google.rs

  1use anyhow::{Context as _, Result, anyhow};
  2use collections::BTreeMap;
  3use credentials_provider::CredentialsProvider;
  4use editor::{Editor, EditorElement, EditorStyle};
  5use futures::{FutureExt, Stream, StreamExt, future::BoxFuture};
  6use google_ai::{
  7    FunctionDeclaration, GenerateContentResponse, GoogleModelMode, Part, SystemInstruction,
  8    ThinkingConfig, UsageMetadata,
  9};
 10use gpui::{
 11    AnyView, App, AsyncApp, Context, Entity, FontStyle, Subscription, Task, TextStyle, WhiteSpace,
 12};
 13use http_client::HttpClient;
 14use language_model::{
 15    AuthenticateError, LanguageModelCompletionError, LanguageModelCompletionEvent,
 16    LanguageModelToolChoice, LanguageModelToolSchemaFormat, LanguageModelToolUse,
 17    LanguageModelToolUseId, MessageContent, StopReason,
 18};
 19use language_model::{
 20    LanguageModel, LanguageModelId, LanguageModelName, LanguageModelProvider,
 21    LanguageModelProviderId, LanguageModelProviderName, LanguageModelProviderState,
 22    LanguageModelRequest, RateLimiter, Role,
 23};
 24use schemars::JsonSchema;
 25use serde::{Deserialize, Serialize};
 26use settings::{Settings, SettingsStore};
 27use std::pin::Pin;
 28use std::sync::{
 29    Arc,
 30    atomic::{self, AtomicU64},
 31};
 32use strum::IntoEnumIterator;
 33use theme::ThemeSettings;
 34use ui::{Icon, IconName, List, Tooltip, prelude::*};
 35use util::ResultExt;
 36
 37use crate::AllLanguageModelSettings;
 38use crate::ui::InstructionListItem;
 39
 40const PROVIDER_ID: &str = "google";
 41const PROVIDER_NAME: &str = "Google AI";
 42
 43#[derive(Default, Clone, Debug, PartialEq)]
 44pub struct GoogleSettings {
 45    pub api_url: String,
 46    pub available_models: Vec<AvailableModel>,
 47}
 48
 49#[derive(Clone, Copy, Debug, Default, PartialEq, Serialize, Deserialize, JsonSchema)]
 50#[serde(tag = "type", rename_all = "lowercase")]
 51pub enum ModelMode {
 52    #[default]
 53    Default,
 54    Thinking {
 55        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
 56        budget_tokens: Option<u32>,
 57    },
 58}
 59
 60impl From<ModelMode> for GoogleModelMode {
 61    fn from(value: ModelMode) -> Self {
 62        match value {
 63            ModelMode::Default => GoogleModelMode::Default,
 64            ModelMode::Thinking { budget_tokens } => GoogleModelMode::Thinking { budget_tokens },
 65        }
 66    }
 67}
 68
 69impl From<GoogleModelMode> for ModelMode {
 70    fn from(value: GoogleModelMode) -> Self {
 71        match value {
 72            GoogleModelMode::Default => ModelMode::Default,
 73            GoogleModelMode::Thinking { budget_tokens } => ModelMode::Thinking { budget_tokens },
 74        }
 75    }
 76}
 77
 78#[derive(Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
 79pub struct AvailableModel {
 80    name: String,
 81    display_name: Option<String>,
 82    max_tokens: usize,
 83    mode: Option<ModelMode>,
 84}
 85
 86pub struct GoogleLanguageModelProvider {
 87    http_client: Arc<dyn HttpClient>,
 88    state: gpui::Entity<State>,
 89}
 90
 91pub struct State {
 92    api_key: Option<String>,
 93    api_key_from_env: bool,
 94    _subscription: Subscription,
 95}
 96
 97const GOOGLE_AI_API_KEY_VAR: &str = "GOOGLE_AI_API_KEY";
 98
 99impl State {
100    fn is_authenticated(&self) -> bool {
101        self.api_key.is_some()
102    }
103
104    fn reset_api_key(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
105        let credentials_provider = <dyn CredentialsProvider>::global(cx);
106        let api_url = AllLanguageModelSettings::get_global(cx)
107            .google
108            .api_url
109            .clone();
110        cx.spawn(async move |this, cx| {
111            credentials_provider
112                .delete_credentials(&api_url, &cx)
113                .await
114                .log_err();
115            this.update(cx, |this, cx| {
116                this.api_key = None;
117                this.api_key_from_env = false;
118                cx.notify();
119            })
120        })
121    }
122
123    fn set_api_key(&mut self, api_key: String, cx: &mut Context<Self>) -> Task<Result<()>> {
124        let credentials_provider = <dyn CredentialsProvider>::global(cx);
125        let api_url = AllLanguageModelSettings::get_global(cx)
126            .google
127            .api_url
128            .clone();
129        cx.spawn(async move |this, cx| {
130            credentials_provider
131                .write_credentials(&api_url, "Bearer", api_key.as_bytes(), &cx)
132                .await?;
133            this.update(cx, |this, cx| {
134                this.api_key = Some(api_key);
135                cx.notify();
136            })
137        })
138    }
139
140    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<(), AuthenticateError>> {
141        if self.is_authenticated() {
142            return Task::ready(Ok(()));
143        }
144
145        let credentials_provider = <dyn CredentialsProvider>::global(cx);
146        let api_url = AllLanguageModelSettings::get_global(cx)
147            .google
148            .api_url
149            .clone();
150
151        cx.spawn(async move |this, cx| {
152            let (api_key, from_env) = if let Ok(api_key) = std::env::var(GOOGLE_AI_API_KEY_VAR) {
153                (api_key, true)
154            } else {
155                let (_, api_key) = credentials_provider
156                    .read_credentials(&api_url, &cx)
157                    .await?
158                    .ok_or(AuthenticateError::CredentialsNotFound)?;
159                (
160                    String::from_utf8(api_key).context("invalid {PROVIDER_NAME} API key")?,
161                    false,
162                )
163            };
164
165            this.update(cx, |this, cx| {
166                this.api_key = Some(api_key);
167                this.api_key_from_env = from_env;
168                cx.notify();
169            })?;
170
171            Ok(())
172        })
173    }
174}
175
176impl GoogleLanguageModelProvider {
177    pub fn new(http_client: Arc<dyn HttpClient>, cx: &mut App) -> Self {
178        let state = cx.new(|cx| State {
179            api_key: None,
180            api_key_from_env: false,
181            _subscription: cx.observe_global::<SettingsStore>(|_, cx| {
182                cx.notify();
183            }),
184        });
185
186        Self { http_client, state }
187    }
188
189    fn create_language_model(&self, model: google_ai::Model) -> Arc<dyn LanguageModel> {
190        Arc::new(GoogleLanguageModel {
191            id: LanguageModelId::from(model.id().to_string()),
192            model,
193            state: self.state.clone(),
194            http_client: self.http_client.clone(),
195            request_limiter: RateLimiter::new(4),
196        })
197    }
198}
199
200impl LanguageModelProviderState for GoogleLanguageModelProvider {
201    type ObservableEntity = State;
202
203    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
204        Some(self.state.clone())
205    }
206}
207
208impl LanguageModelProvider for GoogleLanguageModelProvider {
209    fn id(&self) -> LanguageModelProviderId {
210        LanguageModelProviderId(PROVIDER_ID.into())
211    }
212
213    fn name(&self) -> LanguageModelProviderName {
214        LanguageModelProviderName(PROVIDER_NAME.into())
215    }
216
217    fn icon(&self) -> IconName {
218        IconName::AiGoogle
219    }
220
221    fn default_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
222        Some(self.create_language_model(google_ai::Model::default()))
223    }
224
225    fn default_fast_model(&self, _cx: &App) -> Option<Arc<dyn LanguageModel>> {
226        Some(self.create_language_model(google_ai::Model::default_fast()))
227    }
228
229    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
230        let mut models = BTreeMap::default();
231
232        // Add base models from google_ai::Model::iter()
233        for model in google_ai::Model::iter() {
234            if !matches!(model, google_ai::Model::Custom { .. }) {
235                models.insert(model.id().to_string(), model);
236            }
237        }
238
239        // Override with available models from settings
240        for model in &AllLanguageModelSettings::get_global(cx)
241            .google
242            .available_models
243        {
244            models.insert(
245                model.name.clone(),
246                google_ai::Model::Custom {
247                    name: model.name.clone(),
248                    display_name: model.display_name.clone(),
249                    max_tokens: model.max_tokens,
250                    mode: model.mode.unwrap_or_default().into(),
251                },
252            );
253        }
254
255        models
256            .into_values()
257            .map(|model| {
258                Arc::new(GoogleLanguageModel {
259                    id: LanguageModelId::from(model.id().to_string()),
260                    model,
261                    state: self.state.clone(),
262                    http_client: self.http_client.clone(),
263                    request_limiter: RateLimiter::new(4),
264                }) as Arc<dyn LanguageModel>
265            })
266            .collect()
267    }
268
269    fn is_authenticated(&self, cx: &App) -> bool {
270        self.state.read(cx).is_authenticated()
271    }
272
273    fn authenticate(&self, cx: &mut App) -> Task<Result<(), AuthenticateError>> {
274        self.state.update(cx, |state, cx| state.authenticate(cx))
275    }
276
277    fn configuration_view(&self, window: &mut Window, cx: &mut App) -> AnyView {
278        cx.new(|cx| ConfigurationView::new(self.state.clone(), window, cx))
279            .into()
280    }
281
282    fn reset_credentials(&self, cx: &mut App) -> Task<Result<()>> {
283        self.state.update(cx, |state, cx| state.reset_api_key(cx))
284    }
285}
286
287pub struct GoogleLanguageModel {
288    id: LanguageModelId,
289    model: google_ai::Model,
290    state: gpui::Entity<State>,
291    http_client: Arc<dyn HttpClient>,
292    request_limiter: RateLimiter,
293}
294
295impl GoogleLanguageModel {
296    fn stream_completion(
297        &self,
298        request: google_ai::GenerateContentRequest,
299        cx: &AsyncApp,
300    ) -> BoxFuture<
301        'static,
302        Result<futures::stream::BoxStream<'static, Result<GenerateContentResponse>>>,
303    > {
304        let http_client = self.http_client.clone();
305
306        let Ok((api_key, api_url)) = cx.read_entity(&self.state, |state, cx| {
307            let settings = &AllLanguageModelSettings::get_global(cx).google;
308            (state.api_key.clone(), settings.api_url.clone())
309        }) else {
310            return futures::future::ready(Err(anyhow!("App state dropped"))).boxed();
311        };
312
313        async move {
314            let api_key = api_key.context("Missing Google API key")?;
315            let request = google_ai::stream_generate_content(
316                http_client.as_ref(),
317                &api_url,
318                &api_key,
319                request,
320            );
321            request.await.context("failed to stream completion")
322        }
323        .boxed()
324    }
325}
326
327impl LanguageModel for GoogleLanguageModel {
328    fn id(&self) -> LanguageModelId {
329        self.id.clone()
330    }
331
332    fn name(&self) -> LanguageModelName {
333        LanguageModelName::from(self.model.display_name().to_string())
334    }
335
336    fn provider_id(&self) -> LanguageModelProviderId {
337        LanguageModelProviderId(PROVIDER_ID.into())
338    }
339
340    fn provider_name(&self) -> LanguageModelProviderName {
341        LanguageModelProviderName(PROVIDER_NAME.into())
342    }
343
344    fn supports_tools(&self) -> bool {
345        true
346    }
347
348    fn supports_images(&self) -> bool {
349        true
350    }
351
352    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
353        match choice {
354            LanguageModelToolChoice::Auto
355            | LanguageModelToolChoice::Any
356            | LanguageModelToolChoice::None => true,
357        }
358    }
359
360    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
361        LanguageModelToolSchemaFormat::JsonSchemaSubset
362    }
363
364    fn telemetry_id(&self) -> String {
365        format!("google/{}", self.model.request_id())
366    }
367
368    fn max_token_count(&self) -> usize {
369        self.model.max_token_count()
370    }
371
372    fn count_tokens(
373        &self,
374        request: LanguageModelRequest,
375        cx: &App,
376    ) -> BoxFuture<'static, Result<usize>> {
377        let model_id = self.model.request_id().to_string();
378        let request = into_google(request, model_id.clone(), self.model.mode());
379        let http_client = self.http_client.clone();
380        let api_key = self.state.read(cx).api_key.clone();
381
382        let settings = &AllLanguageModelSettings::get_global(cx).google;
383        let api_url = settings.api_url.clone();
384
385        async move {
386            let api_key = api_key.context("Missing Google API key")?;
387            let response = google_ai::count_tokens(
388                http_client.as_ref(),
389                &api_url,
390                &api_key,
391                google_ai::CountTokensRequest {
392                    generate_content_request: request,
393                },
394            )
395            .await?;
396            Ok(response.total_tokens)
397        }
398        .boxed()
399    }
400
401    fn stream_completion(
402        &self,
403        request: LanguageModelRequest,
404        cx: &AsyncApp,
405    ) -> BoxFuture<
406        'static,
407        Result<
408            futures::stream::BoxStream<
409                'static,
410                Result<LanguageModelCompletionEvent, LanguageModelCompletionError>,
411            >,
412        >,
413    > {
414        let request = into_google(
415            request,
416            self.model.request_id().to_string(),
417            self.model.mode(),
418        );
419        let request = self.stream_completion(request, cx);
420        let future = self.request_limiter.stream(async move {
421            let response = request
422                .await
423                .map_err(|err| LanguageModelCompletionError::Other(anyhow!(err)))?;
424            Ok(GoogleEventMapper::new().map_stream(response))
425        });
426        async move { Ok(future.await?.boxed()) }.boxed()
427    }
428}
429
430pub fn into_google(
431    mut request: LanguageModelRequest,
432    model_id: String,
433    mode: GoogleModelMode,
434) -> google_ai::GenerateContentRequest {
435    fn map_content(content: Vec<MessageContent>) -> Vec<Part> {
436        content
437            .into_iter()
438            .flat_map(|content| match content {
439                language_model::MessageContent::Text(text)
440                | language_model::MessageContent::Thinking { text, .. } => {
441                    if !text.is_empty() {
442                        vec![Part::TextPart(google_ai::TextPart { text })]
443                    } else {
444                        vec![]
445                    }
446                }
447                language_model::MessageContent::RedactedThinking(_) => vec![],
448                language_model::MessageContent::Image(image) => {
449                    vec![Part::InlineDataPart(google_ai::InlineDataPart {
450                        inline_data: google_ai::GenerativeContentBlob {
451                            mime_type: "image/png".to_string(),
452                            data: image.source.to_string(),
453                        },
454                    })]
455                }
456                language_model::MessageContent::ToolUse(tool_use) => {
457                    vec![Part::FunctionCallPart(google_ai::FunctionCallPart {
458                        function_call: google_ai::FunctionCall {
459                            name: tool_use.name.to_string(),
460                            args: tool_use.input,
461                        },
462                    })]
463                }
464                language_model::MessageContent::ToolResult(tool_result) => {
465                    match tool_result.content {
466                        language_model::LanguageModelToolResultContent::Text(text) => {
467                            vec![Part::FunctionResponsePart(
468                                google_ai::FunctionResponsePart {
469                                    function_response: google_ai::FunctionResponse {
470                                        name: tool_result.tool_name.to_string(),
471                                        // The API expects a valid JSON object
472                                        response: serde_json::json!({
473                                            "output": text
474                                        }),
475                                    },
476                                },
477                            )]
478                        }
479                        language_model::LanguageModelToolResultContent::Image(image) => {
480                            vec![
481                                Part::FunctionResponsePart(google_ai::FunctionResponsePart {
482                                    function_response: google_ai::FunctionResponse {
483                                        name: tool_result.tool_name.to_string(),
484                                        // The API expects a valid JSON object
485                                        response: serde_json::json!({
486                                            "output": "Tool responded with an image"
487                                        }),
488                                    },
489                                }),
490                                Part::InlineDataPart(google_ai::InlineDataPart {
491                                    inline_data: google_ai::GenerativeContentBlob {
492                                        mime_type: "image/png".to_string(),
493                                        data: image.source.to_string(),
494                                    },
495                                }),
496                            ]
497                        }
498                    }
499                }
500            })
501            .collect()
502    }
503
504    let system_instructions = if request
505        .messages
506        .first()
507        .map_or(false, |msg| matches!(msg.role, Role::System))
508    {
509        let message = request.messages.remove(0);
510        Some(SystemInstruction {
511            parts: map_content(message.content),
512        })
513    } else {
514        None
515    };
516
517    google_ai::GenerateContentRequest {
518        model: google_ai::ModelName { model_id },
519        system_instruction: system_instructions,
520        contents: request
521            .messages
522            .into_iter()
523            .filter_map(|message| {
524                let parts = map_content(message.content);
525                if parts.is_empty() {
526                    None
527                } else {
528                    Some(google_ai::Content {
529                        parts,
530                        role: match message.role {
531                            Role::User => google_ai::Role::User,
532                            Role::Assistant => google_ai::Role::Model,
533                            Role::System => google_ai::Role::User, // Google AI doesn't have a system role
534                        },
535                    })
536                }
537            })
538            .collect(),
539        generation_config: Some(google_ai::GenerationConfig {
540            candidate_count: Some(1),
541            stop_sequences: Some(request.stop),
542            max_output_tokens: None,
543            temperature: request.temperature.map(|t| t as f64).or(Some(1.0)),
544            thinking_config: match mode {
545                GoogleModelMode::Thinking { budget_tokens } => {
546                    budget_tokens.map(|thinking_budget| ThinkingConfig { thinking_budget })
547                }
548                GoogleModelMode::Default => None,
549            },
550            top_p: None,
551            top_k: None,
552        }),
553        safety_settings: None,
554        tools: (request.tools.len() > 0).then(|| {
555            vec![google_ai::Tool {
556                function_declarations: request
557                    .tools
558                    .into_iter()
559                    .map(|tool| FunctionDeclaration {
560                        name: tool.name,
561                        description: tool.description,
562                        parameters: tool.input_schema,
563                    })
564                    .collect(),
565            }]
566        }),
567        tool_config: request.tool_choice.map(|choice| google_ai::ToolConfig {
568            function_calling_config: google_ai::FunctionCallingConfig {
569                mode: match choice {
570                    LanguageModelToolChoice::Auto => google_ai::FunctionCallingMode::Auto,
571                    LanguageModelToolChoice::Any => google_ai::FunctionCallingMode::Any,
572                    LanguageModelToolChoice::None => google_ai::FunctionCallingMode::None,
573                },
574                allowed_function_names: None,
575            },
576        }),
577    }
578}
579
580pub struct GoogleEventMapper {
581    usage: UsageMetadata,
582    stop_reason: StopReason,
583}
584
585impl GoogleEventMapper {
586    pub fn new() -> Self {
587        Self {
588            usage: UsageMetadata::default(),
589            stop_reason: StopReason::EndTurn,
590        }
591    }
592
593    pub fn map_stream(
594        mut self,
595        events: Pin<Box<dyn Send + Stream<Item = Result<GenerateContentResponse>>>>,
596    ) -> impl Stream<Item = Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
597    {
598        events
599            .map(Some)
600            .chain(futures::stream::once(async { None }))
601            .flat_map(move |event| {
602                futures::stream::iter(match event {
603                    Some(Ok(event)) => self.map_event(event),
604                    Some(Err(error)) => {
605                        vec![Err(LanguageModelCompletionError::Other(anyhow!(error)))]
606                    }
607                    None => vec![Ok(LanguageModelCompletionEvent::Stop(self.stop_reason))],
608                })
609            })
610    }
611
612    pub fn map_event(
613        &mut self,
614        event: GenerateContentResponse,
615    ) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>> {
616        static TOOL_CALL_COUNTER: AtomicU64 = AtomicU64::new(0);
617
618        let mut events: Vec<_> = Vec::new();
619        let mut wants_to_use_tool = false;
620        if let Some(usage_metadata) = event.usage_metadata {
621            update_usage(&mut self.usage, &usage_metadata);
622            events.push(Ok(LanguageModelCompletionEvent::UsageUpdate(
623                convert_usage(&self.usage),
624            )))
625        }
626        if let Some(candidates) = event.candidates {
627            for candidate in candidates {
628                if let Some(finish_reason) = candidate.finish_reason.as_deref() {
629                    self.stop_reason = match finish_reason {
630                        "STOP" => StopReason::EndTurn,
631                        "MAX_TOKENS" => StopReason::MaxTokens,
632                        _ => {
633                            log::error!("Unexpected google finish_reason: {finish_reason}");
634                            StopReason::EndTurn
635                        }
636                    };
637                }
638                candidate
639                    .content
640                    .parts
641                    .into_iter()
642                    .for_each(|part| match part {
643                        Part::TextPart(text_part) => {
644                            events.push(Ok(LanguageModelCompletionEvent::Text(text_part.text)))
645                        }
646                        Part::InlineDataPart(_) => {}
647                        Part::FunctionCallPart(function_call_part) => {
648                            wants_to_use_tool = true;
649                            let name: Arc<str> = function_call_part.function_call.name.into();
650                            let next_tool_id =
651                                TOOL_CALL_COUNTER.fetch_add(1, atomic::Ordering::SeqCst);
652                            let id: LanguageModelToolUseId =
653                                format!("{}-{}", name, next_tool_id).into();
654
655                            events.push(Ok(LanguageModelCompletionEvent::ToolUse(
656                                LanguageModelToolUse {
657                                    id,
658                                    name,
659                                    is_input_complete: true,
660                                    raw_input: function_call_part.function_call.args.to_string(),
661                                    input: function_call_part.function_call.args,
662                                },
663                            )));
664                        }
665                        Part::FunctionResponsePart(_) => {}
666                        Part::ThoughtPart(_) => {}
667                    });
668            }
669        }
670
671        // Even when Gemini wants to use a Tool, the API
672        // responds with `finish_reason: STOP`
673        if wants_to_use_tool {
674            self.stop_reason = StopReason::ToolUse;
675            events.push(Ok(LanguageModelCompletionEvent::Stop(StopReason::ToolUse)));
676        }
677        events
678    }
679}
680
681pub fn count_google_tokens(
682    request: LanguageModelRequest,
683    cx: &App,
684) -> BoxFuture<'static, Result<usize>> {
685    // We couldn't use the GoogleLanguageModelProvider to count tokens because the github copilot doesn't have the access to google_ai directly.
686    // So we have to use tokenizer from tiktoken_rs to count tokens.
687    cx.background_spawn(async move {
688        let messages = request
689            .messages
690            .into_iter()
691            .map(|message| tiktoken_rs::ChatCompletionRequestMessage {
692                role: match message.role {
693                    Role::User => "user".into(),
694                    Role::Assistant => "assistant".into(),
695                    Role::System => "system".into(),
696                },
697                content: Some(message.string_contents()),
698                name: None,
699                function_call: None,
700            })
701            .collect::<Vec<_>>();
702
703        // Tiktoken doesn't yet support these models, so we manually use the
704        // same tokenizer as GPT-4.
705        tiktoken_rs::num_tokens_from_messages("gpt-4", &messages)
706    })
707    .boxed()
708}
709
710fn update_usage(usage: &mut UsageMetadata, new: &UsageMetadata) {
711    if let Some(prompt_token_count) = new.prompt_token_count {
712        usage.prompt_token_count = Some(prompt_token_count);
713    }
714    if let Some(cached_content_token_count) = new.cached_content_token_count {
715        usage.cached_content_token_count = Some(cached_content_token_count);
716    }
717    if let Some(candidates_token_count) = new.candidates_token_count {
718        usage.candidates_token_count = Some(candidates_token_count);
719    }
720    if let Some(tool_use_prompt_token_count) = new.tool_use_prompt_token_count {
721        usage.tool_use_prompt_token_count = Some(tool_use_prompt_token_count);
722    }
723    if let Some(thoughts_token_count) = new.thoughts_token_count {
724        usage.thoughts_token_count = Some(thoughts_token_count);
725    }
726    if let Some(total_token_count) = new.total_token_count {
727        usage.total_token_count = Some(total_token_count);
728    }
729}
730
731fn convert_usage(usage: &UsageMetadata) -> language_model::TokenUsage {
732    let prompt_tokens = usage.prompt_token_count.unwrap_or(0) as u32;
733    let cached_tokens = usage.cached_content_token_count.unwrap_or(0) as u32;
734    let input_tokens = prompt_tokens - cached_tokens;
735    let output_tokens = usage.candidates_token_count.unwrap_or(0) as u32;
736
737    language_model::TokenUsage {
738        input_tokens,
739        output_tokens,
740        cache_read_input_tokens: cached_tokens,
741        cache_creation_input_tokens: 0,
742    }
743}
744
745struct ConfigurationView {
746    api_key_editor: Entity<Editor>,
747    state: gpui::Entity<State>,
748    load_credentials_task: Option<Task<()>>,
749}
750
751impl ConfigurationView {
752    fn new(state: gpui::Entity<State>, window: &mut Window, cx: &mut Context<Self>) -> Self {
753        cx.observe(&state, |_, _, cx| {
754            cx.notify();
755        })
756        .detach();
757
758        let load_credentials_task = Some(cx.spawn_in(window, {
759            let state = state.clone();
760            async move |this, cx| {
761                if let Some(task) = state
762                    .update(cx, |state, cx| state.authenticate(cx))
763                    .log_err()
764                {
765                    // We don't log an error, because "not signed in" is also an error.
766                    let _ = task.await;
767                }
768                this.update(cx, |this, cx| {
769                    this.load_credentials_task = None;
770                    cx.notify();
771                })
772                .log_err();
773            }
774        }));
775
776        Self {
777            api_key_editor: cx.new(|cx| {
778                let mut editor = Editor::single_line(window, cx);
779                editor.set_placeholder_text("AIzaSy...", cx);
780                editor
781            }),
782            state,
783            load_credentials_task,
784        }
785    }
786
787    fn save_api_key(&mut self, _: &menu::Confirm, window: &mut Window, cx: &mut Context<Self>) {
788        let api_key = self.api_key_editor.read(cx).text(cx);
789        if api_key.is_empty() {
790            return;
791        }
792
793        let state = self.state.clone();
794        cx.spawn_in(window, async move |_, cx| {
795            state
796                .update(cx, |state, cx| state.set_api_key(api_key, cx))?
797                .await
798        })
799        .detach_and_log_err(cx);
800
801        cx.notify();
802    }
803
804    fn reset_api_key(&mut self, window: &mut Window, cx: &mut Context<Self>) {
805        self.api_key_editor
806            .update(cx, |editor, cx| editor.set_text("", window, cx));
807
808        let state = self.state.clone();
809        cx.spawn_in(window, async move |_, cx| {
810            state.update(cx, |state, cx| state.reset_api_key(cx))?.await
811        })
812        .detach_and_log_err(cx);
813
814        cx.notify();
815    }
816
817    fn render_api_key_editor(&self, cx: &mut Context<Self>) -> impl IntoElement {
818        let settings = ThemeSettings::get_global(cx);
819        let text_style = TextStyle {
820            color: cx.theme().colors().text,
821            font_family: settings.ui_font.family.clone(),
822            font_features: settings.ui_font.features.clone(),
823            font_fallbacks: settings.ui_font.fallbacks.clone(),
824            font_size: rems(0.875).into(),
825            font_weight: settings.ui_font.weight,
826            font_style: FontStyle::Normal,
827            line_height: relative(1.3),
828            white_space: WhiteSpace::Normal,
829            ..Default::default()
830        };
831        EditorElement::new(
832            &self.api_key_editor,
833            EditorStyle {
834                background: cx.theme().colors().editor_background,
835                local_player: cx.theme().players().local(),
836                text: text_style,
837                ..Default::default()
838            },
839        )
840    }
841
842    fn should_render_editor(&self, cx: &mut Context<Self>) -> bool {
843        !self.state.read(cx).is_authenticated()
844    }
845}
846
847impl Render for ConfigurationView {
848    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
849        let env_var_set = self.state.read(cx).api_key_from_env;
850
851        if self.load_credentials_task.is_some() {
852            div().child(Label::new("Loading credentials...")).into_any()
853        } else if self.should_render_editor(cx) {
854            v_flex()
855                .size_full()
856                .on_action(cx.listener(Self::save_api_key))
857                .child(Label::new("To use Zed's assistant with Google AI, you need to add an API key. Follow these steps:"))
858                .child(
859                    List::new()
860                        .child(InstructionListItem::new(
861                            "Create one by visiting",
862                            Some("Google AI's console"),
863                            Some("https://aistudio.google.com/app/apikey"),
864                        ))
865                        .child(InstructionListItem::text_only(
866                            "Paste your API key below and hit enter to start using the assistant",
867                        )),
868                )
869                .child(
870                    h_flex()
871                        .w_full()
872                        .my_2()
873                        .px_2()
874                        .py_1()
875                        .bg(cx.theme().colors().editor_background)
876                        .border_1()
877                        .border_color(cx.theme().colors().border)
878                        .rounded_sm()
879                        .child(self.render_api_key_editor(cx)),
880                )
881                .child(
882                    Label::new(
883                        format!("You can also assign the {GOOGLE_AI_API_KEY_VAR} environment variable and restart Zed."),
884                    )
885                    .size(LabelSize::Small).color(Color::Muted),
886                )
887                .into_any()
888        } else {
889            h_flex()
890                .mt_1()
891                .p_1()
892                .justify_between()
893                .rounded_md()
894                .border_1()
895                .border_color(cx.theme().colors().border)
896                .bg(cx.theme().colors().background)
897                .child(
898                    h_flex()
899                        .gap_1()
900                        .child(Icon::new(IconName::Check).color(Color::Success))
901                        .child(Label::new(if env_var_set {
902                            format!("API key set in {GOOGLE_AI_API_KEY_VAR} environment variable.")
903                        } else {
904                            "API key configured.".to_string()
905                        })),
906                )
907                .child(
908                    Button::new("reset-key", "Reset Key")
909                        .label_size(LabelSize::Small)
910                        .icon(Some(IconName::Trash))
911                        .icon_size(IconSize::Small)
912                        .icon_position(IconPosition::Start)
913                        .disabled(env_var_set)
914                        .when(env_var_set, |this| {
915                            this.tooltip(Tooltip::text(format!("To reset your API key, unset the {GOOGLE_AI_API_KEY_VAR} environment variable.")))
916                        })
917                        .on_click(cx.listener(|this, _, window, cx| this.reset_api_key(window, cx))),
918                )
919                .into_any()
920        }
921    }
922}