sum_tree.rs

   1mod cursor;
   2mod tree_map;
   3
   4use arrayvec::ArrayVec;
   5pub use cursor::{Cursor, FilterCursor, Iter};
   6use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator as _};
   7use std::marker::PhantomData;
   8use std::mem;
   9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
  10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
  11
  12#[cfg(test)]
  13pub const TREE_BASE: usize = 2;
  14#[cfg(not(test))]
  15pub const TREE_BASE: usize = 6;
  16
  17/// An item that can be stored in a [`SumTree`]
  18///
  19/// Must be summarized by a type that implements [`Summary`]
  20pub trait Item: Clone {
  21    type Summary: Summary;
  22
  23    fn summary(&self, cx: <Self::Summary as Summary>::Context<'_>) -> Self::Summary;
  24}
  25
  26/// An [`Item`] whose summary has a specific key that can be used to identify it
  27pub trait KeyedItem: Item {
  28    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
  29
  30    fn key(&self) -> Self::Key;
  31}
  32
  33/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
  34///
  35/// Each Summary type can have multiple [`Dimension`]s that it measures,
  36/// which can be used to navigate the tree
  37pub trait Summary: Clone {
  38    type Context<'a>: Copy;
  39    fn zero<'a>(cx: Self::Context<'a>) -> Self;
  40    fn add_summary<'a>(&mut self, summary: &Self, cx: Self::Context<'a>);
  41}
  42
  43pub trait ContextLessSummary: Clone {
  44    fn zero() -> Self;
  45    fn add_summary(&mut self, summary: &Self);
  46}
  47
  48impl<T: ContextLessSummary> Summary for T {
  49    type Context<'a> = ();
  50
  51    fn zero<'a>((): ()) -> Self {
  52        T::zero()
  53    }
  54
  55    fn add_summary<'a>(&mut self, summary: &Self, (): ()) {
  56        T::add_summary(self, summary)
  57    }
  58}
  59
  60#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
  61pub struct NoSummary;
  62
  63/// Catch-all implementation for when you need something that implements [`Summary`] without a specific type.
  64/// We implement it on a `NoSummary` instead of re-using `()`, as that avoids blanket impl collisions with `impl<T: Summary> Dimension for T`
  65/// (as we also need unit type to be a fill-in dimension)
  66impl ContextLessSummary for NoSummary {
  67    fn zero() -> Self {
  68        NoSummary
  69    }
  70
  71    fn add_summary(&mut self, _: &Self) {}
  72}
  73
  74/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
  75///
  76/// You can use dimensions to seek to a specific location in the [`SumTree`]
  77///
  78/// # Example:
  79/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
  80/// Each of these are different dimensions we may want to seek to
  81pub trait Dimension<'a, S: Summary>: Clone {
  82    fn zero(cx: S::Context<'_>) -> Self;
  83
  84    fn add_summary(&mut self, summary: &'a S, cx: S::Context<'_>);
  85    #[must_use]
  86    fn with_added_summary(mut self, summary: &'a S, cx: S::Context<'_>) -> Self {
  87        self.add_summary(summary, cx);
  88        self
  89    }
  90
  91    fn from_summary(summary: &'a S, cx: S::Context<'_>) -> Self {
  92        let mut dimension = Self::zero(cx);
  93        dimension.add_summary(summary, cx);
  94        dimension
  95    }
  96}
  97
  98impl<'a, T: Summary> Dimension<'a, T> for T {
  99    fn zero(cx: T::Context<'_>) -> Self {
 100        Summary::zero(cx)
 101    }
 102
 103    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 104        Summary::add_summary(self, summary, cx);
 105    }
 106}
 107
 108pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>> {
 109    fn cmp(&self, cursor_location: &D, cx: S::Context<'_>) -> Ordering;
 110}
 111
 112impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
 113    fn cmp(&self, cursor_location: &Self, _: S::Context<'_>) -> Ordering {
 114        Ord::cmp(self, cursor_location)
 115    }
 116}
 117
 118impl<'a, T: Summary> Dimension<'a, T> for () {
 119    fn zero(_: T::Context<'_>) -> Self {}
 120
 121    fn add_summary(&mut self, _: &'a T, _: T::Context<'_>) {}
 122}
 123
 124#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
 125pub struct Dimensions<D1, D2, D3 = ()>(pub D1, pub D2, pub D3);
 126
 127impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>, D3: Dimension<'a, T>>
 128    Dimension<'a, T> for Dimensions<D1, D2, D3>
 129{
 130    fn zero(cx: T::Context<'_>) -> Self {
 131        Dimensions(D1::zero(cx), D2::zero(cx), D3::zero(cx))
 132    }
 133
 134    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
 135        self.0.add_summary(summary, cx);
 136        self.1.add_summary(summary, cx);
 137        self.2.add_summary(summary, cx);
 138    }
 139}
 140
 141impl<'a, S, D1, D2, D3> SeekTarget<'a, S, Dimensions<D1, D2, D3>> for D1
 142where
 143    S: Summary,
 144    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
 145    D2: Dimension<'a, S>,
 146    D3: Dimension<'a, S>,
 147{
 148    fn cmp(&self, cursor_location: &Dimensions<D1, D2, D3>, cx: S::Context<'_>) -> Ordering {
 149        self.cmp(&cursor_location.0, cx)
 150    }
 151}
 152
 153/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
 154///
 155/// The primary use case is for text, where Bias influences
 156/// which character an offset or anchor is associated with.
 157///
 158/// # Examples
 159/// Given the buffer `AˇBCD`:
 160/// - The offset of the cursor is 1
 161/// - [Bias::Left] would attach the cursor to the character `A`
 162/// - [Bias::Right] would attach the cursor to the character `B`
 163///
 164/// Given the buffer `A«BCˇ»D`:
 165/// - The offset of the cursor is 3, and the selection is from 1 to 3
 166/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
 167/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
 168///
 169/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
 170/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
 171/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
 172/// - [Bias::Right] would attach the cursor to the first character of the folded region,
 173///   and the buffer offset would be the offset of the first character of the folded region
 174#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
 175pub enum Bias {
 176    /// Attach to the character on the left
 177    #[default]
 178    Left,
 179    /// Attach to the character on the right
 180    Right,
 181}
 182
 183impl Bias {
 184    pub fn invert(self) -> Self {
 185        match self {
 186            Self::Left => Self::Right,
 187            Self::Right => Self::Left,
 188        }
 189    }
 190}
 191
 192/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
 193/// Each internal node contains a `Summary` of the items in its subtree.
 194///
 195/// The maximum number of items per node is `TREE_BASE * 2`.
 196///
 197/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
 198#[derive(Clone)]
 199pub struct SumTree<T: Item>(Arc<Node<T>>);
 200
 201impl<T> fmt::Debug for SumTree<T>
 202where
 203    T: fmt::Debug + Item,
 204    T::Summary: fmt::Debug,
 205{
 206    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
 207        f.debug_tuple("SumTree").field(&self.0).finish()
 208    }
 209}
 210
 211impl<T: Item> SumTree<T> {
 212    pub fn new(cx: <T::Summary as Summary>::Context<'_>) -> Self {
 213        SumTree(Arc::new(Node::Leaf {
 214            summary: <T::Summary as Summary>::zero(cx),
 215            items: ArrayVec::new(),
 216            item_summaries: ArrayVec::new(),
 217        }))
 218    }
 219
 220    /// Useful in cases where the item type has a non-trivial context type, but the zero value of the summary type doesn't depend on that context.
 221    pub fn from_summary(summary: T::Summary) -> Self {
 222        SumTree(Arc::new(Node::Leaf {
 223            summary,
 224            items: ArrayVec::new(),
 225            item_summaries: ArrayVec::new(),
 226        }))
 227    }
 228
 229    pub fn from_item(item: T, cx: <T::Summary as Summary>::Context<'_>) -> Self {
 230        let mut tree = Self::new(cx);
 231        tree.push(item, cx);
 232        tree
 233    }
 234
 235    pub fn from_iter<I: IntoIterator<Item = T>>(
 236        iter: I,
 237        cx: <T::Summary as Summary>::Context<'_>,
 238    ) -> Self {
 239        let mut nodes = Vec::new();
 240
 241        let mut iter = iter.into_iter().fuse().peekable();
 242        while iter.peek().is_some() {
 243            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
 244            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 245                items.iter().map(|item| item.summary(cx)).collect();
 246
 247            let mut summary = item_summaries[0].clone();
 248            for item_summary in &item_summaries[1..] {
 249                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 250            }
 251
 252            nodes.push(Node::Leaf {
 253                summary,
 254                items,
 255                item_summaries,
 256            });
 257        }
 258
 259        let mut parent_nodes = Vec::new();
 260        let mut height = 0;
 261        while nodes.len() > 1 {
 262            height += 1;
 263            let mut current_parent_node = None;
 264            for child_node in nodes.drain(..) {
 265                let parent_node = current_parent_node.get_or_insert_with(|| Node::Internal {
 266                    summary: <T::Summary as Summary>::zero(cx),
 267                    height,
 268                    child_summaries: ArrayVec::new(),
 269                    child_trees: ArrayVec::new(),
 270                });
 271                let Node::Internal {
 272                    summary,
 273                    child_summaries,
 274                    child_trees,
 275                    ..
 276                } = parent_node
 277                else {
 278                    unreachable!()
 279                };
 280                let child_summary = child_node.summary();
 281                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
 282                child_summaries.push(child_summary.clone());
 283                child_trees.push(Self(Arc::new(child_node)));
 284
 285                if child_trees.len() == 2 * TREE_BASE {
 286                    parent_nodes.extend(current_parent_node.take());
 287                }
 288            }
 289            parent_nodes.extend(current_parent_node.take());
 290            mem::swap(&mut nodes, &mut parent_nodes);
 291        }
 292
 293        if nodes.is_empty() {
 294            Self::new(cx)
 295        } else {
 296            debug_assert_eq!(nodes.len(), 1);
 297            Self(Arc::new(nodes.pop().unwrap()))
 298        }
 299    }
 300
 301    pub fn from_par_iter<I, Iter>(iter: I, cx: <T::Summary as Summary>::Context<'_>) -> Self
 302    where
 303        I: IntoParallelIterator<Iter = Iter>,
 304        Iter: IndexedParallelIterator<Item = T>,
 305        T: Send + Sync,
 306        T::Summary: Send + Sync,
 307        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
 308    {
 309        let mut nodes = iter
 310            .into_par_iter()
 311            .chunks(2 * TREE_BASE)
 312            .map(|items| {
 313                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
 314                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
 315                    items.iter().map(|item| item.summary(cx)).collect();
 316                let mut summary = item_summaries[0].clone();
 317                for item_summary in &item_summaries[1..] {
 318                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
 319                }
 320                SumTree(Arc::new(Node::Leaf {
 321                    summary,
 322                    items,
 323                    item_summaries,
 324                }))
 325            })
 326            .collect::<Vec<_>>();
 327
 328        let mut height = 0;
 329        while nodes.len() > 1 {
 330            height += 1;
 331            nodes = nodes
 332                .into_par_iter()
 333                .chunks(2 * TREE_BASE)
 334                .map(|child_nodes| {
 335                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
 336                        child_nodes.into_iter().collect();
 337                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
 338                        .iter()
 339                        .map(|child_tree| child_tree.summary().clone())
 340                        .collect();
 341                    let mut summary = child_summaries[0].clone();
 342                    for child_summary in &child_summaries[1..] {
 343                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
 344                    }
 345                    SumTree(Arc::new(Node::Internal {
 346                        height,
 347                        summary,
 348                        child_summaries,
 349                        child_trees,
 350                    }))
 351                })
 352                .collect::<Vec<_>>();
 353        }
 354
 355        if nodes.is_empty() {
 356            Self::new(cx)
 357        } else {
 358            debug_assert_eq!(nodes.len(), 1);
 359            nodes.pop().unwrap()
 360        }
 361    }
 362
 363    #[allow(unused)]
 364    pub fn items<'a>(&'a self, cx: <T::Summary as Summary>::Context<'a>) -> Vec<T> {
 365        let mut items = Vec::new();
 366        let mut cursor = self.cursor::<()>(cx);
 367        cursor.next();
 368        while let Some(item) = cursor.item() {
 369            items.push(item.clone());
 370            cursor.next();
 371        }
 372        items
 373    }
 374
 375    pub fn iter(&self) -> Iter<'_, T> {
 376        Iter::new(self)
 377    }
 378
 379    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`.
 380    ///
 381    /// Only returns the item that exactly has the target match.
 382    pub fn find_exact<'a, 'slf, D, Target>(
 383        &'slf self,
 384        cx: <T::Summary as Summary>::Context<'a>,
 385        target: &Target,
 386        bias: Bias,
 387    ) -> (D, D, Option<&'slf T>)
 388    where
 389        D: Dimension<'slf, T::Summary>,
 390        Target: SeekTarget<'slf, T::Summary, D>,
 391    {
 392        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 393        let comparison = target.cmp(&tree_end, cx);
 394        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 395        {
 396            return (tree_end.clone(), tree_end, None);
 397        }
 398
 399        let mut pos = D::zero(cx);
 400        return match Self::find_recurse::<_, _, true>(cx, target, bias, &mut pos, self) {
 401            Some((item, end)) => (pos, end, Some(item)),
 402            None => (pos.clone(), pos, None),
 403        };
 404    }
 405
 406    /// A more efficient version of `Cursor::new()` + `Cursor::seek()` + `Cursor::item()`
 407    pub fn find<'a, 'slf, D, Target>(
 408        &'slf self,
 409        cx: <T::Summary as Summary>::Context<'a>,
 410        target: &Target,
 411        bias: Bias,
 412    ) -> (D, D, Option<&'slf T>)
 413    where
 414        D: Dimension<'slf, T::Summary>,
 415        Target: SeekTarget<'slf, T::Summary, D>,
 416    {
 417        let tree_end = D::zero(cx).with_added_summary(self.summary(), cx);
 418        let comparison = target.cmp(&tree_end, cx);
 419        if comparison == Ordering::Greater || (comparison == Ordering::Equal && bias == Bias::Right)
 420        {
 421            return (tree_end.clone(), tree_end, None);
 422        }
 423
 424        let mut pos = D::zero(cx);
 425        return match Self::find_recurse::<_, _, false>(cx, target, bias, &mut pos, self) {
 426            Some((item, end)) => (pos, end, Some(item)),
 427            None => (pos.clone(), pos, None),
 428        };
 429    }
 430
 431    fn find_recurse<'tree, 'a, D, Target, const EXACT: bool>(
 432        cx: <T::Summary as Summary>::Context<'a>,
 433        target: &Target,
 434        bias: Bias,
 435        position: &mut D,
 436        this: &'tree SumTree<T>,
 437    ) -> Option<(&'tree T, D)>
 438    where
 439        D: Dimension<'tree, T::Summary>,
 440        Target: SeekTarget<'tree, T::Summary, D>,
 441    {
 442        match &*this.0 {
 443            Node::Internal {
 444                child_summaries,
 445                child_trees,
 446                ..
 447            } => {
 448                for (child_tree, child_summary) in child_trees.iter().zip(child_summaries) {
 449                    let child_end = position.clone().with_added_summary(child_summary, cx);
 450
 451                    let comparison = target.cmp(&child_end, cx);
 452                    let target_in_child = comparison == Ordering::Less
 453                        || (comparison == Ordering::Equal && bias == Bias::Left);
 454                    if target_in_child {
 455                        return Self::find_recurse::<D, Target, EXACT>(
 456                            cx, target, bias, position, child_tree,
 457                        );
 458                    }
 459                    *position = child_end;
 460                }
 461            }
 462            Node::Leaf {
 463                items,
 464                item_summaries,
 465                ..
 466            } => {
 467                for (item, item_summary) in items.iter().zip(item_summaries) {
 468                    let mut child_end = position.clone();
 469                    child_end.add_summary(item_summary, cx);
 470
 471                    let comparison = target.cmp(&child_end, cx);
 472                    let entry_found = if EXACT {
 473                        comparison == Ordering::Equal
 474                    } else {
 475                        comparison == Ordering::Less
 476                            || (comparison == Ordering::Equal && bias == Bias::Left)
 477                    };
 478                    if entry_found {
 479                        return Some((item, child_end));
 480                    }
 481
 482                    *position = child_end;
 483                }
 484            }
 485        }
 486        None
 487    }
 488
 489    pub fn cursor<'a, 'b, D>(
 490        &'a self,
 491        cx: <T::Summary as Summary>::Context<'b>,
 492    ) -> Cursor<'a, 'b, T, D>
 493    where
 494        D: Dimension<'a, T::Summary>,
 495    {
 496        Cursor::new(self, cx)
 497    }
 498
 499    /// Note: If the summary type requires a non `()` context, then the filter cursor
 500    /// that is returned cannot be used with Rust's iterators.
 501    pub fn filter<'a, 'b, F, U>(
 502        &'a self,
 503        cx: <T::Summary as Summary>::Context<'b>,
 504        filter_node: F,
 505    ) -> FilterCursor<'a, 'b, F, T, U>
 506    where
 507        F: FnMut(&T::Summary) -> bool,
 508        U: Dimension<'a, T::Summary>,
 509    {
 510        FilterCursor::new(self, cx, filter_node)
 511    }
 512
 513    #[allow(dead_code)]
 514    pub fn first(&self) -> Option<&T> {
 515        self.leftmost_leaf().0.items().first()
 516    }
 517
 518    pub fn last(&self) -> Option<&T> {
 519        self.rightmost_leaf().0.items().last()
 520    }
 521
 522    pub fn update_last(
 523        &mut self,
 524        f: impl FnOnce(&mut T),
 525        cx: <T::Summary as Summary>::Context<'_>,
 526    ) {
 527        self.update_last_recursive(f, cx);
 528    }
 529
 530    fn update_last_recursive(
 531        &mut self,
 532        f: impl FnOnce(&mut T),
 533        cx: <T::Summary as Summary>::Context<'_>,
 534    ) -> Option<T::Summary> {
 535        match Arc::make_mut(&mut self.0) {
 536            Node::Internal {
 537                summary,
 538                child_summaries,
 539                child_trees,
 540                ..
 541            } => {
 542                let last_summary = child_summaries.last_mut().unwrap();
 543                let last_child = child_trees.last_mut().unwrap();
 544                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
 545                *summary = sum(child_summaries.iter(), cx);
 546                Some(summary.clone())
 547            }
 548            Node::Leaf {
 549                summary,
 550                items,
 551                item_summaries,
 552            } => {
 553                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
 554                {
 555                    (f)(item);
 556                    *item_summary = item.summary(cx);
 557                    *summary = sum(item_summaries.iter(), cx);
 558                    Some(summary.clone())
 559                } else {
 560                    None
 561                }
 562            }
 563        }
 564    }
 565
 566    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
 567        &'a self,
 568        cx: <T::Summary as Summary>::Context<'_>,
 569    ) -> D {
 570        let mut extent = D::zero(cx);
 571        match self.0.as_ref() {
 572            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
 573                extent.add_summary(summary, cx);
 574            }
 575        }
 576        extent
 577    }
 578
 579    pub fn summary(&self) -> &T::Summary {
 580        match self.0.as_ref() {
 581            Node::Internal { summary, .. } => summary,
 582            Node::Leaf { summary, .. } => summary,
 583        }
 584    }
 585
 586    pub fn is_empty(&self) -> bool {
 587        match self.0.as_ref() {
 588            Node::Internal { .. } => false,
 589            Node::Leaf { items, .. } => items.is_empty(),
 590        }
 591    }
 592
 593    pub fn extend<I>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 594    where
 595        I: IntoIterator<Item = T>,
 596    {
 597        self.append(Self::from_iter(iter, cx), cx);
 598    }
 599
 600    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
 601    where
 602        I: IntoParallelIterator<Iter = Iter>,
 603        Iter: IndexedParallelIterator<Item = T>,
 604        T: Send + Sync,
 605        T::Summary: Send + Sync,
 606        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
 607    {
 608        self.append(Self::from_par_iter(iter, cx), cx);
 609    }
 610
 611    pub fn push(&mut self, item: T, cx: <T::Summary as Summary>::Context<'_>) {
 612        let summary = item.summary(cx);
 613        self.append(
 614            SumTree(Arc::new(Node::Leaf {
 615                summary: summary.clone(),
 616                items: ArrayVec::from_iter(Some(item)),
 617                item_summaries: ArrayVec::from_iter(Some(summary)),
 618            })),
 619            cx,
 620        );
 621    }
 622
 623    pub fn append(&mut self, other: Self, cx: <T::Summary as Summary>::Context<'_>) {
 624        if self.is_empty() {
 625            *self = other;
 626        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
 627            if self.0.height() < other.0.height() {
 628                for tree in other.0.child_trees() {
 629                    self.append(tree.clone(), cx);
 630                }
 631            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
 632                *self = Self::from_child_trees(self.clone(), split_tree, cx);
 633            }
 634        }
 635    }
 636
 637    fn push_tree_recursive(
 638        &mut self,
 639        other: SumTree<T>,
 640        cx: <T::Summary as Summary>::Context<'_>,
 641    ) -> Option<SumTree<T>> {
 642        match Arc::make_mut(&mut self.0) {
 643            Node::Internal {
 644                height,
 645                summary,
 646                child_summaries,
 647                child_trees,
 648                ..
 649            } => {
 650                let other_node = other.0.clone();
 651                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 652
 653                let height_delta = *height - other_node.height();
 654                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
 655                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
 656                if height_delta == 0 {
 657                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
 658                    trees_to_append.extend(other_node.child_trees().iter().cloned());
 659                } else if height_delta == 1 && !other_node.is_underflowing() {
 660                    summaries_to_append.push(other_node.summary().clone());
 661                    trees_to_append.push(other)
 662                } else {
 663                    let tree_to_append = child_trees
 664                        .last_mut()
 665                        .unwrap()
 666                        .push_tree_recursive(other, cx);
 667                    *child_summaries.last_mut().unwrap() =
 668                        child_trees.last().unwrap().0.summary().clone();
 669
 670                    if let Some(split_tree) = tree_to_append {
 671                        summaries_to_append.push(split_tree.0.summary().clone());
 672                        trees_to_append.push(split_tree);
 673                    }
 674                }
 675
 676                let child_count = child_trees.len() + trees_to_append.len();
 677                if child_count > 2 * TREE_BASE {
 678                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 679                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
 680                    let left_trees;
 681                    let right_trees;
 682
 683                    let midpoint = (child_count + child_count % 2) / 2;
 684                    {
 685                        let mut all_summaries = child_summaries
 686                            .iter()
 687                            .chain(summaries_to_append.iter())
 688                            .cloned();
 689                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 690                        right_summaries = all_summaries.collect();
 691                        let mut all_trees =
 692                            child_trees.iter().chain(trees_to_append.iter()).cloned();
 693                        left_trees = all_trees.by_ref().take(midpoint).collect();
 694                        right_trees = all_trees.collect();
 695                    }
 696                    *summary = sum(left_summaries.iter(), cx);
 697                    *child_summaries = left_summaries;
 698                    *child_trees = left_trees;
 699
 700                    Some(SumTree(Arc::new(Node::Internal {
 701                        height: *height,
 702                        summary: sum(right_summaries.iter(), cx),
 703                        child_summaries: right_summaries,
 704                        child_trees: right_trees,
 705                    })))
 706                } else {
 707                    child_summaries.extend(summaries_to_append);
 708                    child_trees.extend(trees_to_append);
 709                    None
 710                }
 711            }
 712            Node::Leaf {
 713                summary,
 714                items,
 715                item_summaries,
 716            } => {
 717                let other_node = other.0;
 718
 719                let child_count = items.len() + other_node.items().len();
 720                if child_count > 2 * TREE_BASE {
 721                    let left_items;
 722                    let right_items;
 723                    let left_summaries;
 724                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
 725
 726                    let midpoint = (child_count + child_count % 2) / 2;
 727                    {
 728                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
 729                        left_items = all_items.by_ref().take(midpoint).collect();
 730                        right_items = all_items.collect();
 731
 732                        let mut all_summaries = item_summaries
 733                            .iter()
 734                            .chain(other_node.child_summaries())
 735                            .cloned();
 736                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
 737                        right_summaries = all_summaries.collect();
 738                    }
 739                    *items = left_items;
 740                    *item_summaries = left_summaries;
 741                    *summary = sum(item_summaries.iter(), cx);
 742                    Some(SumTree(Arc::new(Node::Leaf {
 743                        items: right_items,
 744                        summary: sum(right_summaries.iter(), cx),
 745                        item_summaries: right_summaries,
 746                    })))
 747                } else {
 748                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
 749                    items.extend(other_node.items().iter().cloned());
 750                    item_summaries.extend(other_node.child_summaries().iter().cloned());
 751                    None
 752                }
 753            }
 754        }
 755    }
 756
 757    fn from_child_trees(
 758        left: SumTree<T>,
 759        right: SumTree<T>,
 760        cx: <T::Summary as Summary>::Context<'_>,
 761    ) -> Self {
 762        let height = left.0.height() + 1;
 763        let mut child_summaries = ArrayVec::new();
 764        child_summaries.push(left.0.summary().clone());
 765        child_summaries.push(right.0.summary().clone());
 766        let mut child_trees = ArrayVec::new();
 767        child_trees.push(left);
 768        child_trees.push(right);
 769        SumTree(Arc::new(Node::Internal {
 770            height,
 771            summary: sum(child_summaries.iter(), cx),
 772            child_summaries,
 773            child_trees,
 774        }))
 775    }
 776
 777    fn leftmost_leaf(&self) -> &Self {
 778        match *self.0 {
 779            Node::Leaf { .. } => self,
 780            Node::Internal {
 781                ref child_trees, ..
 782            } => child_trees.first().unwrap().leftmost_leaf(),
 783        }
 784    }
 785
 786    fn rightmost_leaf(&self) -> &Self {
 787        match *self.0 {
 788            Node::Leaf { .. } => self,
 789            Node::Internal {
 790                ref child_trees, ..
 791            } => child_trees.last().unwrap().rightmost_leaf(),
 792        }
 793    }
 794}
 795
 796impl<T: Item + PartialEq> PartialEq for SumTree<T> {
 797    fn eq(&self, other: &Self) -> bool {
 798        self.iter().eq(other.iter())
 799    }
 800}
 801
 802impl<T: Item + Eq> Eq for SumTree<T> {}
 803
 804impl<T: KeyedItem> SumTree<T> {
 805    pub fn insert_or_replace<'a, 'b>(
 806        &'a mut self,
 807        item: T,
 808        cx: <T::Summary as Summary>::Context<'b>,
 809    ) -> Option<T> {
 810        let mut replaced = None;
 811        {
 812            let mut cursor = self.cursor::<T::Key>(cx);
 813            let mut new_tree = cursor.slice(&item.key(), Bias::Left);
 814            if let Some(cursor_item) = cursor.item()
 815                && cursor_item.key() == item.key()
 816            {
 817                replaced = Some(cursor_item.clone());
 818                cursor.next();
 819            }
 820            new_tree.push(item, cx);
 821            new_tree.append(cursor.suffix(), cx);
 822            drop(cursor);
 823            *self = new_tree
 824        };
 825        replaced
 826    }
 827
 828    pub fn remove(&mut self, key: &T::Key, cx: <T::Summary as Summary>::Context<'_>) -> Option<T> {
 829        let mut removed = None;
 830        *self = {
 831            let mut cursor = self.cursor::<T::Key>(cx);
 832            let mut new_tree = cursor.slice(key, Bias::Left);
 833            if let Some(item) = cursor.item()
 834                && item.key() == *key
 835            {
 836                removed = Some(item.clone());
 837                cursor.next();
 838            }
 839            new_tree.append(cursor.suffix(), cx);
 840            new_tree
 841        };
 842        removed
 843    }
 844
 845    pub fn edit(
 846        &mut self,
 847        mut edits: Vec<Edit<T>>,
 848        cx: <T::Summary as Summary>::Context<'_>,
 849    ) -> Vec<T> {
 850        if edits.is_empty() {
 851            return Vec::new();
 852        }
 853
 854        let mut removed = Vec::new();
 855        edits.sort_unstable_by_key(|item| item.key());
 856
 857        *self = {
 858            let mut cursor = self.cursor::<T::Key>(cx);
 859            let mut new_tree = SumTree::new(cx);
 860            let mut buffered_items = Vec::new();
 861
 862            cursor.seek(&T::Key::zero(cx), Bias::Left);
 863            for edit in edits {
 864                let new_key = edit.key();
 865                let mut old_item = cursor.item();
 866
 867                if old_item
 868                    .as_ref()
 869                    .is_some_and(|old_item| old_item.key() < new_key)
 870                {
 871                    new_tree.extend(buffered_items.drain(..), cx);
 872                    let slice = cursor.slice(&new_key, Bias::Left);
 873                    new_tree.append(slice, cx);
 874                    old_item = cursor.item();
 875                }
 876
 877                if let Some(old_item) = old_item
 878                    && old_item.key() == new_key
 879                {
 880                    removed.push(old_item.clone());
 881                    cursor.next();
 882                }
 883
 884                match edit {
 885                    Edit::Insert(item) => {
 886                        buffered_items.push(item);
 887                    }
 888                    Edit::Remove(_) => {}
 889                }
 890            }
 891
 892            new_tree.extend(buffered_items, cx);
 893            new_tree.append(cursor.suffix(), cx);
 894            new_tree
 895        };
 896
 897        removed
 898    }
 899
 900    pub fn get<'a>(
 901        &'a self,
 902        key: &T::Key,
 903        cx: <T::Summary as Summary>::Context<'a>,
 904    ) -> Option<&'a T> {
 905        if let (_, _, Some(item)) = self.find_exact::<T::Key, _>(cx, key, Bias::Left) {
 906            Some(item)
 907        } else {
 908            None
 909        }
 910    }
 911}
 912
 913impl<T, S> Default for SumTree<T>
 914where
 915    T: Item<Summary = S>,
 916    S: for<'a> Summary<Context<'a> = ()>,
 917{
 918    fn default() -> Self {
 919        Self::new(())
 920    }
 921}
 922
 923#[derive(Clone)]
 924pub enum Node<T: Item> {
 925    Internal {
 926        height: u8,
 927        summary: T::Summary,
 928        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 929        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
 930    },
 931    Leaf {
 932        summary: T::Summary,
 933        items: ArrayVec<T, { 2 * TREE_BASE }>,
 934        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
 935    },
 936}
 937
 938impl<T> fmt::Debug for Node<T>
 939where
 940    T: Item + fmt::Debug,
 941    T::Summary: fmt::Debug,
 942{
 943    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 944        match self {
 945            Node::Internal {
 946                height,
 947                summary,
 948                child_summaries,
 949                child_trees,
 950            } => f
 951                .debug_struct("Internal")
 952                .field("height", height)
 953                .field("summary", summary)
 954                .field("child_summaries", child_summaries)
 955                .field("child_trees", child_trees)
 956                .finish(),
 957            Node::Leaf {
 958                summary,
 959                items,
 960                item_summaries,
 961            } => f
 962                .debug_struct("Leaf")
 963                .field("summary", summary)
 964                .field("items", items)
 965                .field("item_summaries", item_summaries)
 966                .finish(),
 967        }
 968    }
 969}
 970
 971impl<T: Item> Node<T> {
 972    fn is_leaf(&self) -> bool {
 973        matches!(self, Node::Leaf { .. })
 974    }
 975
 976    fn height(&self) -> u8 {
 977        match self {
 978            Node::Internal { height, .. } => *height,
 979            Node::Leaf { .. } => 0,
 980        }
 981    }
 982
 983    fn summary(&self) -> &T::Summary {
 984        match self {
 985            Node::Internal { summary, .. } => summary,
 986            Node::Leaf { summary, .. } => summary,
 987        }
 988    }
 989
 990    fn child_summaries(&self) -> &[T::Summary] {
 991        match self {
 992            Node::Internal {
 993                child_summaries, ..
 994            } => child_summaries.as_slice(),
 995            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
 996        }
 997    }
 998
 999    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
1000        match self {
1001            Node::Internal { child_trees, .. } => child_trees,
1002            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
1003        }
1004    }
1005
1006    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
1007        match self {
1008            Node::Leaf { items, .. } => items,
1009            Node::Internal { .. } => panic!("Internal nodes have no items"),
1010        }
1011    }
1012
1013    fn is_underflowing(&self) -> bool {
1014        match self {
1015            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
1016            Node::Leaf { items, .. } => items.len() < TREE_BASE,
1017        }
1018    }
1019}
1020
1021#[derive(Debug)]
1022pub enum Edit<T: KeyedItem> {
1023    Insert(T),
1024    Remove(T::Key),
1025}
1026
1027impl<T: KeyedItem> Edit<T> {
1028    fn key(&self) -> T::Key {
1029        match self {
1030            Edit::Insert(item) => item.key(),
1031            Edit::Remove(key) => key.clone(),
1032        }
1033    }
1034}
1035
1036fn sum<'a, T, I>(iter: I, cx: T::Context<'_>) -> T
1037where
1038    T: 'a + Summary,
1039    I: Iterator<Item = &'a T>,
1040{
1041    let mut sum = T::zero(cx);
1042    for value in iter {
1043        sum.add_summary(value, cx);
1044    }
1045    sum
1046}
1047
1048#[cfg(test)]
1049mod tests {
1050    use super::*;
1051    use rand::{distr::StandardUniform, prelude::*};
1052    use std::cmp;
1053
1054    #[ctor::ctor]
1055    fn init_logger() {
1056        zlog::init_test();
1057    }
1058
1059    #[test]
1060    fn test_extend_and_push_tree() {
1061        let mut tree1 = SumTree::default();
1062        tree1.extend(0..20, ());
1063
1064        let mut tree2 = SumTree::default();
1065        tree2.extend(50..100, ());
1066
1067        tree1.append(tree2, ());
1068        assert_eq!(tree1.items(()), (0..20).chain(50..100).collect::<Vec<u8>>());
1069    }
1070
1071    #[test]
1072    fn test_random() {
1073        let mut starting_seed = 0;
1074        if let Ok(value) = std::env::var("SEED") {
1075            starting_seed = value.parse().expect("invalid SEED variable");
1076        }
1077        let mut num_iterations = 100;
1078        if let Ok(value) = std::env::var("ITERATIONS") {
1079            num_iterations = value.parse().expect("invalid ITERATIONS variable");
1080        }
1081        let num_operations = std::env::var("OPERATIONS")
1082            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
1083
1084        for seed in starting_seed..(starting_seed + num_iterations) {
1085            eprintln!("seed = {}", seed);
1086            let mut rng = StdRng::seed_from_u64(seed);
1087
1088            let rng = &mut rng;
1089            let mut tree = SumTree::<u8>::default();
1090            let count = rng.random_range(0..10);
1091            if rng.random() {
1092                tree.extend(rng.sample_iter(StandardUniform).take(count), ());
1093            } else {
1094                let items = rng
1095                    .sample_iter(StandardUniform)
1096                    .take(count)
1097                    .collect::<Vec<_>>();
1098                tree.par_extend(items, ());
1099            }
1100
1101            for _ in 0..num_operations {
1102                let splice_end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1103                let splice_start = rng.random_range(0..splice_end + 1);
1104                let count = rng.random_range(0..10);
1105                let tree_end = tree.extent::<Count>(());
1106                let new_items = rng
1107                    .sample_iter(StandardUniform)
1108                    .take(count)
1109                    .collect::<Vec<u8>>();
1110
1111                let mut reference_items = tree.items(());
1112                reference_items.splice(splice_start..splice_end, new_items.clone());
1113
1114                tree = {
1115                    let mut cursor = tree.cursor::<Count>(());
1116                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right);
1117                    if rng.random() {
1118                        new_tree.extend(new_items, ());
1119                    } else {
1120                        new_tree.par_extend(new_items, ());
1121                    }
1122                    cursor.seek(&Count(splice_end), Bias::Right);
1123                    new_tree.append(cursor.slice(&tree_end, Bias::Right), ());
1124                    new_tree
1125                };
1126
1127                assert_eq!(tree.items(()), reference_items);
1128                assert_eq!(
1129                    tree.iter().collect::<Vec<_>>(),
1130                    tree.cursor::<()>(()).collect::<Vec<_>>()
1131                );
1132
1133                log::info!("tree items: {:?}", tree.items(()));
1134
1135                let mut filter_cursor =
1136                    tree.filter::<_, Count>((), |summary| summary.contains_even);
1137                let expected_filtered_items = tree
1138                    .items(())
1139                    .into_iter()
1140                    .enumerate()
1141                    .filter(|(_, item)| (item & 1) == 0)
1142                    .collect::<Vec<_>>();
1143
1144                let mut item_ix = if rng.random() {
1145                    filter_cursor.next();
1146                    0
1147                } else {
1148                    filter_cursor.prev();
1149                    expected_filtered_items.len().saturating_sub(1)
1150                };
1151                while item_ix < expected_filtered_items.len() {
1152                    log::info!("filter_cursor, item_ix: {}", item_ix);
1153                    let actual_item = filter_cursor.item().unwrap();
1154                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
1155                    assert_eq!(actual_item, &reference_item);
1156                    assert_eq!(filter_cursor.start().0, reference_index);
1157                    log::info!("next");
1158                    filter_cursor.next();
1159                    item_ix += 1;
1160
1161                    while item_ix > 0 && rng.random_bool(0.2) {
1162                        log::info!("prev");
1163                        filter_cursor.prev();
1164                        item_ix -= 1;
1165
1166                        if item_ix == 0 && rng.random_bool(0.2) {
1167                            filter_cursor.prev();
1168                            assert_eq!(filter_cursor.item(), None);
1169                            assert_eq!(filter_cursor.start().0, 0);
1170                            filter_cursor.next();
1171                        }
1172                    }
1173                }
1174                assert_eq!(filter_cursor.item(), None);
1175
1176                let mut before_start = false;
1177                let mut cursor = tree.cursor::<Count>(());
1178                let start_pos = rng.random_range(0..=reference_items.len());
1179                cursor.seek(&Count(start_pos), Bias::Right);
1180                let mut pos = rng.random_range(start_pos..=reference_items.len());
1181                cursor.seek_forward(&Count(pos), Bias::Right);
1182
1183                for i in 0..10 {
1184                    assert_eq!(cursor.start().0, pos);
1185
1186                    if pos > 0 {
1187                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
1188                    } else {
1189                        assert_eq!(cursor.prev_item(), None);
1190                    }
1191
1192                    if pos < reference_items.len() && !before_start {
1193                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
1194                    } else {
1195                        assert_eq!(cursor.item(), None);
1196                    }
1197
1198                    if before_start {
1199                        assert_eq!(cursor.next_item(), reference_items.first());
1200                    } else if pos + 1 < reference_items.len() {
1201                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
1202                    } else {
1203                        assert_eq!(cursor.next_item(), None);
1204                    }
1205
1206                    if i < 5 {
1207                        cursor.next();
1208                        if pos < reference_items.len() {
1209                            pos += 1;
1210                            before_start = false;
1211                        }
1212                    } else {
1213                        cursor.prev();
1214                        if pos == 0 {
1215                            before_start = true;
1216                        }
1217                        pos = pos.saturating_sub(1);
1218                    }
1219                }
1220            }
1221
1222            for _ in 0..10 {
1223                let end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1224                let start = rng.random_range(0..end + 1);
1225                let start_bias = if rng.random() {
1226                    Bias::Left
1227                } else {
1228                    Bias::Right
1229                };
1230                let end_bias = if rng.random() {
1231                    Bias::Left
1232                } else {
1233                    Bias::Right
1234                };
1235
1236                let mut cursor = tree.cursor::<Count>(());
1237                cursor.seek(&Count(start), start_bias);
1238                let slice = cursor.slice(&Count(end), end_bias);
1239
1240                cursor.seek(&Count(start), start_bias);
1241                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias);
1242
1243                assert_eq!(summary.0, slice.summary().sum);
1244            }
1245        }
1246    }
1247
1248    #[test]
1249    fn test_cursor() {
1250        // Empty tree
1251        let tree = SumTree::<u8>::default();
1252        let mut cursor = tree.cursor::<IntegersSummary>(());
1253        assert_eq!(
1254            cursor.slice(&Count(0), Bias::Right).items(()),
1255            Vec::<u8>::new()
1256        );
1257        assert_eq!(cursor.item(), None);
1258        assert_eq!(cursor.prev_item(), None);
1259        assert_eq!(cursor.next_item(), None);
1260        assert_eq!(cursor.start().sum, 0);
1261        cursor.prev();
1262        assert_eq!(cursor.item(), None);
1263        assert_eq!(cursor.prev_item(), None);
1264        assert_eq!(cursor.next_item(), None);
1265        assert_eq!(cursor.start().sum, 0);
1266        cursor.next();
1267        assert_eq!(cursor.item(), None);
1268        assert_eq!(cursor.prev_item(), None);
1269        assert_eq!(cursor.next_item(), None);
1270        assert_eq!(cursor.start().sum, 0);
1271
1272        // Single-element tree
1273        let mut tree = SumTree::<u8>::default();
1274        tree.extend(vec![1], ());
1275        let mut cursor = tree.cursor::<IntegersSummary>(());
1276        assert_eq!(
1277            cursor.slice(&Count(0), Bias::Right).items(()),
1278            Vec::<u8>::new()
1279        );
1280        assert_eq!(cursor.item(), Some(&1));
1281        assert_eq!(cursor.prev_item(), None);
1282        assert_eq!(cursor.next_item(), None);
1283        assert_eq!(cursor.start().sum, 0);
1284
1285        cursor.next();
1286        assert_eq!(cursor.item(), None);
1287        assert_eq!(cursor.prev_item(), Some(&1));
1288        assert_eq!(cursor.next_item(), None);
1289        assert_eq!(cursor.start().sum, 1);
1290
1291        cursor.prev();
1292        assert_eq!(cursor.item(), Some(&1));
1293        assert_eq!(cursor.prev_item(), None);
1294        assert_eq!(cursor.next_item(), None);
1295        assert_eq!(cursor.start().sum, 0);
1296
1297        let mut cursor = tree.cursor::<IntegersSummary>(());
1298        assert_eq!(cursor.slice(&Count(1), Bias::Right).items(()), [1]);
1299        assert_eq!(cursor.item(), None);
1300        assert_eq!(cursor.prev_item(), Some(&1));
1301        assert_eq!(cursor.next_item(), None);
1302        assert_eq!(cursor.start().sum, 1);
1303
1304        cursor.seek(&Count(0), Bias::Right);
1305        assert_eq!(
1306            cursor
1307                .slice(&tree.extent::<Count>(()), Bias::Right)
1308                .items(()),
1309            [1]
1310        );
1311        assert_eq!(cursor.item(), None);
1312        assert_eq!(cursor.prev_item(), Some(&1));
1313        assert_eq!(cursor.next_item(), None);
1314        assert_eq!(cursor.start().sum, 1);
1315
1316        // Multiple-element tree
1317        let mut tree = SumTree::default();
1318        tree.extend(vec![1, 2, 3, 4, 5, 6], ());
1319        let mut cursor = tree.cursor::<IntegersSummary>(());
1320
1321        assert_eq!(cursor.slice(&Count(2), Bias::Right).items(()), [1, 2]);
1322        assert_eq!(cursor.item(), Some(&3));
1323        assert_eq!(cursor.prev_item(), Some(&2));
1324        assert_eq!(cursor.next_item(), Some(&4));
1325        assert_eq!(cursor.start().sum, 3);
1326
1327        cursor.next();
1328        assert_eq!(cursor.item(), Some(&4));
1329        assert_eq!(cursor.prev_item(), Some(&3));
1330        assert_eq!(cursor.next_item(), Some(&5));
1331        assert_eq!(cursor.start().sum, 6);
1332
1333        cursor.next();
1334        assert_eq!(cursor.item(), Some(&5));
1335        assert_eq!(cursor.prev_item(), Some(&4));
1336        assert_eq!(cursor.next_item(), Some(&6));
1337        assert_eq!(cursor.start().sum, 10);
1338
1339        cursor.next();
1340        assert_eq!(cursor.item(), Some(&6));
1341        assert_eq!(cursor.prev_item(), Some(&5));
1342        assert_eq!(cursor.next_item(), None);
1343        assert_eq!(cursor.start().sum, 15);
1344
1345        cursor.next();
1346        cursor.next();
1347        assert_eq!(cursor.item(), None);
1348        assert_eq!(cursor.prev_item(), Some(&6));
1349        assert_eq!(cursor.next_item(), None);
1350        assert_eq!(cursor.start().sum, 21);
1351
1352        cursor.prev();
1353        assert_eq!(cursor.item(), Some(&6));
1354        assert_eq!(cursor.prev_item(), Some(&5));
1355        assert_eq!(cursor.next_item(), None);
1356        assert_eq!(cursor.start().sum, 15);
1357
1358        cursor.prev();
1359        assert_eq!(cursor.item(), Some(&5));
1360        assert_eq!(cursor.prev_item(), Some(&4));
1361        assert_eq!(cursor.next_item(), Some(&6));
1362        assert_eq!(cursor.start().sum, 10);
1363
1364        cursor.prev();
1365        assert_eq!(cursor.item(), Some(&4));
1366        assert_eq!(cursor.prev_item(), Some(&3));
1367        assert_eq!(cursor.next_item(), Some(&5));
1368        assert_eq!(cursor.start().sum, 6);
1369
1370        cursor.prev();
1371        assert_eq!(cursor.item(), Some(&3));
1372        assert_eq!(cursor.prev_item(), Some(&2));
1373        assert_eq!(cursor.next_item(), Some(&4));
1374        assert_eq!(cursor.start().sum, 3);
1375
1376        cursor.prev();
1377        assert_eq!(cursor.item(), Some(&2));
1378        assert_eq!(cursor.prev_item(), Some(&1));
1379        assert_eq!(cursor.next_item(), Some(&3));
1380        assert_eq!(cursor.start().sum, 1);
1381
1382        cursor.prev();
1383        assert_eq!(cursor.item(), Some(&1));
1384        assert_eq!(cursor.prev_item(), None);
1385        assert_eq!(cursor.next_item(), Some(&2));
1386        assert_eq!(cursor.start().sum, 0);
1387
1388        cursor.prev();
1389        assert_eq!(cursor.item(), None);
1390        assert_eq!(cursor.prev_item(), None);
1391        assert_eq!(cursor.next_item(), Some(&1));
1392        assert_eq!(cursor.start().sum, 0);
1393
1394        cursor.next();
1395        assert_eq!(cursor.item(), Some(&1));
1396        assert_eq!(cursor.prev_item(), None);
1397        assert_eq!(cursor.next_item(), Some(&2));
1398        assert_eq!(cursor.start().sum, 0);
1399
1400        let mut cursor = tree.cursor::<IntegersSummary>(());
1401        assert_eq!(
1402            cursor
1403                .slice(&tree.extent::<Count>(()), Bias::Right)
1404                .items(()),
1405            tree.items(())
1406        );
1407        assert_eq!(cursor.item(), None);
1408        assert_eq!(cursor.prev_item(), Some(&6));
1409        assert_eq!(cursor.next_item(), None);
1410        assert_eq!(cursor.start().sum, 21);
1411
1412        cursor.seek(&Count(3), Bias::Right);
1413        assert_eq!(
1414            cursor
1415                .slice(&tree.extent::<Count>(()), Bias::Right)
1416                .items(()),
1417            [4, 5, 6]
1418        );
1419        assert_eq!(cursor.item(), None);
1420        assert_eq!(cursor.prev_item(), Some(&6));
1421        assert_eq!(cursor.next_item(), None);
1422        assert_eq!(cursor.start().sum, 21);
1423
1424        // Seeking can bias left or right
1425        cursor.seek(&Count(1), Bias::Left);
1426        assert_eq!(cursor.item(), Some(&1));
1427        cursor.seek(&Count(1), Bias::Right);
1428        assert_eq!(cursor.item(), Some(&2));
1429
1430        // Slicing without resetting starts from where the cursor is parked at.
1431        cursor.seek(&Count(1), Bias::Right);
1432        assert_eq!(cursor.slice(&Count(3), Bias::Right).items(()), vec![2, 3]);
1433        assert_eq!(cursor.slice(&Count(6), Bias::Left).items(()), vec![4, 5]);
1434        assert_eq!(cursor.slice(&Count(6), Bias::Right).items(()), vec![6]);
1435    }
1436
1437    #[test]
1438    fn test_edit() {
1439        let mut tree = SumTree::<u8>::default();
1440
1441        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], ());
1442        assert_eq!(tree.items(()), vec![0, 1, 2]);
1443        assert_eq!(removed, Vec::<u8>::new());
1444        assert_eq!(tree.get(&0, ()), Some(&0));
1445        assert_eq!(tree.get(&1, ()), Some(&1));
1446        assert_eq!(tree.get(&2, ()), Some(&2));
1447        assert_eq!(tree.get(&4, ()), None);
1448
1449        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], ());
1450        assert_eq!(tree.items(()), vec![1, 2, 4]);
1451        assert_eq!(removed, vec![0, 2]);
1452        assert_eq!(tree.get(&0, ()), None);
1453        assert_eq!(tree.get(&1, ()), Some(&1));
1454        assert_eq!(tree.get(&2, ()), Some(&2));
1455        assert_eq!(tree.get(&4, ()), Some(&4));
1456    }
1457
1458    #[test]
1459    fn test_from_iter() {
1460        assert_eq!(
1461            SumTree::from_iter(0..100, ()).items(()),
1462            (0..100).collect::<Vec<_>>()
1463        );
1464
1465        // Ensure `from_iter` works correctly when the given iterator restarts
1466        // after calling `next` if `None` was already returned.
1467        let mut ix = 0;
1468        let iterator = std::iter::from_fn(|| {
1469            ix = (ix + 1) % 2;
1470            if ix == 1 { Some(1) } else { None }
1471        });
1472        assert_eq!(SumTree::from_iter(iterator, ()).items(()), vec![1]);
1473    }
1474
1475    #[derive(Clone, Default, Debug)]
1476    pub struct IntegersSummary {
1477        count: usize,
1478        sum: usize,
1479        contains_even: bool,
1480        max: u8,
1481    }
1482
1483    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1484    struct Count(usize);
1485
1486    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1487    struct Sum(usize);
1488
1489    impl Item for u8 {
1490        type Summary = IntegersSummary;
1491
1492        fn summary(&self, _cx: ()) -> Self::Summary {
1493            IntegersSummary {
1494                count: 1,
1495                sum: *self as usize,
1496                contains_even: (*self & 1) == 0,
1497                max: *self,
1498            }
1499        }
1500    }
1501
1502    impl KeyedItem for u8 {
1503        type Key = u8;
1504
1505        fn key(&self) -> Self::Key {
1506            *self
1507        }
1508    }
1509
1510    impl ContextLessSummary for IntegersSummary {
1511        fn zero() -> Self {
1512            Default::default()
1513        }
1514
1515        fn add_summary(&mut self, other: &Self) {
1516            self.count += other.count;
1517            self.sum += other.sum;
1518            self.contains_even |= other.contains_even;
1519            self.max = cmp::max(self.max, other.max);
1520        }
1521    }
1522
1523    impl Dimension<'_, IntegersSummary> for u8 {
1524        fn zero(_cx: ()) -> Self {
1525            Default::default()
1526        }
1527
1528        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1529            *self = summary.max;
1530        }
1531    }
1532
1533    impl Dimension<'_, IntegersSummary> for Count {
1534        fn zero(_cx: ()) -> Self {
1535            Default::default()
1536        }
1537
1538        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1539            self.0 += summary.count;
1540        }
1541    }
1542
1543    impl SeekTarget<'_, IntegersSummary, IntegersSummary> for Count {
1544        fn cmp(&self, cursor_location: &IntegersSummary, _: ()) -> Ordering {
1545            self.0.cmp(&cursor_location.count)
1546        }
1547    }
1548
1549    impl Dimension<'_, IntegersSummary> for Sum {
1550        fn zero(_cx: ()) -> Self {
1551            Default::default()
1552        }
1553
1554        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1555            self.0 += summary.sum;
1556        }
1557    }
1558}