cloud.rs

   1use ai_onboarding::YoungAccountBanner;
   2use anthropic::AnthropicModelMode;
   3use anyhow::{Context as _, Result, anyhow};
   4use chrono::{DateTime, Utc};
   5use client::{Client, ModelRequestUsage, UserStore, zed_urls};
   6use cloud_llm_client::{
   7    CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, CLIENT_SUPPORTS_X_AI_HEADER_NAME,
   8    CURRENT_PLAN_HEADER_NAME, CompletionBody, CompletionEvent, CompletionRequestStatus,
   9    CountTokensBody, CountTokensResponse, EXPIRED_LLM_TOKEN_HEADER_NAME, ListModelsResponse,
  10    MODEL_REQUESTS_RESOURCE_HEADER_VALUE, Plan, PlanV1, PlanV2,
  11    SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME,
  12    TOOL_USE_LIMIT_REACHED_HEADER_NAME, ZED_VERSION_HEADER_NAME,
  13};
  14use feature_flags::{BillingV2FeatureFlag, FeatureFlagAppExt};
  15use futures::{
  16    AsyncBufReadExt, FutureExt, Stream, StreamExt, future::BoxFuture, stream::BoxStream,
  17};
  18use google_ai::GoogleModelMode;
  19use gpui::{
  20    AnyElement, AnyView, App, AsyncApp, Context, Entity, SemanticVersion, Subscription, Task,
  21};
  22use http_client::http::{HeaderMap, HeaderValue};
  23use http_client::{AsyncBody, HttpClient, HttpRequestExt, Method, Response, StatusCode};
  24use language_model::{
  25    AuthenticateError, LanguageModel, LanguageModelCacheConfiguration,
  26    LanguageModelCompletionError, LanguageModelCompletionEvent, LanguageModelId, LanguageModelName,
  27    LanguageModelProvider, LanguageModelProviderId, LanguageModelProviderName,
  28    LanguageModelProviderState, LanguageModelRequest, LanguageModelToolChoice,
  29    LanguageModelToolSchemaFormat, LlmApiToken, ModelRequestLimitReachedError,
  30    PaymentRequiredError, RateLimiter, RefreshLlmTokenListener,
  31};
  32use release_channel::AppVersion;
  33use schemars::JsonSchema;
  34use serde::{Deserialize, Serialize, de::DeserializeOwned};
  35use settings::SettingsStore;
  36pub use settings::ZedDotDevAvailableModel as AvailableModel;
  37pub use settings::ZedDotDevAvailableProvider as AvailableProvider;
  38use smol::io::{AsyncReadExt, BufReader};
  39use std::pin::Pin;
  40use std::str::FromStr as _;
  41use std::sync::Arc;
  42use std::time::Duration;
  43use thiserror::Error;
  44use ui::{TintColor, prelude::*};
  45use util::{ResultExt as _, maybe};
  46
  47use crate::provider::anthropic::{AnthropicEventMapper, count_anthropic_tokens, into_anthropic};
  48use crate::provider::google::{GoogleEventMapper, into_google};
  49use crate::provider::open_ai::{OpenAiEventMapper, count_open_ai_tokens, into_open_ai};
  50use crate::provider::x_ai::count_xai_tokens;
  51
  52const PROVIDER_ID: LanguageModelProviderId = language_model::ZED_CLOUD_PROVIDER_ID;
  53const PROVIDER_NAME: LanguageModelProviderName = language_model::ZED_CLOUD_PROVIDER_NAME;
  54
  55#[derive(Default, Clone, Debug, PartialEq)]
  56pub struct ZedDotDevSettings {
  57    pub available_models: Vec<AvailableModel>,
  58}
  59#[derive(Default, Clone, Debug, PartialEq, Serialize, Deserialize, JsonSchema)]
  60#[serde(tag = "type", rename_all = "lowercase")]
  61pub enum ModelMode {
  62    #[default]
  63    Default,
  64    Thinking {
  65        /// The maximum number of tokens to use for reasoning. Must be lower than the model's `max_output_tokens`.
  66        budget_tokens: Option<u32>,
  67    },
  68}
  69
  70impl From<ModelMode> for AnthropicModelMode {
  71    fn from(value: ModelMode) -> Self {
  72        match value {
  73            ModelMode::Default => AnthropicModelMode::Default,
  74            ModelMode::Thinking { budget_tokens } => AnthropicModelMode::Thinking { budget_tokens },
  75        }
  76    }
  77}
  78
  79pub struct CloudLanguageModelProvider {
  80    client: Arc<Client>,
  81    state: gpui::Entity<State>,
  82    _maintain_client_status: Task<()>,
  83}
  84
  85pub struct State {
  86    client: Arc<Client>,
  87    llm_api_token: LlmApiToken,
  88    user_store: Entity<UserStore>,
  89    status: client::Status,
  90    models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  91    default_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  92    default_fast_model: Option<Arc<cloud_llm_client::LanguageModel>>,
  93    recommended_models: Vec<Arc<cloud_llm_client::LanguageModel>>,
  94    _fetch_models_task: Task<()>,
  95    _settings_subscription: Subscription,
  96    _llm_token_subscription: Subscription,
  97}
  98
  99impl State {
 100    fn new(
 101        client: Arc<Client>,
 102        user_store: Entity<UserStore>,
 103        status: client::Status,
 104        cx: &mut Context<Self>,
 105    ) -> Self {
 106        let refresh_llm_token_listener = RefreshLlmTokenListener::global(cx);
 107        let mut current_user = user_store.read(cx).watch_current_user();
 108        Self {
 109            client: client.clone(),
 110            llm_api_token: LlmApiToken::default(),
 111            user_store,
 112            status,
 113            models: Vec::new(),
 114            default_model: None,
 115            default_fast_model: None,
 116            recommended_models: Vec::new(),
 117            _fetch_models_task: cx.spawn(async move |this, cx| {
 118                maybe!(async move {
 119                    let (client, llm_api_token) = this
 120                        .read_with(cx, |this, _cx| (client.clone(), this.llm_api_token.clone()))?;
 121
 122                    while current_user.borrow().is_none() {
 123                        current_user.next().await;
 124                    }
 125
 126                    let response =
 127                        Self::fetch_models(client.clone(), llm_api_token.clone()).await?;
 128                    this.update(cx, |this, cx| this.update_models(response, cx))?;
 129                    anyhow::Ok(())
 130                })
 131                .await
 132                .context("failed to fetch Zed models")
 133                .log_err();
 134            }),
 135            _settings_subscription: cx.observe_global::<SettingsStore>(|_, cx| {
 136                cx.notify();
 137            }),
 138            _llm_token_subscription: cx.subscribe(
 139                &refresh_llm_token_listener,
 140                move |this, _listener, _event, cx| {
 141                    let client = this.client.clone();
 142                    let llm_api_token = this.llm_api_token.clone();
 143                    cx.spawn(async move |this, cx| {
 144                        llm_api_token.refresh(&client).await?;
 145                        let response = Self::fetch_models(client, llm_api_token).await?;
 146                        this.update(cx, |this, cx| {
 147                            this.update_models(response, cx);
 148                        })
 149                    })
 150                    .detach_and_log_err(cx);
 151                },
 152            ),
 153        }
 154    }
 155
 156    fn is_signed_out(&self, cx: &App) -> bool {
 157        self.user_store.read(cx).current_user().is_none()
 158    }
 159
 160    fn authenticate(&self, cx: &mut Context<Self>) -> Task<Result<()>> {
 161        let client = self.client.clone();
 162        cx.spawn(async move |state, cx| {
 163            client.sign_in_with_optional_connect(true, cx).await?;
 164            state.update(cx, |_, cx| cx.notify())
 165        })
 166    }
 167    fn update_models(&mut self, response: ListModelsResponse, cx: &mut Context<Self>) {
 168        let mut models = Vec::new();
 169
 170        for model in response.models {
 171            models.push(Arc::new(model.clone()));
 172
 173            // Right now we represent thinking variants of models as separate models on the client,
 174            // so we need to insert variants for any model that supports thinking.
 175            if model.supports_thinking {
 176                models.push(Arc::new(cloud_llm_client::LanguageModel {
 177                    id: cloud_llm_client::LanguageModelId(format!("{}-thinking", model.id).into()),
 178                    display_name: format!("{} Thinking", model.display_name),
 179                    ..model
 180                }));
 181            }
 182        }
 183
 184        self.default_model = models
 185            .iter()
 186            .find(|model| {
 187                response
 188                    .default_model
 189                    .as_ref()
 190                    .is_some_and(|default_model_id| &model.id == default_model_id)
 191            })
 192            .cloned();
 193        self.default_fast_model = models
 194            .iter()
 195            .find(|model| {
 196                response
 197                    .default_fast_model
 198                    .as_ref()
 199                    .is_some_and(|default_fast_model_id| &model.id == default_fast_model_id)
 200            })
 201            .cloned();
 202        self.recommended_models = response
 203            .recommended_models
 204            .iter()
 205            .filter_map(|id| models.iter().find(|model| &model.id == id))
 206            .cloned()
 207            .collect();
 208        self.models = models;
 209        cx.notify();
 210    }
 211
 212    async fn fetch_models(
 213        client: Arc<Client>,
 214        llm_api_token: LlmApiToken,
 215    ) -> Result<ListModelsResponse> {
 216        let http_client = &client.http_client();
 217        let token = llm_api_token.acquire(&client).await?;
 218
 219        let request = http_client::Request::builder()
 220            .method(Method::GET)
 221            .header(CLIENT_SUPPORTS_X_AI_HEADER_NAME, "true")
 222            .uri(http_client.build_zed_llm_url("/models", &[])?.as_ref())
 223            .header("Authorization", format!("Bearer {token}"))
 224            .body(AsyncBody::empty())?;
 225        let mut response = http_client
 226            .send(request)
 227            .await
 228            .context("failed to send list models request")?;
 229
 230        if response.status().is_success() {
 231            let mut body = String::new();
 232            response.body_mut().read_to_string(&mut body).await?;
 233            Ok(serde_json::from_str(&body)?)
 234        } else {
 235            let mut body = String::new();
 236            response.body_mut().read_to_string(&mut body).await?;
 237            anyhow::bail!(
 238                "error listing models.\nStatus: {:?}\nBody: {body}",
 239                response.status(),
 240            );
 241        }
 242    }
 243}
 244
 245impl CloudLanguageModelProvider {
 246    pub fn new(user_store: Entity<UserStore>, client: Arc<Client>, cx: &mut App) -> Self {
 247        let mut status_rx = client.status();
 248        let status = *status_rx.borrow();
 249
 250        let state = cx.new(|cx| State::new(client.clone(), user_store.clone(), status, cx));
 251
 252        let state_ref = state.downgrade();
 253        let maintain_client_status = cx.spawn(async move |cx| {
 254            while let Some(status) = status_rx.next().await {
 255                if let Some(this) = state_ref.upgrade() {
 256                    _ = this.update(cx, |this, cx| {
 257                        if this.status != status {
 258                            this.status = status;
 259                            cx.notify();
 260                        }
 261                    });
 262                } else {
 263                    break;
 264                }
 265            }
 266        });
 267
 268        Self {
 269            client,
 270            state,
 271            _maintain_client_status: maintain_client_status,
 272        }
 273    }
 274
 275    fn create_language_model(
 276        &self,
 277        model: Arc<cloud_llm_client::LanguageModel>,
 278        llm_api_token: LlmApiToken,
 279    ) -> Arc<dyn LanguageModel> {
 280        Arc::new(CloudLanguageModel {
 281            id: LanguageModelId(SharedString::from(model.id.0.clone())),
 282            model,
 283            llm_api_token,
 284            client: self.client.clone(),
 285            request_limiter: RateLimiter::new(4),
 286        })
 287    }
 288}
 289
 290impl LanguageModelProviderState for CloudLanguageModelProvider {
 291    type ObservableEntity = State;
 292
 293    fn observable_entity(&self) -> Option<gpui::Entity<Self::ObservableEntity>> {
 294        Some(self.state.clone())
 295    }
 296}
 297
 298impl LanguageModelProvider for CloudLanguageModelProvider {
 299    fn id(&self) -> LanguageModelProviderId {
 300        PROVIDER_ID
 301    }
 302
 303    fn name(&self) -> LanguageModelProviderName {
 304        PROVIDER_NAME
 305    }
 306
 307    fn icon(&self) -> IconName {
 308        IconName::AiZed
 309    }
 310
 311    fn default_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 312        let default_model = self.state.read(cx).default_model.clone()?;
 313        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 314        Some(self.create_language_model(default_model, llm_api_token))
 315    }
 316
 317    fn default_fast_model(&self, cx: &App) -> Option<Arc<dyn LanguageModel>> {
 318        let default_fast_model = self.state.read(cx).default_fast_model.clone()?;
 319        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 320        Some(self.create_language_model(default_fast_model, llm_api_token))
 321    }
 322
 323    fn recommended_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 324        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 325        self.state
 326            .read(cx)
 327            .recommended_models
 328            .iter()
 329            .cloned()
 330            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 331            .collect()
 332    }
 333
 334    fn provided_models(&self, cx: &App) -> Vec<Arc<dyn LanguageModel>> {
 335        let llm_api_token = self.state.read(cx).llm_api_token.clone();
 336        self.state
 337            .read(cx)
 338            .models
 339            .iter()
 340            .cloned()
 341            .map(|model| self.create_language_model(model, llm_api_token.clone()))
 342            .collect()
 343    }
 344
 345    fn is_authenticated(&self, cx: &App) -> bool {
 346        let state = self.state.read(cx);
 347        !state.is_signed_out(cx)
 348    }
 349
 350    fn authenticate(&self, _cx: &mut App) -> Task<Result<(), AuthenticateError>> {
 351        Task::ready(Ok(()))
 352    }
 353
 354    fn configuration_view(
 355        &self,
 356        _target_agent: language_model::ConfigurationViewTargetAgent,
 357        _: &mut Window,
 358        cx: &mut App,
 359    ) -> AnyView {
 360        cx.new(|_| ConfigurationView::new(self.state.clone()))
 361            .into()
 362    }
 363
 364    fn reset_credentials(&self, _cx: &mut App) -> Task<Result<()>> {
 365        Task::ready(Ok(()))
 366    }
 367}
 368
 369pub struct CloudLanguageModel {
 370    id: LanguageModelId,
 371    model: Arc<cloud_llm_client::LanguageModel>,
 372    llm_api_token: LlmApiToken,
 373    client: Arc<Client>,
 374    request_limiter: RateLimiter,
 375}
 376
 377struct PerformLlmCompletionResponse {
 378    response: Response<AsyncBody>,
 379    usage: Option<ModelRequestUsage>,
 380    tool_use_limit_reached: bool,
 381    includes_status_messages: bool,
 382}
 383
 384impl CloudLanguageModel {
 385    async fn perform_llm_completion(
 386        client: Arc<Client>,
 387        llm_api_token: LlmApiToken,
 388        app_version: Option<SemanticVersion>,
 389        body: CompletionBody,
 390    ) -> Result<PerformLlmCompletionResponse> {
 391        let http_client = &client.http_client();
 392
 393        let mut token = llm_api_token.acquire(&client).await?;
 394        let mut refreshed_token = false;
 395
 396        loop {
 397            let request = http_client::Request::builder()
 398                .method(Method::POST)
 399                .uri(http_client.build_zed_llm_url("/completions", &[])?.as_ref())
 400                .when_some(app_version, |builder, app_version| {
 401                    builder.header(ZED_VERSION_HEADER_NAME, app_version.to_string())
 402                })
 403                .header("Content-Type", "application/json")
 404                .header("Authorization", format!("Bearer {token}"))
 405                .header(CLIENT_SUPPORTS_STATUS_MESSAGES_HEADER_NAME, "true")
 406                .body(serde_json::to_string(&body)?.into())?;
 407
 408            let mut response = http_client.send(request).await?;
 409            let status = response.status();
 410            if status.is_success() {
 411                let includes_status_messages = response
 412                    .headers()
 413                    .get(SERVER_SUPPORTS_STATUS_MESSAGES_HEADER_NAME)
 414                    .is_some();
 415
 416                let tool_use_limit_reached = response
 417                    .headers()
 418                    .get(TOOL_USE_LIMIT_REACHED_HEADER_NAME)
 419                    .is_some();
 420
 421                let usage = if includes_status_messages {
 422                    None
 423                } else {
 424                    ModelRequestUsage::from_headers(response.headers()).ok()
 425                };
 426
 427                return Ok(PerformLlmCompletionResponse {
 428                    response,
 429                    usage,
 430                    includes_status_messages,
 431                    tool_use_limit_reached,
 432                });
 433            }
 434
 435            if !refreshed_token
 436                && response
 437                    .headers()
 438                    .get(EXPIRED_LLM_TOKEN_HEADER_NAME)
 439                    .is_some()
 440            {
 441                token = llm_api_token.refresh(&client).await?;
 442                refreshed_token = true;
 443                continue;
 444            }
 445
 446            if status == StatusCode::FORBIDDEN
 447                && response
 448                    .headers()
 449                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 450                    .is_some()
 451            {
 452                if let Some(MODEL_REQUESTS_RESOURCE_HEADER_VALUE) = response
 453                    .headers()
 454                    .get(SUBSCRIPTION_LIMIT_RESOURCE_HEADER_NAME)
 455                    .and_then(|resource| resource.to_str().ok())
 456                    && let Some(plan) = response
 457                        .headers()
 458                        .get(CURRENT_PLAN_HEADER_NAME)
 459                        .and_then(|plan| plan.to_str().ok())
 460                        .and_then(|plan| cloud_llm_client::PlanV1::from_str(plan).ok())
 461                        .map(Plan::V1)
 462                {
 463                    return Err(anyhow!(ModelRequestLimitReachedError { plan }));
 464                }
 465            } else if status == StatusCode::PAYMENT_REQUIRED {
 466                return Err(anyhow!(PaymentRequiredError));
 467            }
 468
 469            let mut body = String::new();
 470            let headers = response.headers().clone();
 471            response.body_mut().read_to_string(&mut body).await?;
 472            return Err(anyhow!(ApiError {
 473                status,
 474                body,
 475                headers
 476            }));
 477        }
 478    }
 479}
 480
 481#[derive(Debug, Error)]
 482#[error("cloud language model request failed with status {status}: {body}")]
 483struct ApiError {
 484    status: StatusCode,
 485    body: String,
 486    headers: HeaderMap<HeaderValue>,
 487}
 488
 489/// Represents error responses from Zed's cloud API.
 490///
 491/// Example JSON for an upstream HTTP error:
 492/// ```json
 493/// {
 494///   "code": "upstream_http_error",
 495///   "message": "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout",
 496///   "upstream_status": 503
 497/// }
 498/// ```
 499#[derive(Debug, serde::Deserialize)]
 500struct CloudApiError {
 501    code: String,
 502    message: String,
 503    #[serde(default)]
 504    #[serde(deserialize_with = "deserialize_optional_status_code")]
 505    upstream_status: Option<StatusCode>,
 506    #[serde(default)]
 507    retry_after: Option<f64>,
 508}
 509
 510fn deserialize_optional_status_code<'de, D>(deserializer: D) -> Result<Option<StatusCode>, D::Error>
 511where
 512    D: serde::Deserializer<'de>,
 513{
 514    let opt: Option<u16> = Option::deserialize(deserializer)?;
 515    Ok(opt.and_then(|code| StatusCode::from_u16(code).ok()))
 516}
 517
 518impl From<ApiError> for LanguageModelCompletionError {
 519    fn from(error: ApiError) -> Self {
 520        if let Ok(cloud_error) = serde_json::from_str::<CloudApiError>(&error.body) {
 521            if cloud_error.code.starts_with("upstream_http_") {
 522                let status = if let Some(status) = cloud_error.upstream_status {
 523                    status
 524                } else if cloud_error.code.ends_with("_error") {
 525                    error.status
 526                } else {
 527                    // If there's a status code in the code string (e.g. "upstream_http_429")
 528                    // then use that; otherwise, see if the JSON contains a status code.
 529                    cloud_error
 530                        .code
 531                        .strip_prefix("upstream_http_")
 532                        .and_then(|code_str| code_str.parse::<u16>().ok())
 533                        .and_then(|code| StatusCode::from_u16(code).ok())
 534                        .unwrap_or(error.status)
 535                };
 536
 537                return LanguageModelCompletionError::UpstreamProviderError {
 538                    message: cloud_error.message,
 539                    status,
 540                    retry_after: cloud_error.retry_after.map(Duration::from_secs_f64),
 541                };
 542            }
 543
 544            return LanguageModelCompletionError::from_http_status(
 545                PROVIDER_NAME,
 546                error.status,
 547                cloud_error.message,
 548                None,
 549            );
 550        }
 551
 552        let retry_after = None;
 553        LanguageModelCompletionError::from_http_status(
 554            PROVIDER_NAME,
 555            error.status,
 556            error.body,
 557            retry_after,
 558        )
 559    }
 560}
 561
 562impl LanguageModel for CloudLanguageModel {
 563    fn id(&self) -> LanguageModelId {
 564        self.id.clone()
 565    }
 566
 567    fn name(&self) -> LanguageModelName {
 568        LanguageModelName::from(self.model.display_name.clone())
 569    }
 570
 571    fn provider_id(&self) -> LanguageModelProviderId {
 572        PROVIDER_ID
 573    }
 574
 575    fn provider_name(&self) -> LanguageModelProviderName {
 576        PROVIDER_NAME
 577    }
 578
 579    fn upstream_provider_id(&self) -> LanguageModelProviderId {
 580        use cloud_llm_client::LanguageModelProvider::*;
 581        match self.model.provider {
 582            Anthropic => language_model::ANTHROPIC_PROVIDER_ID,
 583            OpenAi => language_model::OPEN_AI_PROVIDER_ID,
 584            Google => language_model::GOOGLE_PROVIDER_ID,
 585            XAi => language_model::X_AI_PROVIDER_ID,
 586        }
 587    }
 588
 589    fn upstream_provider_name(&self) -> LanguageModelProviderName {
 590        use cloud_llm_client::LanguageModelProvider::*;
 591        match self.model.provider {
 592            Anthropic => language_model::ANTHROPIC_PROVIDER_NAME,
 593            OpenAi => language_model::OPEN_AI_PROVIDER_NAME,
 594            Google => language_model::GOOGLE_PROVIDER_NAME,
 595            XAi => language_model::X_AI_PROVIDER_NAME,
 596        }
 597    }
 598
 599    fn supports_tools(&self) -> bool {
 600        self.model.supports_tools
 601    }
 602
 603    fn supports_images(&self) -> bool {
 604        self.model.supports_images
 605    }
 606
 607    fn supports_tool_choice(&self, choice: LanguageModelToolChoice) -> bool {
 608        match choice {
 609            LanguageModelToolChoice::Auto
 610            | LanguageModelToolChoice::Any
 611            | LanguageModelToolChoice::None => true,
 612        }
 613    }
 614
 615    fn supports_burn_mode(&self) -> bool {
 616        self.model.supports_max_mode
 617    }
 618
 619    fn telemetry_id(&self) -> String {
 620        format!("zed.dev/{}", self.model.id)
 621    }
 622
 623    fn tool_input_format(&self) -> LanguageModelToolSchemaFormat {
 624        match self.model.provider {
 625            cloud_llm_client::LanguageModelProvider::Anthropic
 626            | cloud_llm_client::LanguageModelProvider::OpenAi
 627            | cloud_llm_client::LanguageModelProvider::XAi => {
 628                LanguageModelToolSchemaFormat::JsonSchema
 629            }
 630            cloud_llm_client::LanguageModelProvider::Google => {
 631                LanguageModelToolSchemaFormat::JsonSchemaSubset
 632            }
 633        }
 634    }
 635
 636    fn max_token_count(&self) -> u64 {
 637        self.model.max_token_count as u64
 638    }
 639
 640    fn max_token_count_in_burn_mode(&self) -> Option<u64> {
 641        self.model
 642            .max_token_count_in_max_mode
 643            .filter(|_| self.model.supports_max_mode)
 644            .map(|max_token_count| max_token_count as u64)
 645    }
 646
 647    fn cache_configuration(&self) -> Option<LanguageModelCacheConfiguration> {
 648        match &self.model.provider {
 649            cloud_llm_client::LanguageModelProvider::Anthropic => {
 650                Some(LanguageModelCacheConfiguration {
 651                    min_total_token: 2_048,
 652                    should_speculate: true,
 653                    max_cache_anchors: 4,
 654                })
 655            }
 656            cloud_llm_client::LanguageModelProvider::OpenAi
 657            | cloud_llm_client::LanguageModelProvider::XAi
 658            | cloud_llm_client::LanguageModelProvider::Google => None,
 659        }
 660    }
 661
 662    fn count_tokens(
 663        &self,
 664        request: LanguageModelRequest,
 665        cx: &App,
 666    ) -> BoxFuture<'static, Result<u64>> {
 667        match self.model.provider {
 668            cloud_llm_client::LanguageModelProvider::Anthropic => {
 669                count_anthropic_tokens(request, cx)
 670            }
 671            cloud_llm_client::LanguageModelProvider::OpenAi => {
 672                let model = match open_ai::Model::from_id(&self.model.id.0) {
 673                    Ok(model) => model,
 674                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 675                };
 676                count_open_ai_tokens(request, model, cx)
 677            }
 678            cloud_llm_client::LanguageModelProvider::XAi => {
 679                let model = match x_ai::Model::from_id(&self.model.id.0) {
 680                    Ok(model) => model,
 681                    Err(err) => return async move { Err(anyhow!(err)) }.boxed(),
 682                };
 683                count_xai_tokens(request, model, cx)
 684            }
 685            cloud_llm_client::LanguageModelProvider::Google => {
 686                let client = self.client.clone();
 687                let llm_api_token = self.llm_api_token.clone();
 688                let model_id = self.model.id.to_string();
 689                let generate_content_request =
 690                    into_google(request, model_id.clone(), GoogleModelMode::Default);
 691                async move {
 692                    let http_client = &client.http_client();
 693                    let token = llm_api_token.acquire(&client).await?;
 694
 695                    let request_body = CountTokensBody {
 696                        provider: cloud_llm_client::LanguageModelProvider::Google,
 697                        model: model_id,
 698                        provider_request: serde_json::to_value(&google_ai::CountTokensRequest {
 699                            generate_content_request,
 700                        })?,
 701                    };
 702                    let request = http_client::Request::builder()
 703                        .method(Method::POST)
 704                        .uri(
 705                            http_client
 706                                .build_zed_llm_url("/count_tokens", &[])?
 707                                .as_ref(),
 708                        )
 709                        .header("Content-Type", "application/json")
 710                        .header("Authorization", format!("Bearer {token}"))
 711                        .body(serde_json::to_string(&request_body)?.into())?;
 712                    let mut response = http_client.send(request).await?;
 713                    let status = response.status();
 714                    let headers = response.headers().clone();
 715                    let mut response_body = String::new();
 716                    response
 717                        .body_mut()
 718                        .read_to_string(&mut response_body)
 719                        .await?;
 720
 721                    if status.is_success() {
 722                        let response_body: CountTokensResponse =
 723                            serde_json::from_str(&response_body)?;
 724
 725                        Ok(response_body.tokens as u64)
 726                    } else {
 727                        Err(anyhow!(ApiError {
 728                            status,
 729                            body: response_body,
 730                            headers
 731                        }))
 732                    }
 733                }
 734                .boxed()
 735            }
 736        }
 737    }
 738
 739    fn stream_completion(
 740        &self,
 741        request: LanguageModelRequest,
 742        cx: &AsyncApp,
 743    ) -> BoxFuture<
 744        'static,
 745        Result<
 746            BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>,
 747            LanguageModelCompletionError,
 748        >,
 749    > {
 750        let thread_id = request.thread_id.clone();
 751        let prompt_id = request.prompt_id.clone();
 752        let intent = request.intent;
 753        let mode = request.mode;
 754        let app_version = cx.update(|cx| AppVersion::global(cx)).ok();
 755        let thinking_allowed = request.thinking_allowed;
 756        match self.model.provider {
 757            cloud_llm_client::LanguageModelProvider::Anthropic => {
 758                let request = into_anthropic(
 759                    request,
 760                    self.model.id.to_string(),
 761                    1.0,
 762                    self.model.max_output_tokens as u64,
 763                    if thinking_allowed && self.model.id.0.ends_with("-thinking") {
 764                        AnthropicModelMode::Thinking {
 765                            budget_tokens: Some(4_096),
 766                        }
 767                    } else {
 768                        AnthropicModelMode::Default
 769                    },
 770                );
 771                let client = self.client.clone();
 772                let llm_api_token = self.llm_api_token.clone();
 773                let future = self.request_limiter.stream(async move {
 774                    let PerformLlmCompletionResponse {
 775                        response,
 776                        usage,
 777                        includes_status_messages,
 778                        tool_use_limit_reached,
 779                    } = Self::perform_llm_completion(
 780                        client.clone(),
 781                        llm_api_token,
 782                        app_version,
 783                        CompletionBody {
 784                            thread_id,
 785                            prompt_id,
 786                            intent,
 787                            mode,
 788                            provider: cloud_llm_client::LanguageModelProvider::Anthropic,
 789                            model: request.model.clone(),
 790                            provider_request: serde_json::to_value(&request)
 791                                .map_err(|e| anyhow!(e))?,
 792                        },
 793                    )
 794                    .await
 795                    .map_err(|err| match err.downcast::<ApiError>() {
 796                        Ok(api_err) => anyhow!(LanguageModelCompletionError::from(api_err)),
 797                        Err(err) => anyhow!(err),
 798                    })?;
 799
 800                    let mut mapper = AnthropicEventMapper::new();
 801                    Ok(map_cloud_completion_events(
 802                        Box::pin(
 803                            response_lines(response, includes_status_messages)
 804                                .chain(usage_updated_event(usage))
 805                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 806                        ),
 807                        move |event| mapper.map_event(event),
 808                    ))
 809                });
 810                async move { Ok(future.await?.boxed()) }.boxed()
 811            }
 812            cloud_llm_client::LanguageModelProvider::OpenAi => {
 813                let client = self.client.clone();
 814                let model = match open_ai::Model::from_id(&self.model.id.0) {
 815                    Ok(model) => model,
 816                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 817                };
 818                let request = into_open_ai(
 819                    request,
 820                    model.id(),
 821                    model.supports_parallel_tool_calls(),
 822                    model.supports_prompt_cache_key(),
 823                    None,
 824                    None,
 825                );
 826                let llm_api_token = self.llm_api_token.clone();
 827                let future = self.request_limiter.stream(async move {
 828                    let PerformLlmCompletionResponse {
 829                        response,
 830                        usage,
 831                        includes_status_messages,
 832                        tool_use_limit_reached,
 833                    } = Self::perform_llm_completion(
 834                        client.clone(),
 835                        llm_api_token,
 836                        app_version,
 837                        CompletionBody {
 838                            thread_id,
 839                            prompt_id,
 840                            intent,
 841                            mode,
 842                            provider: cloud_llm_client::LanguageModelProvider::OpenAi,
 843                            model: request.model.clone(),
 844                            provider_request: serde_json::to_value(&request)
 845                                .map_err(|e| anyhow!(e))?,
 846                        },
 847                    )
 848                    .await?;
 849
 850                    let mut mapper = OpenAiEventMapper::new();
 851                    Ok(map_cloud_completion_events(
 852                        Box::pin(
 853                            response_lines(response, includes_status_messages)
 854                                .chain(usage_updated_event(usage))
 855                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 856                        ),
 857                        move |event| mapper.map_event(event),
 858                    ))
 859                });
 860                async move { Ok(future.await?.boxed()) }.boxed()
 861            }
 862            cloud_llm_client::LanguageModelProvider::XAi => {
 863                let client = self.client.clone();
 864                let model = match x_ai::Model::from_id(&self.model.id.0) {
 865                    Ok(model) => model,
 866                    Err(err) => return async move { Err(anyhow!(err).into()) }.boxed(),
 867                };
 868                let request = into_open_ai(
 869                    request,
 870                    model.id(),
 871                    model.supports_parallel_tool_calls(),
 872                    model.supports_prompt_cache_key(),
 873                    None,
 874                    None,
 875                );
 876                let llm_api_token = self.llm_api_token.clone();
 877                let future = self.request_limiter.stream(async move {
 878                    let PerformLlmCompletionResponse {
 879                        response,
 880                        usage,
 881                        includes_status_messages,
 882                        tool_use_limit_reached,
 883                    } = Self::perform_llm_completion(
 884                        client.clone(),
 885                        llm_api_token,
 886                        app_version,
 887                        CompletionBody {
 888                            thread_id,
 889                            prompt_id,
 890                            intent,
 891                            mode,
 892                            provider: cloud_llm_client::LanguageModelProvider::XAi,
 893                            model: request.model.clone(),
 894                            provider_request: serde_json::to_value(&request)
 895                                .map_err(|e| anyhow!(e))?,
 896                        },
 897                    )
 898                    .await?;
 899
 900                    let mut mapper = OpenAiEventMapper::new();
 901                    Ok(map_cloud_completion_events(
 902                        Box::pin(
 903                            response_lines(response, includes_status_messages)
 904                                .chain(usage_updated_event(usage))
 905                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 906                        ),
 907                        move |event| mapper.map_event(event),
 908                    ))
 909                });
 910                async move { Ok(future.await?.boxed()) }.boxed()
 911            }
 912            cloud_llm_client::LanguageModelProvider::Google => {
 913                let client = self.client.clone();
 914                let request =
 915                    into_google(request, self.model.id.to_string(), GoogleModelMode::Default);
 916                let llm_api_token = self.llm_api_token.clone();
 917                let future = self.request_limiter.stream(async move {
 918                    let PerformLlmCompletionResponse {
 919                        response,
 920                        usage,
 921                        includes_status_messages,
 922                        tool_use_limit_reached,
 923                    } = Self::perform_llm_completion(
 924                        client.clone(),
 925                        llm_api_token,
 926                        app_version,
 927                        CompletionBody {
 928                            thread_id,
 929                            prompt_id,
 930                            intent,
 931                            mode,
 932                            provider: cloud_llm_client::LanguageModelProvider::Google,
 933                            model: request.model.model_id.clone(),
 934                            provider_request: serde_json::to_value(&request)
 935                                .map_err(|e| anyhow!(e))?,
 936                        },
 937                    )
 938                    .await?;
 939
 940                    let mut mapper = GoogleEventMapper::new();
 941                    Ok(map_cloud_completion_events(
 942                        Box::pin(
 943                            response_lines(response, includes_status_messages)
 944                                .chain(usage_updated_event(usage))
 945                                .chain(tool_use_limit_reached_event(tool_use_limit_reached)),
 946                        ),
 947                        move |event| mapper.map_event(event),
 948                    ))
 949                });
 950                async move { Ok(future.await?.boxed()) }.boxed()
 951            }
 952        }
 953    }
 954}
 955
 956fn map_cloud_completion_events<T, F>(
 957    stream: Pin<Box<dyn Stream<Item = Result<CompletionEvent<T>>> + Send>>,
 958    mut map_callback: F,
 959) -> BoxStream<'static, Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 960where
 961    T: DeserializeOwned + 'static,
 962    F: FnMut(T) -> Vec<Result<LanguageModelCompletionEvent, LanguageModelCompletionError>>
 963        + Send
 964        + 'static,
 965{
 966    stream
 967        .flat_map(move |event| {
 968            futures::stream::iter(match event {
 969                Err(error) => {
 970                    vec![Err(LanguageModelCompletionError::from(error))]
 971                }
 972                Ok(CompletionEvent::Status(event)) => {
 973                    vec![Ok(LanguageModelCompletionEvent::StatusUpdate(event))]
 974                }
 975                Ok(CompletionEvent::Event(event)) => map_callback(event),
 976            })
 977        })
 978        .boxed()
 979}
 980
 981fn usage_updated_event<T>(
 982    usage: Option<ModelRequestUsage>,
 983) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 984    futures::stream::iter(usage.map(|usage| {
 985        Ok(CompletionEvent::Status(
 986            CompletionRequestStatus::UsageUpdated {
 987                amount: usage.amount as usize,
 988                limit: usage.limit,
 989            },
 990        ))
 991    }))
 992}
 993
 994fn tool_use_limit_reached_event<T>(
 995    tool_use_limit_reached: bool,
 996) -> impl Stream<Item = Result<CompletionEvent<T>>> {
 997    futures::stream::iter(tool_use_limit_reached.then(|| {
 998        Ok(CompletionEvent::Status(
 999            CompletionRequestStatus::ToolUseLimitReached,
1000        ))
1001    }))
1002}
1003
1004fn response_lines<T: DeserializeOwned>(
1005    response: Response<AsyncBody>,
1006    includes_status_messages: bool,
1007) -> impl Stream<Item = Result<CompletionEvent<T>>> {
1008    futures::stream::try_unfold(
1009        (String::new(), BufReader::new(response.into_body())),
1010        move |(mut line, mut body)| async move {
1011            match body.read_line(&mut line).await {
1012                Ok(0) => Ok(None),
1013                Ok(_) => {
1014                    let event = if includes_status_messages {
1015                        serde_json::from_str::<CompletionEvent<T>>(&line)?
1016                    } else {
1017                        CompletionEvent::Event(serde_json::from_str::<T>(&line)?)
1018                    };
1019
1020                    line.clear();
1021                    Ok(Some((event, (line, body))))
1022                }
1023                Err(e) => Err(e.into()),
1024            }
1025        },
1026    )
1027}
1028
1029#[derive(IntoElement, RegisterComponent)]
1030struct ZedAiConfiguration {
1031    is_connected: bool,
1032    plan: Option<Plan>,
1033    subscription_period: Option<(DateTime<Utc>, DateTime<Utc>)>,
1034    eligible_for_trial: bool,
1035    account_too_young: bool,
1036    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1037}
1038
1039impl RenderOnce for ZedAiConfiguration {
1040    fn render(self, _window: &mut Window, cx: &mut App) -> impl IntoElement {
1041        let is_pro = self.plan.is_some_and(|plan| {
1042            matches!(plan, Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro))
1043        });
1044        let is_free_v2 = self
1045            .plan
1046            .is_some_and(|plan| plan == Plan::V2(PlanV2::ZedFree));
1047        let subscription_text = match (self.plan, self.subscription_period) {
1048            (Some(Plan::V1(PlanV1::ZedPro) | Plan::V2(PlanV2::ZedPro)), Some(_)) => {
1049                "You have access to Zed's hosted models through your Pro subscription."
1050            }
1051            (Some(Plan::V1(PlanV1::ZedProTrial) | Plan::V2(PlanV2::ZedProTrial)), Some(_)) => {
1052                "You have access to Zed's hosted models through your Pro trial."
1053            }
1054            (Some(Plan::V1(PlanV1::ZedFree)), Some(_)) => {
1055                "You have basic access to Zed's hosted models through the Free plan."
1056            }
1057            (Some(Plan::V2(PlanV2::ZedFree)), Some(_)) => {
1058                if self.eligible_for_trial {
1059                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1060                } else {
1061                    "Subscribe for access to Zed's hosted models."
1062                }
1063            }
1064            _ => {
1065                if self.eligible_for_trial {
1066                    "Subscribe for access to Zed's hosted models. Start with a 14 day free trial."
1067                } else {
1068                    "Subscribe for access to Zed's hosted models."
1069                }
1070            }
1071        };
1072
1073        let manage_subscription_buttons = if is_pro {
1074            Button::new("manage_settings", "Manage Subscription")
1075                .full_width()
1076                .style(ButtonStyle::Tinted(TintColor::Accent))
1077                .on_click(|_, _, cx| cx.open_url(&zed_urls::account_url(cx)))
1078                .into_any_element()
1079        } else if self.plan.is_none() || self.eligible_for_trial {
1080            Button::new("start_trial", "Start 14-day Free Pro Trial")
1081                .full_width()
1082                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1083                .on_click(|_, _, cx| cx.open_url(&zed_urls::start_trial_url(cx)))
1084                .into_any_element()
1085        } else {
1086            Button::new("upgrade", "Upgrade to Pro")
1087                .full_width()
1088                .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1089                .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx)))
1090                .into_any_element()
1091        };
1092
1093        if !self.is_connected {
1094            return v_flex()
1095                .gap_2()
1096                .child(Label::new("Sign in to have access to Zed's complete agentic experience with hosted models."))
1097                .child(
1098                    Button::new("sign_in", "Sign In to use Zed AI")
1099                        .icon_color(Color::Muted)
1100                        .icon(IconName::Github)
1101                        .icon_size(IconSize::Small)
1102                        .icon_position(IconPosition::Start)
1103                        .full_width()
1104                        .on_click({
1105                            let callback = self.sign_in_callback.clone();
1106                            move |_, window, cx| (callback)(window, cx)
1107                        }),
1108                );
1109        }
1110
1111        v_flex().gap_2().w_full().map(|this| {
1112            if self.account_too_young {
1113                this.child(YoungAccountBanner::new(
1114                    is_free_v2 || cx.has_flag::<BillingV2FeatureFlag>(),
1115                ))
1116                .child(
1117                    Button::new("upgrade", "Upgrade to Pro")
1118                        .style(ui::ButtonStyle::Tinted(ui::TintColor::Accent))
1119                        .full_width()
1120                        .on_click(|_, _, cx| cx.open_url(&zed_urls::upgrade_to_zed_pro_url(cx))),
1121                )
1122            } else {
1123                this.text_sm()
1124                    .child(subscription_text)
1125                    .child(manage_subscription_buttons)
1126            }
1127        })
1128    }
1129}
1130
1131struct ConfigurationView {
1132    state: Entity<State>,
1133    sign_in_callback: Arc<dyn Fn(&mut Window, &mut App) + Send + Sync>,
1134}
1135
1136impl ConfigurationView {
1137    fn new(state: Entity<State>) -> Self {
1138        let sign_in_callback = Arc::new({
1139            let state = state.clone();
1140            move |_window: &mut Window, cx: &mut App| {
1141                state.update(cx, |state, cx| {
1142                    state.authenticate(cx).detach_and_log_err(cx);
1143                });
1144            }
1145        });
1146
1147        Self {
1148            state,
1149            sign_in_callback,
1150        }
1151    }
1152}
1153
1154impl Render for ConfigurationView {
1155    fn render(&mut self, _: &mut Window, cx: &mut Context<Self>) -> impl IntoElement {
1156        let state = self.state.read(cx);
1157        let user_store = state.user_store.read(cx);
1158
1159        ZedAiConfiguration {
1160            is_connected: !state.is_signed_out(cx),
1161            plan: user_store.plan(),
1162            subscription_period: user_store.subscription_period(),
1163            eligible_for_trial: user_store.trial_started_at().is_none(),
1164            account_too_young: user_store.account_too_young(),
1165            sign_in_callback: self.sign_in_callback.clone(),
1166        }
1167    }
1168}
1169
1170impl Component for ZedAiConfiguration {
1171    fn name() -> &'static str {
1172        "AI Configuration Content"
1173    }
1174
1175    fn sort_name() -> &'static str {
1176        "AI Configuration Content"
1177    }
1178
1179    fn scope() -> ComponentScope {
1180        ComponentScope::Onboarding
1181    }
1182
1183    fn preview(_window: &mut Window, _cx: &mut App) -> Option<AnyElement> {
1184        fn configuration(
1185            is_connected: bool,
1186            plan: Option<Plan>,
1187            eligible_for_trial: bool,
1188            account_too_young: bool,
1189        ) -> AnyElement {
1190            ZedAiConfiguration {
1191                is_connected,
1192                plan,
1193                subscription_period: plan
1194                    .is_some()
1195                    .then(|| (Utc::now(), Utc::now() + chrono::Duration::days(7))),
1196                eligible_for_trial,
1197                account_too_young,
1198                sign_in_callback: Arc::new(|_, _| {}),
1199            }
1200            .into_any_element()
1201        }
1202
1203        Some(
1204            v_flex()
1205                .p_4()
1206                .gap_4()
1207                .children(vec![
1208                    single_example("Not connected", configuration(false, None, false, false)),
1209                    single_example(
1210                        "Accept Terms of Service",
1211                        configuration(true, None, true, false),
1212                    ),
1213                    single_example(
1214                        "No Plan - Not eligible for trial",
1215                        configuration(true, None, false, false),
1216                    ),
1217                    single_example(
1218                        "No Plan - Eligible for trial",
1219                        configuration(true, None, true, false),
1220                    ),
1221                    single_example(
1222                        "Free Plan",
1223                        configuration(true, Some(Plan::V1(PlanV1::ZedFree)), true, false),
1224                    ),
1225                    single_example(
1226                        "Zed Pro Trial Plan",
1227                        configuration(true, Some(Plan::V1(PlanV1::ZedProTrial)), true, false),
1228                    ),
1229                    single_example(
1230                        "Zed Pro Plan",
1231                        configuration(true, Some(Plan::V1(PlanV1::ZedPro)), true, false),
1232                    ),
1233                ])
1234                .into_any_element(),
1235        )
1236    }
1237}
1238
1239#[cfg(test)]
1240mod tests {
1241    use super::*;
1242    use http_client::http::{HeaderMap, StatusCode};
1243    use language_model::LanguageModelCompletionError;
1244
1245    #[test]
1246    fn test_api_error_conversion_with_upstream_http_error() {
1247        // upstream_http_error with 503 status should become ServerOverloaded
1248        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout","upstream_status":503}"#;
1249
1250        let api_error = ApiError {
1251            status: StatusCode::INTERNAL_SERVER_ERROR,
1252            body: error_body.to_string(),
1253            headers: HeaderMap::new(),
1254        };
1255
1256        let completion_error: LanguageModelCompletionError = api_error.into();
1257
1258        match completion_error {
1259            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1260                assert_eq!(
1261                    message,
1262                    "Received an error from the Anthropic API: upstream connect error or disconnect/reset before headers, reset reason: connection timeout"
1263                );
1264            }
1265            _ => panic!(
1266                "Expected UpstreamProviderError for upstream 503, got: {:?}",
1267                completion_error
1268            ),
1269        }
1270
1271        // upstream_http_error with 500 status should become ApiInternalServerError
1272        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the OpenAI API: internal server error","upstream_status":500}"#;
1273
1274        let api_error = ApiError {
1275            status: StatusCode::INTERNAL_SERVER_ERROR,
1276            body: error_body.to_string(),
1277            headers: HeaderMap::new(),
1278        };
1279
1280        let completion_error: LanguageModelCompletionError = api_error.into();
1281
1282        match completion_error {
1283            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1284                assert_eq!(
1285                    message,
1286                    "Received an error from the OpenAI API: internal server error"
1287                );
1288            }
1289            _ => panic!(
1290                "Expected UpstreamProviderError for upstream 500, got: {:?}",
1291                completion_error
1292            ),
1293        }
1294
1295        // upstream_http_error with 429 status should become RateLimitExceeded
1296        let error_body = r#"{"code":"upstream_http_error","message":"Received an error from the Google API: rate limit exceeded","upstream_status":429}"#;
1297
1298        let api_error = ApiError {
1299            status: StatusCode::INTERNAL_SERVER_ERROR,
1300            body: error_body.to_string(),
1301            headers: HeaderMap::new(),
1302        };
1303
1304        let completion_error: LanguageModelCompletionError = api_error.into();
1305
1306        match completion_error {
1307            LanguageModelCompletionError::UpstreamProviderError { message, .. } => {
1308                assert_eq!(
1309                    message,
1310                    "Received an error from the Google API: rate limit exceeded"
1311                );
1312            }
1313            _ => panic!(
1314                "Expected UpstreamProviderError for upstream 429, got: {:?}",
1315                completion_error
1316            ),
1317        }
1318
1319        // Regular 500 error without upstream_http_error should remain ApiInternalServerError for Zed
1320        let error_body = "Regular internal server error";
1321
1322        let api_error = ApiError {
1323            status: StatusCode::INTERNAL_SERVER_ERROR,
1324            body: error_body.to_string(),
1325            headers: HeaderMap::new(),
1326        };
1327
1328        let completion_error: LanguageModelCompletionError = api_error.into();
1329
1330        match completion_error {
1331            LanguageModelCompletionError::ApiInternalServerError { provider, message } => {
1332                assert_eq!(provider, PROVIDER_NAME);
1333                assert_eq!(message, "Regular internal server error");
1334            }
1335            _ => panic!(
1336                "Expected ApiInternalServerError for regular 500, got: {:?}",
1337                completion_error
1338            ),
1339        }
1340
1341        // upstream_http_429 format should be converted to UpstreamProviderError
1342        let error_body = r#"{"code":"upstream_http_429","message":"Upstream Anthropic rate limit exceeded.","retry_after":30.5}"#;
1343
1344        let api_error = ApiError {
1345            status: StatusCode::INTERNAL_SERVER_ERROR,
1346            body: error_body.to_string(),
1347            headers: HeaderMap::new(),
1348        };
1349
1350        let completion_error: LanguageModelCompletionError = api_error.into();
1351
1352        match completion_error {
1353            LanguageModelCompletionError::UpstreamProviderError {
1354                message,
1355                status,
1356                retry_after,
1357            } => {
1358                assert_eq!(message, "Upstream Anthropic rate limit exceeded.");
1359                assert_eq!(status, StatusCode::TOO_MANY_REQUESTS);
1360                assert_eq!(retry_after, Some(Duration::from_secs_f64(30.5)));
1361            }
1362            _ => panic!(
1363                "Expected UpstreamProviderError for upstream_http_429, got: {:?}",
1364                completion_error
1365            ),
1366        }
1367
1368        // Invalid JSON in error body should fall back to regular error handling
1369        let error_body = "Not JSON at all";
1370
1371        let api_error = ApiError {
1372            status: StatusCode::INTERNAL_SERVER_ERROR,
1373            body: error_body.to_string(),
1374            headers: HeaderMap::new(),
1375        };
1376
1377        let completion_error: LanguageModelCompletionError = api_error.into();
1378
1379        match completion_error {
1380            LanguageModelCompletionError::ApiInternalServerError { provider, .. } => {
1381                assert_eq!(provider, PROVIDER_NAME);
1382            }
1383            _ => panic!(
1384                "Expected ApiInternalServerError for invalid JSON, got: {:?}",
1385                completion_error
1386            ),
1387        }
1388    }
1389}