub fn add_opaque_layer(&mut self, bounds: Bounds<Pixels>) {
1002        let stacking_order = self.window.next_frame.z_index_stack.clone();
1003        let depth_map = &mut self.window.next_frame.depth_map;
1004        match depth_map.binary_search_by(|(level, _)| stacking_order.cmp(level)) {
1005            Ok(i) | Err(i) => depth_map.insert(i, (stacking_order, bounds)),
1006        }
1007    }
1008
1009    /// Returns true if there is no opaque layer containing the given point
1010    /// on top of the given level. Layers whose level is an extension of the
1011    /// level are not considered to be on top of the level.
1012    pub fn was_top_layer(&self, point: &Point<Pixels>, level: &StackingOrder) -> bool {
1013        for (opaque_level, bounds) in self.window.rendered_frame.depth_map.iter() {
1014            if level >= opaque_level {
1015                break;
1016            }
1017
1018            if bounds.contains(point) && !opaque_level.starts_with(level) {
1019                return false;
1020            }
1021        }
1022        true
1023    }
1024
1025    pub(crate) fn was_top_layer_under_active_drag(
1026        &self,
1027        point: &Point<Pixels>,
1028        level: &StackingOrder,
1029    ) -> bool {
1030        for (opaque_level, bounds) in self.window.rendered_frame.depth_map.iter() {
1031            if level >= opaque_level {
1032                break;
1033            }
1034            if opaque_level.starts_with(&[ACTIVE_DRAG_Z_INDEX]) {
1035                continue;
1036            }
1037
1038            if bounds.contains(point) && !opaque_level.starts_with(level) {
1039                return false;
1040            }
1041        }
1042        true
1043    }
1044
1045    /// Called during painting to get the current stacking order.
1046    pub fn stacking_order(&self) -> &StackingOrder {
1047        &self.window.next_frame.z_index_stack
1048    }
1049
1050    /// Paint one or more drop shadows into the scene for the next frame at the current z-index.
1051    pub fn paint_shadows(
1052        &mut self,
1053        bounds: Bounds<Pixels>,
1054        corner_radii: Corners<Pixels>,
1055        shadows: &[BoxShadow],
1056    ) {
1057        let scale_factor = self.scale_factor();
1058        let content_mask = self.content_mask();
1059        let window = &mut *self.window;
1060        for shadow in shadows {
1061            let mut shadow_bounds = bounds;
1062            shadow_bounds.origin += shadow.offset;
1063            shadow_bounds.dilate(shadow.spread_radius);
1064            window.next_frame.scene_builder.insert(
1065                &window.next_frame.z_index_stack,
1066                Shadow {
1067                    order: 0,
1068                    bounds: shadow_bounds.scale(scale_factor),
1069                    content_mask: content_mask.scale(scale_factor),
1070                    corner_radii: corner_radii.scale(scale_factor),
1071                    color: shadow.color,
1072                    blur_radius: shadow.blur_radius.scale(scale_factor),
1073                },
1074            );
1075        }
1076    }
1077
1078    /// Paint one or more quads into the scene for the next frame at the current stacking context.
1079    /// Quads are colored rectangular regions with an optional background, border, and corner radius.
1080    /// see [`fill`], [`outline`], and [`quad`] to construct this type.
1081    pub fn paint_quad(&mut self, quad: PaintQuad) {
1082        let scale_factor = self.scale_factor();
1083        let content_mask = self.content_mask();
1084
1085        let window = &mut *self.window;
1086        window.next_frame.scene_builder.insert(
1087            &window.next_frame.z_index_stack,
1088            Quad {
1089                order: 0,
1090                bounds: quad.bounds.scale(scale_factor),
1091                content_mask: content_mask.scale(scale_factor),
1092                background: quad.background,
1093                border_color: quad.border_color,
1094                corner_radii: quad.corner_radii.scale(scale_factor),
1095                border_widths: quad.border_widths.scale(scale_factor),
1096            },
1097        );
1098    }
1099
1100    /// Paint the given `Path` into the scene for the next frame at the current z-index.
1101    pub fn paint_path(&mut self, mut path: Path<Pixels>, color: impl Into<Hsla>) {
1102        let scale_factor = self.scale_factor();
1103        let content_mask = self.content_mask();
1104        path.content_mask = content_mask;
1105        path.color = color.into();
1106        let window = &mut *self.window;
1107        window
1108            .next_frame
1109            .scene_builder
1110            .insert(&window.next_frame.z_index_stack, path.scale(scale_factor));
1111    }
1112
1113    /// Paint an underline into the scene for the next frame at the current z-index.
1114    pub fn paint_underline(
1115        &mut self,
1116        origin: Point<Pixels>,
1117        width: Pixels,
1118        style: &UnderlineStyle,
1119    ) {
1120        let scale_factor = self.scale_factor();
1121        let height = if style.wavy {
1122            style.thickness * 3.
1123        } else {
1124            style.thickness
1125        };
1126        let bounds = Bounds {
1127            origin,
1128            size: size(width, height),
1129        };
1130        let content_mask = self.content_mask();
1131        let window = &mut *self.window;
1132        window.next_frame.scene_builder.insert(
1133            &window.next_frame.z_index_stack,
1134            Underline {
1135                order: 0,
1136                bounds: bounds.scale(scale_factor),
1137                content_mask: content_mask.scale(scale_factor),
1138                thickness: style.thickness.scale(scale_factor),
1139                color: style.color.unwrap_or_default(),
1140                wavy: style.wavy,
1141            },
1142        );
1143    }
1144
1145    /// Paint a monochrome (non-emoji) glyph into the scene for the next frame at the current z-index.
1146    /// The y component of the origin is the baseline of the glyph.
1147    pub fn paint_glyph(
1148        &mut self,
1149        origin: Point<Pixels>,
1150        font_id: FontId,
1151        glyph_id: GlyphId,
1152        font_size: Pixels,
1153        color: Hsla,
1154    ) -> Result<()> {
1155        let scale_factor = self.scale_factor();
1156        let glyph_origin = origin.scale(scale_factor);
1157        let subpixel_variant = Point {
1158            x: (glyph_origin.x.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1159            y: (glyph_origin.y.0.fract() * SUBPIXEL_VARIANTS as f32).floor() as u8,
1160        };
1161        let params = RenderGlyphParams {
1162            font_id,
1163            glyph_id,
1164            font_size,
1165            subpixel_variant,
1166            scale_factor,
1167            is_emoji: false,
1168        };
1169
1170        let raster_bounds = self.text_system().raster_bounds(&params)?;
1171        if !raster_bounds.is_zero() {
1172            let tile =
1173                self.window
1174                    .sprite_atlas
1175                    .get_or_insert_with(&params.clone().into(), &mut || {
1176                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
1177                        Ok((size, Cow::Owned(bytes)))
1178                    })?;
1179            let bounds = Bounds {
1180                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1181                size: tile.bounds.size.map(Into::into),
1182            };
1183            let content_mask = self.content_mask().scale(scale_factor);
1184            let window = &mut *self.window;
1185            window.next_frame.scene_builder.insert(
1186                &window.next_frame.z_index_stack,
1187                MonochromeSprite {
1188                    order: 0,
1189                    bounds,
1190                    content_mask,
1191                    color,
1192                    tile,
1193                },
1194            );
1195        }
1196        Ok(())
1197    }
1198
1199    /// Paint an emoji glyph into the scene for the next frame at the current z-index.
1200    /// The y component of the origin is the baseline of the glyph.
1201    pub fn paint_emoji(
1202        &mut self,
1203        origin: Point<Pixels>,
1204        font_id: FontId,
1205        glyph_id: GlyphId,
1206        font_size: Pixels,
1207    ) -> Result<()> {
1208        let scale_factor = self.scale_factor();
1209        let glyph_origin = origin.scale(scale_factor);
1210        let params = RenderGlyphParams {
1211            font_id,
1212            glyph_id,
1213            font_size,
1214            // We don't render emojis with subpixel variants.
1215            subpixel_variant: Default::default(),
1216            scale_factor,
1217            is_emoji: true,
1218        };
1219
1220        let raster_bounds = self.text_system().raster_bounds(&params)?;
1221        if !raster_bounds.is_zero() {
1222            let tile =
1223                self.window
1224                    .sprite_atlas
1225                    .get_or_insert_with(&params.clone().into(), &mut || {
1226                        let (size, bytes) = self.text_system().rasterize_glyph(&params)?;
1227                        Ok((size, Cow::Owned(bytes)))
1228                    })?;
1229            let bounds = Bounds {
1230                origin: glyph_origin.map(|px| px.floor()) + raster_bounds.origin.map(Into::into),
1231                size: tile.bounds.size.map(Into::into),
1232            };
1233            let content_mask = self.content_mask().scale(scale_factor);
1234            let window = &mut *self.window;
1235
1236            window.next_frame.scene_builder.insert(
1237                &window.next_frame.z_index_stack,
1238                PolychromeSprite {
1239                    order: 0,
1240                    bounds,
1241                    corner_radii: Default::default(),
1242                    content_mask,
1243                    tile,
1244                    grayscale: false,
1245                },
1246            );
1247        }
1248        Ok(())
1249    }
1250
1251    /// Paint a monochrome SVG into the scene for the next frame at the current stacking context.
1252    pub fn paint_svg(
1253        &mut self,
1254        bounds: Bounds<Pixels>,
1255        path: SharedString,
1256        color: Hsla,
1257    ) -> Result<()> {
1258        let scale_factor = self.scale_factor();
1259        let bounds = bounds.scale(scale_factor);
1260        // Render the SVG at twice the size to get a higher quality result.
1261        let params = RenderSvgParams {
1262            path,
1263            size: bounds
1264                .size
1265                .map(|pixels| DevicePixels::from((pixels.0 * 2.).ceil() as i32)),
1266        };
1267
1268        let tile =
1269            self.window
1270                .sprite_atlas
1271                .get_or_insert_with(&params.clone().into(), &mut || {
1272                    let bytes = self.svg_renderer.render(&params)?;
1273                    Ok((params.size, Cow::Owned(bytes)))
1274                })?;
1275        let content_mask = self.content_mask().scale(scale_factor);
1276
1277        let window = &mut *self.window;
1278        window.next_frame.scene_builder.insert(
1279            &window.next_frame.z_index_stack,
1280            MonochromeSprite {
1281                order: 0,
1282                bounds,
1283                content_mask,
1284                color,
1285                tile,
1286            },
1287        );
1288
1289        Ok(())
1290    }
1291
1292    /// Paint an image into the scene for the next frame at the current z-index.
1293    pub fn paint_image(
1294        &mut self,
1295        bounds: Bounds<Pixels>,
1296        corner_radii: Corners<Pixels>,
1297        data: Arc<ImageData>,
1298        grayscale: bool,
1299    ) -> Result<()> {
1300        let scale_factor = self.scale_factor();
1301        let bounds = bounds.scale(scale_factor);
1302        let params = RenderImageParams { image_id: data.id };
1303
1304        let tile = self
1305            .window
1306            .sprite_atlas
1307            .get_or_insert_with(&params.clone().into(), &mut || {
1308                Ok((data.size(), Cow::Borrowed(data.as_bytes())))
1309            })?;
1310        let content_mask = self.content_mask().scale(scale_factor);
1311        let corner_radii = corner_radii.scale(scale_factor);
1312
1313        let window = &mut *self.window;
1314        window.next_frame.scene_builder.insert(
1315            &window.next_frame.z_index_stack,
1316            PolychromeSprite {
1317                order: 0,
1318                bounds,
1319                content_mask,
1320                corner_radii,
1321                tile,
1322                grayscale,
1323            },
1324        );
1325        Ok(())
1326    }
1327
1328    /// Paint a surface into the scene for the next frame at the current z-index.
1329    pub fn paint_surface(&mut self, bounds: Bounds<Pixels>, image_buffer: CVImageBuffer) {
1330        let scale_factor = self.scale_factor();
1331        let bounds = bounds.scale(scale_factor);
1332        let content_mask = self.content_mask().scale(scale_factor);
1333        let window = &mut *self.window;
1334        window.next_frame.scene_builder.insert(
1335            &window.next_frame.z_index_stack,
1336            Surface {
1337                order: 0,
1338                bounds,
1339                content_mask,
1340                image_buffer,
1341            },
1342        );
1343    }
1344
1345    /// Draw pixels to the display for this window based on the contents of its scene.
1346    pub(crate) fn draw(&mut self) -> Scene {
1347        self.window.dirty = false;
1348        self.window.drawing = true;
1349
1350        #[cfg(any(test, feature = "test-support"))]
1351        {
1352            self.window.focus_invalidated = false;
1353        }
1354
1355        self.text_system().start_frame();
1356        self.window.platform_window.clear_input_handler();
1357        self.window.layout_engine.as_mut().unwrap().clear();
1358        self.window.next_frame.clear();
1359        self.window.frame_arena.clear();
1360        let root_view = self.window.root_view.take().unwrap();
1361
1362        self.with_z_index(0, |cx| {
1363            cx.with_key_dispatch(Some(KeyContext::default()), None, |_, cx| {
1364                for (action_type, action_listeners) in &cx.app.global_action_listeners {
1365                    for action_listener in action_listeners.iter().cloned() {
1366                        let listener = cx
1367                            .window
1368                            .frame_arena
1369                            .alloc(|| {
1370                                move |action: &dyn Any, phase, cx: &mut WindowContext<'_>| {
1371                                    action_listener(action, phase, cx)
1372                                }
1373                            })
1374                            .map(|listener| listener as _);
1375                        cx.window
1376                            .next_frame
1377                            .dispatch_tree
1378                            .on_action(*action_type, ArenaRef::from(listener))
1379                    }
1380                }
1381
1382                let available_space = cx.window.viewport_size.map(Into::into);
1383                root_view.draw(Point::default(), available_space, cx);
1384            })
1385        });
1386
1387        if let Some(active_drag) = self.app.active_drag.take() {
1388            self.with_z_index(ACTIVE_DRAG_Z_INDEX, |cx| {
1389                let offset = cx.mouse_position() - active_drag.cursor_offset;
1390                let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1391                active_drag.view.draw(offset, available_space, cx);
1392            });
1393            self.active_drag = Some(active_drag);
1394        } else if let Some(active_tooltip) = self.app.active_tooltip.take() {
1395            self.with_z_index(1, |cx| {
1396                let available_space = size(AvailableSpace::MinContent, AvailableSpace::MinContent);
1397                active_tooltip
1398                    .view
1399                    .draw(active_tooltip.cursor_offset, available_space, cx);
1400            });
1401        }
1402
1403        self.window
1404            .next_frame
1405            .dispatch_tree
1406            .preserve_pending_keystrokes(
1407                &mut self.window.rendered_frame.dispatch_tree,
1408                self.window.focus,
1409            );
1410        self.window.next_frame.focus = self.window.focus;
1411        self.window.next_frame.window_active = self.window.active;
1412        self.window.root_view = Some(root_view);
1413
1414        let previous_focus_path = self.window.rendered_frame.focus_path();
1415        let previous_window_active = self.window.rendered_frame.window_active;
1416        mem::swap(&mut self.window.rendered_frame, &mut self.window.next_frame);
1417        let current_focus_path = self.window.rendered_frame.focus_path();
1418        let current_window_active = self.window.rendered_frame.window_active;
1419
1420        let scene = self.window.rendered_frame.scene_builder.build();
1421
1422        // Set the cursor only if we're the active window.
1423        let cursor_style = self
1424            .window
1425            .requested_cursor_style
1426            .take()
1427            .unwrap_or(CursorStyle::Arrow);
1428        if self.is_window_active() {
1429            self.platform.set_cursor_style(cursor_style);
1430        }
1431
1432        self.window.drawing = false;
1433        ELEMENT_ARENA.with_borrow_mut(|element_arena| element_arena.clear());
1434
1435        if previous_focus_path != current_focus_path
1436            || previous_window_active != current_window_active
1437        {
1438            if !previous_focus_path.is_empty() && current_focus_path.is_empty() {
1439                self.window
1440                    .focus_lost_listeners
1441                    .clone()
1442                    .retain(&(), |listener| listener(self));
1443            }
1444
1445            let event = FocusEvent {
1446                previous_focus_path: if previous_window_active {
1447                    previous_focus_path
1448                } else {
1449                    Default::default()
1450                },
1451                current_focus_path: if current_window_active {
1452                    current_focus_path
1453                } else {
1454                    Default::default()
1455                },
1456            };
1457            self.window
1458                .focus_listeners
1459                .clone()
1460                .retain(&(), |listener| listener(&event, self));
1461        }
1462
1463        scene
1464    }
1465
1466    /// Dispatch a mouse or keyboard event on the window.
1467    pub fn dispatch_event(&mut self, event: InputEvent) -> bool {
1468        // Handlers may set this to false by calling `stop_propagation`.
1469        self.app.propagate_event = true;
1470        // Handlers may set this to true by calling `prevent_default`.
1471        self.window.default_prevented = false;
1472
1473        let event = match event {
1474            // Track the mouse position with our own state, since accessing the platform
1475            // API for the mouse position can only occur on the main thread.
1476            InputEvent::MouseMove(mouse_move) => {
1477                self.window.mouse_position = mouse_move.position;
1478                self.window.modifiers = mouse_move.modifiers;
1479                InputEvent::MouseMove(mouse_move)
1480            }
1481            InputEvent::MouseDown(mouse_down) => {
1482                self.window.mouse_position = mouse_down.position;
1483                self.window.modifiers = mouse_down.modifiers;
1484                InputEvent::MouseDown(mouse_down)
1485            }
1486            InputEvent::MouseUp(mouse_up) => {
1487                self.window.mouse_position = mouse_up.position;
1488                self.window.modifiers = mouse_up.modifiers;
1489                InputEvent::MouseUp(mouse_up)
1490            }
1491            InputEvent::MouseExited(mouse_exited) => {
1492                self.window.modifiers = mouse_exited.modifiers;
1493                InputEvent::MouseExited(mouse_exited)
1494            }
1495            InputEvent::ModifiersChanged(modifiers_changed) => {
1496                self.window.modifiers = modifiers_changed.modifiers;
1497                InputEvent::ModifiersChanged(modifiers_changed)
1498            }
1499            InputEvent::ScrollWheel(scroll_wheel) => {
1500                self.window.mouse_position = scroll_wheel.position;
1501                self.window.modifiers = scroll_wheel.modifiers;
1502                InputEvent::ScrollWheel(scroll_wheel)
1503            }
1504            // Translate dragging and dropping of external files from the operating system
1505            // to internal drag and drop events.
1506            InputEvent::FileDrop(file_drop) => match file_drop {
1507                FileDropEvent::Entered { position, paths } => {
1508                    self.window.mouse_position = position;
1509                    if self.active_drag.is_none() {
1510                        self.active_drag = Some(AnyDrag {
1511                            value: Box::new(paths.clone()),
1512                            view: self.new_view(|_| paths).into(),
1513                            cursor_offset: position,
1514                        });
1515                    }
1516                    InputEvent::MouseMove(MouseMoveEvent {
1517                        position,
1518                        pressed_button: Some(MouseButton::Left),
1519                        modifiers: Modifiers::default(),
1520                    })
1521                }
1522                FileDropEvent::Pending { position } => {
1523                    self.window.mouse_position = position;
1524                    InputEvent::MouseMove(MouseMoveEvent {
1525                        position,
1526                        pressed_button: Some(MouseButton::Left),
1527                        modifiers: Modifiers::default(),
1528                    })
1529                }
1530                FileDropEvent::Submit { position } => {
1531                    self.activate(true);
1532                    self.window.mouse_position = position;
1533                    InputEvent::MouseUp(MouseUpEvent {
1534                        button: MouseButton::Left,
1535                        position,
1536                        modifiers: Modifiers::default(),
1537                        click_count: 1,
1538                    })
1539                }
1540                FileDropEvent::Exited => InputEvent::MouseUp(MouseUpEvent {
1541                    button: MouseButton::Left,
1542                    position: Point::default(),
1543                    modifiers: Modifiers::default(),
1544                    click_count: 1,
1545                }),
1546            },
1547            InputEvent::KeyDown(_) | InputEvent::KeyUp(_) => event,
1548        };
1549
1550        if let Some(any_mouse_event) = event.mouse_event() {
1551            self.dispatch_mouse_event(any_mouse_event);
1552        } else if let Some(any_key_event) = event.keyboard_event() {
1553            self.dispatch_key_event(any_key_event);
1554        }
1555
1556        !self.app.propagate_event
1557    }
1558
1559    fn dispatch_mouse_event(&mut self, event: &dyn Any) {
1560        if let Some(mut handlers) = self
1561            .window
1562            .rendered_frame
1563            .mouse_listeners
1564            .remove(&event.type_id())
1565        {
1566            // Because handlers may add other handlers, we sort every time.
1567            handlers.sort_by(|(a, _), (b, _)| a.cmp(b));
1568
1569            // Capture phase, events bubble from back to front. Handlers for this phase are used for
1570            // special purposes, such as detecting events outside of a given Bounds.
1571            for (_, handler) in &mut handlers {
1572                handler(event, DispatchPhase::Capture, self);
1573                if !self.app.propagate_event {
1574                    break;
1575                }
1576            }
1577
1578            // Bubble phase, where most normal handlers do their work.
1579            if self.app.propagate_event {
1580                for (_, handler) in handlers.iter_mut().rev() {
1581                    handler(event, DispatchPhase::Bubble, self);
1582                    if !self.app.propagate_event {
1583                        break;
1584                    }
1585                }
1586            }
1587
1588            self.window
1589                .rendered_frame
1590                .mouse_listeners
1591                .insert(event.type_id(), handlers);
1592        }
1593
1594        if self.app.propagate_event && self.has_active_drag() {
1595            if event.is::<MouseMoveEvent>() {
1596                // If this was a mouse move event, redraw the window so that the
1597                // active drag can follow the mouse cursor.
1598                self.notify();
1599            } else if event.is::<MouseUpEvent>() {
1600                // If this was a mouse up event, cancel the active drag and redraw
1601                // the window.
1602                self.active_drag = None;
1603                self.notify();
1604            }
1605        }
1606    }
1607
1608    fn dispatch_key_event(&mut self, event: &dyn Any) {
1609        let node_id = self
1610            .window
1611            .focus
1612            .and_then(|focus_id| {
1613                self.window
1614                    .rendered_frame
1615                    .dispatch_tree
1616                    .focusable_node_id(focus_id)
1617            })
1618            .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1619
1620        let dispatch_path = self
1621            .window
1622            .rendered_frame
1623            .dispatch_tree
1624            .dispatch_path(node_id);
1625
1626        let mut actions: Vec<Box<dyn Action>> = Vec::new();
1627
1628        let mut context_stack: SmallVec<[KeyContext; 16]> = SmallVec::new();
1629        for node_id in &dispatch_path {
1630            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1631
1632            if let Some(context) = node.context.clone() {
1633                context_stack.push(context);
1634            }
1635        }
1636
1637        for node_id in dispatch_path.iter().rev() {
1638            // Match keystrokes
1639            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1640            if node.context.is_some() {
1641                if let Some(key_down_event) = event.downcast_ref::<KeyDownEvent>() {
1642                    let mut new_actions = self
1643                        .window
1644                        .rendered_frame
1645                        .dispatch_tree
1646                        .dispatch_key(&key_down_event.keystroke, &context_stack);
1647                    actions.append(&mut new_actions);
1648                }
1649
1650                context_stack.pop();
1651            }
1652        }
1653
1654        if !actions.is_empty() {
1655            self.clear_pending_keystrokes();
1656        }
1657
1658        self.propagate_event = true;
1659        for action in actions {
1660            self.dispatch_action_on_node(node_id, action.boxed_clone());
1661            if !self.propagate_event {
1662                self.dispatch_keystroke_observers(event, Some(action));
1663                return;
1664            }
1665        }
1666
1667        // Capture phase
1668        for node_id in &dispatch_path {
1669            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1670
1671            for key_listener in node.key_listeners.clone() {
1672                key_listener(event, DispatchPhase::Capture, self);
1673                if !self.propagate_event {
1674                    return;
1675                }
1676            }
1677        }
1678
1679        // Bubble phase
1680        for node_id in dispatch_path.iter().rev() {
1681            // Handle low level key events
1682            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1683            for key_listener in node.key_listeners.clone() {
1684                key_listener(event, DispatchPhase::Bubble, self);
1685                if !self.propagate_event {
1686                    return;
1687                }
1688            }
1689        }
1690
1691        self.dispatch_keystroke_observers(event, None);
1692    }
1693
1694    /// Determine whether a potential multi-stroke key binding is in progress on this window.
1695    pub fn has_pending_keystrokes(&self) -> bool {
1696        self.window
1697            .rendered_frame
1698            .dispatch_tree
1699            .has_pending_keystrokes()
1700    }
1701
1702    fn dispatch_action_on_node(&mut self, node_id: DispatchNodeId, action: Box<dyn Action>) {
1703        let dispatch_path = self
1704            .window
1705            .rendered_frame
1706            .dispatch_tree
1707            .dispatch_path(node_id);
1708
1709        // Capture phase
1710        for node_id in &dispatch_path {
1711            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1712            for DispatchActionListener {
1713                action_type,
1714                listener,
1715            } in node.action_listeners.clone()
1716            {
1717                let any_action = action.as_any();
1718                if action_type == any_action.type_id() {
1719                    listener(any_action, DispatchPhase::Capture, self);
1720                    if !self.propagate_event {
1721                        return;
1722                    }
1723                }
1724            }
1725        }
1726        // Bubble phase
1727        for node_id in dispatch_path.iter().rev() {
1728            let node = self.window.rendered_frame.dispatch_tree.node(*node_id);
1729            for DispatchActionListener {
1730                action_type,
1731                listener,
1732            } in node.action_listeners.clone()
1733            {
1734                let any_action = action.as_any();
1735                if action_type == any_action.type_id() {
1736                    self.propagate_event = false; // Actions stop propagation by default during the bubble phase
1737                    listener(any_action, DispatchPhase::Bubble, self);
1738                    if !self.propagate_event {
1739                        return;
1740                    }
1741                }
1742            }
1743        }
1744    }
1745
1746    /// Register the given handler to be invoked whenever the global of the given type
1747    /// is updated.
1748    pub fn observe_global<G: 'static>(
1749        &mut self,
1750        f: impl Fn(&mut WindowContext<'_>) + 'static,
1751    ) -> Subscription {
1752        let window_handle = self.window.handle;
1753        let (subscription, activate) = self.global_observers.insert(
1754            TypeId::of::<G>(),
1755            Box::new(move |cx| window_handle.update(cx, |_, cx| f(cx)).is_ok()),
1756        );
1757        self.app.defer(move |_| activate());
1758        subscription
1759    }
1760
1761    /// Focus the current window and bring it to the foreground at the platform level.
1762    pub fn activate_window(&self) {
1763        self.window.platform_window.activate();
1764    }
1765
1766    /// Minimize the current window at the platform level.
1767    pub fn minimize_window(&self) {
1768        self.window.platform_window.minimize();
1769    }
1770
1771    /// Toggle full screen status on the current window at the platform level.
1772    pub fn toggle_full_screen(&self) {
1773        self.window.platform_window.toggle_full_screen();
1774    }
1775
1776    /// Present a platform dialog.
1777    /// The provided message will be presented, along with buttons for each answer.
1778    /// When a button is clicked, the returned Receiver will receive the index of the clicked button.
1779    pub fn prompt(
1780        &self,
1781        level: PromptLevel,
1782        message: &str,
1783        answers: &[&str],
1784    ) -> oneshot::Receiver<usize> {
1785        self.window.platform_window.prompt(level, message, answers)
1786    }
1787
1788    /// Returns all available actions for the focused element.
1789    pub fn available_actions(&self) -> Vec<Box<dyn Action>> {
1790        let node_id = self
1791            .window
1792            .focus
1793            .and_then(|focus_id| {
1794                self.window
1795                    .rendered_frame
1796                    .dispatch_tree
1797                    .focusable_node_id(focus_id)
1798            })
1799            .unwrap_or_else(|| self.window.rendered_frame.dispatch_tree.root_node_id());
1800
1801        self.window
1802            .rendered_frame
1803            .dispatch_tree
1804            .available_actions(node_id)
1805    }
1806
1807    /// Returns key bindings that invoke the given action on the currently focused element.
1808    pub fn bindings_for_action(&self, action: &dyn Action) -> Vec<KeyBinding> {
1809        self.window
1810            .rendered_frame
1811            .dispatch_tree
1812            .bindings_for_action(
1813                action,
1814                &self.window.rendered_frame.dispatch_tree.context_stack,
1815            )
1816    }
1817
1818    /// Returns any bindings that would invoke the given action on the given focus handle if it were focused.
1819    pub fn bindings_for_action_in(
1820        &self,
1821        action: &dyn Action,
1822        focus_handle: &FocusHandle,
1823    ) -> Vec<KeyBinding> {
1824        let dispatch_tree = &self.window.rendered_frame.dispatch_tree;
1825
1826        let Some(node_id) = dispatch_tree.focusable_node_id(focus_handle.id) else {
1827            return vec![];
1828        };
1829        let context_stack = dispatch_tree
1830            .dispatch_path(node_id)
1831            .into_iter()
1832            .filter_map(|node_id| dispatch_tree.node(node_id).context.clone())
1833            .collect();
1834        dispatch_tree.bindings_for_action(action, &context_stack)
1835    }
1836
1837    /// Returns a generic event listener that invokes the given listener with the view and context associated with the given view handle.
1838    pub fn listener_for<V: Render, E>(
1839        &self,
1840        view: &View<V>,
1841        f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
1842    ) -> impl Fn(&E, &mut WindowContext) + 'static {
1843        let view = view.downgrade();
1844        move |e: &E, cx: &mut WindowContext| {
1845            view.update(cx, |view, cx| f(view, e, cx)).ok();
1846        }
1847    }
1848
1849    /// Returns a generic handler that invokes the given handler with the view and context associated with the given view handle.
1850    pub fn handler_for<V: Render>(
1851        &self,
1852        view: &View<V>,
1853        f: impl Fn(&mut V, &mut ViewContext<V>) + 'static,
1854    ) -> impl Fn(&mut WindowContext) {
1855        let view = view.downgrade();
1856        move |cx: &mut WindowContext| {
1857            view.update(cx, |view, cx| f(view, cx)).ok();
1858        }
1859    }
1860
1861    /// Invoke the given function with the given focus handle present on the key dispatch stack.
1862    /// If you want an element to participate in key dispatch, use this method to push its key context and focus handle into the stack during paint.
1863    pub fn with_key_dispatch<R>(
1864        &mut self,
1865        context: Option<KeyContext>,
1866        focus_handle: Option<FocusHandle>,
1867        f: impl FnOnce(Option<FocusHandle>, &mut Self) -> R,
1868    ) -> R {
1869        let window = &mut self.window;
1870        window.next_frame.dispatch_tree.push_node(context.clone());
1871        if let Some(focus_handle) = focus_handle.as_ref() {
1872            window
1873                .next_frame
1874                .dispatch_tree
1875                .make_focusable(focus_handle.id);
1876        }
1877        let result = f(focus_handle, self);
1878
1879        self.window.next_frame.dispatch_tree.pop_node();
1880
1881        result
1882    }
1883
1884    /// Set an input handler, such as [`ElementInputHandler`][element_input_handler], which interfaces with the
1885    /// platform to receive textual input with proper integration with concerns such
1886    /// as IME interactions.
1887    ///
1888    /// [element_input_handler]: crate::ElementInputHandler
1889    pub fn handle_input(
1890        &mut self,
1891        focus_handle: &FocusHandle,
1892        input_handler: impl PlatformInputHandler,
1893    ) {
1894        if focus_handle.is_focused(self) {
1895            self.window
1896                .platform_window
1897                .set_input_handler(Box::new(input_handler));
1898        }
1899    }
1900
1901    /// Register a callback that can interrupt the closing of the current window based the returned boolean.
1902    /// If the callback returns false, the window won't be closed.
1903    pub fn on_window_should_close(&mut self, f: impl Fn(&mut WindowContext) -> bool + 'static) {
1904        let mut this = self.to_async();
1905        self.window
1906            .platform_window
1907            .on_should_close(Box::new(move || this.update(|_, cx| f(cx)).unwrap_or(true)))
1908    }
1909}
1910
1911impl Context for WindowContext<'_> {
1912    type Result<T> = T;
1913
1914    fn new_model<T>(&mut self, build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T) -> Model<T>
1915    where
1916        T: 'static,
1917    {
1918        let slot = self.app.entities.reserve();
1919        let model = build_model(&mut ModelContext::new(&mut *self.app, slot.downgrade()));
1920        self.entities.insert(slot, model)
1921    }
1922
1923    fn update_model<T: 'static, R>(
1924        &mut self,
1925        model: &Model<T>,
1926        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
1927    ) -> R {
1928        let mut entity = self.entities.lease(model);
1929        let result = update(
1930            &mut *entity,
1931            &mut ModelContext::new(&mut *self.app, model.downgrade()),
1932        );
1933        self.entities.end_lease(entity);
1934        result
1935    }
1936
1937    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
1938    where
1939        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
1940    {
1941        if window == self.window.handle {
1942            let root_view = self.window.root_view.clone().unwrap();
1943            Ok(update(root_view, self))
1944        } else {
1945            window.update(self.app, update)
1946        }
1947    }
1948
1949    fn read_model<T, R>(
1950        &self,
1951        handle: &Model<T>,
1952        read: impl FnOnce(&T, &AppContext) -> R,
1953    ) -> Self::Result<R>
1954    where
1955        T: 'static,
1956    {
1957        let entity = self.entities.read(handle);
1958        read(entity, &*self.app)
1959    }
1960
1961    fn read_window<T, R>(
1962        &self,
1963        window: &WindowHandle<T>,
1964        read: impl FnOnce(View<T>, &AppContext) -> R,
1965    ) -> Result<R>
1966    where
1967        T: 'static,
1968    {
1969        if window.any_handle == self.window.handle {
1970            let root_view = self
1971                .window
1972                .root_view
1973                .clone()
1974                .unwrap()
1975                .downcast::<T>()
1976                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
1977            Ok(read(root_view, self))
1978        } else {
1979            self.app.read_window(window, read)
1980        }
1981    }
1982}
1983
1984impl VisualContext for WindowContext<'_> {
1985    fn new_view<V>(
1986        &mut self,
1987        build_view_state: impl FnOnce(&mut ViewContext<'_, V>) -> V,
1988    ) -> Self::Result<View<V>>
1989    where
1990        V: 'static + Render,
1991    {
1992        let slot = self.app.entities.reserve();
1993        let view = View {
1994            model: slot.clone(),
1995        };
1996        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, &view);
1997        let entity = build_view_state(&mut cx);
1998        cx.entities.insert(slot, entity);
1999
2000        cx.new_view_observers
2001            .clone()
2002            .retain(&TypeId::of::<V>(), |observer| {
2003                let any_view = AnyView::from(view.clone());
2004                (observer)(any_view, self);
2005                true
2006            });
2007
2008        view
2009    }
2010
2011    /// Update the given view. Prefer calling `View::update` instead, which calls this method.
2012    fn update_view<T: 'static, R>(
2013        &mut self,
2014        view: &View<T>,
2015        update: impl FnOnce(&mut T, &mut ViewContext<'_, T>) -> R,
2016    ) -> Self::Result<R> {
2017        let mut lease = self.app.entities.lease(&view.model);
2018        let mut cx = ViewContext::new(&mut *self.app, &mut *self.window, view);
2019        let result = update(&mut *lease, &mut cx);
2020        cx.app.entities.end_lease(lease);
2021        result
2022    }
2023
2024    fn replace_root_view<V>(
2025        &mut self,
2026        build_view: impl FnOnce(&mut ViewContext<'_, V>) -> V,
2027    ) -> Self::Result<View<V>>
2028    where
2029        V: 'static + Render,
2030    {
2031        let view = self.new_view(build_view);
2032        self.window.root_view = Some(view.clone().into());
2033        self.notify();
2034        view
2035    }
2036
2037    fn focus_view<V: crate::FocusableView>(&mut self, view: &View<V>) -> Self::Result<()> {
2038        self.update_view(view, |view, cx| {
2039            view.focus_handle(cx).clone().focus(cx);
2040        })
2041    }
2042
2043    fn dismiss_view<V>(&mut self, view: &View<V>) -> Self::Result<()>
2044    where
2045        V: ManagedView,
2046    {
2047        self.update_view(view, |_, cx| cx.emit(DismissEvent))
2048    }
2049}
2050
2051impl<'a> std::ops::Deref for WindowContext<'a> {
2052    type Target = AppContext;
2053
2054    fn deref(&self) -> &Self::Target {
2055        self.app
2056    }
2057}
2058
2059impl<'a> std::ops::DerefMut for WindowContext<'a> {
2060    fn deref_mut(&mut self) -> &mut Self::Target {
2061        self.app
2062    }
2063}
2064
2065impl<'a> Borrow<AppContext> for WindowContext<'a> {
2066    fn borrow(&self) -> &AppContext {
2067        self.app
2068    }
2069}
2070
2071impl<'a> BorrowMut<AppContext> for WindowContext<'a> {
2072    fn borrow_mut(&mut self) -> &mut AppContext {
2073        self.app
2074    }
2075}
2076
2077/// This trait contains functionality that is shared across [`ViewContext`] and [`WindowContext`]
2078pub trait BorrowWindow: BorrowMut<Window> + BorrowMut<AppContext> {
2079    #[doc(hidden)]
2080    fn app_mut(&mut self) -> &mut AppContext {
2081        self.borrow_mut()
2082    }
2083
2084    #[doc(hidden)]
2085    fn app(&self) -> &AppContext {
2086        self.borrow()
2087    }
2088
2089    #[doc(hidden)]
2090    fn window(&self) -> &Window {
2091        self.borrow()
2092    }
2093
2094    #[doc(hidden)]
2095    fn window_mut(&mut self) -> &mut Window {
2096        self.borrow_mut()
2097    }
2098
2099    /// Pushes the given element id onto the global stack and invokes the given closure
2100    /// with a `GlobalElementId`, which disambiguates the given id in the context of its ancestor
2101    /// ids. Because elements are discarded and recreated on each frame, the `GlobalElementId` is
2102    /// used to associate state with identified elements across separate frames.
2103    fn with_element_id<R>(
2104        &mut self,
2105        id: Option<impl Into<ElementId>>,
2106        f: impl FnOnce(&mut Self) -> R,
2107    ) -> R {
2108        if let Some(id) = id.map(Into::into) {
2109            let window = self.window_mut();
2110            window.element_id_stack.push(id);
2111            let result = f(self);
2112            let window: &mut Window = self.borrow_mut();
2113            window.element_id_stack.pop();
2114            result
2115        } else {
2116            f(self)
2117        }
2118    }
2119
2120    /// Invoke the given function with the given content mask after intersecting it
2121    /// with the current mask.
2122    fn with_content_mask<R>(
2123        &mut self,
2124        mask: Option<ContentMask<Pixels>>,
2125        f: impl FnOnce(&mut Self) -> R,
2126    ) -> R {
2127        if let Some(mask) = mask {
2128            let mask = mask.intersect(&self.content_mask());
2129            self.window_mut().next_frame.content_mask_stack.push(mask);
2130            let result = f(self);
2131            self.window_mut().next_frame.content_mask_stack.pop();
2132            result
2133        } else {
2134            f(self)
2135        }
2136    }
2137
2138    /// Invoke the given function with the content mask reset to that
2139    /// of the window.
2140    fn break_content_mask<R>(&mut self, f: impl FnOnce(&mut Self) -> R) -> R {
2141        let mask = ContentMask {
2142            bounds: Bounds {
2143                origin: Point::default(),
2144                size: self.window().viewport_size,
2145            },
2146        };
2147        let new_stacking_order_id =
2148            post_inc(&mut self.window_mut().next_frame.next_stacking_order_id);
2149        let old_stacking_order = mem::take(&mut self.window_mut().next_frame.z_index_stack);
2150        self.window_mut().next_frame.z_index_stack.id = new_stacking_order_id;
2151        self.window_mut().next_frame.content_mask_stack.push(mask);
2152        let result = f(self);
2153        self.window_mut().next_frame.content_mask_stack.pop();
2154        self.window_mut().next_frame.z_index_stack = old_stacking_order;
2155        result
2156    }
2157
2158    /// Called during painting to invoke the given closure in a new stacking context. The given
2159    /// z-index is interpreted relative to the previous call to `stack`.
2160    fn with_z_index<R>(&mut self, z_index: u8, f: impl FnOnce(&mut Self) -> R) -> R {
2161        let new_stacking_order_id =
2162            post_inc(&mut self.window_mut().next_frame.next_stacking_order_id);
2163        let old_stacking_order_id = mem::replace(
2164            &mut self.window_mut().next_frame.z_index_stack.id,
2165            new_stacking_order_id,
2166        );
2167        self.window_mut().next_frame.z_index_stack.id = new_stacking_order_id;
2168        self.window_mut().next_frame.z_index_stack.push(z_index);
2169        let result = f(self);
2170        self.window_mut().next_frame.z_index_stack.id = old_stacking_order_id;
2171        self.window_mut().next_frame.z_index_stack.pop();
2172        result
2173    }
2174
2175    /// Update the global element offset relative to the current offset. This is used to implement
2176    /// scrolling.
2177    fn with_element_offset<R>(
2178        &mut self,
2179        offset: Point<Pixels>,
2180        f: impl FnOnce(&mut Self) -> R,
2181    ) -> R {
2182        if offset.is_zero() {
2183            return f(self);
2184        };
2185
2186        let abs_offset = self.element_offset() + offset;
2187        self.with_absolute_element_offset(abs_offset, f)
2188    }
2189
2190    /// Update the global element offset based on the given offset. This is used to implement
2191    /// drag handles and other manual painting of elements.
2192    fn with_absolute_element_offset<R>(
2193        &mut self,
2194        offset: Point<Pixels>,
2195        f: impl FnOnce(&mut Self) -> R,
2196    ) -> R {
2197        self.window_mut()
2198            .next_frame
2199            .element_offset_stack
2200            .push(offset);
2201        let result = f(self);
2202        self.window_mut().next_frame.element_offset_stack.pop();
2203        result
2204    }
2205
2206    /// Obtain the current element offset.
2207    fn element_offset(&self) -> Point<Pixels> {
2208        self.window()
2209            .next_frame
2210            .element_offset_stack
2211            .last()
2212            .copied()
2213            .unwrap_or_default()
2214    }
2215
2216    /// Update or initialize state for an element with the given id that lives across multiple
2217    /// frames. If an element with this id existed in the rendered frame, its state will be passed
2218    /// to the given closure. The state returned by the closure will be stored so it can be referenced
2219    /// when drawing the next frame.
2220    fn with_element_state<S, R>(
2221        &mut self,
2222        id: ElementId,
2223        f: impl FnOnce(Option<S>, &mut Self) -> (R, S),
2224    ) -> R
2225    where
2226        S: 'static,
2227    {
2228        self.with_element_id(Some(id), |cx| {
2229            let global_id = cx.window().element_id_stack.clone();
2230
2231            if let Some(any) = cx
2232                .window_mut()
2233                .next_frame
2234                .element_states
2235                .remove(&global_id)
2236                .or_else(|| {
2237                    cx.window_mut()
2238                        .rendered_frame
2239                        .element_states
2240                        .remove(&global_id)
2241                })
2242            {
2243                let ElementStateBox {
2244                    inner,
2245
2246                    #[cfg(debug_assertions)]
2247                    type_name
2248                } = any;
2249                // Using the extra inner option to avoid needing to reallocate a new box.
2250                let mut state_box = inner
2251                    .downcast::<Option<S>>()
2252                    .map_err(|_| {
2253                        #[cfg(debug_assertions)]
2254                        {
2255                            anyhow!(
2256                                "invalid element state type for id, requested_type {:?}, actual type: {:?}",
2257                                std::any::type_name::<S>(),
2258                                type_name
2259                            )
2260                        }
2261
2262                        #[cfg(not(debug_assertions))]
2263                        {
2264                            anyhow!(
2265                                "invalid element state type for id, requested_type {:?}",
2266                                std::any::type_name::<S>(),
2267                            )
2268                        }
2269                    })
2270                    .unwrap();
2271
2272                // Actual: Option<AnyElement> <- View
2273                // Requested: () <- AnyElemet
2274                let state = state_box
2275                    .take()
2276                    .expect("element state is already on the stack");
2277                let (result, state) = f(Some(state), cx);
2278                state_box.replace(state);
2279                cx.window_mut()
2280                    .next_frame
2281                    .element_states
2282                    .insert(global_id, ElementStateBox {
2283                        inner: state_box,
2284
2285                        #[cfg(debug_assertions)]
2286                        type_name
2287                    });
2288                result
2289            } else {
2290                let (result, state) = f(None, cx);
2291                cx.window_mut()
2292                    .next_frame
2293                    .element_states
2294                    .insert(global_id,
2295                        ElementStateBox {
2296                            inner: Box::new(Some(state)),
2297
2298                            #[cfg(debug_assertions)]
2299                            type_name: std::any::type_name::<S>()
2300                        }
2301
2302                    );
2303                result
2304            }
2305        })
2306    }
2307
2308    /// Obtain the current content mask.
2309    fn content_mask(&self) -> ContentMask<Pixels> {
2310        self.window()
2311            .next_frame
2312            .content_mask_stack
2313            .last()
2314            .cloned()
2315            .unwrap_or_else(|| ContentMask {
2316                bounds: Bounds {
2317                    origin: Point::default(),
2318                    size: self.window().viewport_size,
2319                },
2320            })
2321    }
2322
2323    /// The size of an em for the base font of the application. Adjusting this value allows the
2324    /// UI to scale, just like zooming a web page.
2325    fn rem_size(&self) -> Pixels {
2326        self.window().rem_size
2327    }
2328}
2329
2330impl Borrow<Window> for WindowContext<'_> {
2331    fn borrow(&self) -> &Window {
2332        self.window
2333    }
2334}
2335
2336impl BorrowMut<Window> for WindowContext<'_> {
2337    fn borrow_mut(&mut self) -> &mut Window {
2338        self.window
2339    }
2340}
2341
2342impl<T> BorrowWindow for T where T: BorrowMut<AppContext> + BorrowMut<Window> {}
2343
2344/// Provides access to application state that is specialized for a particular [`View`].
2345/// Allows you to interact with focus, emit events, etc.
2346/// ViewContext also derefs to [`WindowContext`], giving you access to all of its methods as well.
2347/// When you call [`View::update`], you're passed a `&mut V` and an `&mut ViewContext<V>`.
2348pub struct ViewContext<'a, V> {
2349    window_cx: WindowContext<'a>,
2350    view: &'a View<V>,
2351}
2352
2353impl<V> Borrow<AppContext> for ViewContext<'_, V> {
2354    fn borrow(&self) -> &AppContext {
2355        &*self.window_cx.app
2356    }
2357}
2358
2359impl<V> BorrowMut<AppContext> for ViewContext<'_, V> {
2360    fn borrow_mut(&mut self) -> &mut AppContext {
2361        &mut *self.window_cx.app
2362    }
2363}
2364
2365impl<V> Borrow<Window> for ViewContext<'_, V> {
2366    fn borrow(&self) -> &Window {
2367        &*self.window_cx.window
2368    }
2369}
2370
2371impl<V> BorrowMut<Window> for ViewContext<'_, V> {
2372    fn borrow_mut(&mut self) -> &mut Window {
2373        &mut *self.window_cx.window
2374    }
2375}
2376
2377impl<'a, V: 'static> ViewContext<'a, V> {
2378    pub(crate) fn new(app: &'a mut AppContext, window: &'a mut Window, view: &'a View<V>) -> Self {
2379        Self {
2380            window_cx: WindowContext::new(app, window),
2381            view,
2382        }
2383    }
2384
2385    /// Get the entity_id of this view.
2386    pub fn entity_id(&self) -> EntityId {
2387        self.view.entity_id()
2388    }
2389
2390    /// Get the view pointer underlying this context.
2391    pub fn view(&self) -> &View<V> {
2392        self.view
2393    }
2394
2395    /// Get the model underlying this view.
2396    pub fn model(&self) -> &Model<V> {
2397        &self.view.model
2398    }
2399
2400    /// Access the underlying window context.
2401    pub fn window_context(&mut self) -> &mut WindowContext<'a> {
2402        &mut self.window_cx
2403    }
2404
2405    /// Set a given callback to be run on the next frame.
2406    pub fn on_next_frame(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static)
2407    where
2408        V: 'static,
2409    {
2410        let view = self.view().clone();
2411        self.window_cx.on_next_frame(move |cx| view.update(cx, f));
2412    }
2413
2414    /// Schedules the given function to be run at the end of the current effect cycle, allowing entities
2415    /// that are currently on the stack to be returned to the app.
2416    pub fn defer(&mut self, f: impl FnOnce(&mut V, &mut ViewContext<V>) + 'static) {
2417        let view = self.view().downgrade();
2418        self.window_cx.defer(move |cx| {
2419            view.update(cx, f).ok();
2420        });
2421    }
2422
2423    /// Observe another model or view for changes to its state, as tracked by [`ModelContext::notify`].
2424    pub fn observe<V2, E>(
2425        &mut self,
2426        entity: &E,
2427        mut on_notify: impl FnMut(&mut V, E, &mut ViewContext<'_, V>) + 'static,
2428    ) -> Subscription
2429    where
2430        V2: 'static,
2431        V: 'static,
2432        E: Entity<V2>,
2433    {
2434        let view = self.view().downgrade();
2435        let entity_id = entity.entity_id();
2436        let entity = entity.downgrade();
2437        let window_handle = self.window.handle;
2438        let (subscription, activate) = self.app.observers.insert(
2439            entity_id,
2440            Box::new(move |cx| {
2441                window_handle
2442                    .update(cx, |_, cx| {
2443                        if let Some(handle) = E::upgrade_from(&entity) {
2444                            view.update(cx, |this, cx| on_notify(this, handle, cx))
2445                                .is_ok()
2446                        } else {
2447                            false
2448                        }
2449                    })
2450                    .unwrap_or(false)
2451            }),
2452        );
2453        self.app.defer(move |_| activate());
2454        subscription
2455    }
2456
2457    /// Subscribe to events emitted by another model or view.
2458    /// The entity to which you're subscribing must implement the [`EventEmitter`] trait.
2459    /// The callback will be invoked with a reference to the current view, a handle to the emitting entity (either a [`View`] or [`Model`]), the event, and a view context for the current view.
2460    pub fn subscribe<V2, E, Evt>(
2461        &mut self,
2462        entity: &E,
2463        mut on_event: impl FnMut(&mut V, E, &Evt, &mut ViewContext<'_, V>) + 'static,
2464    ) -> Subscription
2465    where
2466        V2: EventEmitter<Evt>,
2467        E: Entity<V2>,
2468        Evt: 'static,
2469    {
2470        let view = self.view().downgrade();
2471        let entity_id = entity.entity_id();
2472        let handle = entity.downgrade();
2473        let window_handle = self.window.handle;
2474        let (subscription, activate) = self.app.event_listeners.insert(
2475            entity_id,
2476            (
2477                TypeId::of::<Evt>(),
2478                Box::new(move |event, cx| {
2479                    window_handle
2480                        .update(cx, |_, cx| {
2481                            if let Some(handle) = E::upgrade_from(&handle) {
2482                                let event = event.downcast_ref().expect("invalid event type");
2483                                view.update(cx, |this, cx| on_event(this, handle, event, cx))
2484                                    .is_ok()
2485                            } else {
2486                                false
2487                            }
2488                        })
2489                        .unwrap_or(false)
2490                }),
2491            ),
2492        );
2493        self.app.defer(move |_| activate());
2494        subscription
2495    }
2496
2497    /// Register a callback to be invoked when the view is released.
2498    ///
2499    /// The callback receives a handle to the view's window. This handle may be
2500    /// invalid, if the window was closed before the view was released.
2501    pub fn on_release(
2502        &mut self,
2503        on_release: impl FnOnce(&mut V, AnyWindowHandle, &mut AppContext) + 'static,
2504    ) -> Subscription {
2505        let window_handle = self.window.handle;
2506        let (subscription, activate) = self.app.release_listeners.insert(
2507            self.view.model.entity_id,
2508            Box::new(move |this, cx| {
2509                let this = this.downcast_mut().expect("invalid entity type");
2510                on_release(this, window_handle, cx)
2511            }),
2512        );
2513        activate();
2514        subscription
2515    }
2516
2517    /// Register a callback to be invoked when the given Model or View is released.
2518    pub fn observe_release<V2, E>(
2519        &mut self,
2520        entity: &E,
2521        mut on_release: impl FnMut(&mut V, &mut V2, &mut ViewContext<'_, V>) + 'static,
2522    ) -> Subscription
2523    where
2524        V: 'static,
2525        V2: 'static,
2526        E: Entity<V2>,
2527    {
2528        let view = self.view().downgrade();
2529        let entity_id = entity.entity_id();
2530        let window_handle = self.window.handle;
2531        let (subscription, activate) = self.app.release_listeners.insert(
2532            entity_id,
2533            Box::new(move |entity, cx| {
2534                let entity = entity.downcast_mut().expect("invalid entity type");
2535                let _ = window_handle.update(cx, |_, cx| {
2536                    view.update(cx, |this, cx| on_release(this, entity, cx))
2537                });
2538            }),
2539        );
2540        activate();
2541        subscription
2542    }
2543
2544    /// Indicate that this view has changed, which will invoke any observers and also mark the window as dirty.
2545    /// If this view or any of its ancestors are *cached*, notifying it will cause it or its ancestors to be redrawn.
2546    pub fn notify(&mut self) {
2547        if !self.window.drawing {
2548            self.window_cx.notify();
2549            self.window_cx.app.push_effect(Effect::Notify {
2550                emitter: self.view.model.entity_id,
2551            });
2552        }
2553    }
2554
2555    /// Register a callback to be invoked when the window is resized.
2556    pub fn observe_window_bounds(
2557        &mut self,
2558        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2559    ) -> Subscription {
2560        let view = self.view.downgrade();
2561        let (subscription, activate) = self.window.bounds_observers.insert(
2562            (),
2563            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2564        );
2565        activate();
2566        subscription
2567    }
2568
2569    /// Register a callback to be invoked when the window is activated or deactivated.
2570    pub fn observe_window_activation(
2571        &mut self,
2572        mut callback: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2573    ) -> Subscription {
2574        let view = self.view.downgrade();
2575        let (subscription, activate) = self.window.activation_observers.insert(
2576            (),
2577            Box::new(move |cx| view.update(cx, |view, cx| callback(view, cx)).is_ok()),
2578        );
2579        activate();
2580        subscription
2581    }
2582
2583    /// Register a listener to be called when the given focus handle receives focus.
2584    /// Returns a subscription and persists until the subscription is dropped.
2585    pub fn on_focus(
2586        &mut self,
2587        handle: &FocusHandle,
2588        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2589    ) -> Subscription {
2590        let view = self.view.downgrade();
2591        let focus_id = handle.id;
2592        let (subscription, activate) = self.window.focus_listeners.insert(
2593            (),
2594            Box::new(move |event, cx| {
2595                view.update(cx, |view, cx| {
2596                    if event.previous_focus_path.last() != Some(&focus_id)
2597                        && event.current_focus_path.last() == Some(&focus_id)
2598                    {
2599                        listener(view, cx)
2600                    }
2601                })
2602                .is_ok()
2603            }),
2604        );
2605        self.app.defer(move |_| activate());
2606        subscription
2607    }
2608
2609    /// Register a listener to be called when the given focus handle or one of its descendants receives focus.
2610    /// Returns a subscription and persists until the subscription is dropped.
2611    pub fn on_focus_in(
2612        &mut self,
2613        handle: &FocusHandle,
2614        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2615    ) -> Subscription {
2616        let view = self.view.downgrade();
2617        let focus_id = handle.id;
2618        let (subscription, activate) = self.window.focus_listeners.insert(
2619            (),
2620            Box::new(move |event, cx| {
2621                view.update(cx, |view, cx| {
2622                    if !event.previous_focus_path.contains(&focus_id)
2623                        && event.current_focus_path.contains(&focus_id)
2624                    {
2625                        listener(view, cx)
2626                    }
2627                })
2628                .is_ok()
2629            }),
2630        );
2631        self.app.defer(move |_| activate());
2632        subscription
2633    }
2634
2635    /// Register a listener to be called when the given focus handle loses focus.
2636    /// Returns a subscription and persists until the subscription is dropped.
2637    pub fn on_blur(
2638        &mut self,
2639        handle: &FocusHandle,
2640        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2641    ) -> Subscription {
2642        let view = self.view.downgrade();
2643        let focus_id = handle.id;
2644        let (subscription, activate) = self.window.focus_listeners.insert(
2645            (),
2646            Box::new(move |event, cx| {
2647                view.update(cx, |view, cx| {
2648                    if event.previous_focus_path.last() == Some(&focus_id)
2649                        && event.current_focus_path.last() != Some(&focus_id)
2650                    {
2651                        listener(view, cx)
2652                    }
2653                })
2654                .is_ok()
2655            }),
2656        );
2657        self.app.defer(move |_| activate());
2658        subscription
2659    }
2660
2661    /// Register a listener to be called when nothing in the window has focus.
2662    /// This typically happens when the node that was focused is removed from the tree,
2663    /// and this callback lets you chose a default place to restore the users focus.
2664    /// Returns a subscription and persists until the subscription is dropped.
2665    pub fn on_focus_lost(
2666        &mut self,
2667        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2668    ) -> Subscription {
2669        let view = self.view.downgrade();
2670        let (subscription, activate) = self.window.focus_lost_listeners.insert(
2671            (),
2672            Box::new(move |cx| view.update(cx, |view, cx| listener(view, cx)).is_ok()),
2673        );
2674        activate();
2675        subscription
2676    }
2677
2678    /// Register a listener to be called when the given focus handle or one of its descendants loses focus.
2679    /// Returns a subscription and persists until the subscription is dropped.
2680    pub fn on_focus_out(
2681        &mut self,
2682        handle: &FocusHandle,
2683        mut listener: impl FnMut(&mut V, &mut ViewContext<V>) + 'static,
2684    ) -> Subscription {
2685        let view = self.view.downgrade();
2686        let focus_id = handle.id;
2687        let (subscription, activate) = self.window.focus_listeners.insert(
2688            (),
2689            Box::new(move |event, cx| {
2690                view.update(cx, |view, cx| {
2691                    if event.previous_focus_path.contains(&focus_id)
2692                        && !event.current_focus_path.contains(&focus_id)
2693                    {
2694                        listener(view, cx)
2695                    }
2696                })
2697                .is_ok()
2698            }),
2699        );
2700        self.app.defer(move |_| activate());
2701        subscription
2702    }
2703
2704    /// Schedule a future to be run asynchronously.
2705    /// The given callback is invoked with a [`WeakView<V>`] to avoid leaking the view for a long-running process.
2706    /// It's also given an [`AsyncWindowContext`], which can be used to access the state of the view across await points.
2707    /// The returned future will be polled on the main thread.
2708    pub fn spawn<Fut, R>(
2709        &mut self,
2710        f: impl FnOnce(WeakView<V>, AsyncWindowContext) -> Fut,
2711    ) -> Task<R>
2712    where
2713        R: 'static,
2714        Fut: Future<Output = R> + 'static,
2715    {
2716        let view = self.view().downgrade();
2717        self.window_cx.spawn(|cx| f(view, cx))
2718    }
2719
2720    /// Update the global state of the given type.
2721    pub fn update_global<G, R>(&mut self, f: impl FnOnce(&mut G, &mut Self) -> R) -> R
2722    where
2723        G: 'static,
2724    {
2725        let mut global = self.app.lease_global::<G>();
2726        let result = f(&mut global, self);
2727        self.app.end_global_lease(global);
2728        result
2729    }
2730
2731    /// Register a callback to be invoked when the given global state changes.
2732    pub fn observe_global<G: 'static>(
2733        &mut self,
2734        mut f: impl FnMut(&mut V, &mut ViewContext<'_, V>) + 'static,
2735    ) -> Subscription {
2736        let window_handle = self.window.handle;
2737        let view = self.view().downgrade();
2738        let (subscription, activate) = self.global_observers.insert(
2739            TypeId::of::<G>(),
2740            Box::new(move |cx| {
2741                window_handle
2742                    .update(cx, |_, cx| view.update(cx, |view, cx| f(view, cx)).is_ok())
2743                    .unwrap_or(false)
2744            }),
2745        );
2746        self.app.defer(move |_| activate());
2747        subscription
2748    }
2749
2750    /// Add a listener for any mouse event that occurs in the window.
2751    /// This is a fairly low level method.
2752    /// Typically, you'll want to use methods on UI elements, which perform bounds checking etc.
2753    pub fn on_mouse_event<Event: 'static>(
2754        &mut self,
2755        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2756    ) {
2757        let handle = self.view().clone();
2758        self.window_cx.on_mouse_event(move |event, phase, cx| {
2759            handle.update(cx, |view, cx| {
2760                handler(view, event, phase, cx);
2761            })
2762        });
2763    }
2764
2765    /// Register a callback to be invoked when the given Key Event is dispatched to the window.
2766    pub fn on_key_event<Event: 'static>(
2767        &mut self,
2768        handler: impl Fn(&mut V, &Event, DispatchPhase, &mut ViewContext<V>) + 'static,
2769    ) {
2770        let handle = self.view().clone();
2771        self.window_cx.on_key_event(move |event, phase, cx| {
2772            handle.update(cx, |view, cx| {
2773                handler(view, event, phase, cx);
2774            })
2775        });
2776    }
2777
2778    /// Register a callback to be invoked when the given Action type is dispatched to the window.
2779    pub fn on_action(
2780        &mut self,
2781        action_type: TypeId,
2782        listener: impl Fn(&mut V, &dyn Any, DispatchPhase, &mut ViewContext<V>) + 'static,
2783    ) {
2784        let handle = self.view().clone();
2785        self.window_cx
2786            .on_action(action_type, move |action, phase, cx| {
2787                handle.update(cx, |view, cx| {
2788                    listener(view, action, phase, cx);
2789                })
2790            });
2791    }
2792
2793    /// Emit an event to be handled any other views that have subscribed via [ViewContext::subscribe].
2794    pub fn emit<Evt>(&mut self, event: Evt)
2795    where
2796        Evt: 'static,
2797        V: EventEmitter<Evt>,
2798    {
2799        let emitter = self.view.model.entity_id;
2800        self.app.push_effect(Effect::Emit {
2801            emitter,
2802            event_type: TypeId::of::<Evt>(),
2803            event: Box::new(event),
2804        });
2805    }
2806
2807    /// Move focus to the current view, assuming it implements [`FocusableView`].
2808    pub fn focus_self(&mut self)
2809    where
2810        V: FocusableView,
2811    {
2812        self.defer(|view, cx| view.focus_handle(cx).focus(cx))
2813    }
2814
2815    /// Convenience method for accessing view state in an event callback.
2816    ///
2817    /// Many GPUI callbacks take the form of `Fn(&E, &mut WindowContext)`,
2818    /// but it's often useful to be able to access view state in these
2819    /// callbacks. This method provides a convenient way to do so.
2820    pub fn listener<E>(
2821        &self,
2822        f: impl Fn(&mut V, &E, &mut ViewContext<V>) + 'static,
2823    ) -> impl Fn(&E, &mut WindowContext) + 'static {
2824        let view = self.view().downgrade();
2825        move |e: &E, cx: &mut WindowContext| {
2826            view.update(cx, |view, cx| f(view, e, cx)).ok();
2827        }
2828    }
2829}
2830
2831impl<V> Context for ViewContext<'_, V> {
2832    type Result<U> = U;
2833
2834    fn new_model<T: 'static>(
2835        &mut self,
2836        build_model: impl FnOnce(&mut ModelContext<'_, T>) -> T,
2837    ) -> Model<T> {
2838        self.window_cx.new_model(build_model)
2839    }
2840
2841    fn update_model<T: 'static, R>(
2842        &mut self,
2843        model: &Model<T>,
2844        update: impl FnOnce(&mut T, &mut ModelContext<'_, T>) -> R,
2845    ) -> R {
2846        self.window_cx.update_model(model, update)
2847    }
2848
2849    fn update_window<T, F>(&mut self, window: AnyWindowHandle, update: F) -> Result<T>
2850    where
2851        F: FnOnce(AnyView, &mut WindowContext<'_>) -> T,
2852    {
2853        self.window_cx.update_window(window, update)
2854    }
2855
2856    fn read_model<T, R>(
2857        &self,
2858        handle: &Model<T>,
2859        read: impl FnOnce(&T, &AppContext) -> R,
2860    ) -> Self::Result<R>
2861    where
2862        T: 'static,
2863    {
2864        self.window_cx.read_model(handle, read)
2865    }
2866
2867    fn read_window<T, R>(
2868        &self,
2869        window: &WindowHandle<T>,
2870        read: impl FnOnce(View<T>, &AppContext) -> R,
2871    ) -> Result<R>
2872    where
2873        T: 'static,
2874    {
2875        self.window_cx.read_window(window, read)
2876    }
2877}
2878
2879impl<V: 'static> VisualContext for ViewContext<'_, V> {
2880    fn new_view<W: Render + 'static>(
2881        &mut self,
2882        build_view_state: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2883    ) -> Self::Result<View<W>> {
2884        self.window_cx.new_view(build_view_state)
2885    }
2886
2887    fn update_view<V2: 'static, R>(
2888        &mut self,
2889        view: &View<V2>,
2890        update: impl FnOnce(&mut V2, &mut ViewContext<'_, V2>) -> R,
2891    ) -> Self::Result<R> {
2892        self.window_cx.update_view(view, update)
2893    }
2894
2895    fn replace_root_view<W>(
2896        &mut self,
2897        build_view: impl FnOnce(&mut ViewContext<'_, W>) -> W,
2898    ) -> Self::Result<View<W>>
2899    where
2900        W: 'static + Render,
2901    {
2902        self.window_cx.replace_root_view(build_view)
2903    }
2904
2905    fn focus_view<W: FocusableView>(&mut self, view: &View<W>) -> Self::Result<()> {
2906        self.window_cx.focus_view(view)
2907    }
2908
2909    fn dismiss_view<W: ManagedView>(&mut self, view: &View<W>) -> Self::Result<()> {
2910        self.window_cx.dismiss_view(view)
2911    }
2912}
2913
2914impl<'a, V> std::ops::Deref for ViewContext<'a, V> {
2915    type Target = WindowContext<'a>;
2916
2917    fn deref(&self) -> &Self::Target {
2918        &self.window_cx
2919    }
2920}
2921
2922impl<'a, V> std::ops::DerefMut for ViewContext<'a, V> {
2923    fn deref_mut(&mut self) -> &mut Self::Target {
2924        &mut self.window_cx
2925    }
2926}
2927
2928// #[derive(Clone, Copy, Eq, PartialEq, Hash)]
2929slotmap::new_key_type! {
2930    /// A unique identifier for a window.
2931    pub struct WindowId;
2932}
2933
2934impl WindowId {
2935    /// Converts this window ID to a `u64`.
2936    pub fn as_u64(&self) -> u64 {
2937        self.0.as_ffi()
2938    }
2939}
2940
2941/// A handle to a window with a specific root view type.
2942/// Note that this does not keep the window alive on its own.
2943#[derive(Deref, DerefMut)]
2944pub struct WindowHandle<V> {
2945    #[deref]
2946    #[deref_mut]
2947    pub(crate) any_handle: AnyWindowHandle,
2948    state_type: PhantomData<V>,
2949}
2950
2951impl<V: 'static + Render> WindowHandle<V> {
2952    /// Create a new handle from a window ID.
2953    /// This does not check if the root type of the window is `V`.
2954    pub fn new(id: WindowId) -> Self {
2955        WindowHandle {
2956            any_handle: AnyWindowHandle {
2957                id,
2958                state_type: TypeId::of::<V>(),
2959            },
2960            state_type: PhantomData,
2961        }
2962    }
2963
2964    /// Get the root view out of this window.
2965    ///
2966    /// This will fail if the window is closed or if the root view's type does not match `V`.
2967    pub fn root<C>(&self, cx: &mut C) -> Result<View<V>>
2968    where
2969        C: Context,
2970    {
2971        Flatten::flatten(cx.update_window(self.any_handle, |root_view, _| {
2972            root_view
2973                .downcast::<V>()
2974                .map_err(|_| anyhow!("the type of the window's root view has changed"))
2975        }))
2976    }
2977
2978    /// Update the root view of this window.
2979    ///
2980    /// This will fail if the window has been closed or if the root view's type does not match
2981    pub fn update<C, R>(
2982        &self,
2983        cx: &mut C,
2984        update: impl FnOnce(&mut V, &mut ViewContext<'_, V>) -> R,
2985    ) -> Result<R>
2986    where
2987        C: Context,
2988    {
2989        cx.update_window(self.any_handle, |root_view, cx| {
2990            let view = root_view
2991                .downcast::<V>()
2992                .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
2993            Ok(cx.update_view(&view, update))
2994        })?
2995    }
2996
2997    /// Read the root view out of this window.
2998    ///
2999    /// This will fail if the window is closed or if the root view's type does not match `V`.
3000    pub fn read<'a>(&self, cx: &'a AppContext) -> Result<&'a V> {
3001        let x = cx
3002            .windows
3003            .get(self.id)
3004            .and_then(|window| {
3005                window
3006                    .as_ref()
3007                    .and_then(|window| window.root_view.clone())
3008                    .map(|root_view| root_view.downcast::<V>())
3009            })
3010            .ok_or_else(|| anyhow!("window not found"))?
3011            .map_err(|_| anyhow!("the type of the window's root view has changed"))?;
3012
3013        Ok(x.read(cx))
3014    }
3015
3016    /// Read the root view out of this window, with a callback
3017    ///
3018    /// This will fail if the window is closed or if the root view's type does not match `V`.
3019    pub fn read_with<C, R>(&self, cx: &C, read_with: impl FnOnce(&V, &AppContext) -> R) -> Result<R>
3020    where
3021        C: Context,
3022    {
3023        cx.read_window(self, |root_view, cx| read_with(root_view.read(cx), cx))
3024    }
3025
3026    /// Read the root view pointer off of this window.
3027    ///
3028    /// This will fail if the window is closed or if the root view's type does not match `V`.
3029    pub fn root_view<C>(&self, cx: &C) -> Result<View<V>>
3030    where
3031        C: Context,
3032    {
3033        cx.read_window(self, |root_view, _cx| root_view.clone())
3034    }
3035
3036    /// Check if this window is 'active'.
3037    ///
3038    /// Will return `None` if the window is closed.
3039    pub fn is_active(&self, cx: &AppContext) -> Option<bool> {
3040        cx.windows
3041            .get(self.id)
3042            .and_then(|window| window.as_ref().map(|window| window.active))
3043    }
3044}
3045
3046impl<V> Copy for WindowHandle<V> {}
3047
3048impl<V> Clone for WindowHandle<V> {
3049    fn clone(&self) -> Self {
3050        *self
3051    }
3052}
3053
3054impl<V> PartialEq for WindowHandle<V> {
3055    fn eq(&self, other: &Self) -> bool {
3056        self.any_handle == other.any_handle
3057    }
3058}
3059
3060impl<V> Eq for WindowHandle<V> {}
3061
3062impl<V> Hash for WindowHandle<V> {
3063    fn hash<H: Hasher>(&self, state: &mut H) {
3064        self.any_handle.hash(state);
3065    }
3066}
3067
3068impl<V: 'static> From<WindowHandle<V>> for AnyWindowHandle {
3069    fn from(val: WindowHandle<V>) -> Self {
3070        val.any_handle
3071    }
3072}
3073
3074/// A handle to a window with any root view type, which can be downcast to a window with a specific root view type.
3075#[derive(Copy, Clone, PartialEq, Eq, Hash)]
3076pub struct AnyWindowHandle {
3077    pub(crate) id: WindowId,
3078    state_type: TypeId,
3079}
3080
3081impl AnyWindowHandle {
3082    /// Get the ID of this window.
3083    pub fn window_id(&self) -> WindowId {
3084        self.id
3085    }
3086
3087    /// Attempt to convert this handle to a window handle with a specific root view type.
3088    /// If the types do not match, this will return `None`.
3089    pub fn downcast<T: 'static>(&self) -> Option<WindowHandle<T>> {
3090        if TypeId::of::<T>() == self.state_type {
3091            Some(WindowHandle {
3092                any_handle: *self,
3093                state_type: PhantomData,
3094            })
3095        } else {
3096            None
3097        }
3098    }
3099
3100    /// Update the state of the root view of this window.
3101    ///
3102    /// This will fail if the window has been closed.
3103    pub fn update<C, R>(
3104        self,
3105        cx: &mut C,
3106        update: impl FnOnce(AnyView, &mut WindowContext<'_>) -> R,
3107    ) -> Result<R>
3108    where
3109        C: Context,
3110    {
3111        cx.update_window(self, update)
3112    }
3113
3114    /// Read the state of the root view of this window.
3115    ///
3116    /// This will fail if the window has been closed.
3117    pub fn read<T, C, R>(self, cx: &C, read: impl FnOnce(View<T>, &AppContext) -> R) -> Result<R>
3118    where
3119        C: Context,
3120        T: 'static,
3121    {
3122        let view = self
3123            .downcast::<T>()
3124            .context("the type of the window's root view has changed")?;
3125
3126        cx.read_window(&view, read)
3127    }
3128}
3129
3130// #[cfg(any(test, feature = "test-support"))]
3131// impl From<SmallVec<[u32; 16]>> for StackingOrder {
3132//     fn from(small_vec: SmallVec<[u32; 16]>) -> Self {
3133//         StackingOrder(small_vec)
3134//     }
3135// }
3136
3137/// An identifier for an [`Element`](crate::Element).
3138///
3139/// Can be constructed with a string, a number, or both, as well
3140/// as other internal representations.
3141#[derive(Clone, Debug, Eq, PartialEq, Hash)]
3142pub enum ElementId {
3143    /// The ID of a View element
3144    View(EntityId),
3145    /// An integer ID.
3146    Integer(usize),
3147    /// A string based ID.
3148    Name(SharedString),
3149    /// An ID that's equated with a focus handle.
3150    FocusHandle(FocusId),
3151    /// A combination of a name and an integer.
3152    NamedInteger(SharedString, usize),
3153}
3154
3155impl ElementId {
3156    pub(crate) fn from_entity_id(entity_id: EntityId) -> Self {
3157        ElementId::View(entity_id)
3158    }
3159}
3160
3161impl TryInto<SharedString> for ElementId {
3162    type Error = anyhow::Error;
3163
3164    fn try_into(self) -> anyhow::Result<SharedString> {
3165        if let ElementId::Name(name) = self {
3166            Ok(name)
3167        } else {
3168            Err(anyhow!("element id is not string"))
3169        }
3170    }
3171}
3172
3173impl From<usize> for ElementId {
3174    fn from(id: usize) -> Self {
3175        ElementId::Integer(id)
3176    }
3177}
3178
3179impl From<i32> for ElementId {
3180    fn from(id: i32) -> Self {
3181        Self::Integer(id as usize)
3182    }
3183}
3184
3185impl From<SharedString> for ElementId {
3186    fn from(name: SharedString) -> Self {
3187        ElementId::Name(name)
3188    }
3189}
3190
3191impl From<&'static str> for ElementId {
3192    fn from(name: &'static str) -> Self {
3193        ElementId::Name(name.into())
3194    }
3195}
3196
3197impl<'a> From<&'a FocusHandle> for ElementId {
3198    fn from(handle: &'a FocusHandle) -> Self {
3199        ElementId::FocusHandle(handle.id)
3200    }
3201}
3202
3203impl From<(&'static str, EntityId)> for ElementId {
3204    fn from((name, id): (&'static str, EntityId)) -> Self {
3205        ElementId::NamedInteger(name.into(), id.as_u64() as usize)
3206    }
3207}
3208
3209impl From<(&'static str, usize)> for ElementId {
3210    fn from((name, id): (&'static str, usize)) -> Self {
3211        ElementId::NamedInteger(name.into(), id)
3212    }
3213}
3214
3215impl From<(&'static str, u64)> for ElementId {
3216    fn from((name, id): (&'static str, u64)) -> Self {
3217        ElementId::NamedInteger(name.into(), id as usize)
3218    }
3219}
3220
3221/// A rectangle to be rendered in the window at the given position and size.
3222/// Passed as an argument [`WindowContext::paint_quad`].
3223#[derive(Clone)]
3224pub struct PaintQuad {
3225    bounds: Bounds<Pixels>,
3226    corner_radii: Corners<Pixels>,
3227    background: Hsla,
3228    border_widths: Edges<Pixels>,
3229    border_color: Hsla,
3230}
3231
3232impl PaintQuad {
3233    /// Set the corner radii of the quad.
3234    pub fn corner_radii(self, corner_radii: impl Into<Corners<Pixels>>) -> Self {
3235        PaintQuad {
3236            corner_radii: corner_radii.into(),
3237            ..self
3238        }
3239    }
3240
3241    /// Set the border widths of the quad.
3242    pub fn border_widths(self, border_widths: impl Into<Edges<Pixels>>) -> Self {
3243        PaintQuad {
3244            border_widths: border_widths.into(),
3245            ..self
3246        }
3247    }
3248
3249    /// Set the border color of the quad.
3250    pub fn border_color(self, border_color: impl Into<Hsla>) -> Self {
3251        PaintQuad {
3252            border_color: border_color.into(),
3253            ..self
3254        }
3255    }
3256
3257    /// Set the background color of the quad.
3258    pub fn background(self, background: impl Into<Hsla>) -> Self {
3259        PaintQuad {
3260            background: background.into(),
3261            ..self
3262        }
3263    }
3264}
3265
3266/// Create a quad with the given parameters.
3267pub fn quad(
3268    bounds: Bounds<Pixels>,
3269    corner_radii: impl Into<Corners<Pixels>>,
3270    background: impl Into<Hsla>,
3271    border_widths: impl Into<Edges<Pixels>>,
3272    border_color: impl Into<Hsla>,
3273) -> PaintQuad {
3274    PaintQuad {
3275        bounds,
3276        corner_radii: corner_radii.into(),
3277        background: background.into(),
3278        border_widths: border_widths.into(),
3279        border_color: border_color.into(),
3280    }
3281}
3282
3283/// Create a filled quad with the given bounds and background color.
3284pub fn fill(bounds: impl Into<Bounds<Pixels>>, background: impl Into<Hsla>) -> PaintQuad {
3285    PaintQuad {
3286        bounds: bounds.into(),
3287        corner_radii: (0.).into(),
3288        background: background.into(),
3289        border_widths: (0.).into(),
3290        border_color: transparent_black(),
3291    }
3292}
3293
3294/// Create a rectangle outline with the given bounds, border color, and a 1px border width
3295pub fn outline(bounds: impl Into<Bounds<Pixels>>, border_color: impl Into<Hsla>) -> PaintQuad {
3296    PaintQuad {
3297        bounds: bounds.into(),
3298        corner_radii: (0.).into(),
3299        background: transparent_black(),
3300        border_widths: (1.).into(),
3301        border_color: border_color.into(),
3302    }
3303}